1
|
Chen J, Zhang H, Zou Q, Liao B, Bi XA. Multi-kernel Learning Fusion Algorithm Based on RNN and GRU for ASD Diagnosis and Pathogenic Brain Region Extraction. Interdiscip Sci 2024; 16:755-768. [PMID: 38683281 DOI: 10.1007/s12539-024-00629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/06/2024] [Accepted: 03/31/2024] [Indexed: 05/01/2024]
Abstract
Autism spectrum disorder (ASD) is a complex, severe disorder related to brain development. It impairs patient language communication and social behaviors. In recent years, ASD researches have focused on a single-modal neuroimaging data, neglecting the complementarity between multi-modal data. This omission may lead to poor classification. Therefore, it is important to study multi-modal data of ASD for revealing its pathogenesis. Furthermore, recurrent neural network (RNN) and gated recurrent unit (GRU) are effective for sequence data processing. In this paper, we introduce a novel framework for a Multi-Kernel Learning Fusion algorithm based on RNN and GRU (MKLF-RAG). The framework utilizes RNN and GRU to provide feature selection for data of different modalities. Then these features are fused by MKLF algorithm to detect the pathological mechanisms of ASD and extract the most relevant the Regions of Interest (ROIs) for the disease. The MKLF-RAG proposed in this paper has been tested in a variety of experiments with the Autism Brain Imaging Data Exchange (ABIDE) database. Experimental findings indicate that our framework notably enhances the classification accuracy for ASD. Compared with other methods, MKLF-RAG demonstrates superior efficacy across multiple evaluation metrics and could provide valuable insights into the early diagnosis of ASD.
Collapse
Affiliation(s)
- Jie Chen
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Huilian Zhang
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bo Liao
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China
| | - Xia-An Bi
- Key Laboratory of Data Science and Intelligence Education, Ministry of Education, Hainan Normal University, Haikou, 571126, China.
- College of Information Science and Engineering, Hunan Normal University, Changsha, 410081, China.
- College of Mathematics and Statistics, Hainan Normal University, Haikou, 571126, China.
| |
Collapse
|
2
|
Kashyap R, Holla B, Bhattacharjee S, Sharma E, Mehta UM, Vaidya N, Bharath RD, Murthy P, Basu D, Nanjayya SB, Singh RL, Lourembam R, Chakrabarti A, Kartik K, Kalyanram K, Kumaran K, Krishnaveni G, Krishna M, Kuriyan R, Kurpad SS, Desrivieres S, Purushottam M, Barker G, Orfanos DP, Hickman M, Heron J, Toledano M, Schumann G, Benegal V. Childhood adversities characterize the heterogeneity in the brain pattern of individuals during neurodevelopment. Psychol Med 2024; 54:2599-2611. [PMID: 38509831 DOI: 10.1017/s0033291724000710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
BACKGROUND Several factors shape the neurodevelopmental trajectory. A key area of focus in neurodevelopmental research is to estimate the factors that have maximal influence on the brain and can tip the balance from typical to atypical development. METHODS Utilizing a dissimilarity maximization algorithm on the dynamic mode decomposition (DMD) of the resting state functional MRI data, we classified subjects from the cVEDA neurodevelopmental cohort (n = 987, aged 6-23 years) into homogeneously patterned DMD (representing typical development in 809 subjects) and heterogeneously patterned DMD (indicative of atypical development in 178 subjects). RESULTS Significant DMD differences were primarily identified in the default mode network (DMN) regions across these groups (p < 0.05, Bonferroni corrected). While the groups were comparable in cognitive performance, the atypical group had more frequent exposure to adversities and faced higher abuses (p < 0.05, Bonferroni corrected). Upon evaluating brain-behavior correlations, we found that correlation patterns between adversity and DMN dynamic modes exhibited age-dependent variations for atypical subjects, hinting at differential utilization of the DMN due to chronic adversities. CONCLUSION Adversities (particularly abuse) maximally influence the DMN during neurodevelopment and lead to the failure in the development of a coherent DMN system. While DMN's integrity is preserved in typical development, the age-dependent variability in atypically developing individuals is contrasting. The flexibility of DMN might be a compensatory mechanism to protect an individual in an abusive environment. However, such adaptability might deprive the neural system of the faculties of normal functioning and may incur long-term effects on the psyche.
