1
|
Asadi A, Wiesman AI, Wiest C, Baillet S, Tan H, Muthuraman M. Electrophysiological approaches to informing therapeutic interventions with deep brain stimulation. NPJ Parkinsons Dis 2025; 11:20. [PMID: 39833210 PMCID: PMC11747345 DOI: 10.1038/s41531-024-00847-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/03/2024] [Indexed: 01/22/2025] Open
Abstract
Neuromodulation therapy comprises a range of non-destructive and adjustable methods for modulating neural activity using electrical stimulations, chemical agents, or mechanical interventions. Here, we discuss how electrophysiological brain recording and imaging at multiple scales, from cells to large-scale brain networks, contribute to defining the target location and stimulation parameters of neuromodulation, with an emphasis on deep brain stimulation (DBS).
Collapse
Affiliation(s)
- Atefeh Asadi
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Clinic Würzburg, Würzburg, Germany.
| | - Alex I Wiesman
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Christoph Wiest
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Huiling Tan
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Muthuraman Muthuraman
- Neural Engineering with Signal Analytics and Artificial Intelligence, Department of Neurology, University Clinic Würzburg, Würzburg, Germany
- Informatics for Medical Technology, Institute of Computer Science, University Augsburg, Augsburg, Germany
| |
Collapse
|
2
|
Guidetti M, Bocci T, De Pedro Del Álamo M, Deuschl G, Fasano A, Fernandez RM, Gasca-Salas C, Hamani C, Krauss J, Kühn AA, Limousin P, Little S, Lozano A, Maiorana N, Marceglia S, Okun M, Oliveri S, Ostrem JL, Scelzo E, Schnitzler A, Starr P, Temel Y, Timmermann L, Tinkhauser G, Visser-Vandewalle V, Volkmann J, Priori A. Adaptive Deep Brain Stimulation in Parkinson's Disease: A Delphi Consensus Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.26.24312580. [PMID: 39252901 PMCID: PMC11383503 DOI: 10.1101/2024.08.26.24312580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Importance If history teaches, as cardiac pacing moved from fixed-rate to on-demand delivery in in 80s of the last century, there are high probabilities that closed-loop and adaptive approaches will become, in the next decade, the natural evolution of conventional Deep Brain Stimulation (cDBS). However, while devices for aDBS are already available for clinical use, few data on their clinical application and technological limitations are available so far. In such scenario, gathering the opinion and expertise of leading investigators worldwide would boost and guide practice and research, thus grounding the clinical development of aDBS. Observations We identified clinical and academically experienced DBS clinicians (n=21) to discuss the challenges related to aDBS. A 5-point Likert scale questionnaire along with a Delphi method was employed. 42 questions were submitted to the panel, half of them being related to technical aspects while the other half to clinical aspects of aDBS. Experts agreed that aDBS will become clinical practice in 10 years. In the present scenario, although the panel agreed that aDBS applications require skilled clinicians and that algorithms need to be further optimized to manage complex PD symptoms, consensus was reached on aDBS safety and its ability to provide a faster and more stable treatment response than cDBS, also for tremor-dominant Parkinson's disease patients and for those with motor fluctuations and dyskinesias. Conclusions and Relevance Despite the need of further research, the panel concluded that aDBS is safe, promises to be maximally effective in PD patients with motor fluctuation and dyskinesias and therefore will enter into the clinical practice in the next years, with further research focused on algorithms and markers for complex symptoms.
Collapse
Affiliation(s)
- M. Guidetti
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - T. Bocci
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | | | - G. Deuschl
- Department of Neurology University Hospital Schleswig-Holstein, Campus Kiel and Christian Albrechts-University of Kiel Kiel Germany
| | - A. Fasano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- KITE, University Health Network, Toronto, ON, Canada
- Edmond J. Safra Program in Parkinson’s Disease Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Division of Neurology, University of Toronto, Toronto, ON, Canada
| | - R. Martinez Fernandez
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - C. Gasca-Salas
- HM CINAC, Hospital Universitario HM Puerta del Sur, HM Hospitales, Madrid, Spain
- Instituto Carlos III, CIBERNED, Madrid, Spain
| | - C. Hamani
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Harquail Centre for Neuromodulation, 2075 Bayview Avenue, Toronto, M4N 3M5, ON, Canada
- Department of Surgery, University of Toronto, 149 College Street, Toronto, M5T 1P5, ON, Canada
| | - J.K. Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - A. A. Kühn
- Department of Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Humboldt-Universität, Berlin, Germany
- NeuroCure, Exzellenzcluster, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZNE, German Center for Neurodegenerative Diseases, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - P. Limousin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology and the National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - S. Little
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, California, USA
| | - A.M. Lozano
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- CRANIA Center for Advancing Neurotechnological Innovation to Application, University of Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - N.V. Maiorana
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - S. Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, Italy
| | - M.S. Okun
- Department of Neurology, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
- Department of Neurosurgery, Norman Fixel Institute for Neurological Diseases, University of Florida, United States
| | - S. Oliveri
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - J. L. Ostrem
- Movement Disorders and Neuromodulation Centre, University of California San Francisco, San Francisco, California, USA
| | - E. Scelzo
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| | - A. Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
- Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine University, Düsseldorf, Germany
| | - P.A. Starr
- UCSF Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- UCSF Department of Physiology, University of California San Francisco, San Francisco, CA, USA
| | - Y. Temel
- Department of Neurosurgery, Maastricht University Medical Center, Maastricht, Netherlands
| | - L. Timmermann
- Department of Neurology, University Hospital of Marburg, Marburg, Germany
| | - G. Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - V. Visser-Vandewalle
- Department of Stereotactic and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - J. Volkmann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - A. Priori
- “Aldo Ravelli” Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
- Clinical Neurology Unit, “Azienda Socio-Sanitaria Territoriale Santi Paolo e Carlo”, Department of Health Sciences, University of Milan, Via Antonio di Rudinì 8, 20142 Milan, Italy
| |
Collapse
|
3
|
Todorov D, Schnitzler A, Hirschmann J. Parkinsonian rest tremor can be distinguished from voluntary hand movements based on subthalamic and cortical activity. Clin Neurophysiol 2024; 157:146-155. [PMID: 38030516 DOI: 10.1016/j.clinph.2023.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/19/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023]
Abstract
OBJECTIVE To distinguish Parkinsonian rest tremor and different voluntary hand movements by analyzing brain activity. METHODS We re-analyzed magnetoencephalography and local field potential recordings from the subthalamic nucleus of six patients with Parkinson's disease. Data were obtained after withdrawal from dopaminergic medication (Med Off) and after administration of levodopa (Med On). Using gradient-boosted tree learning, we classified epochs as tremor, fist-clenching, forearm extension or tremor-free rest. RESULTS Subthalamic activity alone was insufficient for distinguishing the four different motor states (balanced accuracy mean: 38%, std: 7%). The combination of cortical and subthalamic features, in contrast, allowed for a much more accurate classification (balanced accuracy mean: 75%, std: 17%). Adding a single cortical area improved balanced accuracy by 17% on average, as compared to classification based on subthalamic activity alone. In most patients, the most informative cortical areas were sensorimotor cortical regions. Decoding performance was similar in Med On and Med Off. CONCLUSIONS Electrophysiological recordings allow for distinguishing several motor states, provided that cortical signals are monitored in addition to subthalamic activity. SIGNIFICANCE By combining cortical recordings, subcortical recordings and machine learning, adaptive deep brain stimulation systems might be able to detect tremor specifically and to respond adequately to several motor states.
