1
|
Song Z, Qiu D, Zhao X, Liu R, Hui Y, Jiang H. Parallel Alternating Iterative Optimization for Cardiac Magnetic Resonance Image Blind Super-Resolution. IEEE J Biomed Health Inform 2024; 28:5136-5146. [PMID: 38265901 DOI: 10.1109/jbhi.2024.3357988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Cardiac magnetic resonance imaging (CMRI) super-resolution (SR) reconstruction technology can enhance the resolution and quality of CMRI, providing experts with clearer and more accurate information about cardiac structure and function. This technology aids in the rapid and accurate diagnosis of cardiac abnormalities and the development of personalized treatment plans. In the processing of CMRI, existing bicubic degradation-based SR methods often suffer from performance degradation, resulting in blurred SR images. To address the aforementioned problem, we present a parallel alternating iterative optimization for CMRI image blind SR method (PAIBSR). Specifically, we propose a parallel alternating iterative optimization strategy, which employs dynamically corrected blur kernels and dynamically extracted intermediate low-resolution features as prior knowledge for both the blind SR process and the blur kernel correction process. Meanwhile, we propose a blur kernel update module composed of a blur kernel extractor and a low-resolution kernel extractor to correct the blur kernel. Furthermore, we propose an enhanced spatial feature transformation residual block, leveraging the corrected blur kernel as prior knowledge for the blind SR process. Through extensive experiments conducted on synthetic datasets, we have validated the superiority of PAIBSR method. It outperforms state-of-the-art SR methods in terms of performance and produces visually pleasing results.
Collapse
|
2
|
Ding C, Xiao R, Wang W, Holdsworth E, Hu X. Photoplethysmography based atrial fibrillation detection: a continually growing field. Physiol Meas 2024; 45:04TR01. [PMID: 38530307 DOI: 10.1088/1361-6579/ad37ee] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Objective. Atrial fibrillation (AF) is a prevalent cardiac arrhythmia associated with significant health ramifications, including an elevated susceptibility to ischemic stroke, heart disease, and heightened mortality. Photoplethysmography (PPG) has emerged as a promising technology for continuous AF monitoring for its cost-effectiveness and widespread integration into wearable devices. Our team previously conducted an exhaustive review on PPG-based AF detection before June 2019. However, since then, more advanced technologies have emerged in this field.Approach. This paper offers a comprehensive review of the latest advancements in PPG-based AF detection, utilizing digital health and artificial intelligence (AI) solutions, within the timeframe spanning from July 2019 to December 2022. Through extensive exploration of scientific databases, we have identified 57 pertinent studies.Significance. Our comprehensive review encompasses an in-depth assessment of the statistical methodologies, traditional machine learning techniques, and deep learning approaches employed in these studies. In addition, we address the challenges encountered in the domain of PPG-based AF detection. Furthermore, we maintain a dedicated website to curate the latest research in this area, with regular updates on a regular basis.
Collapse
Affiliation(s)
- Cheng Ding
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States of America
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Ran Xiao
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States of America
| | - Weijia Wang
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States of America
| | - Elizabeth Holdsworth
- Georgia Tech Library, Georgia Institute of Technology, Atlanta, GA, United States of America
| | - Xiao Hu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, United States of America
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States of America
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, United States of America
| |
Collapse
|
3
|
Gupta S, Singh A, Sharma A. CIsense: an automated framework for early screening of cerebral infarction using PPG sensor data. Biomed Eng Lett 2024; 14:199-207. [PMID: 38374904 PMCID: PMC10874364 DOI: 10.1007/s13534-023-00327-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 02/21/2024] Open
Abstract
A cerebral infarction (CI), often known as a stroke, is a cognitive impairment in which a group of brain cells perishes from a lack of blood supply. The early prediction and evaluation of this problem are essential to avoid atrial fibrillation, heart valve disease, and other cardiac disorders. Different clinical strategies like Computerized tomography (CT) scans, Magnetic resonance imaging (MRI), and Carotid (ka-ROT-id) ultrasound are available to diagnose this problem. However, these methods are time-consuming and expensive. Wearable devices based on photoplethysmography (PPG) are gaining prevalence in diagnosing various cardiovascular diseases. This work uses the PPG signal to classify the CI subjects from the normal. We propose an automated framework and fiducial point-independent approach to predict CI with sufficient accuracy. The experiment is performed with a publicly available database having PPG and other physiological data of 219 individuals. The best validation and test accuracy of 91.8 % and 91.3 % are obtained after diagnosis with Coarse Gaussian SVM. The proposed work aims to extract cerebral infarction pathology by extracting relevant entropy features from higher order PPG derivatives for the prediction of CI and offers a simple, automated and inexpensive approach for early detection of CI and promotes awareness for the subjects to undergo further treatment to avoid major disorders.
