1
|
Tatulli E, Souriau R, Fontecave-Jallon J. Unsupervised segmentation of heart sounds from abrupt changes detection. Comput Biol Med 2025; 186:109712. [PMID: 39864331 DOI: 10.1016/j.compbiomed.2025.109712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 11/04/2024] [Accepted: 01/15/2025] [Indexed: 01/28/2025]
Abstract
BACKGROUND AND OBJECTIVE Heart auscultation enables early diagnosis of cardiovascular diseases. Automated segmentation of cardiograms into fundamental heart states can guide physicians to analyze the patient's condition more effectively. In this work, we propose an unsupervised method of segmentation into heart sounds and silences based on the detection of abrupt changes in the signal. METHODS Our procedure involves two steps. First, the abrupt changes, which correspond to the beginning and end of the heart sounds, are localized. Heart sounds and silences are then identified by calculating the signal power in each interval defined by the change points. The parameters of our algorithm are adjusted on the basis of estimated heart rate alone. RESULTS We evaluate our method on three independent open-access database (PhysioNet 2016, CirCor DigiScope and PASCAL) for healthy and pathological populations, with or without murmurs. It achieves mean F1 score detection performance of 91.2%, 94.3% and 96.3% respectively, outperforming most of the competing unsupervised approaches. CONCLUSION By providing top ranking detection performance for three different types of heart sounds database, the proposed algorithm is reliable and robust, yet easy to implement. SIGNIFICANCE This paper presents a simple and effective alternative segmentation method that can help improve the physiological interpretation of heart sounds recordings.
Collapse
Affiliation(s)
- Eric Tatulli
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, La Tronche, France.
| | - Remi Souriau
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, La Tronche, France
| | - Julie Fontecave-Jallon
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, La Tronche, France
| |
Collapse
|
2
|
Khan K, Ullah F, Syed I, Ali H. Accurately assessing congenital heart disease using artificial intelligence. PeerJ Comput Sci 2024; 10:e2535. [PMID: 39650370 PMCID: PMC11623015 DOI: 10.7717/peerj-cs.2535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024]
Abstract
Congenital heart disease (CHD) remains a significant global health challenge, particularly contributing to newborn mortality, with the highest rates observed in middle- and low-income countries due to limited healthcare resources. Machine learning (ML) presents a promising solution by developing predictive models that more accurately assess the risk of mortality associated with CHD. These ML-based models can help healthcare professionals identify high-risk infants and ensure timely and appropriate care. In addition, ML algorithms excel at detecting and analyzing complex patterns that can be overlooked by human clinicians, thereby enhancing diagnostic accuracy. Despite notable advancements, ongoing research continues to explore the full potential of ML in the identification of CHD. The proposed article provides a comprehensive analysis of the ML methods for the diagnosis of CHD in the last eight years. The study also describes different data sets available for CHD research, discussing their characteristics, collection methods, and relevance to ML applications. In addition, the article also evaluates the strengths and weaknesses of existing algorithms, offering a critical review of their performance and limitations. Finally, the article proposes several promising directions for future research, with the aim of further improving the efficacy of ML in the diagnosis and treatment of CHD.
Collapse
Affiliation(s)
- Khalil Khan
- Department of Computer Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| | - Farhan Ullah
- College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ikram Syed
- Dept of Information and Communication Engineering, Hankuk University of Foreign Studies, Yongin, Gyeonggy-do, Republic of South Korea
| | - Hashim Ali
- Department of Computer Science, School of Engineering and Digital Sciences, Nazarbayev University, Astana, Kazakhstan
| |
Collapse
|
3
|
Jia W, Wang Y, Chen R, Ye J, Li D, Yin F, Yu J, Chen J, Shu Q, Xu W. ZCHSound: Open-Source ZJU Paediatric Heart Sound Database With Congenital Heart Disease. IEEE Trans Biomed Eng 2024; 71:2278-2286. [PMID: 38194403 DOI: 10.1109/tbme.2023.3348800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Congenital heart disease (CHD) is a common birth defect in children. Intelligent auscultation algorithms have been proven to reduce the subjectivity of diagnoses and alleviate the workload of doctors. However, the development of this algorithm has been limited by the lack of reliable, standardized, and publicly available pediatric heart sound databases. Therefore, the objective of this research is to develop a large-scale, high-standard, high-quality, and accurately labeled pediatric CHD heart sound database. METHOD From 2020 to 2022, we collaborated with experienced cardiac surgeons from three general children's hospitals to collect heart sound signals from 1259 participants using electronic stethoscopes. To ensure the accuracy of the labels, the labels for all data were confirmed by two cardiac experts. To establish the baseline of ZCHsound, we extracted 84 features and used machine learning models to evaluate the performance of the classification task. RESULTS The ZCHSound database was divided into two datasets: one is a high-quality, filtered clean heart sound dataset, and the other is a low-quality, noisy heart sound dataset. In the evaluation of the high-quality dataset, our random forest ensemble model achieved an F1 score of 90.3% in the classification task of normal and pathological heart sounds. CONCLUSION This study has successfully established a large-scale, high-quality, rigorously standardized pediatric CHD sound database with precise disease diagnosis. This database not only provides important learning resources for clinical doctors in auscultation knowledge but also offers valuable data support for algorithm engineers in developing intelligent auscultation algorithms.