Collapse
Affiliation(s)
- Dmitrii Todorov
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Centre de Recherche en Neurosciences de Lyon - Inserm U1028, 69675 Bron, France; Centre de Recerca Matemática, Campus UAB edifici C, 08193 Bellaterra, Barcelona, Spain
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany; Center for Movement Disorders and Neuromodulation, Department of Neurology Medical Faculty, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jan Hirschmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
4
|
Bi Z. Cognition of Time and Thinking Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1455:171-195. [PMID: 38918352 DOI: 10.1007/978-3-031-60183-5_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
A common research protocol in cognitive neuroscience is to train subjects to perform deliberately designed experiments while recording brain activity, with the aim of understanding the brain mechanisms underlying cognition. However, how the results of this protocol of research can be applied in technology is seldom discussed. Here, I review the studies on time processing of the brain as examples of this research protocol, as well as two main application areas of neuroscience (neuroengineering and brain-inspired artificial intelligence). Time processing is a fundamental dimension of cognition, and time is also an indispensable dimension of any real-world signal to be processed in technology. Therefore, one may expect that the studies of time processing in cognition profoundly influence brain-related technology. Surprisingly, I found that the results from cognitive studies on timing processing are hardly helpful in solving practical problems. This awkward situation may be due to the lack of generalizability of the results of cognitive studies, which are under well-controlled laboratory conditions, to real-life situations. This lack of generalizability may be rooted in the fundamental unknowability of the world (including cognition). Overall, this paper questions and criticizes the usefulness and prospect of the abovementioned research protocol of cognitive neuroscience. I then give three suggestions for future research. First, to improve the generalizability of research, it is better to study brain activity under real-life conditions instead of in well-controlled laboratory experiments. Second, to overcome the unknowability of the world, we can engineer an easily accessible surrogate of the object under investigation, so that we can predict the behavior of the object under investigation by experimenting on the surrogate. Third, the paper calls for technology-oriented research, with the aim of technology creation instead of knowledge discovery.
Collapse
Affiliation(s)
- Zedong Bi
- Lingang Laboratory, Shanghai, China.
- Institute for Future, Qingdao University, Qingdao, China.
- School of Automation, Shandong Key Laboratory of Industrial Control Technology, Qingdao University, Qingdao, China.
| |
Collapse
|
5
|
Lauro PM, Lee S, Amaya DE, Liu DD, Akbar U, Asaad WF. Concurrent decoding of distinct neurophysiological fingerprints of tremor and bradykinesia in Parkinson's disease. eLife 2023; 12:e84135. [PMID: 37249217 PMCID: PMC10264071 DOI: 10.7554/elife.84135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023] Open
Abstract
Parkinson's disease (PD) is characterized by distinct motor phenomena that are expressed asynchronously. Understanding the neurophysiological correlates of these motor states could facilitate monitoring of disease progression and allow improved assessments of therapeutic efficacy, as well as enable optimal closed-loop neuromodulation. We examined neural activity in the basal ganglia and cortex of 31 subjects with PD during a quantitative motor task to decode tremor and bradykinesia - two cardinal motor signs of PD - and relatively asymptomatic periods of behavior. Support vector regression analysis of microelectrode and electrocorticography recordings revealed that tremor and bradykinesia had nearly opposite neural signatures, while effective motor control displayed unique, differentiating features. The neurophysiological signatures of these motor states depended on the signal type and location. Cortical decoding generally outperformed subcortical decoding. Within the subthalamic nucleus (STN), tremor and bradykinesia were better decoded from distinct subregions. These results demonstrate how to leverage neurophysiology to more precisely treat PD.
