1
|
Iannucci LE, Gruev V, Lake SP. Influence of signal-to-noise ratio on DoLP and AoP measurements during reflectance-mode division-of-focal plane Stokes polarimetry of biological tissues. BIOMEDICAL OPTICS EXPRESS 2024; 15:2798-2810. [PMID: 38855679 PMCID: PMC11161357 DOI: 10.1364/boe.514539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 06/11/2024]
Abstract
Stokes polarimeter based endoscopes are emerging as an area of technology where polarization imaging can greatly impact clinical care by improving diagnostic tools without the use of exogenous contrast. Image acquisition in minimally invasive surgical settings is often beset by inherently limited illumination. A comprehensive analysis of how signal-to-noise (SNR) propagates through Stokes polarimetric outcomes such as degree of linear polarization (DoLP) and angle of polarization (AoP) in low light is important for future interpretation of data acquired in low-light conditions. A previously developed theoretical model of quantitative polarized light imaging (QPLI) analysis described SNR as a function of both incident light intensity and DoLP. When polarized light interacts with biological tissues, the resultant DoLP of exiting light is dependent on the underlying tissue microstructure. Therefore, in this study we explore how low light impacts SNR of QPLI outcomes of DoLP and AoP differently in tissue phantoms of varying microstructures. Data are compared to theoretical solutions of SNR of DoLP and AoP. Tissues were additionally loaded to varying magnitudes of strain to investigate how variable SNR affects the ability to discern dynamic realignment in biological tissues. We observed a high degree of congruency between experimental and theoretical data, with SNR depending on both light intensity and DoLP. Additionally, we found that AoP may have a greater resilience to noise overall than DoLP and, as such, may be particularly useful in conditions where light is inherently limited.
Collapse
Affiliation(s)
- Leanne E. Iannucci
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Viktor Gruev
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Spencer P. Lake
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Mechanical Engineering and Materials Science, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
2
|
Sasagawa K, Okada R, Akamatsu Y, Mizuno M, Takehara H, Haruta M, Tashiro H, Ohta J. Exposure Time Control Method for Higher Intermediate Frequency in Optical Heterodyne Imaging and Its Application to Electric-Field Imaging Based on Electro-Optic Effect. SENSORS (BASEL, SWITZERLAND) 2024; 24:1249. [PMID: 38400406 PMCID: PMC10891932 DOI: 10.3390/s24041249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/03/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
We propose and demonstrate a method for equivalent time sampling using image sensors to selectively detect only the target frequency. Shortening the exposure time of the image sensor and using equivalent time sampling allows for the detection of frequency components that are higher than the frame rate. However, the imaging system in our previous work was also sensitive to the frequency component at 1/4 of the frame rate. In this study, we control the phase relationship between the exposure time and observed signal by inserting an additional interval once every four frames to detect the target frequency selectively. With this technique, we conducted electric field imaging based on the electro-optic effect under high noise conditions in the low-frequency band to which the conventional method is sensitive. The results demonstrated that the proposed method improved the signal-to-noise ratio.
Collapse
Affiliation(s)
- Kiyotaka Sasagawa
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan; (R.O.); (Y.A.); (H.T.); (M.H.); (H.T.); (J.O.)
| | - Ryoma Okada
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan; (R.O.); (Y.A.); (H.T.); (M.H.); (H.T.); (J.O.)
| | - Yoshihiro Akamatsu
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan; (R.O.); (Y.A.); (H.T.); (M.H.); (H.T.); (J.O.)
| | - Maya Mizuno
- Radio Research Institute, National Institute of Information and Communications Technology, 4-2-1, Nukui-kitamachi, Koganei, Tokyo 184-8795, Japan;
| | - Hironari Takehara
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan; (R.O.); (Y.A.); (H.T.); (M.H.); (H.T.); (J.O.)
| | - Makito Haruta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan; (R.O.); (Y.A.); (H.T.); (M.H.); (H.T.); (J.O.)
- Department of Opto-Electronic System Engineering, Chitose Institute of Science and Technology, 758-65 Bibi, Chitose, Hokkaido 066-8655, Japan
| | - Hiroyuki Tashiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan; (R.O.); (Y.A.); (H.T.); (M.H.); (H.T.); (J.O.)
- Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jun Ohta
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192 Japan; (R.O.); (Y.A.); (H.T.); (M.H.); (H.T.); (J.O.)
| |
Collapse
|
3
|
Iannucci LE, Riak MB, Meitz E, Bersi MR, Gruev V, Lake SP. Effect of matrix properties on transmission and reflectance mode division-of-focal-plane Stokes polarimetry. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:102902. [PMID: 37441242 PMCID: PMC10334992 DOI: 10.1117/1.jbo.28.10.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/18/2023] [Accepted: 05/23/2023] [Indexed: 07/15/2023]
Abstract
Significance Division-of-focal-plane Stokes polarimetry is emerging as a powerful tool for the microstructural characterization of soft tissues. How individual extracellular matrix (ECM) properties influence polarimetric signals in reflectance or transmission modes of quantitative polarized light imaging (QPLI) is not well understood. Aim We aimed to investigate how ECM properties affect outcomes obtained from division-of-focal-plane polarimetric imaging in reflectance or transmission modes. Approach Tunable collagen gel phantoms were used to modulate ECM properties of anisotropy, collagen density, crosslinking, and absorber density; the effects of degree of linear polarization (DoLP) and angle of polarization (AoP) on polarimetry outcomes were assessed. A model biological tissue (i.e., bovine tendon) was similarly imaged and evaluated using both reflectance and transmission modes. Results Reflectance QPLI resulted in decreased DoLP compared with transmission mode. A 90 deg shift in AoP was observed between modes but yielded similar spatial patterns. Collagen density had the largest effect on outcomes besides anisotropy in both imaging modes. Conclusions Both imaging modes were sufficiently sensitive to detect structural anisotropy differences in gels of varying fiber alignment. Conclusions drawn from phantom experiments should carry over when interpreting data from more complex tissues and can help provide context for interpretation of other Stokes polarimetry data.