Collapse
Affiliation(s)
- Rajan Kashyap
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Sagarika Bhattacharjee
- Department of Neurophysiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Eesha Sharma
- Department of Child and Adolescent Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Urvakhsh Meherwan Mehta
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nilakshi Vaidya
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- Department of Psychiatry, Centre for Addiction Medicine, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pratima Murthy
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Debashish Basu
- Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Roshan Lourembam
- Department of Psychiatry, Regional Institute of Medical Sciences, Imphal, India
| | - Amit Chakrabarti
- Division of Mental Health, ICMR-Centre for Ageing and Mental Health, Kolkata, India
| | - Kamakshi Kartik
- Rishi Valley Rural Health Centre, Madanapalle, Chittoor, India
| | | | - Kalyanaraman Kumaran
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK
| | - Ghattu Krishnaveni
- Epidemiology Research Unit, CSI Holdsworth Memorial Hospital, Mysore, India
| | - Murali Krishna
- Health Equity Cluster, Institute of Public Health, Bangalore, India
| | - Rebecca Kuriyan
- Division of Nutrition, St John's Research Institute, Bengaluru, India
| | - Sunita Simon Kurpad
- Department of Psychiatry & Department of Medical Ethics, St John's Research Institute, Bengaluru, India
| | - Sylvane Desrivieres
- SGDP Centre, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | - Meera Purushottam
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Gareth Barker
- Department of Neuroimaging, Institute of Psychology, Psychiatry & Neuroscience, King's College London, London, UK
| | | | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Jon Heron
- Center for Public Health, Bristol Medical School, University of Bristol, Bristol, UK
| | - Mireille Toledano
- MRC Centre for Environment and Health, School of Public Health, Imperial College, London, UK
| | - Gunter Schumann
- Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, PONS Centre, Charité Mental Health, Germany
- PONS Centre, Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Vivek Benegal
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bengaluru, India
| |
Collapse
|
3
|
Chen W, Liang J, Qiu X, Sun Y, Xie Y, Shangguan W, Zhang C, Wu W. Differences in fractional amplitude of low-frequency fluctuations (fALFF) and cognitive function between untreated major depressive disorder and schizophrenia with depressive mood patients. BMC Psychiatry 2024; 24:313. [PMID: 38658896 PMCID: PMC11044294 DOI: 10.1186/s12888-024-05777-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/18/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Distinguishing untreated major depressive disorder without medication (MDD) from schizophrenia with depressed mood (SZDM) poses a clinical challenge. This study aims to investigate differences in fractional amplitude of low-frequency fluctuations (fALFF) and cognition in untreated MDD and SZDM patients. METHODS The study included 42 untreated MDD cases, 30 SZDM patients, and 46 healthy controls (HC). Cognitive assessment utilized the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Resting-state functional magnetic resonance imaging (rs-fMRI) scans were conducted, and data were processed using fALFF in slow-4 and slow-5 bands. RESULTS Significant fALFF changes were observed in four brain regions across MDD, SZDM, and HC groups for both slow-4 and slow-5 fALFF. Compared to SZDM, the MDD group showed increased slow-5 fALFF in the right gyrus rectus (RGR). Relative to HC, SZDM exhibited decreased slow-5 fALFF in the left gyrus rectus (LGR) and increased slow-5 fALFF in the right putamen. Changes in slow-5 fALFF in both RGR and LGR were negatively correlated with RBANS scores. No significant correlations were found between remaining fALFF (slow-4 and slow-5 bands) and RBANS scores in MDD or SZDM groups. CONCLUSIONS Alterations in slow-5 fALFF in RGR may serve as potential biomarkers for distinguishing MDD from SZDM, providing preliminary insights into the neural mechanisms of cognitive function in schizophrenia.
Collapse
Affiliation(s)
- Wensheng Chen
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Jiaquan Liang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Xiangna Qiu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yaqiao Sun
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Yong Xie
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Wenbo Shangguan
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China
| | - Chunguo Zhang
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| | - Weibin Wu
- Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, 528000, Guangdong, China.
| |
Collapse
|
4
|
Song P, Li X, Yuan X, Pang L, Song X, Wang Y. Identifying frequency-dependent imaging genetic associations via hypergraph-structured multi-task sparse canonical correlation analysis. Comput Biol Med 2024; 171:108051. [PMID: 38335819 DOI: 10.1016/j.compbiomed.2024.108051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/03/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Identifying complex associations between genetic variations and imaging phenotypes is a challenging task in the research of brain imaging genetics. The previous study has proved that neuronal oscillations within distinct frequency bands are derived from frequency-dependent genetic modulation. Thus it is meaningful to explore frequency-dependent imaging genetic associations, which may give important insights into the pathogenesis of brain disorders. In this work, the hypergraph-structured multi-task sparse canonical correlation analysis (HS-MTSCCA) was developed to explore the associations between multi-frequency imaging phenotypes and single-nucleotide polymorphisms (SNPs). Specifically, we first created a hypergraph for the imaging phenotypes of each frequency and the SNPs, respectively. Then, a new hypergraph-structured constraint was proposed to learn high-order relationships among features in each hypergraph, which can introduce biologically meaningful information into the model. The frequency-shared and frequency-specific imaging phenotypes and SNPs could be identified using the multi-task learning framework. We also proposed a useful strategy to tackle this algorithm and then demonstrated its convergence. The proposed method was evaluated on four simulation datasets and a real schizophrenia dataset. The experimental results on synthetic data showed that HS-MTSCCA outperforms the other competing methods according to canonical correlation coefficients, canonical weights, and cosine similarity. And the results on real data showed that HS-MTSCCA could obtain superior canonical coefficients and canonical weights. Furthermore, the identified frequency-shared and frequency-specific biomarkers could provide more interesting and meaningful information, demonstrating that HS-MTSCCA is a powerful method for brain imaging genetics.
Collapse
Affiliation(s)
- Peilun Song
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xue Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiuxia Yuan
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Lijuan Pang
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China; Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaping Wang
- School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Shi Y, Shen Z, Zeng W, Luo S, Zhou L, Wang N. A schizophrenia study based on multi-frequency dynamic functional connectivity analysis of fMRI. Front Hum Neurosci 2023; 17:1164685. [PMID: 37250690 PMCID: PMC10213427 DOI: 10.3389/fnhum.2023.1164685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
At present, fMRI studies mainly focus on the entire low-frequency band (0. 01-0.08 Hz). However, the neuronal activity is dynamic, and different frequency bands may contain different information. Therefore, a novel multi-frequency-based dynamic functional connectivity (dFC) analysis method was proposed in this study, which was then applied to a schizophrenia study. First, three frequency bands (Conventional: 0.01-0.08 Hz, Slow-5: 0.0111-0.0302 Hz, and Slow-4: 0.0302-0.0820 Hz) were obtained using Fast Fourier Transform. Next, the fractional amplitude of low-frequency fluctuations was used to identify abnormal regions of interest (ROIs) of schizophrenia, and dFC among these abnormal ROIs was implemented by the sliding time window method at four window-widths. Finally, recursive feature elimination was employed to select features, and the support vector machine was applied for the classification of patients with schizophrenia and healthy controls. The experimental results showed that the proposed multi-frequency method (Combined: Slow-5 and Slow-4) had a better classification performance compared with the conventional method at shorter sliding window-widths. In conclusion, our results revealed that the dFCs among the abnormal ROIs varied at different frequency bands and the efficiency of combining multiple features from different frequency bands can improve classification performance. Therefore, it would be a promising approach for identifying brain alterations in schizophrenia.