Collapse
Affiliation(s)
- Peter M Lauro
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
| | - Shane Lee
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| | - Daniel E Amaya
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
| | - David D Liu
- Department of Neurosurgery, Brigham and Women’s HospitalBostonUnited States
| | - Umer Akbar
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurology, Rhode Island HospitalProvidenceUnited States
| | - Wael F Asaad
- Department of Neuroscience, Brown UniversityProvidenceUnited States
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown UniversityProvidenceUnited States
- The Warren Alpert Medical School, Brown UniversityProvidenceUnited States
- Norman Prince Neurosciences Institute, Rhode Island HospitalProvidenceUnited States
- Department of Neurosurgery, Rhode Island HospitalProvidenceUnited States
| |
Collapse
|
6
|
Fujikawa J, Morigaki R, Yamamoto N, Nakanishi H, Oda T, Izumi Y, Takagi Y. Diagnosis and Treatment of Tremor in Parkinson's Disease Using Mechanical Devices. LIFE (BASEL, SWITZERLAND) 2022; 13:life13010078. [PMID: 36676025 PMCID: PMC9863142 DOI: 10.3390/life13010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/09/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND Parkinsonian tremors are sometimes confused with essential tremors or other conditions. Recently, researchers conducted several studies on tremor evaluation using wearable sensors and devices, which may support accurate diagnosis. Mechanical devices are also commonly used to treat tremors and have been actively researched and developed. Here, we aimed to review recent progress and the efficacy of the devices related to Parkinsonian tremors. METHODS The PubMed and Scopus databases were searched for articles. We searched for "Parkinson disease" and "tremor" and "device". RESULTS Eighty-six articles were selected by our systematic approach. Many studies demonstrated that the diagnosis and evaluation of tremors in patients with PD can be done accurately by machine learning algorithms. Mechanical devices for tremor suppression include deep brain stimulation (DBS), electrical muscle stimulation, and orthosis. In recent years, adaptive DBS and optimization of stimulation parameters have been studied to further improve treatment efficacy. CONCLUSIONS Due to developments using state-of-the-art techniques, effectiveness in diagnosing and evaluating tremor and suppressing it using these devices is satisfactorily high in many studies. However, other than DBS, no devices are in practical use. To acquire high-level evidence, large-scale studies and randomized controlled trials are needed for these devices.
Collapse
Affiliation(s)
- Joji Fujikawa
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Ryoma Morigaki
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Correspondence: ; Tel.: +81-88-633-7149
| | - Nobuaki Yamamoto
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Hiroshi Nakanishi
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Beauty Life Corporation, 2 Kiba-Cho, Minato-Ku, Nagoya 455-0021, Aichi, Japan
| | - Teruo Oda
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yuishin Izumi
- Parkinson’s Disease and Dystonia Research Center, Tokushima University Hospital, 2-50-1 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurology, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| | - Yasushi Takagi
- Department of Advanced Brain Research, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medicine, Tokushima University, 3-18-15 Kuramoto-Cho, Tokushima-Shi 770-8503, Tokushima, Japan
| |
Collapse
|
7
|
Renne S, Lei J, Wei J, Zhang M. Design of a Parkinsonian Biomarkers Combination Optimization Method Using Rodent Model. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:4904-4908. [PMID: 36086597 DOI: 10.1109/embc48229.2022.9870832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Adaptive Deep Brain Stimulation (aDBS) has been proposed in literature to avoid the negative consequences associated with the continuous stimulation delivered through traditional deep brain stimulation. This work seeks to determine a group of neural biomarkers that a classification algorithm could use on an aDBS device using rodent animal models. The neural activities were acquired from the primary motor cortex of four Parkinsonian model rats and four healthy rats from a control group. To overcome the variability introduced from the small rat sample size, this work proposes a novel method for combining and running Genetic Feature Selection and Forward Stepwise Feature Selection in an environment where classification accuracy varies greatly based on how the folds are organized before cross-validation. Three separate classification algorithms, Logistic Regression, k-Nearest Neighbor, and Random Forest are used to verify the proposed method. For Logistic Regression, the set of Alpha Power (7-12 Hz), High Beta Power (20-30 Hz), and 55-95 Hz Gamma Power shows the best performance in classification. For k-Nearest Neighbor, the characterizing features are Low Beta Power (12-20 Hz), High Beta Power, All Beta Power (12-30 Hz), 55-95 Hz Gamma Power, and 95-105 Hz Gamma Power. For Random Forest, they are High Beta Power, All Beta Power, 55-95 Hz Gamma Power, 95-105 Hz Gamma Power, and 300-350 Hz High-Frequency Oscillations Power. With the selected feature set, experimental results show an increasing classification accuracy from 59.08% to 77.69% for Logistic Regression, from 49.53% to 73.44% for k-Nearest Neighbor, and from 54.10% to 71.15% for Random Forest. Clinical Relevance- This experiment provides a method for determining the most effective biomarkers from a larger set for classifying Parkinsonian behavior for an aDBS device.
Collapse
|
8
|
Rojas E, Schmidt SL, Chowdhury A, Pajic M, Turner DA, Won DS. A comparison of an implanted accelerometer with a wearable accelerometer for closed-loop DBS. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:3439-3442. [PMID: 36085858 PMCID: PMC11618508 DOI: 10.1109/embc48229.2022.9871232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sensing technology, as well as cloud communication, is enabling the development of closed-loop deep brain stimulation (DBS) for Parkinson's disease. The accelerometer is a practical sensor that can provide information about the disease/health state of the patient as well as physical activity levels, all of which in the long-term can provide feedback information to an adaptive closed-loop control algorithm for more effective and personalized DBS therapy. In this paper, we present for the first time, acceleration streamed from Medtronic's RC+S device in patients with Parkinson's disease while at home, and compare it to accel-eration acquired concurrently from the patient's Apple Watch. We examined correlation between the accelerometer signals at varying time scales. We also compared the spectral band power obtained from the two accelerometers. While there was an average correlation of 0.37 for subject 1 and 0.50 for subject 2 between the two acceleration signals on a time scale of 10 minutes, the correlation was lower for shorter time scales on the order of seconds. There was greater spectral power in the Parkinsonian tremor band of 4-7 Hz for the externally worn accelerometer than the internal accelerometer, but the internal accelerometer showed greater relative power distributed in the higher frequencies (7-30 Hz). Thus, based on this preliminary analysis, we expect that the internal accelerometer may be used to assess patient activity and state for closed loop DBS but tremor detection may require more sophisticated signal processing. Furthermore, the internal accelerometer may contain information in higher frequency bands that reveal information about the patient state. Clinical relevance - Closed-loop DBS is expected to improve patient outcomes for the tens of thousands of Parkinson's disease patients using DBS [1], [2]. Eliminating an additional external device in order to implement closed-loop adaptive deep brain stimulation would benefit DBS patients however an understanding of what information is lost by doing so is needed to justify the ultimate design of closed-loop DBS.