Collapse
Affiliation(s)
- Leanne E. Iannucci
- Washington University in St. Louis, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, Missouri, United States
| | - Matthew B. Riak
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
| | - Ethan Meitz
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
| | - Matthew R. Bersi
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
| | - Viktor Gruev
- University of Illinois Urbana-Champaign, Department of Electrical and Computer Engineering, Champaign, Illinois, United States
| | - Spencer P. Lake
- Washington University in St. Louis, McKelvey School of Engineering, Department of Biomedical Engineering, St. Louis, Missouri, United States
- Washington University in St. Louis, McKelvey School of Engineering, Department of Mechanical Engineering and Materials Science, St. Louis, Missouri, United States
- Washington University in St. Louis, School of Medicine, Department of Orthopaedic Surgery, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Qi J, Tatla T, Nissanka-Jayasuriya E, Yuan AY, Stoyanov D, Elson DS. Surgical polarimetric endoscopy for the detection of laryngeal cancer. Nat Biomed Eng 2023; 7:971-985. [PMID: 37012312 PMCID: PMC10427430 DOI: 10.1038/s41551-023-01018-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/23/2023] [Indexed: 04/05/2023]
Abstract
The standard-of-care for the detection of laryngeal pathologies involves distinguishing suspicious lesions from surrounding healthy tissue via contrasts in colour and texture captured by white-light endoscopy. However, the technique is insufficiently sensitive and thus leads to unsatisfactory rates of false negatives. Here we show that laryngeal lesions can be better detected in real time by taking advantage of differences in the light-polarization properties of cancer and healthy tissues. By measuring differences in polarized-light retardance and depolarization, the technique, which we named 'surgical polarimetric endoscopy' (SPE), generates about one-order-of-magnitude greater contrast than white-light endoscopy, and hence allows for the better discrimination of cancerous lesions, as we show with patients diagnosed with squamous cell carcinoma. Polarimetric imaging of excised and stained slices of laryngeal tissue indicated that changes in the retardance of polarized light can be largely attributed to architectural features of the tissue. We also assessed SPE to aid routine transoral laser surgery for the removal of a cancerous lesion, indicating that SPE can complement white-light endoscopy for the detection of laryngeal cancer.
Collapse
Affiliation(s)
- Ji Qi
- Research Center for Humanoid Sensing, Zhejiang Lab, Hangzhou, China.
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
- Department of Computer Science, University College London, London, UK.
- Centre For Medical Image Computing, University College London, London, UK.
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| | - Taranjit Tatla
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK
- Northwick Park Hospital, London North West University Healthcare NHS Trust, London, UK
| | | | - Alan Yilun Yuan
- Department of Electrical and Electronic Engineering, Imperial College London, London, UK
| | - Danail Stoyanov
- Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK.
- Department of Computer Science, University College London, London, UK.
- Centre For Medical Image Computing, University College London, London, UK.
| | - Daniel S Elson
- Hamlyn Centre for Robotic Surgery, Imperial College London, London, UK.
- Department of Surgery and Cancer, Imperial College London, London, UK.
| |
Collapse
|
5
|
Lee PY, Schilpp H, Naylor N, Watkins SC, Yang B, Sigal IA. Instant polarized light microscopy pi (IPOLπ) for quantitative imaging of collagen architecture and dynamics in ocular tissues. OPTICS AND LASERS IN ENGINEERING 2023; 166:107594. [PMID: 37193214 PMCID: PMC10168649 DOI: 10.1016/j.optlaseng.2023.107594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Collagen architecture determines the biomechanical environment in the eye, and thus characterizing collagen fiber organization and biomechanics is essential to fully understand eye physiology and pathology. We recently introduced instant polarized light microscopy (IPOL) that encodes optically information about fiber orientation and retardance through a color snapshot. Although IPOL allows imaging collagen at the full acquisition speed of the camera, with excellent spatial and angular resolutions, a limitation is that the orientation-encoding color is cyclic every 90 degrees (π/2 radians). In consequence, two orthogonal fibers have the same color and therefore the same orientation when quantified by color-angle mapping. In this study, we demonstrate IPOLπ, a new variation of IPOL, in which the orientation-encoding color is cyclic every 180 degrees (π radians). Herein we present the fundamentals of IPOLπ, including a framework based on a Mueller-matrix formalism to characterize how fiber orientation and retardance determine the color. The improved quantitative capability of IPOLπ enables further study of essential biomechanical properties of collagen in ocular tissues, such as fiber anisotropy and crimp. We present a series of experimental calibrations and quantitative procedures to visualize and quantify ocular collagen orientation and microstructure in the optic nerve head, a region in the back of the eye. There are four important strengths of IPOLπ compared to IPOL. First, IPOLπ can distinguish the orientations of orthogonal collagen fibers via colors, whereas IPOL cannot. Second, IPOLπ requires a lower exposure time than IPOL, thus allowing faster imaging speed. Third, IPOLπ allows visualizing non-birefringent tissues and backgrounds from tissue absorption, whereas both appear dark in IPOL images. Fourth, IPOLπ is cheaper and less sensitive to imperfectly collimated light than IPOL. Altogether, the high spatial, angular, and temporal resolutions of IPOLπ enable a deeper insight into ocular biomechanics and eye physiology and pathology.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nathan Naylor
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Simon C. Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
6
|
Li S, Kong F, Xu H, Guo X, Li H, Ruan Y, Cao S, Guo Y. Biomimetic Polarized Light Navigation Sensor: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:5848. [PMID: 37447698 DOI: 10.3390/s23135848] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 07/15/2023]
Abstract
A polarized light sensor is applied to the front-end detection of a biomimetic polarized light navigation system, which is an important part of analyzing the atmospheric polarization mode and realizing biomimetic polarized light navigation, having received extensive attention in recent years. In this paper, biomimetic polarized light navigation in nature, the mechanism of polarized light navigation, point source sensor, imaging sensor, and a sensor based on micro nano machining technology are compared and analyzed, which provides a basis for the optimal selection of different polarized light sensors. The comparison results show that the point source sensor can be divided into basic point source sensor with simple structure and a point source sensor applied to integrated navigation. The imaging sensor can be divided into a simple time-sharing imaging sensor, a real-time amplitude splitting sensor that can detect images of multi-directional polarization angles, a real-time aperture splitting sensor that uses a light field camera, and a real-time focal plane light splitting sensor with high integration. In recent years, with the development of micro and nano machining technology, polarized light sensors are developing towards miniaturization and integration. In view of this, this paper also summarizes the latest progress of polarized light sensors based on micro and nano machining technology. Finally, this paper summarizes the possible future prospects and current challenges of polarized light sensor design, providing a reference for the feasibility selection of different polarized light sensors.