Collapse
Affiliation(s)
- Yuhu Shi
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Zehao Shen
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Sizhe Luo
- College of Information Engineering, Shanghai Maritime University, Shanghai, China
| | - Lili Zhou
- Surgery Department of Tongji University Affiliated Yangpu Central Hospital, Shanghai, China
| | - Nizhuan Wang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China
| |
Collapse
|
6
|
Supakar R, Satvaya P, Chakrabarti P. A deep learning based model using RNN-LSTM for the Detection of Schizophrenia from EEG data. Comput Biol Med 2022; 151:106225. [PMID: 36306576 DOI: 10.1016/j.compbiomed.2022.106225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/19/2022] [Accepted: 10/15/2022] [Indexed: 12/27/2022]
Abstract
Normal life can be ensured for schizophrenic patients if diagnosed early. Electroencephalogram (EEG) carries information about the brain network connectivity which can be used to detect brain anomalies that are indicative of schizophrenia. Since deep learning is capable of automatically extracting the significant features and make classifications, the authors proposed a deep learning based model using RNN-LSTM to analyze the EEG signal data to diagnose schizophrenia. The proposed model used three dense layers on top of a 100 dimensional LSTM. EEG signal data of 45 schizophrenic patients and 39 healthy subjects were used in the study. Dimensionality reduction algorithm was used to obtain an optimal feature set and the classifier was run with both sets of data. An accuracy of 98% and 93.67% were obtained with the complete feature set and the reduced feature set respectively. The robustness of the model was evaluated using model performance measure and combined performance measure. Outcomes were compared with the outcome obtained with traditional machine learning classifiers such as Random Forest, SVM, FURIA, and AdaBoost, and the proposed model was found to perform better with the complete dataset. When compared with the result of the researchers who worked with the same set of data using either CNN or RNN, the proposed model's accuracy was either better or comparable to theirs.
Collapse
Affiliation(s)
- Rinku Supakar
- Lincoln University College, Malaysia; Dr. Sudhir Chandra Sur Institute of Technology and Sports Complex, Dumdum, West Bengal, India.
| | | | - Prasun Chakrabarti
- Provost and Institute Endowed Distinguished Senior Chair Professor, Techno India NJR Institute of Technology, Udaipur, Rajasthan, ThuDau Mot University Vietnam, India.
| |
Collapse
|
7
|
Sadeghi D, Shoeibi A, Ghassemi N, Moridian P, Khadem A, Alizadehsani R, Teshnehlab M, Gorriz JM, Khozeimeh F, Zhang YD, Nahavandi S, Acharya UR. An overview of artificial intelligence techniques for diagnosis of Schizophrenia based on magnetic resonance imaging modalities: Methods, challenges, and future works. Comput Biol Med 2022; 146:105554. [DOI: 10.1016/j.compbiomed.2022.105554] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 12/21/2022]
|
8
|
Yang H, Zhang H, Meng C, Wohlschläger A, Brandl F, Di X, Wang S, Tian L, Biswal B. Frequency-specific coactivation patterns in resting-state and their alterations in schizophrenia: An fMRI study. Hum Brain Mapp 2022; 43:3792-3808. [PMID: 35475569 PMCID: PMC9294298 DOI: 10.1002/hbm.25884] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/05/2022] [Accepted: 04/05/2022] [Indexed: 11/09/2022] Open
Abstract
The resting‐state human brain is a dynamic system that shows frequency‐dependent characteristics. Recent studies demonstrate that coactivation pattern (CAP) analysis can identify recurring brain states with similar coactivation configurations. However, it is unclear whether and how CAPs depend on the frequency bands. The current study investigated the spatial and temporal characteristics of CAPs in the four frequency sub‐bands from slow‐5 (0.01–0.027 Hz), slow‐4 (0.027–0.073 Hz), slow‐3 (0.073–0.198 Hz), to slow‐2 (0.198–0.25 Hz), in addition to the typical low‐frequency range (0.01–0.08 Hz). In the healthy subjects, six CAP states were obtained at each frequency band in line with our prior study. Similar spatial patterns with the typical range were observed in slow‐5, 4, and 3, but not in slow‐2. While the frequency increased, all CAP states displayed shorter persistence, which caused more between‐state transitions. Specifically, from slow‐5 to slow‐4, the coactivation not only changed significantly in distributed cortical networks, but also increased in the basal ganglia as well as the amygdala. Schizophrenia patients showed significant alteration in the persistence of CAPs of slow‐5. Using leave‐one‐pair‐out, hold‐out and resampling validations, the highest classification accuracy (84%) was achieved by slow‐4 among different frequency bands. In conclusion, our findings provide novel information about spatial and temporal characteristics of CAP states at different frequency bands, which contributes to a better understanding of the frequency aspect of biomarkers for schizophrenia and other disorders.