Collapse
Affiliation(s)
| | - Anurag Singh
- IIIT Naya Raipur, Raipur, Chhattisgarh 493661 India
| | | |
Collapse
|
4
|
Portero V, Deng S, Boink GJJ, Zhang GQ, de Vries A, Pijnappels DA. Optoelectronic control of cardiac rhythm: Toward shock-free ambulatory cardioversion of atrial fibrillation. J Intern Med 2024; 295:126-145. [PMID: 37964404 DOI: 10.1111/joim.13744] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, progressive in nature, and known to have a negative impact on mortality, morbidity, and quality of life. Patients requiring acute termination of AF to restore sinus rhythm are subjected to electrical cardioversion, which requires sedation and therefore hospitalization due to pain resulting from the electrical shocks. However, considering the progressive nature of AF and its detrimental effects, there is a clear need for acute out-of-hospital (i.e., ambulatory) cardioversion of AF. In the search for shock-free cardioversion methods to realize such ambulatory therapy, a method referred to as optogenetics has been put forward. Optogenetics enables optical control over the electrical activity of cardiomyocytes by targeted expression of light-activated ion channels or pumps and may therefore serve as a means for cardioversion. First proof-of-principle for such light-induced cardioversion came from in vitro studies, proving optogenetic AF termination to be very effective. Later, these results were confirmed in various rodent models of AF using different transgenes, illumination methods, and protocols, whereas computational studies in the human heart provided additional translational insight. Based on these results and fueled by recent advances in molecular biology, gene therapy, and optoelectronic engineering, a basis is now being formed to explore clinical translations of optoelectronic control of cardiac rhythm. In this review, we discuss the current literature regarding optogenetic cardioversion of AF to restore normal rhythm in a shock-free manner. Moreover, key translational steps will be discussed, both from a biological and technological point of view, to outline a path toward realizing acute shock-free ambulatory termination of AF.
Collapse
Affiliation(s)
- Vincent Portero
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Shanliang Deng
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Gerard J J Boink
- Department of Medical Biology, Department of Cardiology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Guo Qi Zhang
- Department of Microelectronics, Delft University of Technology, Delft, The Netherlands
| | - Antoine de Vries
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Daniël A Pijnappels
- Laboratory of Experimental Cardiology, Department of Cardiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| |
Collapse
|
5
|
Charlton PH, Allen J, Bailón R, Baker S, Behar JA, Chen F, Clifford GD, Clifton DA, Davies HJ, Ding C, Ding X, Dunn J, Elgendi M, Ferdoushi M, Franklin D, Gil E, Hassan MF, Hernesniemi J, Hu X, Ji N, Khan Y, Kontaxis S, Korhonen I, Kyriacou PA, Laguna P, Lázaro J, Lee C, Levy J, Li Y, Liu C, Liu J, Lu L, Mandic DP, Marozas V, Mejía-Mejía E, Mukkamala R, Nitzan M, Pereira T, Poon CCY, Ramella-Roman JC, Saarinen H, Shandhi MMH, Shin H, Stansby G, Tamura T, Vehkaoja A, Wang WK, Zhang YT, Zhao N, Zheng D, Zhu T. The 2023 wearable photoplethysmography roadmap. Physiol Meas 2023; 44:111001. [PMID: 37494945 PMCID: PMC10686289 DOI: 10.1088/1361-6579/acead2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/04/2023] [Accepted: 07/26/2023] [Indexed: 07/28/2023]
Abstract
Photoplethysmography is a key sensing technology which is used in wearable devices such as smartwatches and fitness trackers. Currently, photoplethysmography sensors are used to monitor physiological parameters including heart rate and heart rhythm, and to track activities like sleep and exercise. Yet, wearable photoplethysmography has potential to provide much more information on health and wellbeing, which could inform clinical decision making. This Roadmap outlines directions for research and development to realise the full potential of wearable photoplethysmography. Experts discuss key topics within the areas of sensor design, signal processing, clinical applications, and research directions. Their perspectives provide valuable guidance to researchers developing wearable photoplethysmography technology.