Collapse
Affiliation(s)
- Shunzi Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Fang Kong
- College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
| | - Han Xu
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaohan Guo
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haozhe Li
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yaohuang Ruan
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shouhu Cao
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yinjing Guo
- College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
7
|
Stanciu SG, König K, Song YM, Wolf L, Charitidis CA, Bianchini P, Goetz M. Toward next-generation endoscopes integrating biomimetic video systems, nonlinear optical microscopy, and deep learning. BIOPHYSICS REVIEWS 2023; 4:021307. [PMID: 38510341 PMCID: PMC10903409 DOI: 10.1063/5.0133027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/26/2023] [Indexed: 03/22/2024]
Abstract
According to the World Health Organization, the proportion of the world's population over 60 years will approximately double by 2050. This progressive increase in the elderly population will lead to a dramatic growth of age-related diseases, resulting in tremendous pressure on the sustainability of healthcare systems globally. In this context, finding more efficient ways to address cancers, a set of diseases whose incidence is correlated with age, is of utmost importance. Prevention of cancers to decrease morbidity relies on the identification of precursor lesions before the onset of the disease, or at least diagnosis at an early stage. In this article, after briefly discussing some of the most prominent endoscopic approaches for gastric cancer diagnostics, we review relevant progress in three emerging technologies that have significant potential to play pivotal roles in next-generation endoscopy systems: biomimetic vision (with special focus on compound eye cameras), non-linear optical microscopies, and Deep Learning. Such systems are urgently needed to enhance the three major steps required for the successful diagnostics of gastrointestinal cancers: detection, characterization, and confirmation of suspicious lesions. In the final part, we discuss challenges that lie en route to translating these technologies to next-generation endoscopes that could enhance gastrointestinal imaging, and depict a possible configuration of a system capable of (i) biomimetic endoscopic vision enabling easier detection of lesions, (ii) label-free in vivo tissue characterization, and (iii) intelligently automated gastrointestinal cancer diagnostic.
Collapse
Affiliation(s)
- Stefan G. Stanciu
- Center for Microscopy-Microanalysis and Information Processing, University Politehnica of Bucharest, Bucharest, Romania
| | | | | | - Lior Wolf
- School of Computer Science, Tel Aviv University, Tel-Aviv, Israel
| | - Costas A. Charitidis
- Research Lab of Advanced, Composite, Nano-Materials and Nanotechnology, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Paolo Bianchini
- Nanoscopy and NIC@IIT, Italian Institute of Technology, Genoa, Italy
| | - Martin Goetz
- Medizinische Klinik IV-Gastroenterologie/Onkologie, Kliniken Böblingen, Klinikverbund Südwest, Böblingen, Germany
| |
Collapse
|
8
|
Chen J, Li X, Jirigalantu J, Li F, Chu Q, Sun Y, Bayan H. White-light channeled imaging polarimeter using Savart plates and a polarization Sagnac interferometer. OPTICS EXPRESS 2023; 31:18177-18189. [PMID: 37381534 DOI: 10.1364/oe.487423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/19/2023] [Indexed: 06/30/2023]
Abstract
A Stokes white-light channeled imaging polarimeter using Savart plates and a polarization Sagnac interferometer (IPSPPSI) is presented, which provides an effective solution to the problem of channel aliasing in broadband polarimeters. The expression for the light intensity distribution and a method to reconstruct polarization information are derived, and an example design for an IPSPPSI is given. The results reveal that a complete measurement of the Stokes parameters in broad band can be achieved with a snapshot on a single detector. The use of dispersive elements like gratings suppresses broadband carrier frequency dispersion so the channels in the frequency domain do not affect each other, ensuring the integrity of information coupled across the channels. Furthermore, the IPSPPSI has a compact structure and does not employ moving parts or require image registration. It shows great application potential in remote sensing, biological detection, and other fields.
Collapse
|
9
|
Abdennadher B, Iseli R, Steiner U, Saba M. Broadband circular dichroism in chiral plasmonic woodpiles. APPLIED PHYSICS. A, MATERIALS SCIENCE & PROCESSING 2023; 129:229. [PMID: 36876319 PMCID: PMC9977903 DOI: 10.1007/s00339-023-06481-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The circular dichroism (CD) of a material is the difference in optical absorption under left- and right-circularly polarized illumination. It is crucial for a number of applications, from molecular sensing to the design of circularly polarized thermal light sources. The CD in natural materials is typically weak, leading to the exploitation of artificial chiral materials. Layered chiral woodpile structures are well known to boost chiro-optical effects when realized as a photonic crystal or an optical metamaterial. We here demonstrate that light scattering at a chiral plasmonic woodpile, which is structured on the order of the wavelength of the light, can be well understood by considering the fundamental evanescent Floquet states within the structure. In particular, we report a broadband circular polarization bandgap in the complex band structure of various plasmonic woodpiles that spans the optical transparency window of the atmosphere between 3 and 4 μ m and leads to an average CD of up to 90% within this spectral range. Our findings could pave the way for an ultra-broadband circularly polarized thermal source.