Collapse
|
9
|
Tinkhauser G, Moraud EM. Controlling Clinical States Governed by Different Temporal Dynamics With Closed-Loop Deep Brain Stimulation: A Principled Framework. Front Neurosci 2021; 15:734186. [PMID: 34858126 PMCID: PMC8632004 DOI: 10.3389/fnins.2021.734186] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/18/2021] [Indexed: 02/05/2023] Open
Abstract
Closed-loop strategies for deep brain stimulation (DBS) are paving the way for improving the efficacy of existing neuromodulation therapies across neurological disorders. Unlike continuous DBS, closed-loop DBS approaches (cl-DBS) optimize the delivery of stimulation in the temporal domain. However, clinical and neurophysiological manifestations exhibit highly diverse temporal properties and evolve over multiple time-constants. Moreover, throughout the day, patients are engaged in different activities such as walking, talking, or sleeping that may require specific therapeutic adjustments. This broad range of temporal properties, along with inter-dependencies affecting parallel manifestations, need to be integrated in the development of therapies to achieve a sustained, optimized control of multiple symptoms over time. This requires an extended view on future cl-DBS design. Here we propose a conceptual framework to guide the development of multi-objective therapies embedding parallel control loops. Its modular organization allows to optimize the personalization of cl-DBS therapies to heterogeneous patient profiles. We provide an overview of clinical states and symptoms, as well as putative electrophysiological biomarkers that may be integrated within this structure. This integrative framework may guide future developments and become an integral part of next-generation precision medicine instruments.
Collapse
Affiliation(s)
- Gerd Tinkhauser
- Department of Neurology, Bern University Hospital and University of Bern, Bern, Switzerland
| | - Eduardo Martin Moraud
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland.,Defitech Center for Interventional Neurotherapies (.NeuroRestore), Ecole Polytechnique Fédérale de Lausanne and Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
10
|
Subthalamic-Cortical Network Reorganization during Parkinson's Tremor. J Neurosci 2021; 41:9844-9858. [PMID: 34702744 DOI: 10.1523/jneurosci.0854-21.2021] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/08/2021] [Accepted: 10/10/2021] [Indexed: 01/08/2023] Open
Abstract
Tremor, a common and often primary symptom of Parkinson's disease, has been modeled with distinct onset and maintenance dynamics. To identify the neurophysiologic correlates of each state, we acquired intraoperative cortical and subthalamic nucleus recordings from 10 patients (9 male, 1 female) performing a naturalistic visual-motor task. From this task, we isolated short epochs of tremor onset and sustained tremor. Comparing these epochs, we found that the subthalamic nucleus was central to tremor onset, as it drove both motor cortical activity and tremor output. Once tremor became sustained, control of tremor shifted to cortex. At the same time, changes in directed functional connectivity across sensorimotor cortex further distinguished the sustained tremor state.SIGNIFICANCE STATEMENT Tremor is a common symptom of Parkinson's disease (PD). While tremor pathophysiology is thought to involve both basal ganglia and cerebello-thalamic-cortical circuits, it is unknown how these structures functionally interact to produce tremor. In this article, we analyzed intracranial recordings from the subthalamic nucleus and sensorimotor cortex in patients with PD undergoing deep brain stimulation surgery. Using an intraoperative task, we examined tremor in two separate dynamic contexts: when tremor first emerged, and when tremor was sustained. We believe that these findings reconcile several models of Parkinson's tremor, while describing the short-timescale dynamics of subcortical-cortical interactions during tremor for the first time. These findings may describe a framework for developing proactive and responsive neurostimulation models for specifically treating tremor.
Collapse
|
11
|
Abdelbari S, Amer HA, Ayoub BM, Kamel R. Surgical Management of Parkinson’s Disease: The Role of Lesioning Procedures in Developing Countries in the Modern Era. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: The known loss of dopaminergic cells in the pars-compacta of the substantia nigra that is the hallmark of PD. The cellular pathophysiology of the motor dysfunction is beginning to be better understood, thereby providing a stronger scientific rationale for surgical interventions. Yet, to date, there are no treatments that prevent, halt, or cure PD. Surgical strategies, offer symptomatic relief or control of motor complications associated with drug treatment.
Both pallidotomy and thalamotomy were extensively used in the treatment of PD in the1950’s and 1960’s. With the introduction of levodopa (L-dopa) in the1960’s and the realization of its striking benefits, surgery was almost abandoned and used only for patients with severe tremor. Surgical therapy is now being used earlier and more often. There are currently three brain regions being considered as targets for functional neurosurgery for PD (other than transplantation). Either CNS lesions (thalamotomy, pallidotomy or subthalamic nucleus lesions) or deep brain stimulation [DBS]. These targets are: The ventral intermediate nucleus of the thalamus (Vim), the internal segment of the Globus Pallidus (GPi) and the subthalamic nucleus (STN).
OBJECTIVE: To assess the outcome (3 months & 6 months) of lesioning procedures in parkinson’s disease (PD) patients meeting the inclusion criteria.
METHODS: A prospective clinical study conducted on 10 IPD patients during the period from October 2018 to March 2021 at Cairo University Hospitals. This study was concerned to improve the motor symptoms of IPD patients by stereotactic radiofrequency ablative procedures. Cases were restricted to 10 patients due to the Covid-19 pandemic and restriction of elective cases for chronic patients at Cairo University hospitals.
RESULTS: In our study we operated upon 10 IPD patients who were meeting our selection criteria by ablative procedures contralateral to parkinsonian symptoms.