Collapse
Affiliation(s)
- Hang Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Zhang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun Meng
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Afra Wohlschläger
- Department of Neuroradiology, TUM-Neuroimaging Center, Technical University of Munich (TUM), Munich, Germany
| | - Felix Brandl
- Department of Psychiatry, TUM-Neuroimaging Center, Technical University of Munich (TUM), Munich, Germany
| | - Xin Di
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Shuai Wang
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Lin Tian
- Department of Psychiatry, The Affiliated Wuxi Mental Health Center of Nanjing Medical University, Wuxi, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, Center for Information in Medicine, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
9
|
Plechawska-Wójcik M, Karczmarek P, Krukow P, Kaczorowska M, Tokovarov M, Jonak K. Recognition of Electroencephalography-Related Features of Neuronal Network Organization in Patients With Schizophrenia Using the Generalized Choquet Integrals. Front Neuroinform 2022; 15:744355. [PMID: 34970131 PMCID: PMC8712566 DOI: 10.3389/fninf.2021.744355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
In this study, we focused on the verification of suitable aggregation operators enabling accurate differentiation of selected neurophysiological features extracted from resting-state electroencephalographic recordings of patients who were diagnosed with schizophrenia (SZ) or healthy controls (HC). We built the Choquet integral-based operators using traditional classification results as an input to the procedure of establishing the fuzzy measure densities. The dataset applied in the study was a collection of variables characterizing the organization of the neural networks computed using the minimum spanning tree (MST) algorithms obtained from signal-spaced functional connectivity indicators and calculated separately for predefined frequency bands using classical linear Granger causality (GC) measure. In the series of numerical experiments, we reported the results of classification obtained using numerous generalizations of the Choquet integral and other aggregation functions, which were tested to find the most appropriate ones. The obtained results demonstrate that the classification accuracy can be increased by 1.81% using the extended versions of the Choquet integral called in the literature, namely, generalized Choquet integral or pre-aggregation operators.
Collapse
Affiliation(s)
| | - Paweł Karczmarek
- Department of Computer Science, Lublin University of Technology, Lublin, Poland
| | - Paweł Krukow
- Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Poland
| | - Monika Kaczorowska
- Department of Computer Science, Lublin University of Technology, Lublin, Poland
| | - Mikhail Tokovarov
- Department of Computer Science, Lublin University of Technology, Lublin, Poland
| | - Kamil Jonak
- Department of Computer Science, Lublin University of Technology, Lublin, Poland.,Department of Clinical Neuropsychiatry, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
10
|
Ikeda S, Kawano K, Watanabe S, Yamashita O, Kawahara Y. Predicting behavior through dynamic modes in resting-state fMRI data. Neuroimage 2021; 247:118801. [PMID: 34896588 DOI: 10.1016/j.neuroimage.2021.118801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 11/20/2022] Open
Abstract
Dynamic properties of resting-state functional connectivity (FC) provide rich information on brain-behavior relationships. Dynamic mode decomposition (DMD) has been used as a method to characterize FC dynamics. However, it remains unclear whether dynamic modes (DMs), spatial-temporal coherent patterns computed by DMD, provide information about individual behavioral differences. This study established a methodological approach to predict individual differences in behavior using DMs. Furthermore, we investigated the contribution of DMs within each of seven specific frequency bands (0-0.1,...,0.6-0.7 Hz) for prediction. To validate our approach, we tested whether each of 59 behavioral measures could be predicted by performing multivariate pattern analysis on a Gram matrix, which was created using subject-specific DMs computed from resting-state functional magnetic resonance imaging (rs-fMRI) data of individuals. DMD successfully predicted behavior and outperformed temporal and spatial independent component analysis, which is the conventional data decomposition method for extracting spatial activity patterns. Most of the behavioral measures that were predicted with significant accuracy in a permutation test were related to cognition. We found that DMs within frequency bands <0.2 Hz primarily contributed to prediction and had spatial structures similar to several common resting-state networks. Our results indicate that DMD is efficient in extracting spatiotemporal features from rs-fMRI data.
Collapse
Affiliation(s)
- Shigeyuki Ikeda
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan; ATR Neural Information Analysis Laboratories, Kyoto 619-0288, Japan.
| | - Koki Kawano
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Soichi Watanabe
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan
| | - Okito Yamashita
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan; ATR Neural Information Analysis Laboratories, Kyoto 619-0288, Japan
| | - Yoshinobu Kawahara
- RIKEN Center for Advanced Intelligence Project, Tokyo 103-0027, Japan; Institute of Mathematics for Industry, Kyushu University, Fukuoka 819-0395, Japan
| |
Collapse
|
11
|
Gallos IK, Galaris E, Siettos CI. Construction of embedded fMRI resting-state functional connectivity networks using manifold learning. Cogn Neurodyn 2021; 15:585-608. [PMID: 34367362 PMCID: PMC8286923 DOI: 10.1007/s11571-020-09645-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 09/26/2020] [Accepted: 10/06/2020] [Indexed: 11/26/2022] Open
Abstract
We construct embedded functional connectivity networks (FCN) from benchmark resting-state functional magnetic resonance imaging (rsfMRI) data acquired from patients with schizophrenia and healthy controls based on linear and nonlinear manifold learning algorithms, namely, Multidimensional Scaling, Isometric Feature Mapping, Diffusion Maps, Locally Linear Embedding and kernel PCA. Furthermore, based on key global graph-theoretic properties of the embedded FCN, we compare their classification potential using machine learning. We also assess the performance of two metrics that are widely used for the construction of FCN from fMRI, namely the Euclidean distance and the cross correlation metric. We show that diffusion maps with the cross correlation metric outperform the other combinations.