Collapse
Affiliation(s)
- Bilel Abdennadher
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700 Switzerland
| | - René Iseli
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700 Switzerland
| | - Ullrich Steiner
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700 Switzerland
| | - Matthias Saba
- Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, Fribourg, 1700 Switzerland
| |
Collapse
|
10
|
Lee PY, Schilpp H, Naylor N, Watkins SC, Yang B, Sigal IA. Instant polarized light microscopy pi (IPOLπ) for quantitative imaging of collagen architecture and dynamics in ocular tissues. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.29.526111. [PMID: 36778384 PMCID: PMC9915523 DOI: 10.1101/2023.01.29.526111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Collagen architecture determines the biomechanical environment in the eye, and thus characterizing collagen fiber organization and biomechanics is essential to fully understand eye physiology and pathology. We recently introduced instant polarized light microscopy (IPOL) that encodes optically information about fiber orientation and retardance through a color snapshot. Although IPOL allows imaging collagen at the full acquisition speed of the camera, with excellent spatial and angular resolutions, a limitation is that the orientation-encoding color is cyclic every 90 degrees (π/2 radians). In consequence, two orthogonal fibers have the same color and therefore the same orientation when quantified by color-angle mapping. In this study, we demonstrate IPOLπ, a new variation of IPOL, in which the orientation-encoding color is cyclic every 180 degrees (π radians). Herein we present the fundamentals of IPOLπ, including a framework based on a Mueller-matrix formalism to characterize how fiber orientation and retardance determine the color. The improved quantitative capability of IPOLπ enables further study of essential biomechanical properties of collagen in ocular tissues, such as fiber anisotropy and crimp. We present a series of experimental calibrations and quantitative procedures to visualize and quantify ocular collagen orientation and microstructure in the optic nerve head, a region in the back of the eye. There are four important strengths of IPOLπ compared to IPOL. First, IPOLπ can distinguish the orientations of orthogonal collagen fibers via colors, whereas IPOL cannot. Second, IPOLπ requires a lower exposure time than IPOL, thus allowing faster imaging speed. Third, IPOLπ allows visualizing non-birefringent tissues and backgrounds from tissue absorption, whereas both appear dark in IPOL images. Fourth, IPOLπ is cheaper and less sensitive to imperfectly collimated light than IPOL. Altogether, the high spatial, angular, and temporal resolutions of IPOLπ enable a deeper insight into ocular biomechanics and eye physiology and pathology.
Collapse
Affiliation(s)
- Po-Yi Lee
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Hannah Schilpp
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Nathan Naylor
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Simon C. Watkins
- Department of Cell Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| | - Bin Yang
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA
| | - Ian A Sigal
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA
- Department of Ophthalmology, School of Medicine, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
11
|
Blair MJ, Quinn KP. Single shot quantitative polarized light imaging system for rapid planar biaxial testing of soft tissues. Front Bioeng Biotechnol 2022; 10:1010307. [PMID: 36213065 PMCID: PMC9532628 DOI: 10.3389/fbioe.2022.1010307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Quantitative Polarized Light Imaging (QPLI) is an established technique used to compute the orientation of collagen fibers based on their birefringence. QPLI systems typically require rotating linear polarizers to obtain sufficient data to estimate orientation, which limits acquisition speeds and is not ideal for its application to mechanical testing. In this paper, we present a QPLI system designed with no moving parts; a single shot technique which is ideal to characterize collagen fiber orientation and kinematics during mechanical testing. Our single shot QPLI system (ssQPLI) sorts polarized light into four linear polarization states that are collected simultaneously by four cameras. The ssQPLI system was validated using samples with known orientation and retardation, and we demonstrate its use with planar biaxial testing of mouse skin. The ssQPLI system was accurate with a mean orientation error of 1.35° ± 1.58°. Skin samples were tested with multiple loading protocols and in each case the mean orientation of the collagen network reoriented to align in the direction of primary loading as expected. In summary, the ssQPLI system is effective at quantifying collagen fiber organization, and, when combined with mechanical testing, can rapidly provide pixel-wise measures of fiber orientation during biaxial loading.
Collapse
|
12
|
Principle and Implementation of Stokes Vector Polarization Imaging Technology. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Compared with traditional imaging methods, polarization imaging has its unique advantages in many directions and has great development prospects. It is one of the hot spots of research and development at home and abroad. Based on the polarization imaging principle of Stokes vector, the realization methods of non-simultaneous polarization imaging and simultaneous polarization imaging are introduced, respectively according to the different polarization modulation methods of Stokes vector acquisition. Non-simultaneous polarization imaging is mainly introduced in two ways: rotary polarization imaging, electrically controlled polarization imaging, and the simultaneous polarization imaging is mainly introduced in three ways: divided amplitude polarization imaging, divided aperture polarization imaging, and divided focal plane polarization imaging. In this paper, the principle and realization of polarization imaging based on Stokes vector are introduced to boost the application of polarization imaging and promote the research and development of polarization imaging technology.
Collapse
|
13
|
Bhattacharjee S, Ceri Davies D, Holland JC, Holmes JM, Kilroy D, McGonnell IM, Reynolds AL. On the importance of integrating comparative anatomy and One Health perspectives in anatomy education. J Anat 2022; 240:429-446. [PMID: 34693516 PMCID: PMC8819042 DOI: 10.1111/joa.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 12/02/2022] Open
Abstract
As a result of many factors, including climate change, unrestricted population growth, widespread deforestation and intensive agriculture, a new pattern of diseases in humans is emerging. With increasing encroachment by human societies into wild domains, the interfaces between human and animal ecosystems are gradually eroding. Such changes have led to zoonoses, vector-borne diseases, infectious diseases and, most importantly, the emergence of antimicrobial-resistant microbial strains as challenges for human health. Now would seem to be an opportune time to revisit old concepts of health and redefine some of these in the light of emerging challenges. The One Health concept addresses some of the demands of modern medical education by providing a holistic approach to explaining diseases that result from a complex set of interactions between humans, environment and animals, rather than just an amalgamation of isolated signs and symptoms. An added advantage is that the scope of One Health concepts has now expanded to include genetic diseases due to advancements in omics technology. Inspired by such ideas, a symposium was organised as part of the 19th International Federation of Associations of Anatomists (IFAA) Congress (August 2019) to investigate the scope of One Health concepts and comparative anatomy in contemporary medical education. Speakers with expertise in both human and veterinary anatomy participated in the symposium and provided examples where these two disciplines, which have so far evolved largely independent of each other, can collaborate for mutual benefit. Finally, the speakers identified some key concepts of One Health that should be prioritised and discussed the diverse opportunities available to integrate these priorities into a broader perspective that would attempt to explain and manage diseases within the scopes of human and veterinary medicine.