Collapse
Affiliation(s)
- Peter H Charlton
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - John Allen
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Raquel Bailón
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Stephanie Baker
- College of Science and Engineering, James Cook University, Cairns, 4878 Queensland, Australia
| | - Joachim A Behar
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
| | - Fei Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guandong, People’s Republic of China
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University, Atlanta, GA 30322, United States of America
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
| | - David A Clifton
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Harry J Davies
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Cheng Ding
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, United States of America
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, United States of America
| | - Xiaorong Ding
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, People’s Republic of China
| | - Jessilyn Dunn
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
- Department of Biostatistics & Bioinformatics, Duke University, Durham, NC 27708-0187, United States of America
- Duke Clinical Research Institute, Durham, NC 27705-3976, United States of America
| | - Mohamed Elgendi
- Biomedical and Mobile Health Technology Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, 8008, Switzerland
| | - Munia Ferdoushi
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Daniel Franklin
- Institute of Biomedical Engineering, Translational Biology & Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, Toronto, M5G 1M1, Canada
| | - Eduardo Gil
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Md Farhad Hassan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Jussi Hernesniemi
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Xiao Hu
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, 30322, Georgia, United States of America
- Department of Computer Sciences, College of Arts and Sciences, Emory University, Atlanta, GA 30322, United States of America
| | - Nan Ji
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
| | - Yasser Khan
- Department of Electrical and Computer Engineering, University of Southern California, 90089, Los Angeles, California, United States of America
- The Institute for Technology and Medical Systems (ITEMS), Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States of America
| | - Spyridon Kontaxis
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Ilkka Korhonen
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
| | - Panicos A Kyriacou
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Pablo Laguna
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Jesús Lázaro
- Biomedical Signal Interpretation and Computational Simulation (BSICoS) Group, Aragon Institute of Engineering Research (I3A), IIS Aragon, University of Zaragoza, E-50018 Zaragoza, Spain
- CIBER-BBN, Instituto de Salud Carlos III, C/Monforte de Lemos 3-5, E-28029 Madrid, Spain
| | - Chungkeun Lee
- Digital Health Devices Division, Medical Device Evaluation Department, National Institute of Food and Drug Safety Evaluation, Ministry of Food and Drug Safety, Cheongju, 28159, Republic of Korea
| | - Jeremy Levy
- Faculty of Biomedical Engineering, Technion Israel Institute of Technology, Haifa, 3200003, Israel
- Faculty of Electrical and Computer Engineering, Technion Institute of Technology, Haifa, 3200003, Israel
| | - Yumin Li
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Chengyu Liu
- State Key Laboratory of Bioelectronics, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People’s Republic of China
| | - Jing Liu
- Analog Devices Inc, San Jose, CA 95124, United States of America
| | - Lei Lu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Danilo P Mandic
- Department of Electrical and Electronic Engineering, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Vaidotas Marozas
- Department of Electronics Engineering, Kaunas University of Technology, 44249 Kaunas, Lithuania
- Biomedical Engineering Institute, Kaunas University of Technology, 44249 Kaunas, Lithuania
| | - Elisa Mejía-Mejía
- Research Centre for Biomedical Engineering, City, University of London, London, EC1V 0HB, United Kingdom
| | - Ramakrishna Mukkamala
- Department of Bioengineering and Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Meir Nitzan
- Department of Physics/Electro-Optic Engineering, Lev Academic Center, 91160 Jerusalem, Israel
| | - Tania Pereira
- INESC TEC—Institute for Systems and Computer Engineering, Technology and Science, Porto, 4200-465, Portugal
- Faculty of Engineering, University of Porto, Porto, 4200-465, Portugal
| | | | - Jessica C Ramella-Roman
- Department of Biomedical Engineering and Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33174, United States of America
| | - Harri Saarinen
- Tampere Heart Hospital, Wellbeing Services County of Pirkanmaa, Tampere, 33520, Finland
| | - Md Mobashir Hasan Shandhi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Hangsik Shin
- Department of Digital Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Gerard Stansby
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, United Kingdom
- Northern Vascular Centre, Freeman Hospital, Newcastle upon Tyne, NE7 7DN, United Kingdom
| | - Toshiyo Tamura
- Future Robotics Organization, Waseda University, Tokyo, 1698050, Japan
| | - Antti Vehkaoja
- Finnish Cardiovascular Research Center Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33720, Finland
- PulseOn Ltd, Espoo, 02150, Finland
| | - Will Ke Wang
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0187, United States of America
| | - Yuan-Ting Zhang
- Hong Kong Center for Cerebrocardiovascular Health Engineering (COCHE), Hong Kong Science and Technology Park, Hong Kong, 999077, People’s Republic of China
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, People’s Republic of China
| | - Ni Zhao
- Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Dingchang Zheng
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5RW, United Kingdom
| | - Tingting Zhu
- Department of Engineering Science, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
6
|
Ciccarelli M, Giallauria F, Carrizzo A, Visco V, Silverio A, Cesaro A, Calabrò P, De Luca N, Mancusi C, Masarone D, Pacileo G, Tourkmani N, Vigorito C, Vecchione C. Artificial intelligence in cardiovascular prevention: new ways will open new doors. J Cardiovasc Med (Hagerstown) 2023; 24:e106-e115. [PMID: 37186561 DOI: 10.2459/jcm.0000000000001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Prevention and effective treatment of cardiovascular disease are progressive issues that grow in tandem with the average age of the world population. Over recent decades, the potential role of artificial intelligence in cardiovascular medicine has been increasingly recognized because of the incredible amount of real-world data (RWD) regarding patient health status and healthcare delivery that can be collated from a variety of sources wherein patient information is routinely collected, including patient registries, clinical case reports, reimbursement claims and billing reports, medical devices, and electronic health records. Like any other (health) data, RWD can be analysed in accordance with high-quality research methods, and its analysis can deliver valuable patient-centric insights complementing the information obtained from conventional clinical trials. Artificial intelligence application on RWD has the potential to detect a patient's health trajectory leading to personalized medicine and tailored treatment. This article reviews the benefits of artificial intelligence in cardiovascular prevention and management, focusing on diagnostic and therapeutic improvements without neglecting the limitations of this new scientific approach.