Age of the patients ranged 17 – 70y with mean of 50.5 ± 16.35 y with predominance in males representing 6 patients. Mean duration of Parkinson`s disease according to history ranged from 2 to 12 y with mean of 8 ± 3.1 years. Patients were divided into three groups according to their presentation and the operation done for them. Thalamotomy group: Pre-operatively, the UPDRS III off & on respectively was 24.4/15.2 and post-operatively was 13/7.4 with improvement 47% / 51%. The tremor subscore was 5.4/2.8 pre-operatively and 1.4/0.8 post-operatively with average of 72% improvement. The UPDRS II pre was 17.2/11.6 and post it became 10.6/7 with 39% improvement. Modified H&Y 2.4/1.7 pre & post-operatively (29% improvement). Pallidotomy group: Pre-operatively, the UPDRS III off & on respectively was 38.5/23.5 and post-operatively was 28/16 with improvement 27% / 32%. The rigidity subscore was 5/2.5 pre-operatively and 2/1 post-operatively with average of 60% improvement. The bradykinesia subscore was 9/5.5 pre-operatively and 5.5/2.5 post-operatively with average of 47% improvement. The dyskinesia subscore was 4.5 pre-operatively and 1.2 post-operatively with average of 71% improvement. The UPDRS II pre was 22/12.5 and post it became 16/10 with 25% improvement. Modified H&Y 2.75/2.25 pre & post-operatively (18% improvement). Combined group: Pre-operatively, the UPDRS III off & on respectively was 41.33/28.67 and post-operatively was 15.67/11.33 with improvement 62% /60%. The rigidity subscore was 5/3.33 pre-operatively and 1.67/1 post-operatively with average of 68% improvement. The bradykinesia subscore was 10/6 pre-operatively and 4/1.33 post-operatively with average of 72% improvement. The UPDRS II pre was 28.33/19.33 and post it became 16.33/10.67 with 43% improvement. Modified H&Y 2.83/2 pre & post-operatively (29% improvement). Postoperatively, there was a high significant statistical finding in all clinical score and subscore of parkinsonian symptoms.
CONCLUSION: The study concludes that lesioning procedure should be revisited globally using the modern techniques of targeting and controlled thermal lesion protocols guided by capsular somatotopy and intraoperative macroelectrode stimulation, that will improve the outcome dramatically. Ablative procedures proved their efficacy in controlling motor symptoms of IPD and their cost-benefit in low & middle-income nations.
Collapse
|
12
|
Could New Generations of Sensors Reshape the Management of Parkinson’s Disease? CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2021. [DOI: 10.3390/ctn5020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurologic disease that has a great impact on the patient’s quality of life. The natural course of the disease is characterized by an insidious onset of symptoms, such as rest tremor, shuffling gait, bradykinesia, followed by improvement with the initiation of dopaminergic therapy. However, this “honeymoon period” gradually comes to an end with the emergence of motor fluctuations and dyskinesia. PD patients need long-term treatments and monitoring throughout the day; however, clinical examinations in hospitals are often not sufficient for optimal management of the disease. Technology-based devices are a new comprehensive assessment method of PD patient’s symptoms that are easy to use and give unbiased measurements. This review article provides an exhaustive overview of motor complications of advanced PD and new approaches to the management of the disease using sensors.
Collapse
|
13
|
Sand D, Rappel P, Marmor O, Bick AS, Arkadir D, Lu BL, Bergman H, Israel Z, Eitan R. Machine learning-based personalized subthalamic biomarkers predict ON-OFF levodopa states in Parkinson patients. J Neural Eng 2021; 18. [PMID: 33906182 DOI: 10.1088/1741-2552/abfc1d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 04/27/2021] [Indexed: 01/20/2023]
Abstract
Objective.Adaptive deep brain stimulation (aDBS) based on subthalamic nucleus (STN) electrophysiology has recently been proposed to improve clinical outcomes of DBS for Parkinson's disease (PD) patients. Many current models for aDBS are based on one or two electrophysiological features of STN activity, such as beta or gamma activity. Although these models have shown interesting results, we hypothesized that an aDBS model that includes many STN activity parameters will yield better clinical results. The objective of this study was to investigate the most appropriate STN neurophysiological biomarkers, detectable over long periods of time, that can predict OFF and ON levodopa states in PD patients.Approach.Long-term local field potentials (LFPs) were recorded from eight STNs (four PD patients) during 92 recording sessions (44 OFF and 48 ON levodopa states), over a period of 3-12 months. Electrophysiological analysis included the power of frequency bands, band power ratio and burst features. A total of 140 engineered features was extracted for 20 040 epochs (each epoch lasting 5 s). Based on these engineered features, machine learning (ML) models classified LFPs as OFF vs ON levodopa states.Main results.Beta and gamma band activity alone poorly predicts OFF vs ON levodopa states, with an accuracy of 0.66 and 0.64, respectively. Group ML analysis slightly improved prediction rates, but personalized ML analysis, based on individualized engineered electrophysiological features, were markedly better, predicting OFF vs ON levodopa states with an accuracy of 0.8 for support vector machine learning models.Significance.We showed that individual patients have unique sets of STN neurophysiological biomarkers that can be detected over long periods of time. ML models revealed that personally classified engineered features most accurately predict OFF vs ON levodopa states. Future development of aDBS for PD patients might include personalized ML algorithms.
Collapse
Affiliation(s)
- Daniel Sand
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Pnina Rappel
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Odeya Marmor
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel
| | - Atira S Bick
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - David Arkadir
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Bao-Liang Lu
- Center for Brain-like Computing and Machine Intelligence, Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center for Brain Research, The Hebrew University, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Zvi Israel
- The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Functional Neurosurgery Unit, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Renana Eitan
- Department of Medical Neurobiology (Physiology), Institute of Medical Research-Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Brain Division, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.,Jerusalem Mental Health Center, Hebrew University-Hadassah Medical School, Jerusalem, Israel.,Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States of America
| |
Collapse
|
14
|
Krauss JK, Lipsman N, Aziz T, Boutet A, Brown P, Chang JW, Davidson B, Grill WM, Hariz MI, Horn A, Schulder M, Mammis A, Tass PA, Volkmann J, Lozano AM. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol 2020; 17:75-87. [PMID: 33244188 DOI: 10.1038/s41582-020-00426-z] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 01/20/2023]
Abstract
Deep brain stimulation (DBS) is a neurosurgical procedure that allows targeted circuit-based neuromodulation. DBS is a standard of care in Parkinson disease, essential tremor and dystonia, and is also under active investigation for other conditions linked to pathological circuitry, including major depressive disorder and Alzheimer disease. Modern DBS systems, borrowed from the cardiac field, consist of an intracranial electrode, an extension wire and a pulse generator, and have evolved slowly over the past two decades. Advances in engineering and imaging along with an improved understanding of brain disorders are poised to reshape how DBS is viewed and delivered to patients. Breakthroughs in electrode and battery designs, stimulation paradigms, closed-loop and on-demand stimulation, and sensing technologies are expected to enhance the efficacy and tolerability of DBS. In this Review, we provide a comprehensive overview of the technical development of DBS, from its origins to its future. Understanding the evolution of DBS technology helps put the currently available systems in perspective and allows us to predict the next major technological advances and hurdles in the field.