Collapse
Affiliation(s)
- Ioannis K. Gallos
- School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Evangelos Galaris
- Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Constantinos I. Siettos
- Dipartimento di Matematica e Applicazioni “Renato Caccioppoli”, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
12
|
Cui LB, Zhang YJ, Lu HL, Liu L, Zhang HJ, Fu YF, Wu XS, Xu YQ, Li XS, Qiao YT, Qin W, Yin H, Cao F. Thalamus Radiomics-Based Disease Identification and Prediction of Early Treatment Response for Schizophrenia. Front Neurosci 2021; 15:682777. [PMID: 34290581 PMCID: PMC8289251 DOI: 10.3389/fnins.2021.682777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Background Emerging evidence suggests structural and functional disruptions of the thalamus in schizophrenia, but whether thalamus abnormalities are able to be used for disease identification and prediction of early treatment response in schizophrenia remains to be determined. This study aims at developing and validating a method of disease identification and prediction of treatment response by multi-dimensional thalamic features derived from magnetic resonance imaging in schizophrenia patients using radiomics approaches. Methods A total of 390 subjects, including patients with schizophrenia and healthy controls, participated in this study, among which 109 out of 191 patients had clinical characteristics of early outcome (61 responders and 48 non-responders). Thalamus-based radiomics features were extracted and selected. The diagnostic and predictive capacity of multi-dimensional thalamic features was evaluated using radiomics approach. Results Using radiomics features, the classifier accurately discriminated patients from healthy controls, with an accuracy of 68%. The features were further confirmed in prediction and random forest of treatment response, with an accuracy of 75%. Conclusion Our study demonstrates a radiomics approach by multiple thalamic features to identify schizophrenia and predict early treatment response. Thalamus-based classification could be promising to apply in schizophrenia definition and treatment selection.
Collapse
Affiliation(s)
- Long-Biao Cui
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China.,Department of Clinical Psychology, Fourth Military Medical University, Xi'an, China
| | - Ya-Juan Zhang
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Hong-Liang Lu
- Military Medical Psychology School, Fourth Military Medical University, Xi'an, China
| | - Lin Liu
- School of Life Sciences and Technology, Xidian University, Xi'an, China.,Peking University Sixth Hospital/Institute of Mental Health and Key Laboratory of Mental Health, Peking University, Beijing, China
| | - Hai-Jun Zhang
- Department of Clinical Aerospace Medicine, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, China
| | - Yu-Fei Fu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xu-Sha Wu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yong-Qiang Xu
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xiao-Sa Li
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yu-Ting Qiao
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Qin
- School of Life Sciences and Technology, Xidian University, Xi'an, China
| | - Hong Yin
- Department of Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Feng Cao
- The Second Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Sen B, Cullen KR, Parhi KK. Classification of Adolescent Major Depressive Disorder Via Static and Dynamic Connectivity. IEEE J Biomed Health Inform 2021; 25:2604-2614. [PMID: 33296316 DOI: 10.1109/jbhi.2020.3043427] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This paper introduces an approach for classifying adolescents suffering from MDD using resting-state fMRI. Accurate diagnosis of MDD involves interviews with adolescent patients and their parents, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), behavioral observation as well as the experience of a clinician. Discovering predictive biomarkers for diagnosing MDD patients using functional magnetic resonance imaging (fMRI) scans can assist the clinicians in their diagnostic assessments. This paper investigates various static and dynamic connectivity measures extracted from resting-state fMRI for assisting with MDD diagnosis. First, absolute Pearson correlation matrices from 85 brain regions are computed and they are used to calculate static features for predicting MDD. A predictive sub-network extracted using sub-graph entropy classifies adolescent MDD vs. typical healthy controls with high accuracy, sensitivity and specificity. Next, approaches utilizing dynamic connectivity are employed to extract tensor based, independent component based and principal component based subject specific attributes. Finally, features from static and dynamic approaches are combined to create a feature vector for classification. A leave-one-out cross-validation method is used for the final predictor performance. Out of 49 adolescents with MDD and 33 matched healthy controls, a support vector machine (SVM) classifier using a radial basis function (RBF) kernel using differential sub-graph entropy combined with dynamic connectivity features classifies MDD vs. healthy controls with an accuracy of 0.82 for leave-one-out cross-validation. This classifier has specificity and sensitivity of 0.79 and 0.84, respectively.
Collapse
|
14
|
Zheng X, Sun J, Lv Y, Wang M, Du X, Jia X, Ma J. Frequency-specific alterations of the resting-state BOLD signals in nocturnal enuresis: an fMRI Study. Sci Rep 2021; 11:12042. [PMID: 34103549 PMCID: PMC8187680 DOI: 10.1038/s41598-021-90546-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/07/2021] [Indexed: 02/05/2023] Open
Abstract
Resting state functional magnetic resonance imaging studies of nocturnal enuresis have focused primarily on regional metrics in the blood oxygen level dependent (BOLD) signal ranging from 0.01 to 0.08 Hz. However, it remains unclear how local metrics show in sub-frequency band. 129 children with nocturnal enuresis (NE) and 37 healthy controls were included in this study. The patients were diagnosed by the pediatricians in Shanghai Children's Medical Center affiliated to Shanghai Jiao Tong University School of Medicine, according to the criteria from International Children's Continence Society (ICCS). Questionnaires were used to evaluate the symptoms of enuresis and completed by the participants. In this study, fALFF, ReHo and PerAF were calculated within five different frequency bands: typical band (0.01-0.08 Hz), slow-5 (0.01-0.027 Hz), slow-4 (0.027-0.073 Hz), slow-3 (0.073-0.198 Hz), and slow-2 (0.198-0.25 Hz). In the typical band, ReHo increased in the left insula and the right thalamus, while fALFF decreased in the right insula in children with NE. Besides, PerAF was increased in the right middle temporal gyrus in these children. The results regarding ReHo, fALFF and PerAF in the typical band was similar to those in slow-5 band, respectively. A correlation was found between the PerAF value of the right middle temporal gyrus and scores of the urinary intention-related wakefulness. Results in other bands were either negative or in white matter. NE children might have abnormal intrinsic neural oscillations mainly on slow-5 bands.