Collapse
Affiliation(s)
- Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Francesco Giallauria
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Albino Carrizzo
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli
| | - Valeria Visco
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Angelo Silverio
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
| | - Arturo Cesaro
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Paolo Calabrò
- Department of Translational Medical Sciences, University of Campania 'Luigi Vanvitelli', Naples, Italy
| | - Nicola De Luca
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Costantino Mancusi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Daniele Masarone
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Giuseppe Pacileo
- Heart Failure Unit, Department of Cardiology, AORN dei Colli-Monaldi Hospital Naples, Naples, Italy
| | - Nidal Tourkmani
- Cardiology and Cardiac Rehabilitation Unit, 'Mons. Giosuè Calaciura Clinic', Catania, Italy
- ABL, Guangzhou, China
| | - Carlo Vigorito
- Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Carmine Vecchione
- Department of Medicine, Surgery and Dentistry, University of Salerno, Baronissi, Italy
- Vascular Physiopathology Unit, IRCCS Neuromed, Pozzilli
| |
Collapse
|
7
|
Mäkynen M, Ng GA, Li X, Schlindwein FS. Wearable Devices Combined with Artificial Intelligence-A Future Technology for Atrial Fibrillation Detection? SENSORS (BASEL, SWITZERLAND) 2022; 22:8588. [PMID: 36433186 PMCID: PMC9697321 DOI: 10.3390/s22228588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia in the world. The arrhythmia and methods developed to cure it have been studied for several decades. However, professionals worldwide are still working to improve treatment quality. One novel technology that can be useful is a wearable device. The two most used recordings from these devices are photoplethysmogram (PPG) and electrocardiogram (ECG) signals. As the price lowers, these devices will become significant technology to increase sensitivity, for monitoring and for treatment quality support. This is important as AF can be challenging to detect in advance, especially during home monitoring. Modern artificial intelligence (AI) has the potential to respond to this challenge. AI has already achieved state of the art results in many applications, including bioengineering. In this perspective, we discuss wearable devices combined with AI for AF detection, an approach that enables a new era of possibilities for the future.
Collapse
Affiliation(s)
- Marko Mäkynen
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (M.M.); (X.L.)
| | - G. Andre Ng
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (M.M.); (X.L.)
- National Institute for Health Research Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester LE5 4PW, UK;
| | - Xin Li
- School of Engineering, University of Leicester, Leicester LE1 7RH, UK; (M.M.); (X.L.)
| | | |
Collapse
|
8
|
Cheng T, Jiang F, Li Q, Zeng J, Zhang B. Quantitative Analysis Using Consecutive Time Window for Unobtrusive Atrial Fibrillation Detection Based on Ballistocardiogram Signal. SENSORS (BASEL, SWITZERLAND) 2022; 22:5516. [PMID: 35898020 PMCID: PMC9331962 DOI: 10.3390/s22155516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Atrial fibrillation (AF) is the most common clinically significant arrhythmia; therefore, AF detection is crucial. Here, we propose a novel feature extraction method to improve AF detection performance using a ballistocardiogram (BCG), which is a weak vibration signal on the body surface transmitted by the cardiogenic force. In this paper, continuous time windows (CTWs) are added to each BCG segment and recurrence quantification analysis (RQA) features are extracted from each time window. Then, the number of CTWs is discussed and the combined features from multiple time windows are ranked, which finally constitute the CTW-RQA features. As validation, the CTW-RQA features are extracted from 4000 BCG segments of 59 subjects, which are compared with classical time and time-frequency features and up-to-date energy features. The accuracy of the proposed feature is superior, and three types of features are fused to obtain the highest accuracy of 95.63%. To evaluate the importance of the proposed feature, the fusion features are ranked using a chi-square test. CTW-RQA features account for 60% of the first 10 fusion features and 65% of the first 17 fusion features. It follows that the proposed CTW-RQA features effectively supplement the existing BCG features for AF detection.