Collapse
|
4
|
Arjoune Y, Nguyen TN, Doroshow RW, Shekhar R. A Noise-Robust Heart Sound Segmentation Algorithm Based on Shannon Energy. IEEE ACCESS : PRACTICAL INNOVATIONS, OPEN SOLUTIONS 2024; 12:7747-7761. [PMID: 39398361 PMCID: PMC11469632 DOI: 10.1109/access.2024.3351570] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Heart sound segmentation has been shown to improve the performance of artificial intelligence (AI)-based auscultation decision support systems increasingly viewed as a solution to compensate for eroding auscultatory skills and the associated subjectivity. Various segmentation approaches with demonstrated performance can be utilized for this task, but their robustness can suffer in the presence of noise. A noise-robust heart sound segmentation algorithm was developed and its accuracy was tested using two datasets: the CirCor DigiScope Phonocardiogram dataset and an in-house dataset - a heart murmur library collected at the Children's National Hospital (CNH). On the CirCor dataset, our segmentation algorithm marked the boundaries of the primary heart sounds S1 and S2 with an accuracy of 0.28 ms and 0.29 ms, respectively, and correctly identified the actual positive segments with a sensitivity of 97.44%. The algorithm also executed four times faster than a logistic regression hidden semi-Markov model. On the CNH dataset, the algorithm succeeded in 87.4% cases, achieving a 6% increase in segmentation success rate demonstrated by our original Shannon energy-based algorithm. Accurate heart sound segmentation is critical to supporting and accelerating AI research in cardiovascular diseases. The proposed algorithm increases the robustness of heart sound segmentation to noise and viability for clinical use.
Collapse
Affiliation(s)
- Youness Arjoune
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC 20010, USA
| | | | - Robin W Doroshow
- Department of Cardiology, Children's National Hospital, Washington, DC 20010, USA
| | - Raj Shekhar
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Hospital, Washington, DC 20010, USA
| |
Collapse
|
5
|
Netto AN, Abraham L, Philip S. HBNET: A blended ensemble model for the detection of cardiovascular anomalies using phonocardiogram. Technol Health Care 2024; 32:1925-1945. [PMID: 38393859 DOI: 10.3233/thc-231290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
BACKGROUND Cardiac diseases are highly detrimental illnesses, responsible for approximately 32% of global mortality [1]. Early diagnosis and prompt treatment can reduce deaths caused by cardiac diseases. In paediatric patients, it is challenging for paediatricians to identify functional murmurs and pathological murmurs from heart sounds. OBJECTIVE The study intends to develop a novel blended ensemble model using hybrid deep learning models and softmax regression to classify adult, and paediatric heart sounds into five distinct classes, distinguishing itself as a groundbreaking work in this domain. Furthermore, the research aims to create a comprehensive 5-class paediatric phonocardiogram (PCG) dataset. The dataset includes two critical pathological classes, namely atrial septal defects and ventricular septal defects, along with functional murmurs, pathological and normal heart sounds. METHODS The work proposes a blended ensemble model (HbNet-Heartbeat Network) comprising two hybrid models, CNN-BiLSTM and CNN-LSTM, as base models and Softmax regression as meta-learner. HbNet leverages the strengths of base models and improves the overall PCG classification accuracy. Mel Frequency Cepstral Coefficients (MFCC) capture the crucial audio signal characteristics relevant to the classification. The amalgamation of these two deep learning structures enhances the precision and reliability of PCG classification, leading to improved diagnostic results. RESULTS The HbNet model exhibited excellent results with an average accuracy of 99.72% and sensitivity of 99.3% on an adult dataset, surpassing all the existing state-of-the-art works. The researchers have validated the reliability of the HbNet model by testing it on a real-time paediatric dataset. The paediatric model's accuracy is 86.5%. HbNet detected functional murmur with 100% precision. CONCLUSION The results indicate that the HbNet model exhibits a high level of efficacy in the early detection of cardiac disorders. Results also imply that HbNet has the potential to serve as a valuable tool for the development of decision-support systems that aid medical practitioners in confirming their diagnoses. This method makes it easier for medical professionals to diagnose and initiate prompt treatment while performing preliminary auscultation and reduces unnecessary echocardiograms.