Collapse
Affiliation(s)
| | - D. Ceri Davies
- Human Anatomy UnitDepartment of Surgery and CancerImperial College LondonLondonUK
| | - Jane C. Holland
- Department of Anatomy and Regenerative MedicineRoyal College of Surgeons in Ireland University of Medicine and Health SciencesDublinIreland
| | | | - David Kilroy
- School of Veterinary MedicineUniversity College DublinDublinIreland
| | - Imelda M. McGonnell
- Department of Comparative Biomedical SciencesRoyal Veterinary CollegeLondonUK
| | - Alison L. Reynolds
- School of Veterinary MedicineUniversity College DublinDublinIreland
- Conway Institute of Biomolecular and Biomedical ResearchUniversity College DublinDublinIreland
| |
Collapse
|
14
|
He C, He H, Chang J, Chen B, Ma H, Booth MJ. Polarisation optics for biomedical and clinical applications: a review. LIGHT, SCIENCE & APPLICATIONS 2021; 10:194. [PMID: 34552045 PMCID: PMC8458371 DOI: 10.1038/s41377-021-00639-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 05/13/2023]
Abstract
Many polarisation techniques have been harnessed for decades in biological and clinical research, each based upon measurement of the vectorial properties of light or the vectorial transformations imposed on light by objects. Various advanced vector measurement/sensing techniques, physical interpretation methods, and approaches to analyse biomedically relevant information have been developed and harnessed. In this review, we focus mainly on summarising methodologies and applications related to tissue polarimetry, with an emphasis on the adoption of the Stokes-Mueller formalism. Several recent breakthroughs, development trends, and potential multimodal uses in conjunction with other techniques are also presented. The primary goal of the review is to give the reader a general overview in the use of vectorial information that can be obtained by polarisation optics for applications in biomedical and clinical research.
Collapse
Affiliation(s)
- Chao He
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| | - Honghui He
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China.
| | - Jintao Chang
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Binguo Chen
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Biomedical Engineering, Tsinghua University, 100084, Beijing, China
| | - Hui Ma
- Guangdong Engineering Center of Polarisation Imaging and Sensing Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, 518055, Shenzhen, China
- Department of Physics, Tsinghua University, 100084, Beijing, China
| | - Martin J Booth
- Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK.
| |
Collapse
|
15
|
Blair S, Garcia M, Davis T, Zhu Z, Liang Z, Konopka C, Kauffman K, Colanceski R, Ferati I, Kondov B, Stojanoski S, Todorovska MB, Dimitrovska NT, Jakupi N, Miladinova D, Petrusevska G, Kondov G, Dobrucki WL, Nie S, Gruev V. Hexachromatic bioinspired camera for image-guided cancer surgery. Sci Transl Med 2021; 13:13/592/eaaw7067. [PMID: 33952675 DOI: 10.1126/scitranslmed.aaw7067] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 12/22/2020] [Accepted: 04/14/2021] [Indexed: 12/25/2022]
Abstract
Cancer affects one in three people worldwide. Surgery remains the primary curative option for localized cancers, but good prognoses require complete removal of primary tumors and timely recognition of metastases. To expand surgical capabilities and enhance patient outcomes, we developed a six-channel color/near-infrared image sensor inspired by the mantis shrimp visual system that enabled near-infrared fluorescence image guidance during surgery. The mantis shrimp's unique eye, which maximizes the number of photons contributing to and the amount of information contained in each glimpse of its surroundings, is recapitulated in our single-chip imaging system that integrates arrays of vertically stacked silicon photodetectors and pixelated spectral filters. To provide information about tumor location unavailable from a single instrument, we tuned three color channels to permit an intuitive perspective of the surgical procedure and three near-infrared channels to permit multifunctional imaging of optical probes highlighting cancerous tissue. In nude athymic mice bearing human prostate tumors, our image sensor enabled simultaneous detection of two tumor-targeted fluorophores, distinguishing diseased from healthy tissue in an estimated 92% of cases. It also permitted extraction of near-infrared structured illumination enabling the mapping of the three-dimensional topography of tumors and surgical sites to within 1.2-mm error. In the operating room, during surgical resection in 18 patients with breast cancer, our image sensor further enabled sentinel lymph node mapping using clinically approved near-infrared fluorophores. The flexibility and performance afforded by this simple and compact architecture highlights the benefits of biologically inspired sensors in image-guided surgery.
Collapse
Affiliation(s)
- Steven Blair
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Missael Garcia
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Tyler Davis
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zhongmin Zhu
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Zuodong Liang
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Christian Konopka
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kevin Kauffman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Risto Colanceski
- University Clinic Hospital, Department of Thoracic and Vascular Surgery, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Imran Ferati
- University Clinic Hospital, Department of Thoracic and Vascular Surgery, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Borislav Kondov
- University Clinic Hospital, Department of Thoracic and Vascular Surgery, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Sinisa Stojanoski
- University Clinic Hospital, Institute of Pathophysiology and Nuclear Medicine, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Magdalena Bogdanovska Todorovska
- University Clinic Hospital, Department of Pathology, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Natasha Toleska Dimitrovska
- University Clinic Hospital, Department of Thoracic and Vascular Surgery, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Nexhat Jakupi
- University Clinic Hospital, Department of Thoracic and Vascular Surgery, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Daniela Miladinova
- University Clinic Hospital, Institute of Pathophysiology and Nuclear Medicine, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Gordana Petrusevska
- University Clinic Hospital, Department of Pathology, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Goran Kondov
- University Clinic Hospital, Department of Thoracic and Vascular Surgery, Ss. Cyril and Methodius University of Skopje, 1000 Skopje, Republic of North Macedonia
| | - Wawrzyniec Lawrence Dobrucki
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| | - Shuming Nie
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Viktor Gruev
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. .,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA
| |
Collapse
|
16
|
Temple SE, How MJ, Powell SB, Gruev V, Marshall NJ, Roberts NW. Thresholds of polarization vision in octopuses. J Exp Biol 2021; 224:238090. [PMID: 33602676 PMCID: PMC8077535 DOI: 10.1242/jeb.240812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Polarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts. Summary: Octopuses are highly sensitive to small changes in the angle of polarization (<1 deg contrast), even when the degree of polarization is low, which may confer a functional advantage in behaviourally relevant contexts.