Collapse
Affiliation(s)
- Tianqing Cheng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Fangfang Jiang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Qing Li
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Jitao Zeng
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110819, China; (T.C.); (Q.L.); (J.Z.)
| | - Biyong Zhang
- College of Medicine and Biological Information Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands;
- BOBO Technology, Hangzhou 310000, China
| |
Collapse
|
9
|
Sun Z, Junttila J, Tulppo M, Seppanen T, Li X. Non-Contact Atrial Fibrillation Detection From Face Videos by Learning Systolic Peaks. IEEE J Biomed Health Inform 2022; 26:4587-4598. [PMID: 35867368 DOI: 10.1109/jbhi.2022.3193117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE We propose a non-contact approach for atrial fibrillation (AF) detection from face videos. METHODS Face videos, electrocardiography (ECG), and contact photoplethysmography (PPG) from 100 healthy subjects and 100 AF patients are recorded. Data recordings from healthy subjects are all labeled as healthy. Two cardiologists evaluated ECG recordings of patients and labeled each recording as AF, sinus rhythm (SR), or atrial flutter (AFL). We use the 3D convolutional neural network for remote PPG monitoring and propose a novel loss function (Wasserstein distance) to use the timing of systolic peaks from contact PPG as the label for our model training. Then a set of heart rate variability (HRV) features are calculated from the inter-beat intervals, and a support vector machine (SVM) classifier is trained with HRV features. RESULTS Our proposed method can accurately extract systolic peaks from face videos for AF detection. The proposed method is trained with subject-independent 10-fold cross-validation with 30s video clips and tested on two tasks. 1) Classification of healthy versus AF: the accuracy, sensitivity, and specificity are 96.00%, 95.36%, and 96.12%. 2) Classification of SR versus AF: the accuracy, sensitivity, and specificity are 95.23%, 98.53%, and 91.12%. In addition, we also demonstrate the feasibility of non-contact AFL detection. CONCLUSION We achieve good performance of non-contact AF detection by learning systolic peaks. SIGNIFICANCE non-contact AF detection can be used for self-screening of AF symptoms for suspectable populations at home or self-monitoring of AF recurrence after treatment for chronic patients.
Collapse
|
10
|
Zhang P, Chen Y, Lin F, Wu S, Yang X, Li Q. Semi-supervised learning for automatic atrial fibrillation detection in 24-hour Holter monitoring. IEEE J Biomed Health Inform 2022; 26:3791-3801. [PMID: 35536820 DOI: 10.1109/jbhi.2022.3173655] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Paroxysmal atrial fibrillation (AF) is generally diagnosed by long-term dynamic electrocardiogram (ECG) monitoring. Identifying AF episodes from long-term ECG data can place a heavy burden on clinicians. Many machine-learning-based automatic AF detection methods have been proposed to solve this issue. However, these methods require numerous annotated data to train the model, and the annotation of AF in long-term ECG is extremely time-consuming. Reducing the demand for labeled data can effectively improve the clinical practicability of automatic AF detection methods. In this study, we developed a novel semi-supervised learning method that generated modified low-entropy labels of unlabeled samples for training a deep learning model to automatically detect paroxysmal AF in 24 h Holter monitoring data. Our method employed a 1D CNN-LSTM neural network with RR intervals as input and used few labeled training data with numerous unlabeled data for training the neural network. This method was evaluated using a 24 h Holter monitoring dataset collected from 1000 paroxysmal AF patients. Using labeled samples from only 10 patients for model training, our method achieved a sensitivity of 97.8%, specificity of 97.9%, and accuracy of 97.9% in five-fold cross-validation. Compared to the supervised learning method with complete labeled samples, the detection accuracy of our method was only 0.5% lower, while the workload of data annotation was significantly reduced by more than 98%. In general, this is the first study to apply semi-supervised learning techniques for automatic AF detection using ECG. Our method can effectively reduce the demand for AF data annotations and can improve the clinical practicability of automatic AF detection.