Collapse
Affiliation(s)
- Joachim K Krauss
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany
| | - Nir Lipsman
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Tipu Aziz
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Jin Woo Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, South Korea
| | - Benjamin Davidson
- Department of Neurosurgery, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Marwan I Hariz
- Department of Clinical Neuroscience, University of Umea, Umea, Sweden
| | - Andreas Horn
- Department of Neurology, Movement Disorders and Neuromodulation Section, Charité Medicine University of Berlin, Berlin, Germany
| | - Michael Schulder
- Department of Neurosurgery, Zucker School of Medicine at Hofstra/Northwell, New York, NY, USA
| | - Antonios Mammis
- Department of Neurosurgery, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | - Jens Volkmann
- Department of Neurosurgery, Hannover Medical School, Hannover, Germany.,Department of Neurology, University Hospital of Würzburg, Würzburg, Germany
| | - Andres M Lozano
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
15
|
Watts J, Khojandi A, Shylo O, Ramdhani RA. Machine Learning's Application in Deep Brain Stimulation for Parkinson's Disease: A Review. Brain Sci 2020; 10:E809. [PMID: 33139614 PMCID: PMC7694006 DOI: 10.3390/brainsci10110809] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/16/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Deep brain stimulation (DBS) is a surgical treatment for advanced Parkinson's disease (PD) that has undergone technological evolution that parallels an expansion in clinical phenotyping, neurophysiology, and neuroimaging of the disease state. Machine learning (ML) has been successfully used in a wide range of healthcare problems, including DBS. As computational power increases and more data become available, the application of ML in DBS is expected to grow. We review the literature of ML in DBS and discuss future opportunities for such applications. Specifically, we perform a comprehensive review of the literature from PubMed, the Institute for Scientific Information's Web of Science, Cochrane Database of Systematic Reviews, and Institute of Electrical and Electronics Engineers' (IEEE) Xplore Digital Library for ML applications in DBS. These studies are broadly placed in the following categories: (1) DBS candidate selection; (2) programming optimization; (3) surgical targeting; and (4) insights into DBS mechanisms. For each category, we provide and contextualize the current body of research and discuss potential future directions for the application of ML in DBS.
Collapse
Affiliation(s)
- Jeremy Watts
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA; (J.W.); (A.K.); (O.S.)
| | - Anahita Khojandi
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA; (J.W.); (A.K.); (O.S.)
| | - Oleg Shylo
- Department of Industrial and Systems Engineering, University of Tennessee, Knoxville, TN 37996, USA; (J.W.); (A.K.); (O.S.)
| | - Ritesh A. Ramdhani
- Department of Neurology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY 11549, USA
| |
Collapse
|
16
|
Fleming JE, Orłowski J, Lowery MM, Chaillet A. Self-Tuning Deep Brain Stimulation Controller for Suppression of Beta Oscillations: Analytical Derivation and Numerical Validation. Front Neurosci 2020; 14:639. [PMID: 32694975 PMCID: PMC7339866 DOI: 10.3389/fnins.2020.00639] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/25/2020] [Indexed: 01/06/2023] Open
Abstract
Closed-loop control strategies for deep brain stimulation (DBS) in Parkinson's disease offer the potential to provide more effective control of patient symptoms and fewer side effects than continuous stimulation, while reducing battery consumption. Most of the closed-loop methods proposed and tested to-date rely on controller parameters, such as controller gains, that remain constant over time. While the controller may operate effectively close to the operating point for which it is set, providing benefits when compared to conventional open-loop DBS, it may perform sub-optimally if the operating conditions evolve. Such changes may result from, for example, diurnal variation in symptoms, disease progression or changes in the properties of the electrode-tissue interface. In contrast, an adaptive or “self-tuning” control mechanism has the potential to accommodate slowly varying changes in system properties over a period of days, months, or years. Such an adaptive mechanism would automatically adjust the controller parameters to maintain the desired performance while limiting side effects, despite changes in the system operating point. In this paper, two neural modeling approaches are utilized to derive and test an adaptive control scheme for closed-loop DBS, whereby the gain of a feedback controller is continuously adjusted to sustain suppression of pathological beta-band oscillatory activity at a desired target level. First, the controller is derived based on a simplified firing-rate model of the reciprocally connected subthalamic nucleus (STN) and globus pallidus (GPe). Its efficacy is shown both when pathological oscillations are generated endogenously within the STN-GPe network and when they arise in response to exogenous cortical STN inputs. To account for more realistic biological features, the control scheme is then tested in a physiologically detailed model of the cortical basal ganglia network, comprised of individual conductance-based spiking neurons, and simulates the coupled DBS electric field and STN local field potential. Compared to proportional feedback methods without gain adaptation, the proposed adaptive controller was able to suppress beta-band oscillations with less power consumption, even as the properties of the controlled system evolve over time due to alterations in the target for beta suppression, beta fluctuations and variations in the electrode impedance.
