1
|
Lingawi S, Hutton J, Khalili M, Shadgan B, Christenson J, Grunau B, Kuo C. Cardiorespiratory Sensors and Their Implications for Out-of-Hospital Cardiac Arrest Detection: A Systematic Review. Ann Biomed Eng 2024; 52:1136-1158. [PMID: 38358559 DOI: 10.1007/s10439-024-03442-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/03/2024] [Indexed: 02/16/2024]
Abstract
Out-of-hospital cardiac arrest (OHCA) is a major health problem, with a poor survival rate of 2-11%. For the roughly 75% of OHCAs that are unwitnessed, survival is approximately 2-4.4%, as there are no bystanders present to provide life-saving interventions and alert Emergency Medical Services. Sensor technologies may reduce the number of unwitnessed OHCAs through automated detection of OHCA-associated physiological changes. However, no technologies are widely available for OHCA detection. This review identifies research and commercial technologies developed for cardiopulmonary monitoring that may be best suited for use in the context of OHCA, and provides recommendations for technology development, testing, and implementation. We conducted a systematic review of published studies along with a search of grey literature to identify technologies that were able to provide cardiopulmonary monitoring, and could be used to detect OHCA. We searched MEDLINE, EMBASE, Web of Science, and Engineering Village using MeSH keywords. Following inclusion, we summarized trends and findings from included studies. Our searches retrieved 6945 unique publications between January, 1950 and May, 2023. 90 studies met the inclusion criteria. In addition, our grey literature search identified 26 commercial technologies. Among included technologies, 52% utilized electrocardiography (ECG) and 40% utilized photoplethysmography (PPG) sensors. Most wearable devices were multi-modal (59%), utilizing more than one sensor simultaneously. Most included devices were wearable technologies (84%), with chest patches (22%), wrist-worn devices (18%), and garments (14%) being the most prevalent. ECG and PPG sensors are heavily utilized in devices for cardiopulmonary monitoring that could be adapted to OHCA detection. Developers seeking to rapidly develop methods for OHCA detection should focus on using ECG- and/or PPG-based multimodal systems as these are most prevalent in existing devices. However, novel sensor technology development could overcome limitations in existing sensors and could serve as potential additions to or replacements for ECG- and PPG-based devices.
Collapse
Affiliation(s)
- Saud Lingawi
- British Columbia Resuscitation Research Collaborative, Vancouver, BC, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada.
- Centre for Aging SMART, University of British Columbia, 2635 Laurel St., Vancouver, BC, V5Z 1M9, Canada.
| | - Jacob Hutton
- British Columbia Resuscitation Research Collaborative, Vancouver, BC, Canada
- British Columbia Emergency Health Services, Vancouver, Canada
- Department of Emergency Medicine, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- Centre for Advancing Health Outcomes, University of British Columbia, Vancouver, BC, Canada
| | - Mahsa Khalili
- British Columbia Resuscitation Research Collaborative, Vancouver, BC, Canada
- Centre for Aging SMART, University of British Columbia, 2635 Laurel St., Vancouver, BC, V5Z 1M9, Canada
- Department of Emergency Medicine, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- Centre for Advancing Health Outcomes, University of British Columbia, Vancouver, BC, Canada
| | - Babak Shadgan
- British Columbia Resuscitation Research Collaborative, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Department of Orthopedic Surgery, University of British Columbia, Vancouver, BC, Canada
- International Collaboration on Repair Discoveries, Vancouver, BC, Canada
| | - Jim Christenson
- British Columbia Resuscitation Research Collaborative, Vancouver, BC, Canada
- British Columbia Emergency Health Services, Vancouver, Canada
- Department of Emergency Medicine, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- Centre for Advancing Health Outcomes, University of British Columbia, Vancouver, BC, Canada
| | - Brian Grunau
- British Columbia Resuscitation Research Collaborative, Vancouver, BC, Canada
- British Columbia Emergency Health Services, Vancouver, Canada
- Department of Emergency Medicine, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
- Centre for Advancing Health Outcomes, University of British Columbia, Vancouver, BC, Canada
| | - Calvin Kuo
- British Columbia Resuscitation Research Collaborative, Vancouver, BC, Canada
- School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
- Centre for Aging SMART, University of British Columbia, 2635 Laurel St., Vancouver, BC, V5Z 1M9, Canada
| |
Collapse
|
2
|
Guppy F, Muniz-Pardos B, Angeloudis K, Grivas GV, Pitsiladis A, Bundy R, Zelenkova I, Tanisawa K, Akiyama H, Keramitsoglou I, Miller M, Knopp M, Schweizer F, Luckfiel T, Ruiz D, Racinais S, Pitsiladis Y. Technology Innovation and Guardrails in Elite Sport: The Future is Now. Sports Med 2023; 53:97-113. [PMID: 37787844 PMCID: PMC10721698 DOI: 10.1007/s40279-023-01913-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 10/04/2023]