Collapse
|
11
|
Liu Z, Zhou B, Jiang Z, Chen X, Li Y, Tang M, Miao F. Multiclass Arrhythmia Detection and Classification From Photoplethysmography Signals Using a Deep Convolutional Neural Network. J Am Heart Assoc 2022; 11:e023555. [PMID: 35322685 PMCID: PMC9075456 DOI: 10.1161/jaha.121.023555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Studies have reported the use of photoplethysmography signals to detect atrial fibrillation; however, the use of photoplethysmography signals in classifying multiclass arrhythmias has rarely been reported. Our study investigated the feasibility of using photoplethysmography signals and a deep convolutional neural network to classify multiclass arrhythmia types. Methods and Results ECG and photoplethysmography signals were collected simultaneously from a group of patients who underwent radiofrequency ablation for arrhythmias. A deep convolutional neural network was developed to classify multiple rhythms based on 10‐second photoplethysmography waveforms. Classification performance was evaluated by calculating the area under the microaverage receiver operating characteristic curve, overall accuracy, sensitivity, specificity, and positive and negative predictive values against annotations on the rhythm of arrhythmias provided by 2 cardiologists consulting the ECG results. A total of 228 patients were included; 118 217 pairs of 10‐second photoplethysmography and ECG waveforms were used. When validated against an independent test data set (23 384 photoplethysmography waveforms from 45 patients), the DCNN achieved an overall accuracy of 85.0% for 6 rhythm types (sinus rhythm, premature ventricular contraction, premature atrial contraction, ventricular tachycardia, supraventricular tachycardia, and atrial fibrillation); the microaverage area under the microaverage receiver operating characteristic curve was 0.978; the average sensitivity, specificity, and positive and negative predictive values were 75.8%, 96.9%, 75.2%, and 97.0%, respectively. Conclusions This study demonstrated the feasibility of classifying multiclass arrhythmias from photoplethysmography signals using deep learning techniques. The approach is attractive for population‐based screening and may hold promise for the long‐term surveillance and management of arrhythmia. Registration URL: www.chictr.org.cn. Identifier: ChiCTR2000031170.
Collapse
Affiliation(s)
- Zengding Liu
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China.,University of Chinese Academy of Sciences Beijing China
| | - Bin Zhou
- Department of Cardiology Laboratory of Heart Center Zhujiang HospitalSouthern Medical University Guangzhou China.,Fuwai HospitalNational Center for Cardiovascular DiseaseState Key Lab of Cardiovascular DiseaseNational Clinical Research Center of Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Zhiming Jiang
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Xi Chen
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Ye Li
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China.,Joint Engineering Research Center for Health Big Data Intelligent Analysis Technology Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| | - Min Tang
- Fuwai HospitalNational Center for Cardiovascular DiseaseState Key Lab of Cardiovascular DiseaseNational Clinical Research Center of Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Fen Miao
- Key Laboratory for Health Informatics Shenzhen Institute of Advanced TechnologyChinese Academy of Sciences Shenzhen China
| |
Collapse
|
12
|
Park J, Seok HS, Kim SS, Shin H. Photoplethysmogram Analysis and Applications: An Integrative Review. Front Physiol 2022; 12:808451. [PMID: 35300400 PMCID: PMC8920970 DOI: 10.3389/fphys.2021.808451] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 12/03/2022] Open
Abstract
Beyond its use in a clinical environment, photoplethysmogram (PPG) is increasingly used for measuring the physiological state of an individual in daily life. This review aims to examine existing research on photoplethysmogram concerning its generation mechanisms, measurement principles, clinical applications, noise definition, pre-processing techniques, feature detection techniques, and post-processing techniques for photoplethysmogram processing, especially from an engineering point of view. We performed an extensive search with the PubMed, Google Scholar, Institute of Electrical and Electronics Engineers (IEEE), ScienceDirect, and Web of Science databases. Exclusion conditions did not include the year of publication, but articles not published in English were excluded. Based on 118 articles, we identified four main topics of enabling PPG: (A) PPG waveform, (B) PPG features and clinical applications including basic features based on the original PPG waveform, combined features of PPG, and derivative features of PPG, (C) PPG noise including motion artifact baseline wandering and hypoperfusion, and (D) PPG signal processing including PPG preprocessing, PPG peak detection, and signal quality index. The application field of photoplethysmogram has been extending from the clinical to the mobile environment. Although there is no standardized pre-processing pipeline for PPG signal processing, as PPG data are acquired and accumulated in various ways, the recently proposed machine learning-based method is expected to offer a promising solution.
Collapse
Affiliation(s)
- Junyung Park
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| | - Hyeon Seok Seok
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| | - Sang-Su Kim
- Department of Biomedical Engineering, Chonnam National University, Yeosu, South Korea
| | - Hangsik Shin
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| |
Collapse
|
13
|
Contactless facial video recording with deep learning models for the detection of atrial fibrillation. Sci Rep 2022; 12:281. [PMID: 34996908 PMCID: PMC8741942 DOI: 10.1038/s41598-021-03453-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/20/2021] [Indexed: 11/25/2022] Open
Abstract
Atrial fibrillation (AF) is often asymptomatic and paroxysmal. Screening and monitoring are needed especially for people at high risk. This study sought to use camera-based remote photoplethysmography (rPPG) with a deep convolutional neural network (DCNN) learning model for AF detection. All participants were classified into groups of AF, normal sinus rhythm (NSR) and other abnormality based on 12-lead ECG. They then underwent facial video recording for 10 min with rPPG signals extracted and segmented into 30-s clips as inputs of the training of DCNN models. Using voting algorithm, the participant would be predicted as AF if > 50% of their rPPG segments were determined as AF rhythm by the model. Of the 453 participants (mean age, 69.3 ± 13.0 years, women, 46%), a total of 7320 segments (1969 AF, 1604 NSR & 3747others) were analyzed by DCNN models. The accuracy rate of rPPG with deep learning model for discriminating AF from NSR and other abnormalities was 90.0% and 97.1% in 30-s and 10-min recording, respectively. This contactless, camera-based rPPG technique with a deep-learning model achieved significantly high accuracy to discriminate AF from non-AF and may enable a feasible way for a large-scale screening or monitoring in the future.