Collapse
Affiliation(s)
- Ann Nita Netto
- Department of Electronics and Communication Engineering, LBS Institute of Technology for Women, APJ Abdul Kalam Technological University, Trivandrum, India
| | - Lizy Abraham
- Department of Electronics and Communication Engineering, LBS Institute of Technology for Women, APJ Abdul Kalam Technological University, Trivandrum, India
| | - Saji Philip
- Department of Cardiology, Thiruvalla Medical Mission Hospital, Thiruvalla, India
| |
Collapse
|
6
|
Reyna MA, Kiarashi Y, Elola A, Oliveira J, Renna F, Gu A, Perez Alday EA, Sadr N, Sharma A, Kpodonu J, Mattos S, Coimbra MT, Sameni R, Rad AB, Clifford GD. Heart murmur detection from phonocardiogram recordings: The George B. Moody PhysioNet Challenge 2022. PLOS DIGITAL HEALTH 2023; 2:e0000324. [PMID: 37695769 PMCID: PMC10495026 DOI: 10.1371/journal.pdig.0000324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/03/2023] [Indexed: 09/13/2023]
Abstract
Cardiac auscultation is an accessible diagnostic screening tool that can help to identify patients with heart murmurs, who may need follow-up diagnostic screening and treatment for abnormal cardiac function. However, experts are needed to interpret the heart sounds, limiting the accessibility of cardiac auscultation in resource-constrained environments. Therefore, the George B. Moody PhysioNet Challenge 2022 invited teams to develop algorithmic approaches for detecting heart murmurs and abnormal cardiac function from phonocardiogram (PCG) recordings of heart sounds. For the Challenge, we sourced 5272 PCG recordings from 1452 primarily pediatric patients in rural Brazil, and we invited teams to implement diagnostic screening algorithms for detecting heart murmurs and abnormal cardiac function from the recordings. We required the participants to submit the complete training and inference code for their algorithms, improving the transparency, reproducibility, and utility of their work. We also devised an evaluation metric that considered the costs of screening, diagnosis, misdiagnosis, and treatment, allowing us to investigate the benefits of algorithmic diagnostic screening and facilitate the development of more clinically relevant algorithms. We received 779 algorithms from 87 teams during the Challenge, resulting in 53 working codebases for detecting heart murmurs and abnormal cardiac function from PCG recordings. These algorithms represent a diversity of approaches from both academia and industry, including methods that use more traditional machine learning techniques with engineered clinical and statistical features as well as methods that rely primarily on deep learning models to discover informative features. The use of heart sound recordings for identifying heart murmurs and abnormal cardiac function allowed us to explore the potential of algorithmic approaches for providing more accessible diagnostic screening in resource-constrained environments. The submission of working, open-source algorithms and the use of novel evaluation metrics supported the reproducibility, generalizability, and clinical relevance of the research from the Challenge.