Collapse
Affiliation(s)
- Xiangyu Zheng
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong-Fang Road, Shanghai, 200127, China
| | - Jiawei Sun
- School of Information and Electronics Technology, Jiamusi University, Jiamusi, Heilongjiang, China
| | - Yating Lv
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China
| | - Mengxing Wang
- College of Medical Imaging, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, 3663 North Zhong-Shan Road, Shanghai, 200062, China
| | - Xize Jia
- Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, 311121, China.
| | - Jun Ma
- Department of Developmental and Behavioral Pediatrics, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong-Fang Road, Shanghai, 200127, China.
| |
Collapse
|
15
|
Masoudi B, Daneshvar S, Razavi SN. Multi-modal neuroimaging feature fusion via 3D Convolutional Neural Network architecture for schizophrenia diagnosis. INTELL DATA ANAL 2021. [DOI: 10.3233/ida-205113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Early and precise diagnosis of schizophrenia disorder (SZ) has an essential role in the quality of a patient’s life and future treatments. Structural and functional neuroimaging provides robust biomarkers for understanding the anatomical and functional changes associated with SZ. Each of the neuroimaging techniques shows only a different perspective on the functional or structural of the brain, while multi-modal fusion can reveal latent connections in the brain. In this paper, we propose an approach for the fusion of structural and functional brain data with a deep learning-based model to take advantage of data fusion and increase the accuracy of schizophrenia disorder diagnosis. The proposed method consists of an architecture of 3D convolutional neural networks (CNNs) that applied to magnetic resonance imaging (MRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) extracted features. We use 3D MRI patches, fMRI spatial independent component analysis (ICA) map, and DTI fractional anisotropy (FA) as model inputs. Our method is validated on the COBRE dataset, and an average accuracy of 99.35% is obtained. The proposed method demonstrates promising classification performance and can be applied to real data.
Collapse
Affiliation(s)
- Babak Masoudi
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| | - Sabalan Daneshvar
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
- Department of Electronic and Computer Engineering, College of Engineering, Design and Physical Sciences, Brunel University, London, UK
| | - Seyed Naser Razavi
- Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran
| |
Collapse
|
16
|
Fang X, Zhang R, Bao C, Zhou M, Yan W, Lu S, Xie S, Zhang X. Abnormal regional homogeneity (ReHo) and fractional amplitude of low frequency fluctuations (fALFF) in first-episode drug-naïve schizophrenia patients comorbid with depression. Brain Imaging Behav 2021; 15:2627-2636. [PMID: 33788124 DOI: 10.1007/s11682-021-00465-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 01/21/2023]
Abstract
The current study aimed to characterize the regional homogeneity (ReHo) or fractional amplitude of low frequency fluctuations (fALFF) alterations in first-episode drug-naïve schizophrenia comorbid with depression. Sixty-nine first-episode drug-naïve schizophrenia patients and 34 healthy controls (HC) were included in the final analysis. Schizophrenia patients were divided into depressive patients (DP) and non-depressive patients (NDP), with 35 and 34 patients respectively, using the Hamilton Rating Scale for Depression -17(HRSD-17). All participants underwent resting-state fMRI (rs-fMRI), the fALFF (slow-4 and slow-5 bands) and ReHo were used to process the data. The results revealed eleven brain regions with altered slow-5 fALFF, eleven brain regions with altered slow-4 fALFF and ten brain regions with altered ReHo among DP, NDP and HC groups. Compared to NDP, the DP group had increased slow-5 fALFF in the Right Inferior Temporal Gyrus, increased ReHo in the Right Superior and Inferior Frontal Gyrus. The altered slow-5 fALFF in the Right Inferior Temporal Gyrus, altered ReHo in the Right Inferior Frontal Gyrus and Superior Frontal Gyrus were all positively correlated with the depressive symptoms in patients. However, there were no significant differences in slow-4 fALFF between DP and NDP groups. Our results indicate that the increased slow-5 fALFF in the Right Inferior Temporal Gyrus, increased ReHo in the Right Superior and Inferior Frontal Gyrus were associated with depressive symptoms in schizophrenia, which may provide preliminary evidence in better understanding the neural mechanisms underlying depressive symptoms in schizophrenia.
Collapse
Affiliation(s)
- Xinyu Fang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Rongrong Zhang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Chenxi Bao
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Min Zhou
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Wei Yan
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shuiping Lu
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Shiping Xie
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| | - Xiangrong Zhang
- Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
17
|
Ahmedt-Aristizabal D, Fernando T, Denman S, Robinson JE, Sridharan S, Johnston PJ, Laurens KR, Fookes C. Identification of Children at Risk of Schizophrenia via Deep Learning and EEG Responses. IEEE J Biomed Health Inform 2021; 25:69-76. [PMID: 32310808 DOI: 10.1109/jbhi.2020.2984238] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The prospective identification of children likely to develop schizophrenia is a vital tool to support early interventions that can mitigate the risk of progression to clinical psychosis. Electroencephalographic (EEG) patterns from brain activity and deep learning techniques are valuable resources in achieving this identification. We propose automated techniques that can process raw EEG waveforms to identify children who may have an increased risk of schizophrenia compared to typically developing children. We also analyse abnormal features that remain during developmental follow-up over a period of ∼ 4 years in children with a vulnerability to schizophrenia initially assessed when aged 9 to 12 years. EEG data from participants were captured during the recording of a passive auditory oddball paradigm. We undertake a holistic study to identify brain abnormalities, first by exploring traditional machine learning algorithms using classification methods applied to hand-engineered features (event-related potential components). Then, we compare the performance of these methods with end-to-end deep learning techniques applied to raw data. We demonstrate via average cross-validation performance measures that recurrent deep convolutional neural networks can outperform traditional machine learning methods for sequence modeling. We illustrate the intuitive salient information of the model with the location of the most relevant attributes of a post-stimulus window. This baseline identification system in the area of mental illness supports the evidence of developmental and disease effects in a pre-prodromal phase of psychosis. These results reinforce the benefits of deep learning to support psychiatric classification and neuroscientific research more broadly.