Collapse
Affiliation(s)
- John E Fleming
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Jakub Orłowski
- Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette, France
| | - Madeleine M Lowery
- Neuromuscular Systems Laboratory, UCD School of Electrical & Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Antoine Chaillet
- Laboratoire des Signaux et Systèmes, Université Paris-Saclay, CNRS, CentraleSupélec, Gif-sur-Yvette, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
17
|
Shahtalebi S, Atashzar SF, Samotus O, Patel RV, Jog MS, Mohammadi A. PHTNet: Characterization and Deep Mining of Involuntary Pathological Hand Tremor using Recurrent Neural Network Models. Sci Rep 2020; 10:2195. [PMID: 32042111 PMCID: PMC7010677 DOI: 10.1038/s41598-020-58912-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/17/2020] [Indexed: 12/04/2022] Open
Abstract
The global aging phenomenon has increased the number of individuals with age-related neurological movement disorders including Parkinson's Disease (PD) and Essential Tremor (ET). Pathological Hand Tremor (PHT), which is considered among the most common motor symptoms of such disorders, can severely affect patients' independence and quality of life. To develop advanced rehabilitation and assistive technologies, accurate estimation/prediction of nonstationary PHT is critical, however, the required level of accuracy has not yet been achieved. The lack of sizable datasets and generalizable modeling techniques that can fully represent the spectrotemporal characteristics of PHT have been a critical bottleneck in attaining this goal. This paper addresses this unmet need through establishing a deep recurrent model to predict and eliminate the PHT component of hand motion. More specifically, we propose a machine learning-based, assumption-free, and real-time PHT elimination framework, the PHTNet, by incorporating deep bidirectional recurrent neural networks. The PHTNet is developed over a hand motion dataset of 81 ET and PD patients collected systematically in a movement disorders clinic over 3 years. The PHTNet is the first intelligent systems model developed on this scale for PHT elimination that maximizes the resolution of estimation and allows for prediction of future and upcoming sub-movements.
Collapse
Affiliation(s)
- Soroosh Shahtalebi
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, H3G 1M8, QC, Canada
| | - Seyed Farokh Atashzar
- Departments of Electrical and Computer Engineering, and Mechanical and Aerospace Engineering, New York University, New York, 10003, NY, USA
- NYU WIRELESS center, New York University (NYU), New York, USA
| | - Olivia Samotus
- London Movement Disorders Centre, London Health Sciences Centre, London, ON, Canada
| | - Rajni V Patel
- Department of Electrical and Computer Engineering, University of Western Ontario, London, N6A 5B9, ON, Canada
| | - Mandar S Jog
- London Movement Disorders Centre, London Health Sciences Centre, London, ON, Canada
| | - Arash Mohammadi
- Concordia Institute for Information Systems Engineering, Concordia University, Montreal, H3G 1M8, QC, Canada.
| |
Collapse
|
18
|
Yao L, Brown P, Shoaran M. Improved detection of Parkinsonian resting tremor with feature engineering and Kalman filtering. Clin Neurophysiol 2020; 131:274-284. [PMID: 31744673 PMCID: PMC6927801 DOI: 10.1016/j.clinph.2019.09.021] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Accepted: 09/10/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Accurate and reliable detection of tremor onset in Parkinson's disease (PD) is critical to the success of adaptive deep brain stimulation (aDBS) therapy. Here, we investigated the potential use of feature engineering and machine learning methods for more accurate detection of rest tremor in PD. METHODS We analyzed the local field potential (LFP) recordings from the subthalamic nucleus region in 12 patients with PD (16 recordings). To explore the optimal biomarkers and the best performing classifier, the performance of state-of-the-art machine learning (ML) algorithms and various features of the subthalamic LFPs were compared. We further used a Kalman filtering technique in feature domain to reduce the false positive rate. RESULTS The Hjorth complexity showed a higher correlation with tremor, compared to other features in our study. In addition, by optimal selection of a maximum of five features with a sequential feature selection method and using the gradient boosted decision trees as the classifier, the system could achieve an average F1 score of up to 88.7% and a detection lead of 0.52 s. The use of Kalman filtering in feature space significantly improved the specificity by 17.0% (p = 0.002), thereby potentially reducing the unnecessary power dissipation of the conventional DBS system. CONCLUSION The use of relevant features combined with Kalman filtering and machine learning improves the accuracy of tremor detection during rest. SIGNIFICANCE The proposed method offers a potential solution for efficient on-demand stimulation for PD tremor.
Collapse
Affiliation(s)
- Lin Yao
- ECE Department, Cornell University, Ithaca, NY, USA.
| | - Peter Brown
- Medical Research Council Brain Network Dynamics Unit, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | |
Collapse
|
19
|
Dorsey ER, Omberg L, Waddell E, Adams JL, Adams R, Ali MR, Amodeo K, Arky A, Augustine EF, Dinesh K, Hoque ME, Glidden AM, Jensen-Roberts S, Kabelac Z, Katabi D, Kieburtz K, Kinel DR, Little MA, Lizarraga KJ, Myers T, Riggare S, Rosero SZ, Saria S, Schifitto G, Schneider RB, Sharma G, Shoulson I, Stevenson EA, Tarolli CG, Luo J, McDermott MP. Deep Phenotyping of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2020; 10:855-873. [PMID: 32444562 PMCID: PMC7458535 DOI: 10.3233/jpd-202006] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/01/2020] [Indexed: 12/13/2022]
Abstract
Phenotype is the set of observable traits of an organism or condition. While advances in genetics, imaging, and molecular biology have improved our understanding of the underlying biology of Parkinson's disease (PD), clinical phenotyping of PD still relies primarily on history and physical examination. These subjective, episodic, categorical assessments are valuable for diagnosis and care but have left gaps in our understanding of the PD phenotype. Sensors can provide objective, continuous, real-world data about the PD clinical phenotype, increase our knowledge of its pathology, enhance evaluation of therapies, and ultimately, improve patient care. In this paper, we explore the concept of deep phenotyping-the comprehensive assessment of a condition using multiple clinical, biological, genetic, imaging, and sensor-based tools-for PD. We discuss the rationale for, outline current approaches to, identify benefits and limitations of, and consider future directions for deep clinical phenotyping.