Collapse
Affiliation(s)
- Matthew A. Reyna
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Yashar Kiarashi
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Andoni Elola
- Department of Electronic Technology, University of the Basque Country UPV/EHU, Eibar, Spain
| | | | - Francesco Renna
- INESC TEC, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Annie Gu
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Erick A. Perez Alday
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Nadi Sadr
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
- ResMed, Sydney, Australia
| | - Ashish Sharma
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Jacques Kpodonu
- Division of Cardiac Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sandra Mattos
- Unidade de Cardiologia e Medicina Fetal, Real Hospital Português, Recife, Brazil
| | - Miguel T. Coimbra
- INESC TEC, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Reza Sameni
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Ali Bahrami Rad
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, Georgia, United States of America
- Department of Biomedical Engineering, Emory University and the Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
7
|
Research of heart sound classification using two-dimensional features. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Huang Y, Li H, Tao R, Han W, Zhang P, Yu X, Wu R. A customized framework for coronary artery disease detection using phonocardiogram signals. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
9
|
Oliveira J, Renna F, Costa PD, Nogueira M, Oliveira C, Ferreira C, Jorge A, Mattos S, Hatem T, Tavares T, Elola A, Rad AB, Sameni R, Clifford GD, Coimbra MT. The CirCor DigiScope Dataset: From Murmur Detection to Murmur Classification. IEEE J Biomed Health Inform 2022; 26:2524-2535. [PMID: 34932490 PMCID: PMC9253493 DOI: 10.1109/jbhi.2021.3137048] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cardiac auscultation is one of the most cost-effective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists. To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
Collapse
|
10
|
Xiahou S, Liang Y, Ma M, Du M. A strong anti-noise segmentation algorithm based on variational mode decomposition and multi-wavelet for wearable heart sound acquisition system. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2022; 93:054102. [PMID: 35649757 DOI: 10.1063/5.0071316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Wearable devices have now been widely used in the acquisition and measurement of heart sound signals with good effect. However, the wearable heart sound acquisition system (WHSAS) will face more noise compared with the traditional system, such as Gaussian white noise, powerline interference, colored noise, motion artifact noise, and lung sound noise, because users often wear these devices for running, walking, jumping or various strong noise occasions. In a strong noisy environment, WHSAS needs a high-precision segmentation algorithm. This paper proposes a segmentation algorithm based on Variational Mode Decomposition (VMD) and multi-wavelet. In the algorithm, various noises are layered and filtered out using VMD. The cleaner signal is fed into multi-wavelet to construct a time-frequency matrix. Then, the principal component analysis method is applied to reduce the dimension of the matrix. After extracting the high order Shannon envelope and Teager energy envelope of the heart sound, we accurately segment the signals. In this paper, the algorithm is verified through our developing WHSAS. The results demonstrate that the proposed algorithm can achieve high-precision segmentation of the heart sound under a mixed noise condition.
Collapse
Affiliation(s)
- Shiji Xiahou
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Yuhang Liang
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Min Ma
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Mingrui Du
- University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| |
Collapse
|
11
|
Haji-Maghsoudi S, Mozayani Monfared A, Sadeghifar M, Roshanaei G, Mahjub H. Factors affecting systolic blood pressure trajectory in low and high activity conditions. Med J Islam Repub Iran 2021; 35:95. [PMID: 34956941 PMCID: PMC8683785 DOI: 10.47176/mjiri.35.95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 11/09/2022] Open
Abstract
Background: Typically, blood pressure dips during sleep and increases during daytime. The blood pressure trend is affected by the autonomic nervous system. The activity of this system is observable in the low and high activity conditions. The aim of this study was to assess the effect of individual characteristics on systolic blood pressure (SBP) across day-night under low and high activity conditions.
Methods: The samples were 34 outpatients who were candidates for evaluation of 24 hours of blood pressure with an ambulatory. They were admitted to the heart clinic of Farshchian hospital, located in Hamadan province in the west of Iran. The hourly SBP during 24 hours was considered as a response variable. To determine the factors effecting SBP in each condition, the hidden semi-Markov model (HSMM), with 2 hidden states of low and high activity, was fitted to the data.
Results: Males had lower SBP than females in both states. The effect of age was positive in the low activity state (β=0.30; p<0.001) and negative in high activity state (β= -0.21; p=0.001). The positive effect of cigarette smoking on SBP was seen in low activity state (β=5.02; p=0.029). The overweight and obese patients had higher SBP compared to others in high activity state (β=11.60; p<0.001 and β=5.87; p=0.032, respectively).
Conclusion: The SBP variability can be displayed by hidden states of low and high activity. Moreover, the effects of studied variables on SBP were different in low and high activity states.