Collapse
|
18
|
Bi XA, Wu H, Xie Y, Zhang L, Luo X, Fu Y. The exploration of Parkinson's disease: a multi-modal data analysis of resting functional magnetic resonance imaging and gene data. Brain Imaging Behav 2020; 15:1986-1996. [PMID: 32990896 DOI: 10.1007/s11682-020-00392-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 02/02/2023]
Abstract
Parkinson's disease (PD) is the most universal chronic degenerative neurological dyskinesia and an important threat to elderly health. At present, the researches of PD are mainly based on single-modal data analysis, while the fusion research of multi-modal data may provide more meaningful information in the aspect of comprehending the pathogenesis of PD. In this paper, 104 samples having resting functional magnetic resonance imaging (rfMRI) and gene data are from Parkinson's Progression Markers Initiative (PPMI) and Alzheimer's Disease Neuroimaging Initiative (ADNI) database to predict pathological brain areas and risk genes related to PD. In the experiment, Pearson correlation analysis is adopted to conduct fusion analysis from the data of genes and brain areas as multi-modal sample characteristics, and the clustering evolution random forest (CERF) method is applied to detect the discriminative genes and brain areas. The experimental results indicate that compared with several existing advanced methods, the CERF method can further improve the diagnosis of PD and healthy control, and can achieve a significant effect. More importantly, we find that there are some interesting associations between brain areas and genes in PD patients. Based on these associations, we notice that PD-related brain areas include angular gyrus, thalamus, posterior cingulate gyrus and paracentral lobule, and risk genes mainly include C6orf10, HLA-DPB1 and HLA-DOA. These discoveries have a significant contribution to the early prevention and clinical treatments of PD.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China. .,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China.
| | - Hao Wu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Yiming Xie
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Lixia Zhang
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Xun Luo
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | - Yu Fu
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, People's Republic of China.,College of Information Science and Engineering, Hunan Normal University, Changsha, People's Republic of China
| | | |
Collapse
|
19
|
Phang CR, Noman F, Hussain H, Ting CM, Ombao H. A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns. IEEE J Biomed Health Inform 2020; 24:1333-1343. [DOI: 10.1109/jbhi.2019.2941222] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Li Y, Sun C, Li P, Zhao Y, Mensah GK, Xu Y, Guo H, Chen J. Hypernetwork Construction and Feature Fusion Analysis Based on Sparse Group Lasso Method on fMRI Dataset. Front Neurosci 2020; 14:60. [PMID: 32116508 PMCID: PMC7029661 DOI: 10.3389/fnins.2020.00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/15/2020] [Indexed: 01/21/2023] Open
Abstract
Recent works have shown that the resting-state brain functional connectivity hypernetwork, where multiple nodes can be connected, are an effective technique for brain disease diagnosis and classification research. The lasso method was used to construct hypernetworks by solving sparse linear regression models in previous research. But, constructing a hypernetwork based on the lasso method simply selects a single variable, in that it lacks the ability to interpret the grouping effect. Considering the group structure problem, the previous study proposed to create a hypernetwork based on the elastic net and the group lasso methods, and the results showed that the former method had the best classification performance. However, the highly correlated variables selected by the elastic net method were not necessarily in the active set in the group. Therefore, we extended our research to address this issue. Herein, we propose a new method that introduces the sparse group lasso method to improve the construction of the hypernetwork by solving the group structure problem of the brain regions. We used the traditional lasso, group lasso method, and sparse group lasso method to construct a hypernetwork in patients with depression and normal subjects. Meanwhile, other clustering coefficients (clustering coefficients based on pairs of nodes) were also introduced to extract features with traditional clustering coefficients. Two types of features with significant differences obtained after feature selection were subjected to multi-kernel learning for feature fusion and classification using each method, respectively. The network topology results revealed differences among the three networks, where hypernetwork using the lasso method was the strictest; the group lasso, most lenient; and the sgLasso method, moderate. The network topology of the sparse group lasso method was similar to that of the group lasso method but different from the lasso method. The classification results show that the sparse group lasso method achieves the best classification accuracy by using multi-kernel learning, which indicates that better classification performance can be achieved when the group structure exists and is properly extended.