Collapse
Affiliation(s)
- Shelby E Temple
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Azul Optics Ltd, Henleaze, Bristol BS9 4QG, UK
| | - Martin J How
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Samuel B Powell
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Viktor Gruev
- Biosensors Lab, Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
17
|
Yang B, Lee PY, Hua Y, Brazile B, Waxman S, Ji F, Zhu Z, Sigal IA. Instant polarized light microscopy for imaging collagen microarchitecture and dynamics. JOURNAL OF BIOPHOTONICS 2021; 14:e202000326. [PMID: 33103363 PMCID: PMC7887070 DOI: 10.1002/jbio.202000326] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 05/29/2023]
Abstract
Collagen fibers are a primary load-bearing component of connective tissues and are therefore central to tissue biomechanics and pathophysiology. Understanding collagen architecture and behavior under dynamic loading requires a quantitative imaging technique with simultaneously high spatial and temporal resolutions. Suitable techniques are thus rare and often inaccessible. In this study, we present instant polarized light microscopy (IPOL), in which a single snapshot image encodes information on fiber orientation and retardance, thus fulfilling the requirement. We utilized both simulation and experimental data from collagenous tissues of chicken tendon, sheep eye, and porcine heart to evaluate the effectiveness of IPOL as a quantitative imaging technique. We demonstrate that IPOL allows quantitative characterization of micron-scale collagen fiber architecture at full camera frame rates (156 frames/second herein).
Collapse
Affiliation(s)
- Bin Yang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Engineering, Rangos School of Health Sciences, Duquesne University, Pittsburgh, PA, United States
| | - Po-Yi Lee
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yi Hua
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bryn Brazile
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Susannah Waxman
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Fengting Ji
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ziyi Zhu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ian A Sigal
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
18
|
Liang J. Punching holes in light: recent progress in single-shot coded-aperture optical imaging. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2020; 83:116101. [PMID: 33125347 DOI: 10.1088/1361-6633/abaf43] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single-shot coded-aperture optical imaging physically captures a code-aperture-modulated optical signal in one exposure and then recovers the scene via computational image reconstruction. Recent years have witnessed dazzling advances in various modalities in this hybrid imaging scheme in concomitant technical improvement and widespread applications in physical, chemical and biological sciences. This review comprehensively surveys state-of-the-art single-shot coded-aperture optical imaging. Based on the detected photon tags, this field is divided into six categories: planar imaging, depth imaging, light-field imaging, temporal imaging, spectral imaging, and polarization imaging. In each category, we start with a general description of the available techniques and design principles, then provide two representative examples of active-encoding and passive-encoding approaches, with a particular emphasis on their methodology and applications as well as their advantages and challenges. Finally, we envision prospects for further technical advancement in this field.
Collapse
Affiliation(s)
- Jinyang Liang
- Laboratory of Applied Computational Imaging, Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, 1650 boulevard Lionel-Boulet, Varennes, Québec J3X1S2, Canada
| |
Collapse
|
19
|
Zhong B, Wang X, Gan X, Yang T, Gao J. A Biomimetic Model of Adaptive Contrast Vision Enhancement from Mantis Shrimp. SENSORS 2020; 20:s20164588. [PMID: 32824224 PMCID: PMC7472206 DOI: 10.3390/s20164588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 11/16/2022]
Abstract
Mantis shrimp have complex visual sensors, and thus, they have both color vision and polarization vision, and are adept at using polarization information for visual tasks, such as finding prey. In addition, mantis shrimp, almost unique among animals, can perform three-axis eye movements, such as pitch, yaw, and roll. With this behavior, polarization contrast in their field of view can be adjusted in real time. Inspired by this, we propose a bionic model that can adaptively enhance contrast vision. In this model, a pixel array is used to simulate a compound eye array, and the angle of polarization (AoP) is used as an adjustment mechanism. The polarization information is pre-processed by adjusting the direction of the photosensitive axis point-to-point. Experiments were performed around scenes where the color of the target and the background were similar, or the visibility of the target was low. The influence of the pre-processing model on traditional feature components of polarized light was analyzed. The results show that the model can effectively improve the contrast between the object and the background in the AoP image, enhance the significance of the object, and have important research significance for applications, such as contrast-based object detection.
Collapse
Affiliation(s)
- Binbin Zhong
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Xin Wang
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
- Intelligent Interconnected Systems Laboratory of Anhui Province, Hefei 230009, China
- Correspondence:
| | - Xin Gan
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Tian Yang
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| | - Jun Gao
- School of Computer and Information, Hefei University of Technology, Hefei 230009, China; (B.Z.); (X.G.); (T.Y.); (J.G.)
| |
Collapse
|
20
|
Kogos LC, Li Y, Liu J, Li Y, Tian L, Paiella R. Plasmonic ommatidia for lensless compound-eye vision. Nat Commun 2020; 11:1637. [PMID: 32242009 PMCID: PMC7118074 DOI: 10.1038/s41467-020-15460-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 03/06/2020] [Indexed: 11/17/2022] Open
Abstract
The vision system of arthropods such as insects and crustaceans is based on the compound-eye architecture, consisting of a dense array of individual imaging elements (ommatidia) pointing along different directions. This arrangement is particularly attractive for imaging applications requiring extreme size miniaturization, wide-angle fields of view, and high sensitivity to motion. However, the implementation of cameras directly mimicking the eyes of common arthropods is complicated by their curved geometry. Here, we describe a lensless planar architecture, where each pixel of a standard image-sensor array is coated with an ensemble of metallic plasmonic nanostructures that only transmits light incident along a small geometrically-tunable distribution of angles. A set of near-infrared devices providing directional photodetection peaked at different angles is designed, fabricated, and tested. Computational imaging techniques are then employed to demonstrate the ability of these devices to reconstruct high-quality images of relatively complex objects.