Collapse
|
14
|
Pillar G, Berall M, Berry RB, Etzioni T, Henkin Y, Hwang D, Marai I, Shehadeh F, Manthena P, Rama A, Spiegel R, Penzel T, Tauman R. Detection of Common Arrhythmias by the Watch-PAT: Expression of Electrical Arrhythmias by Pulse Recording. Nat Sci Sleep 2022; 14:751-763. [PMID: 35478721 PMCID: PMC9038202 DOI: 10.2147/nss.s359468] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The WatchPAT (WP) device was shown to be accurate for the diagnosis of sleep apnea and is widely used worldwide as an ambulatory diagnostic tool. While it records peripheral arterial tone (PAT) and not electrocardiogram (ECG), the ability of it to detect arrhythmias is unknown and was not studied previously. Common arrhythmias such as atrial fibrillation (AF) or premature beats may be uniquely presented while recording PAT/pulse wave. PURPOSE To examine the potential detection of common arrhythmias by analyzing the PAT amplitude and pulse rate/volume changes. PATIENTS AND METHODS Patients with suspected sleep disordered breathing (SDB) were recruited with preference for patients with previously diagnosed AF or congestive heart failure (CHF). They underwent simultaneous WP and PSG studies in 11 sleep centers. A novel algorithm was developed to detect arrhythmias while measuring PAT and was tested on these patients. Manual scoring of ECG channel (recorded as part of the PSG) was blinded to the automatically analyzed WP data. RESULTS A total of 84 patients aged 57±16 (54 males) participated in this study. Their BMI was 30±5.7Kg/m2. Of them, 41 had heart failure (49%) and 17 (20%) had AF. The sensitivity and specificity of the WP to detect AF segments (of at least 60 seconds) were 0.77 and 0.99, respectively. The correlation between the WP derived detection of premature beats (events/min) to that of the PSG one was 0.98 (p<0.001). CONCLUSION The novel automatic algorithm of the WP can reasonably detect AF and premature beats. We suggest that when the algorithm raises a flag for arrhythmia, the patients should shortly undergo ECG and/or Holter ECG study.
Collapse
Affiliation(s)
- Giora Pillar
- Sleep Laboratory, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Murray Berall
- Center of Sleep and Chronobiology, University of Toronto, Toronto, ON, Canada
| | - Richard B Berry
- UF Health Sleep Center, University of Florida, Gainesville, FL, USA
| | - Tamar Etzioni
- Sleep Laboratory, Carmel Medical Center and Technion Faculty of Medicine, Haifa, Israel
| | - Yaakov Henkin
- Cardiology Department, Soroka Medical Center, Be'er Sheva, Israel
| | - Dennis Hwang
- Kaiser Permanente San Bernardino County Medical Center, Fontana, CA, USA
| | - Ibrahim Marai
- Cardiology Department, Rambam Medical Center, Haifa, Israel.,Baruch Padeh Medical Center and the Azrieli Faculty of Medicine in the Galilee, Poriya, Israel
| | | | - Prasanth Manthena
- Sleep clinic, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA, USA
| | - Anil Rama
- Sleep Clinic, Kaiser Permanente San Jose Medical Center, San Jose, CA, USA
| | - Rebecca Spiegel
- Department of Neurology and Sleep Center, Stony Brook University Hospital, Stony Brook, NY, USA
| | - Thomas Penzel
- Charite Universitätsmedizin Berlin, Sleep Medicine Center, Berlin, Germany
| | - Riva Tauman
- Sleep Disorders Center, Tel Aviv Sourasky Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Arrhythmia detection and classification using ECG and PPG techniques: a review. Phys Eng Sci Med 2021; 44:1027-1048. [PMID: 34727361 DOI: 10.1007/s13246-021-01072-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/25/2021] [Indexed: 12/26/2022]
Abstract
Electrocardiogram (ECG) and photoplethysmograph (PPG) are non-invasive techniques that provide electrical and hemodynamic information of the heart, respectively. This information is advantageous in the diagnosis of various cardiac abnormalities. Arrhythmia is the most common cardiovascular disease, manifested as single or multiple irregular heartbeats. However, due to the continuous manual observation, it becomes troublesome for experts sometimes to identify the paroxysmal nature of arrhythmia correctly. Moreover, due to advancements in technology, there is an inclination towards wearable sensors which monitor such patients continuously. Thus, there is a need for automatic detection techniques for the identification of arrhythmia. In the presented work, ECG and PPG-based state-of-the-art methods have been described, including preprocessing, feature extraction, and classification techniques for the detection of various arrhythmias. Additionally, this review exhibits various wearable sensors used in the literature and public databases available for the evaluation of results. The study also highlights the limitations of the current techniques and pragmatic solutions to improvise the ongoing effort.