Collapse
Affiliation(s)
- Saiedeh Haji-Maghsoudi
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Azadeh Mozayani Monfared
- Department of Cardiology, School of Medicine, Farshchian Heart Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Majid Sadeghifar
- Department of Statistics, Faculty of Basic Sciences, Bu-Ali Sina University, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran .,Modeling of Noncommunicable Diseases Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Hossein Mahjub
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran .,Research Center for Health Sciences, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
12
|
Rao M V A, Bg S, Megalmani DR, Jeevannavar SS, Ghosh PK. Noise Robust Detection of Fundamental Heart Sound using Parametric Mixture Gaussian and Dynamic Programming. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:695-699. [PMID: 34891387 DOI: 10.1109/embc46164.2021.9629556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this work, we propose an unsupervised algorithm for fundamental heart sound detection. We propose to detect the heart sound candidates using the stationary wavelet transforms and group delay. We further propose an objective function to select the candidates. The objective function has two parts. We model the energy contour of S1/S2 sound using the Gaussian mixture function (GMF). The goodness of fit for the GMF is used as the first part of the objective function. The second part of the objective function captures the consistency of the heart sounds' relative location. We solve the objective function efficiently using dynamic programming. We evaluate the algorithm on Michigan HeartSound and Murmur database. We also assess the algorithm's performance using the three different additive noises- white Gaussian noise (AWGN), Student-t noise, and impulsive noise. The experiments demonstrate that the proposed method performs better than baseline in both clean and noisy conditions. We found that the proposed method is robust in the case of AWGN noise and student-t distribution noise. But its performance reduces in case of impulsive noise.
Collapse
|
13
|
Chen W, Sun Q, Chen X, Xie G, Wu H, Xu C. Deep Learning Methods for Heart Sounds Classification: A Systematic Review. ENTROPY 2021; 23:e23060667. [PMID: 34073201 PMCID: PMC8229456 DOI: 10.3390/e23060667] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/14/2023]
Abstract
The automated classification of heart sounds plays a significant role in the diagnosis of cardiovascular diseases (CVDs). With the recent introduction of medical big data and artificial intelligence technology, there has been an increased focus on the development of deep learning approaches for heart sound classification. However, despite significant achievements in this field, there are still limitations due to insufficient data, inefficient training, and the unavailability of effective models. With the aim of improving the accuracy of heart sounds classification, an in-depth systematic review and an analysis of existing deep learning methods were performed in the present study, with an emphasis on the convolutional neural network (CNN) and recurrent neural network (RNN) methods developed over the last five years. This paper also discusses the challenges and expected future trends in the application of deep learning to heart sounds classification with the objective of providing an essential reference for further study.
Collapse
Affiliation(s)
- Wei Chen
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
| | - Qiang Sun
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
- Correspondence: (Q.S.); (C.X.)
| | - Xiaomin Chen
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
| | - Gangcai Xie
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
| | - Huiqun Wu
- Medical School, Nantong University, Nantong 226001, China; (W.C.); (G.X.); (H.W.)
| | - Chen Xu
- School of Information Science and Technology, Nantong University, Nantong 226019, China;
- Correspondence: (Q.S.); (C.X.)
| |
Collapse
|
14
|
Temporal Convolutional Network Connected with an Anti-Arrhythmia Hidden Semi-Markov Model for Heart Sound Segmentation. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10207049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heart sound segmentation (HSS) is a critical step in heart sound processing, where it improves the interpretability of heart sound disease classification algorithms. In this study, we aimed to develop a real-time algorithm for HSS by combining the temporal convolutional network (TCN) and the hidden semi-Markov model (HSMM), and improve the performance of HSMM for heart sounds with arrhythmias. We experimented with TCN and determined the best parameters based on spectral features, envelopes, and one-dimensional CNN. However, the TCN results could contradict the natural fixed order of S1-systolic-S2-diastolic of heart sound, and thereby the Viterbi algorithm based on HSMM was connected to correct the order errors. On this basis, we improved the performance of the Viterbi algorithm when detecting heart sounds with cardiac arrhythmias by changing the distribution and weights of the state duration probabilities. The public PhysioNet Computing in Cardiology Challenge 2016 data set was employed to evaluate the performance of the proposed algorithm. The proposed algorithm achieved an F1 score of 97.02%, and this result was comparable with the current state-of-the-art segmentation algorithms. In addition, the proposed enhanced Viterbi algorithm for HSMM corrected 30 out of 30 arrhythmia errors after checking one by one in the dataset.