Abstract
A growing number of companies are developing or using wearable sensor technologies that can monitor, analyse and transmit data from humans in real time that can be used by the sporting, biomedical and media industries. To explore this phenomenon, we describe and review two high-profile sporting events where innovations in wearable technologies were trialled: the Tokyo 2020 Summer Olympic Games (Tokyo 2020, Japan) and the 2022 adidas Road to Records (Germany). These two major sporting events were the first time academic and industry partners came together to implement real-time wearable solutions during major competition, to protect the health of athletes competing in hot and humid environments, as well as to better understand how these metrics can be used moving forwards. Despite the undoubted benefits of such wearables, there are well-founded concerns regarding their use including: (1) limited evidence quantifying the potential beneficial effects of analysing specific parameters, (2) the quality of hardware and provided data, (3) information overload, (4) data security and (5) exaggerated marketing claims. Employment and sporting rules and regulations also need to evolve to facilitate the use of wearable devices. There is also the potential to obtain real-time data that will oblige medical personnel to make crucial decisions around whether their athletes should continue competing or withdraw for health reasons. To protect athletes, the urgent need is to overcome these ethical/data protection concerns and develop wearable technologies that are backed by quality science. The fields of sport and exercise science and medicine provide an excellent platform to understand the impact of wearable sensors on performance, wellness, health, and disease.
Collapse
Affiliation(s)
- Fergus Guppy
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Borja Muniz-Pardos
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Saragossa, Spain
| | - Konstantinos Angeloudis
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Gerasimos V Grivas
- Physical Education and Sports, Division of Humanities and Political Sciences, Hellenic Naval Academy, Piraeus, Athens, Greece
| | | | | | - Irina Zelenkova
- GENUD (Growth, Exercise, Nutrition and Development) Research Group, Faculty of Health and Sport Sciences, University of Zaragoza, Saragossa, Spain
| | - Kumpei Tanisawa
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| | - Hiroshi Akiyama
- Graduate School of Sport Sciences, Waseda University, Tokorozawa, Japan
| | | | - Mike Miller
- Human Telemetrics, London, UK
- World Olympians Association, Lausanne, Switzerland
| | - Melanie Knopp
- adidas Innovation, adidas AG, Herzogenaurach, Germany
| | | | | | - Daniel Ruiz
- adidas Innovation, adidas AG, Herzogenaurach, Germany
| | - Sebastien Racinais
- Environmental Stress Unit, CREPS Montpellier - Font Romeu, Montpellier, France
| | - Yannis Pitsiladis
- Human Telemetrics, London, UK.
- Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong SAR, Hong Kong.
| |
Collapse
|
3
|
Perezcampos Mayoral C, Gutiérrez Gutiérrez J, Cano Pérez JL, Vargas Treviño M, Gallegos Velasco IB, Hernández Cruz PA, Torres Rosas R, Tepech Carrillo L, Arnaud Ríos J, Apreza EL, Rojas Laguna R. Fiber Optic Sensors for Vital Signs Monitoring. A Review of Its Practicality in the Health Field. BIOSENSORS 2021; 11:58. [PMID: 33672317 PMCID: PMC7926559 DOI: 10.3390/bios11020058] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Vital signs not only reflect essential functions of the human body but also symptoms of a more serious problem within the anatomy; they are well used for physical monitoring, caloric expenditure, and performance before a possible symptom of a massive failure-a great variety of possibilities that together form a first line of basic diagnosis and follow-up on the health and general condition of a person. This review includes a brief theory about fiber optic sensors' operation and summarizes many research works carried out with them in which their operation and effectiveness are promoted to register some vital sign(s) as a possibility for their use in the medical, health care, and life support fields. The review presents methods and techniques to improve sensitivity in monitoring vital signs, such as the use of doping agents or coatings for optical fiber (OF) that provide stability and resistance to the external factors from which they must be protected in in vivo situations. It has been observed that most of these sensors work with single-mode optical fibers (SMF) in a spectral range of 1550 nm, while only some work in the visible spectrum (Vis); the vast majority, operate through fiber Bragg gratings (FBG), long-period fiber gratings (LPFG), and interferometers. These sensors have brought great advances to the measurement of vital signs, especially with regard to respiratory rate; however, many express the possibility of monitoring other vital signs through mathematical calculations, algorithms, or auxiliary devices. Their advantages due to miniaturization, immunity to electromagnetic interference, and the absence of a power source makes them truly desirable for everyday use at all times.