Collapse
Affiliation(s)
- E. Ray Dorsey
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Emma Waddell
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jamie L. Adams
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Roy Adams
- Machine Learning, AI and Healthcare Lab, Johns Hopkins University, Baltimore, MD, USA
| | | | - Katherine Amodeo
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Abigail Arky
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Erika F. Augustine
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Karthik Dinesh
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | | | - Alistair M. Glidden
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Stella Jensen-Roberts
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Zachary Kabelac
- Department of Computer Science and Artificial Intelligence, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Dina Katabi
- Department of Computer Science and Artificial Intelligence, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Karl Kieburtz
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Daniel R. Kinel
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Max A. Little
- School of Computer Science, University of Birmingham, UK
- Massachusetts Institute of Technology, MA, USA
| | - Karlo J. Lizarraga
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Taylor Myers
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sara Riggare
- Department of Women’s and Children’s Health, Uppsala University, Uppsala, Sweden
| | | | - Suchi Saria
- Machine Learning, AI and Healthcare Lab, Johns Hopkins University, Baltimore, MD, USA
- Department of Computer Science, Statistics, and Health Policy, Johns Hopkins University, MD, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ruth B. Schneider
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Gaurav Sharma
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Ira Shoulson
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
- Grey Matter Technologies, Sarasota, FL, USA
| | - E. Anna Stevenson
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
| | - Christopher G. Tarolli
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jiebo Luo
- Department of Computer Science, University of Rochester, Rochester, NY, USA
| | - Michael P. McDermott
- Center for Health + Technology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
20
|
Petkos K, Guiho T, Degenaar P, Jackson A, Brown P, Denison T, Drakakis EM. A high-performance 4 nV (√Hz) -1 analog front-end architecture for artefact suppression in local field potential recordings during deep brain stimulation. J Neural Eng 2019; 16:066003. [PMID: 31151118 PMCID: PMC6877351 DOI: 10.1088/1741-2552/ab2610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Recording of local field potentials (LFPs) during deep brain stimulation (DBS) is necessary to investigate the instantaneous brain response to stimulation, minimize time delays for closed-loop neurostimulation and maximise the available neural data. To our knowledge, existing recording systems lack the ability to provide artefact-free high-frequency (>100 Hz) LFP recordings during DBS in real time primarily because of the contamination of the neural signals of interest by the stimulation artefacts. APPROACH To solve this problem, we designed and developed a novel, low-noise and versatile analog front-end (AFE) that uses a high-order (8th) analog Chebyshev notch filter to suppress the artefacts originating from the stimulation frequency. After defining the system requirements for concurrent LFP recording and DBS artefact suppression, we assessed the performance of the realised AFE by conducting both in vitro and in vivo experiments using unipolar and bipolar DBS (monophasic pulses, amplitude ranging from 3 to 6 V peak-to-peak, frequency 140 Hz and pulse width 100 µs). A full performance comparison between the proposed AFE and an identical AFE, equipped with an 8th order analog Bessel notch filter, was also conducted. MAIN RESULTS A high-performance, 4 nV ([Formula: see text])-1 AFE that is capable of recording nV-scale signals was designed in accordance with the imposed specifications. Under both in vitro and in vivo experimental conditions, the proposed AFE provided real-time, low-noise and artefact-free LFP recordings (in the frequency range 0.5-250 Hz) during stimulation. Its sensing and stimulation artefact suppression capabilities outperformed the capabilities of the AFE equipped with the Bessel notch filter. SIGNIFICANCE The designed AFE can precisely record LFP signals, in and without the presence of either unipolar or bipolar DBS, which renders it as a functional and practical AFE architecture to be utilised in a wide range of applications and environments. This work paves the way for the development of externalized research tools for closed-loop neuromodulation that use low- and higher-frequency LFPs as control signals.
Collapse
Affiliation(s)
- Konstantinos Petkos
- Department of Bioengineering, Imperial College London, London, United Kingdom. Center for Neurotechnology, Imperial College London, London, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
21
|
Krack P, Volkmann J, Tinkhauser G, Deuschl G. Deep Brain Stimulation in Movement Disorders: From Experimental Surgery to Evidence‐Based Therapy. Mov Disord 2019; 34:1795-1810. [DOI: 10.1002/mds.27860] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 12/21/2022] Open
Affiliation(s)
- Paul Krack
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Jens Volkmann
- Department of Neurology University Hospital and Julius‐Maximilian‐University Wuerzburg Germany
| | - Gerd Tinkhauser
- Department of Neurology Bern University Hospital and University of Bern Bern Switzerland
| | - Günther Deuschl
- Department of Neurology University Hospital Schleswig Holstein (UKSH), Kiel Campus; Christian‐Albrechts‐University Kiel Germany
| |
Collapse
|
22
|
Tekriwal A, Afshar NM, Santiago-Moreno J, Kuijper FM, Kern DS, Halpern CH, Felsen G, Thompson JA. Neural Circuit and Clinical Insights from Intraoperative Recordings During Deep Brain Stimulation Surgery. Brain Sci 2019; 9:brainsci9070173. [PMID: 31330813 PMCID: PMC6681002 DOI: 10.3390/brainsci9070173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Observations using invasive neural recordings from patient populations undergoing neurosurgical interventions have led to critical breakthroughs in our understanding of human neural circuit function and malfunction. The opportunity to interact with patients during neurophysiological mapping allowed for early insights in functional localization to improve surgical outcomes, but has since expanded into exploring fundamental aspects of human cognition including reward processing, language, the storage and retrieval of memory, decision-making, as well as sensory and motor processing. The increasing use of chronic neuromodulation, via deep brain stimulation, for a spectrum of neurological and psychiatric conditions has in tandem led to increased opportunity for linking theories of cognitive processing and neural circuit function. Our purpose here is to motivate the neuroscience and neurosurgical community to capitalize on the opportunities that this next decade will bring. To this end, we will highlight recent studies that have successfully leveraged invasive recordings during deep brain stimulation surgery to advance our understanding of human cognition with an emphasis on reward processing, improving clinical outcomes, and informing advances in neuromodulatory interventions.
Collapse
Affiliation(s)
- Anand Tekriwal
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Neema Moin Afshar
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Juan Santiago-Moreno
- Medical Scientist Training Program, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Fiene Marie Kuijper
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Drew S Kern
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - Casey H Halpern
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Gidon Felsen
- Department of Physiology and Biophysics, University of Colorado School of Medicine, Aurora, CO 80203, USA
| | - John A Thompson
- Department of Neurosurgery, University of Colorado School of Medicine, Aurora, CO 80203, USA.
- Department of Neurology, University of Colorado School of Medicine, Aurora, CO 80203, USA.
| |
Collapse
|