Collapse
Affiliation(s)
- Leonard C Kogos
- Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA
| | - Yunzhe Li
- Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA
| | - Jianing Liu
- Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA
| | - Yuyu Li
- Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA
| | - Lei Tian
- Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA
| | - Roberto Paiella
- Department of Electrical and Computer Engineering and Photonics Center, Boston University, 8 Saint Mary's Street, Boston, MA, 02215, USA.
| |
Collapse
|
21
|
Xu Z, Dong Y, Tseng CK, Hu T, Tong J, Zhong Q, Li N, Sim L, Lai KH, Lin Y, Li D, Li Y, Bliznetsov V, Fu YH, Zhu S, Lin Q, Zhang DH, Gu Y, Singh N, Kwong DL. CMOS-compatible all-Si metasurface polarizing bandpass filters on 12-inch wafers. OPTICS EXPRESS 2019; 27:26060-26069. [PMID: 31510466 DOI: 10.1364/oe.27.026060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/31/2019] [Indexed: 05/21/2023]
Abstract
The implementation of polarization controlling components enables additional functionalities of short-wave infrared (SWIR) imagers. The high-performance and mass-producible polarization controller based on Si metasurface is in high demand for the next-generation SWIR imaging system. In this work, we report the first demonstration of all-Si metasurface based polarizing bandpass filters (PBFs) on 12-inch wafers. The PBF achieves a polarization extinction ratio of above 10 dB in power within the passbands. Using the complementary metal-oxide-semiconductor (CMOS) compatible 193nm ArF deep ultra-violet (DUV) immersion lithography and inductively coupled plasma (ICP) etch processing line, a device yield of 82% is achieved.
Collapse
|
22
|
On-Orbit Polarization Calibration for Multichannel Polarimetric Camera. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9071424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this paper, a new on-orbit polarization calibration method for the multichannel polarimetric camera is presented. A polarization calibration model for the polarimetric camera is proposed by taking analysis of the polarization radiation transmission process. In order to get the polarization parameters in the calibration model, an on-orbit measurement scheme is reported, which uses a solar diffuser and a built-in rotatable linear analyzer. The advantages of this scheme are sharing the same calibration assembly with the radiometric calibration and acquiring sufficient polarization accuracy. The influence of the diffuser for the measurement is analyzed. By using a verification experiment, the proposed method can achieve on-orbit polarization calibration. The experimental results show that the relative deviation for the measured degree of linear polarization is 0.8% at 670 nm, which provides a foundation for the accurate application of polarimetric imaging detection.
Collapse
|
23
|
Dupeyroux J, Serres JR, Viollet S. AntBot: A six-legged walking robot able to home like desert ants in outdoor environments. Sci Robot 2019; 4:4/27/eaau0307. [DOI: 10.1126/scirobotics.aau0307] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022]
|
24
|
Smith MV, Castile RM, Brophy RH, Dewan A, Bernholt D, Lake SP. Mechanical Properties and Microstructural Collagen Alignment of the Ulnar Collateral Ligament During Dynamic Loading. Am J Sports Med 2019; 47:151-157. [PMID: 30495972 DOI: 10.1177/0363546518812416] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The ulnar collateral ligament (UCL) microstructural organization and collagen fiber realignment in response to load are unknown. PURPOSE/HYPOTHESIS The purpose was to describe the real-time microstructural collagen changes in the anterior bundle (AB) and posterior bundle (PB) of the UCL with tensile load. It was hypothesized that the UCL AB is stronger and stiffer with more highly aligned collagen during loading when compared with the UCL PB. STUDY DESIGN Descriptive laboratory study. METHODS The AB and PB from 34 fresh cadaveric specimens were longitudinally sectioned to allow uniform light passage for quantitative polarized light imaging. Specimens were secured to a tensile test machine and underwent cyclic preconditioning, a ramp-and-hold stress-relaxation test, and a quasi-static ramp to failure. A division-of-focal-plane polarization camera captured real-time pixelwise microstructural data of each sample during stress-relaxation and at the zero, transition, and linear points of the stress-strain curve. The SD of the angle of polarization determined the deviation of the average direction of collagen fibers in the tissue, while the average degree of linear polarization evaluated the strength of collagen alignment in those directions. Since the data were nonnormally distributed, the median ± interquartile range are presented. RESULTS The AB has larger elastic moduli than the PB ( P < .0001) in the toe region (median, 2.73 MPa [interquartile range, 1.1-5.6 MPa] vs 0.65 MPa [0.44-1.5 MPa]) and the linear region (13.77 MPa [4.8-40.7 MPa] vs 1.96 MPa [0.58-9.3 MPa]). The AB demonstrated larger stress values, stronger collagen alignment, and more uniform collagen organization during stress-relaxation. PB collagen fibers were more disorganized than the AB during the zero ( P = .046), transitional ( P = .011), and linear ( P = .007) regions of the stress-strain curve. Both UCL bundles exhibited very small changes in collagen alignment (SD of the angle of polarization) with load. CONCLUSION The AB of the UCL is stiffer and stronger, with more strongly aligned and more uniformly oriented collagen fibers, than the PB. The small changes in collagen alignment indicate that the UCL response to load is due more to its static collagen organization than to dynamic changes in collagen alignment. CLINICAL RELEVANCE The UCL collagen organization may explain its susceptibility to injury with repetitive valgus loads.
Collapse
Affiliation(s)
- Matthew V Smith
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering and Materials Science, Washington University, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Ashvin Dewan
- Methodist Orthopedic Specialists of Texas, Sugar Land, Texas, USA
| | - David Bernholt
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Orthopaedic Surgery, Washington University, St Louis, Missouri, USA.,Department of Mechanical Engineering and Materials Science, Washington University, St Louis, Missouri, USA
| |
Collapse
|
25
|
Serres JR, Viollet S. Insect-inspired vision for autonomous vehicles. CURRENT OPINION IN INSECT SCIENCE 2018; 30:46-51. [PMID: 30553484 DOI: 10.1016/j.cois.2018.09.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/11/2018] [Accepted: 09/14/2018] [Indexed: 06/09/2023]
Abstract
Flying insects are being studied these days as if they were agile micro air vehicles fitted with smart sensors, requiring very few brain resources. The findings obtained on these natural fliers have proved to be extremely valuable when it comes to designing compact low-weight artificial optical sensors capable of performing visual processing tasks robustly under various environmental conditions (light, clouds, contrast). Here, we review some outstanding bio-inspired visual sensors, which can be used for either detecting motion in the visible spectrum or controlling celestial navigation in the ultraviolet spectrum and for attitude stabilisation purposes. Biologically inspired visual sensors do not have to comprise a very large number of pixels: they are able to perform both short and long range navigation tasks surprisingly well with just a few pixels and a weak resolution.