Collapse
Affiliation(s)
- Christian Perezcampos Mayoral
- Doctorado en Biociencias, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, 68050 Oaxaca de Juárez, Mexico;
| | - Jaime Gutiérrez Gutiérrez
- Escuela de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma “Benito Juárez” de Oaxaca (SBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, 68120 Oaxaca de Juárez, Mexico; (M.V.T.); (L.T.C.); (E.L.A.)
| | - José Luis Cano Pérez
- Doctorado en Biociencias, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, 68050 Oaxaca de Juárez, Mexico;
| | - Marciano Vargas Treviño
- Escuela de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma “Benito Juárez” de Oaxaca (SBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, 68120 Oaxaca de Juárez, Mexico; (M.V.T.); (L.T.C.); (E.L.A.)
| | - Itandehui Belem Gallegos Velasco
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, 68050 Oaxaca de Juárez, Mexico; (I.B.G.V.); (P.A.H.C.)
| | - Pedro António Hernández Cruz
- Centro de Investigación Facultad de Medicina UNAM-UABJO, Facultad de Medicina y Cirugía, Universidad Autónoma “Benito Juárez” de Oaxaca, Ex Hacienda de Aguilera S/N, Calz. San Felipe del Agua, 68050 Oaxaca de Juárez, Mexico; (I.B.G.V.); (P.A.H.C.)
| | - Rafael Torres Rosas
- Facultad de Odontología, Universidad Autónoma “Benito Juárez” de Oaxaca, Av. Universidad S/N, Ex-Hacienda 5 Señores, 68120 Oaxaca de Juárez, Mexico;
| | - Lorenzo Tepech Carrillo
- Escuela de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma “Benito Juárez” de Oaxaca (SBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, 68120 Oaxaca de Juárez, Mexico; (M.V.T.); (L.T.C.); (E.L.A.)
| | - Judith Arnaud Ríos
- Doctorado en Ciencias en Desarrollo Regional y Tecnológico, Tecnológico Nacional de México Campus Oaxaca, Avenida Ing. Víctor Bravo Ahuja No. 125 Esquina Calzada Tecnológico, 68030 Oaxaca de Juárez, Mexico;
| | - Edmundo López Apreza
- Escuela de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma “Benito Juárez” de Oaxaca (SBIT-UABJO), Av. Universidad S/N, Ex-Hacienda 5 Señores, 68120 Oaxaca de Juárez, Mexico; (M.V.T.); (L.T.C.); (E.L.A.)