Collapse
Affiliation(s)
- Yao Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Chao Sun
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Pengzu Li
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yunpeng Zhao
- College of Arts, Taiyuan University of Technology, Taiyuan, China
| | - Godfred Kim Mensah
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Yong Xu
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hao Guo
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| | - Junjie Chen
- College of Information and Computer, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
21
|
Sen B, Bernstein GA, Mueller BA, Cullen KR, Parhi KK. Sub-graph entropy based network approaches for classifying adolescent obsessive-compulsive disorder from resting-state functional MRI. Neuroimage Clin 2020; 26:102208. [PMID: 32065968 PMCID: PMC7025090 DOI: 10.1016/j.nicl.2020.102208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022]
Abstract
This paper presents a novel approach for classifying obsessive-compulsive disorder (OCD) in adolescents from resting-state fMRI data. Currently, the state-of-the-art for diagnosing OCD in youth involves interviews with adolescent patients and their parents by an experienced clinician, symptom rating scales based on Diagnostic and Statistical Manual of Mental Disorders (DSM), and behavioral observation. Discovering signal processing and network-based biomarkers from functional magnetic resonance imaging (fMRI) scans of patients has the potential to assist clinicians in their diagnostic assessments of adolescents suffering from OCD. This paper investigates the clinical diagnostic utility of a set of univariate, bivariate and multivariate features extracted from resting-state fMRI using an information-theoretic approach in 15 adolescents with OCD and 13 matched healthy controls. Results indicate that an information-theoretic approach based on sub-graph entropy is capable of classifying OCD vs. healthy subjects with high accuracy. Mean time-series were extracted from 85 brain regions and were used to calculate Shannon wavelet entropy, Pearson correlation matrix, network features and sub-graph entropy. In addition, two special cases of sub-graph entropy, namely node and edge entropy, were investigated to identify important brain regions and edges from OCD patients. A leave-one-out cross-validation method was used for the final predictor performance. The proposed methodology using differential sub-graph (edge) entropy achieved an accuracy of 0.89 with specificity 1 and sensitivity 0.80 using leave-one-out cross-validation with in-fold feature ranking and selection. The high classification accuracy indicates the predictive power of the sub-network as well as edge entropy metric.
Collapse
Affiliation(s)
- Bhaskar Sen
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis
| | - Gail A Bernstein
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis
| | - Bryon A Mueller
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis
| | - Kathryn R Cullen
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis
| | - Keshab K Parhi
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis.
| |
Collapse
|
22
|
Xiang Y, Wang J, Tan G, Wu FX, Liu J. Schizophrenia Identification Using Multi-View Graph Measures of Functional Brain Networks. Front Bioeng Biotechnol 2020; 7:479. [PMID: 32010682 PMCID: PMC6974443 DOI: 10.3389/fbioe.2019.00479] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 12/23/2019] [Indexed: 01/06/2023] Open
Abstract
Schizophrenia (SZ) is a functional mental disorder that seriously affects the social life of patients. Therefore, accurate diagnosis of SZ has raised extensive attention of researchers. At present, study of brain network based on resting-state functional magnetic resonance imaging (rs-fMRI) has provided promising results for SZ identification by studying functional network alteration. However, previous studies based on brain network analysis are not very effective for SZ identification. Therefore, we propose an improved SZ identification method using multi-view graph measures of functional brain networks. Firstly, we construct an individual functional connectivity network based on Brainnetome atlas for each subject. Then, multi-view graph measures are calculated by the brain network analysis method as feature representations. Next, in order to consider the relationships between measures within the same brain region in feature selection, multi-view measures are grouped according to the corresponding regions and Sparse Group Lasso is applied to identify discriminative features based on this feature grouping structure. Finally, a support vector machine (SVM) classifier is employed to perform SZ identification task. To evaluate our proposed method, computational experiments are conducted on 145 subjects (71 schizophrenic patients and 74 healthy controls) using a leave-one-out cross-validation (LOOCV) scheme. The results show that our proposed method can obtain an accuracy of 93.10% for SZ identification. By comparison, our method is more effective for SZ identification than some existing methods.
Collapse
Affiliation(s)
- Yizhen Xiang
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha, China.,Hunan Provincial Key Lab on Bioinformatics, Central South University, Changsha, China
| | - Guanxin Tan
- School of Computer Science and Engineering, Central South University, Changsha, China
| | - Fang-Xiang Wu
- Division of Biomedical Engineering and Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jin Liu
- School of Computer Science and Engineering, Central South University, Changsha, China
| |
Collapse
|
23
|
Huang J, Zhu Q, Wang M, Zhou L, Zhang Z, Zhang D. Coherent Pattern in Multi-Layer Brain Networks: Application to Epilepsy Identification. IEEE J Biomed Health Inform 2020; 24:2609-2620. [PMID: 31899443 DOI: 10.1109/jbhi.2019.2962519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Currently, how to conjointly fuse structural connectivity (SC) and functional connectivity (FC) for identifying brain diseases is a hot topic in the area of brain network analysis. Most of the existing works combine two types of connectivity in decision level, thus ignoring the underlying relationship between SC and FC. To solve this problem, in this paper, we model the brain network as the multi-layer network formed by the SC and FC, and then propose a coherent pattern to represent structural information of the multi-layer network for the brain disease identification. The proposed coherent pattern consists of a paired-subgraph extracted from the FC and SC within the same node-set. Compared with the previous methods, this coherent pattern not only describes the connectivity information of both SC and FC by subgraphs at each layer, but also reflects their intrinsic relationship by the co-occurrence pattern of the paired-subgraph. Based on this coherent pattern, we further develop a framework for identifying brain diseases. Specifically, we first construct multi-layer networks by using SC and FC for each subject and then mine coherent patterns that frequently appear in each group. Next, we select the discriminative coherent pattern from these frequent coherent patterns according to their frequency of occurrence. Finally, we construct a feature matrix for each subject based on the binary indicator vector and then use the support vector machine (SVM) as its classifier. Experimental results on real epilepsy datasets demonstrate that our method outperforms several state-of-the-art approaches in the tasks of brain disease classification.
Collapse
|