Collapse
|
16
|
Recent Research for Unobtrusive Atrial Fibrillation Detection Methods Based on Cardiac Dynamics Signals: A Survey. SENSORS 2021; 21:s21113814. [PMID: 34072986 PMCID: PMC8199222 DOI: 10.3390/s21113814] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/20/2021] [Accepted: 05/26/2021] [Indexed: 11/16/2022]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia. It tends to cause multiple cardiac conditions, such as cerebral artery blockage, stroke, and heart failure. The morbidity and mortality of AF have been progressively increasing over the past few decades, which has raised widespread concern about unobtrusive AF detection in routine life. The up-to-date non-invasive AF detection methods include electrocardiogram (ECG) signals and cardiac dynamics signals, such as the ballistocardiogram (BCG) signal, the seismocardiogram (SCG) signal and the photoplethysmogram (PPG) signal. Cardiac dynamics signals can be collected by cushions, mattresses, fabrics, or even cameras, which is more suitable for long-term monitoring. Therefore, methods for AF detection by cardiac dynamics signals bring about extensive attention for recent research. This paper reviews the current unobtrusive AF detection methods based on the three cardiac dynamics signals, summarized as data acquisition and preprocessing, feature extraction and selection, classification and diagnosis. In addition, the drawbacks and limitations of the existing methods are analyzed, and the challenges in future work are discussed.
Collapse
|
17
|
Han D, Bashar SK, Mohagheghian F, Ding E, Whitcomb C, McManus DD, Chon KH. Premature Atrial and Ventricular Contraction Detection using Photoplethysmographic Data from a Smartwatch. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5683. [PMID: 33028000 PMCID: PMC7582300 DOI: 10.3390/s20195683] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/19/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
We developed an algorithm to detect premature atrial contraction (PAC) and premature ventricular contraction (PVC) using photoplethysmographic (PPG) data acquired from a smartwatch. Our PAC/PVC detection algorithm is composed of a sequence of algorithms that are combined to discriminate various arrhythmias. A novel vector resemblance method is used to enhance the PAC/PVC detection results of the Poincaré plot method. The new PAC/PVC detection algorithm with our automated motion and noise artifact detection approach yielded a sensitivity of 86% for atrial fibrillation (AF) subjects while the overall sensitivity was 67% when normal sinus rhythm (NSR) subjects were also included. The specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy values for the combined data consisting of both NSR and AF subjects were 97%, 81%, 94% and 92%, respectively, for PAC/PVC detection combined with our automated motion and noise artifact detection approach. Moreover, when AF detection was compared with and without PAC/PVC, the sensitivity and specificity increased from 94.55% to 98.18% and from 95.75% to 97.90%, respectively. For additional independent testing data, we used two datasets: a smartwatch PPG dataset that was collected in our ongoing clinical study, and a pulse oximetry PPG dataset from the Medical Information Mart for Intensive Care III database. The PAC/PVC classification results of the independent testing on these two other datasets are all above 92% for sensitivity, specificity, PPV, NPV, and accuracy. The proposed combined approach to detect PAC and PVC can ultimately lead to better accuracy in AF detection. This is one of the first studies involving detection of PAC and PVC using PPG recordings from a smartwatch. The proposed method can potentially be of clinical importance as this enhanced capability can lead to fewer false positive detections of AF, especially for those NSR subjects with frequent episodes of PAC/PVC.
Collapse
Affiliation(s)
- Dong Han
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| | - Syed Khairul Bashar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| | - Fahimeh Mohagheghian
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| | - Eric Ding
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (C.W.); (D.D.M.)
| | - Cody Whitcomb
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (C.W.); (D.D.M.)
| | - David D. McManus
- Division of Cardiology, University of Massachusetts Medical School, Worcester, MA 01655, USA; (E.D.); (C.W.); (D.D.M.)
| | - Ki H. Chon
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (D.H.); (S.K.B.); (F.M.)
| |
Collapse
|