Collapse
|
15
|
Wang X, Liu C, Li Y, Cheng X, Li J, Clifford GD. Temporal-Framing Adaptive Network for Heart Sound Segmentation Without Prior Knowledge of State Duration. IEEE Trans Biomed Eng 2020; 68:650-663. [PMID: 32746064 DOI: 10.1109/tbme.2020.3010241] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE This paper presents a novel heart sound segmentation algorithm based on Temporal-Framing Adaptive Network (TFAN), including state transition loss and dynamic inference. METHODS In contrast to previous state-of-the-art approaches, TFAN does not require any prior knowledge of the state duration of heart sounds and is therefore likely to generalize to non sinus rhythm. TFAN was trained on 50 recordings randomly chosen from Training set A of the 2016 PhysioNet/Computer in Cardiology Challenge and tested on the other 12 independent databases (2,099 recordings and 52,180 beats). And further testing of performance was conducted on databases with three levels of increasing difficulty (LEVEL-I, -II and -III). RESULTS TFAN achieved a superior F1 score for all 12 databases except for 'Test-B,' with an average of 96.72%, compared to 94.56% for logistic regression hidden semi-Markov model (LR-HSMM) and 94.18% for bidirectional gated recurrent neural network (BiGRNN). Moreover, TFAN achieved an overall F1 score of 99.21%, 94.17%, 91.31% on LEVEL-I, -II and -III databases respectively, compared to 98.37%, 87.56%, 78.46% for LR-HSMM and 99.01%, 92.63%, 88.45% for BiGRNN. CONCLUSION TFAN therefore provides a substantial improvement on heart sound segmentation while using less parameters compared to BiGRNN. SIGNIFICANCE The proposed method is highly flexible and likely to apply to other non-stationary time series. Further work is required to understand to what extent this approach will provide improved diagnostic performance, although it is logical to assume superior segmentation will lead to improved diagnostics.
Collapse
|
16
|
Automatic Segmentation and Classification of Heart Sounds Using Modified Empirical Wavelet Transform and Power Features. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10144791] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A system for the automatic classification of cardiac sounds can be of great help for doctors in the diagnosis of cardiac diseases. Generally speaking, the main stages of such systems are (i) the pre-processing of the heart sound signal, (ii) the segmentation of the cardiac cycles, (iii) feature extraction and (iv) classification. In this paper, we propose methods for each of these stages. The modified empirical wavelet transform (EWT) and the normalized Shannon average energy are used in pre-processing and automatic segmentation to identify the systolic and diastolic intervals in a heart sound recording; then, six power characteristics are extracted (three for the systole and three for the diastole)—the motivation behind using power features is to achieve a low computational cost to facilitate eventual real-time implementations. Finally, different models of machine learning (support vector machine (SVM), k-nearest neighbor (KNN), random forest and multilayer perceptron) are used to determine the classifier with the best performance. The automatic segmentation method was tested with the heart sounds from the Pascal Challenge database. The results indicated an error (computed as the sum of the differences between manual segmentation labels from the database and the segmentation labels obtained by the proposed algorithm) of 843,440.8 for dataset A and 17,074.1 for dataset B, which are better values than those reported with the state-of-the-art methods. For automatic classification, 805 sample recordings from different databases were used. The best accuracy result was 99.26% using the KNN classifier, with a specificity of 100% and a sensitivity of 98.57%. These results compare favorably with similar works using the state-of-the-art methods.
Collapse
|
17
|
Kamson AP, Sharma LN, Dandapat S. Enhancement of the heart sound envelope using the logistic function amplitude moderation method. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 187:105239. [PMID: 31835106 DOI: 10.1016/j.cmpb.2019.105239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/13/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
This paper presents a new method to extract the envelope of the fundamental heart sound (S1 and S2) using the logistic function. The sigmoid characteristic of the logistic function is incorporated to segregate S1, and S2 signal intensities from silent or noise interfered systolic and diastolic intervals in a heart sound cycle. This signal intensity transformation brings uniformity to the envelope peak of S1 and S2 sound by inclining the transform intensity distribution towards the upper asymptote of the sigmoid curve. The proposed logistic function based amplitude moderation (LFAM) envelogram method involves finding the critical upper amplitude (xuc) above which the signals will be categorized as loud sound and the critical lower amplitude (xlc) below which the signal will be considered as noise. These critical values are regressively obtained from the signal itself by histogram analysis of intensity distribution. The performance is evaluated on noisy PCG dataset taken from PhysioNet/Computing in Cardiology Challenge 2016. The LFAM envelope yields better hill-valley discrimination of heart sounds from its silent/noisy signal intervals. The enhance heart sound envelope peaks are better than conventional methods. The proposed envelope feature is evaluated for heart sound segmentation using HSMM. There is a significant improvement in segmentation accuracy, especially at a low signal-to-noise ratio. The best average F1 score is 97.73%.