| | - Roberto Rojas Laguna
- Departamento de Electrónica, División de Ingeniería, Universidad de Guanajuato, Carretera Salamanca-Valle de Santiago km 3.5 + 1.8, Comunidad de Palo Blanco, 36885 Salamanca, Mexico;
| |
Collapse
|
4
|
Zaltieri M, Massaroni C, Lo Presti D, Bravi M, Sabbadini R, Miccinilli S, Sterzi S, Formica D, Schena E. A Wearable Device Based on a Fiber Bragg Grating Sensor for Low Back Movements Monitoring. SENSORS 2020; 20:s20143825. [PMID: 32659958 PMCID: PMC7411829 DOI: 10.3390/s20143825] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/02/2023]
Abstract
Low back pain (LBP) is one of the musculoskeletal disorders that most affects workers. Among others, one of the working categories which mainly experiences such disease are video terminal workers. As it causes exploitation of the National Health Service and absenteeism in workplaces, LBP constitutes a relevant socio-economic burden. In such a scenario, a prompt detection of wrong seating postures can be useful to prevent the occurrence of this disorder. To date, many tools capable of monitoring the spinal range of motions (ROMs) are marketed, but most of them are unusable in working environments due to their bulkiness, discomfort and invasiveness. In the last decades, fiber optic sensors have made their mark allowing the creation of light and compact wearable systems. In this study, a novel wearable device embedding a Fiber Bragg Grating sensor for the detection of lumbar flexion-extensions (F/E) in seated subjects is proposed. At first, the manufacturing process of the sensing element was shown together with its mechanical characterization, that shows linear response to strain with a high correlation coefficient (R2 > 0.99) and a sensitivity value (Sε) of 0.20 nm∙mε−1. Then, the capability of the wearable device in measuring F/E in the sagittal body plane was experimentally assessed on a small population of volunteers, using a Motion Capture system (MoCap) as gold standard showing good ability of the system to match the lumbar F/E trend in time. Additionally, the lumbar ROMs were evaluated in terms of intervertebral lumbar distances (ΔdL3−L1) and angles, exhibiting moderate to good agreement with the MoCap outputs (the maximum Mean Absolute Error obtained is ~16% in detecting ΔdL3−L1). The proposed wearable device is the first attempt for the development of FBG-based wearable systems for workers’ safety monitoring.
Collapse
Affiliation(s)
- Martina Zaltieri
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.); (D.L.P.); (R.S.)
| | - Carlo Massaroni
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.); (D.L.P.); (R.S.)
| | - Daniela Lo Presti
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.); (D.L.P.); (R.S.)
| | - Marco Bravi
- Unit of Physical Medicine and Rehabilitation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.B.); (S.M.); (S.S.)
| | - Riccardo Sabbadini
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.); (D.L.P.); (R.S.)
| | - Sandra Miccinilli
- Unit of Physical Medicine and Rehabilitation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.B.); (S.M.); (S.S.)
| | - Silvia Sterzi
- Unit of Physical Medicine and Rehabilitation, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.B.); (S.M.); (S.S.)
| | - Domenico Formica
- Unit of Neurophysiology and Neuroengineering of HumanTechnology Interaction, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy;
| | - Emiliano Schena
- Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 00128 Rome, Italy; (M.Z.); (C.M.); (D.L.P.); (R.S.)
- Correspondence:
| |
Collapse
|
5
|
Khundaqji H, Hing W, Furness J, Climstein M. Smart Shirts for Monitoring Physiological Parameters: Scoping Review. JMIR Mhealth Uhealth 2020; 8:e18092. [PMID: 32348279 PMCID: PMC7287746 DOI: 10.2196/18092] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The recent trends of technological innovation and widescale digitization as potential solutions to challenges in health care, sports, and emergency service operations have led to the conception of smart textile technology. In health care, these smart textile systems present the potential to aid preventative medicine and early diagnosis through continuous, noninvasive tracking of physical and mental health while promoting proactive involvement of patients in their medical management. In areas such as sports and emergency response, the potential to provide comprehensive and simultaneous physiological insights across multiple body systems is promising. However, it is currently unclear what type of evidence exists surrounding the use of smart textiles for the monitoring of physiological outcome measures across different settings. OBJECTIVE This scoping review aimed to systematically survey the existing body of scientific literature surrounding smart textiles in their most prevalent form, the smart shirt, for monitoring physiological outcome measures. METHODS A total of 5 electronic bibliographic databases were systematically searched (Ovid Medical Literature Analysis and Retrieval System Online, Excerpta Medica database, Scopus, Cumulative Index to Nursing and Allied Health Literature, and SPORTDiscus). Publications from the inception of the database to June 24, 2019 were reviewed. Nonindexed literature relevant to this review was also systematically searched. The results were then collated, summarized, and reported. RESULTS Following the removal of duplicates, 7871 citations were identified. On the basis of title and abstract screening, 7632 citations were excluded, whereas 239 were retrieved and assessed for eligibility. Of these, 101 citations were included in the final analysis. Included studies were categorized into four themes: (1) prototype design, (2) validation, (3) observational, and (4) reviews. Among the 101 analyzed studies, prototype design was the most prevalent theme (50/101, 49.5%), followed by validation (29/101, 28.7%), observational studies (21/101, 20.8%), and reviews (1/101, 0.1%). Presented prototype designs ranged from those capable of monitoring one physiological metric to those capable of monitoring several simultaneously. In 29 validation studies, 16 distinct smart shirts were validated against reference technology under various conditions and work rates, including rest, submaximal exercise, and maximal exercise. The identified observational studies used smart shirts in clinical, healthy, and occupational populations for aims such as early diagnosis and stress detection. One scoping review was identified, investigating the use of smart shirts for electrocardiograph signal monitoring in cardiac patients. CONCLUSIONS Although smart shirts have been found to be valid and reliable in the monitoring of specific physiological metrics, results were variable for others, demonstrating the need for further systematic validation. Analysis of the results has also demonstrated gaps in knowledge, such as a considerable lag of validation and observational studies in comparison with prototype design and limited investigation using smart shirts in pediatric, elite sports, and emergency service populations.