Collapse
Affiliation(s)
- Alex Paul Kamson
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - L N Sharma
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - S Dandapat
- Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
18
|
A Review of Computer-Aided Heart Sound Detection Techniques. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5846191. [PMID: 32420352 PMCID: PMC7201685 DOI: 10.1155/2020/5846191] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/03/2019] [Accepted: 07/29/2019] [Indexed: 01/08/2023]
Abstract
Cardiovascular diseases have become one of the most prevalent threats to human health throughout the world. As a noninvasive assistant diagnostic tool, the heart sound detection techniques play an important role in the prediction of cardiovascular diseases. In this paper, the latest development of the computer-aided heart sound detection techniques over the last five years has been reviewed. There are mainly the following aspects: the theories of heart sounds and the relationship between heart sounds and cardiovascular diseases; the key technologies used in the processing and analysis of heart sound signals, including denoising, segmentation, feature extraction and classification; with emphasis, the applications of deep learning algorithm in heart sound processing. In the end, some areas for future research in computer-aided heart sound detection techniques are explored, hoping to provide reference to the prediction of cardiovascular diseases.
Collapse
|
19
|
Fernando T, Ghaemmaghami H, Denman S, Sridharan S, Hussain N, Fookes C. Heart Sound Segmentation Using Bidirectional LSTMs With Attention. IEEE J Biomed Health Inform 2019; 24:1601-1609. [PMID: 31670683 DOI: 10.1109/jbhi.2019.2949516] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This paper proposes a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states, exploiting the temporal evolution of the PCG as well as considering the salient information that it provides for the detection of the heart state. METHODS We propose the use of recurrent neural networks and exploit recent advancements in attention based learning to segment the PCG signal. This allows the network to identify the most salient aspects of the signal and disregard uninformative information. RESULTS The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings. Furthermore, we empirically analyse different feature combinations including envelop features, wavelet and Mel Frequency Cepstral Coefficients (MFCC), and provide quantitative measurements that explore the importance of different features in the proposed approach. CONCLUSION We demonstrate that a recurrent neural network coupled with attention mechanisms can effectively learn from irregular and noisy PCG recordings. Our analysis of different feature combinations shows that MFCC features and their derivatives offer the best performance compared to classical wavelet and envelop features. SIGNIFICANCE Heart sound segmentation is a crucial pre-processing step for many diagnostic applications. The proposed method provides a cost effective alternative to labour extensive manual segmentation, and provides a more accurate segmentation than existing methods. As such, it can improve the performance of further analysis including the detection of murmurs and ejection clicks. The proposed method is also applicable for detection and segmentation of other one dimensional biomedical signals.
Collapse
|
20
|
Renna F, Oliveira J, Coimbra MT. Deep Convolutional Neural Networks for Heart Sound Segmentation. IEEE J Biomed Health Inform 2019; 23:2435-2445. [PMID: 30668487 DOI: 10.1109/jbhi.2019.2894222] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This paper studies the use of deep convolutional neural networks to segment heart sounds into their main components. The proposed methods are based on the adoption of a deep convolutional neural network architecture, which is inspired by similar approaches used for image segmentation. Different temporal modeling schemes are applied to the output of the proposed neural network, which induce the output state sequence to be consistent with the natural sequence of states within a heart sound signal (S1, systole, S2, diastole). In particular, convolutional neural networks are used in conjunction with underlying hidden Markov models and hidden semi-Markov models to infer emission distributions. The proposed approaches are tested on heart sound signals from the publicly available PhysioNet dataset, and they are shown to outperform current state-of-the-art segmentation methods by achieving an average sensitivity of 93.9% and an average positive predictive value of 94% in detecting S1 and S2 sounds.
Collapse
|