Collapse
Affiliation(s)
- Hamzeh Khundaqji
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Wayne Hing
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - James Furness
- Faculty of Health Sciences & Medicine, Bond University, Gold Coast, Australia
| | - Mike Climstein
- School of Health and Human Sciences, Southern Cross University, Bilinga, Australia.,Physical Activity, Lifestyle, Ageing and Wellbeing Faculty Research Group, University of Sydney, Sydney, Australia
| |
Collapse
|
6
|
Gong Z, Xiang Z, OuYang X, Zhang J, Lau N, Zhou J, Chan CC. Wearable Fiber Optic Technology Based on Smart Textile: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3311. [PMID: 31614542 PMCID: PMC6829450 DOI: 10.3390/ma12203311] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/02/2019] [Accepted: 10/08/2019] [Indexed: 11/17/2022]
Abstract
Emerging smart textiles have enriched a variety of wearable technologies, including fiber optic technology. Optic fibers are widely applied in communication, sensing, and healthcare, and smart textiles enable fiber optic technology to be worn close to soft and curved human body parts for personalized functions. This review briefly introduces wearable fiber optic applications with various functions, including fashion and esthetics, vital signal monitoring, and disease treatment. The main working principles of side emission, wavelength modulation, and intensity modulation are summarized. In addition, textile fabrication techniques, including weaving and knitting, are discussed and illustrated as combination methods of embedding fiber optic technology into textile fabric. In conclusion, the combination of optical fibers and textiles has drawn considerable interest and developed rapidly. This work provides an overview of textile-based wearable fiber optic technology and discusses potential textile fabrication techniques for further improvement of wearable fiber optic applications.
Collapse
Affiliation(s)
- Zidan Gong
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| | - Ziyang Xiang
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| | - Xia OuYang
- Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Jun Zhang
- School of Design, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Newman Lau
- School of Design, The Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Jie Zhou
- Apparel & Art Design College, Xi'an Polytechnic University, Xi'an 710048, China.
| | - Chi Chiu Chan
- Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
7
|
Massaroni C, Nicolò A, Lo Presti D, Sacchetti M, Silvestri S, Schena E. Contact-Based Methods for Measuring Respiratory Rate. SENSORS (BASEL, SWITZERLAND) 2019; 19:E908. [PMID: 30795595 PMCID: PMC6413190 DOI: 10.3390/s19040908] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 01/05/2023]
Abstract
There is an ever-growing demand for measuring respiratory variables during a variety of applications, including monitoring in clinical and occupational settings, and during sporting activities and exercise. Special attention is devoted to the monitoring of respiratory rate because it is a vital sign, which responds to a variety of stressors. There are different methods for measuring respiratory rate, which can be classed as contact-based or contactless. The present paper provides an overview of the currently available contact-based methods for measuring respiratory rate. For these methods, the sensing element (or part of the instrument containing it) is attached to the subject's body. Methods based upon the recording of respiratory airflow, sounds, air temperature, air humidity, air components, chest wall movements, and modulation of the cardiac activity are presented. Working principles, metrological characteristics, and applications in the respiratory monitoring field are presented to explore potential development and applicability for each method.
Collapse
Affiliation(s)
- Carlo Massaroni
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy.
| | - Andrea Nicolò
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Daniela Lo Presti
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy.
| | - Massimo Sacchetti
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy.
| | - Sergio Silvestri
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy.
| | - Emiliano Schena
- Unit of Measurements and Biomedical Instrumentation, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy.
| |
Collapse
|