Collapse
|
26
|
Shinoda K, Ohtera Y, Hasegawa M. Snapshot multispectral polarization imaging using a photonic crystal filter array. OPTICS EXPRESS 2018; 26:15948-15961. [PMID: 30114848 DOI: 10.1364/oe.26.015948] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
A new filter array and a demosaicking method for snapshot multispectral polarization imaging are proposed in this paper. The proposed filter array is a thin-film wavy multilayer structure regarded as a photonic crystal that can be fabricated using the autocloning method. The multispectral polarization filter array is developed by altering the wave structure of the photonic crystal at each pixel. In addition, we propose a demosaicking method for multispectral polarization images by considering snapshot imaging as a linear model. In the experiments, we evaluated the recovered spectrum error in some color charts and showed various demosaicked images such as multispectral polarization images, specific-band degree of linear polarization images, polarized RGB images, and non-polarized RGB images.
Collapse
|
27
|
Eekhoff JD, Fang F, Kahan LG, Espinosa G, Cocciolone AJ, Wagenseil JE, Mecham RP, Lake SP. Functionally Distinct Tendons From Elastin Haploinsufficient Mice Exhibit Mild Stiffening and Tendon-Specific Structural Alteration. J Biomech Eng 2018; 139:2654667. [PMID: 28916838 DOI: 10.1115/1.4037932] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Indexed: 12/23/2022]
Abstract
Elastic fibers are present in low quantities in tendon, where they are located both within fascicles near tenocytes and more broadly in the interfascicular matrix (IFM). While elastic fibers have long been known to be significant in the mechanics of elastin-rich tissue (i.e., vasculature, skin, lungs), recent studies have suggested a mechanical role for elastic fibers in tendons that is dependent on specific tendon function. However, the exact contribution of elastin to properties of different types of tendons (e.g., positional, energy-storing) remains unknown. Therefore, this study purposed to evaluate the role of elastin in the mechanical properties and collagen alignment of functionally distinct supraspinatus tendons (SSTs) and Achilles tendons (ATs) from elastin haploinsufficient (HET) and wild type (WT) mice. Despite the significant decrease in elastin in HET tendons, a slight increase in linear stiffness of both tendons was the only significant mechanical effect of elastin haploinsufficiency. Additionally, there were significant changes in collagen nanostructure and subtle alteration to collagen alignment in the AT but not the SST. Hence, elastin may play only a minor role in tendon mechanical properties. Alternatively, larger changes to tendon mechanics may have been mitigated by developmental compensation of HET tendons and/or the role of elastic fibers may be less prominent in smaller mouse tendons compared to the larger bovine and human tendons evaluated in previous studies. Further research will be necessary to fully elucidate the influence of various elastic fiber components on structure-function relationships in functionally distinct tendons.
Collapse
Affiliation(s)
- Jeremy D Eekhoff
- Department of Biomedical Engineering, Washington University in St. Louis One Brookings Drive, St. Louis, MO 63130
| | - Fei Fang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Lindsey G Kahan
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Gabriela Espinosa
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Austin J Cocciolone
- Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Jessica E Wagenseil
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130
| | - Robert P Mecham
- Department of Cell Biology and Physiology, Washington University in St. Louis, 660 South Euclid Avenue, St. Louis, MO 63110
| | - Spencer P Lake
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130.,Department of Biomedical Engineering, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130.,Department of Orthopaedic Surgery, Washington University in St. Louis, One Brookings Drive, St. Louis, MO 63130 e-mail:
| |
Collapse
|
28
|
Powell SB, Garnett R, Marshall J, Rizk C, Gruev V. Bioinspired polarization vision enables underwater geolocalization. SCIENCE ADVANCES 2018; 4:eaao6841. [PMID: 29740607 PMCID: PMC5938230 DOI: 10.1126/sciadv.aao6841] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 02/16/2018] [Indexed: 05/31/2023]
Abstract
With its never-ending blue color, the underwater environment often seems monotonic and featureless. However, to an animal with polarization-sensitive vision, it is anything but bland. The rich repertoire of underwater polarization patterns-a consequence of light's air-to-water transmission and in-water scattering-can be exploited both as a compass and for geolocalization purposes. We demonstrate that, by using a bioinspired polarization-sensitive imager, we can determine the geolocation of an observer based on radial underwater polarization patterns. Our experimental data, recorded at various locations around the world, at different depths and times of day, indicate that the average accuracy of our geolocalization is 61 km, or 6 m of error for every 1 km traveled. This proof-of-concept study of our bioinspired technique opens new possibilities in long-distance underwater navigation and suggests additional mechanisms by which marine animals with polarization-sensitive vision might perform both local and long-distance navigation.
Collapse
Affiliation(s)
- Samuel B. Powell
- Department of Computer Science and Engineering, School of Engineering and Applied Science, Washington University in St. Louis, St. Louis, MO 63130, USA
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Roman Garnett
- Department of Computer Science and Engineering, School of Engineering and Applied Science, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Charbel Rizk
- Department of Electrical Engineering and Computer Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Viktor Gruev
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
29
|
Tibbs AB, Daly IM, Roberts NW, Bull DR. Denoising imaging polarimetry by adapted BM3D method. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2018; 35:690-701. [PMID: 29603959 DOI: 10.1364/josaa.35.000690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
In addition to the visual information contained in intensity and color, imaging polarimetry allows visual information to be extracted from the polarization of light. However, a major challenge of imaging polarimetry is image degradation due to noise. This paper investigates the mitigation of noise through denoising algorithms and compares existing denoising algorithms with a new method, based on BM3D (Block Matching 3D). This algorithm, Polarization-BM3D (PBM3D), gives visual quality superior to the state of the art across all images and noise standard deviations tested. We show that denoising polarization images using PBM3D allows the degree of polarization to be more accurately calculated by comparing it with spectral polarimetry measurements.
Collapse
|
30
|
Foster JJ, Temple SE, How MJ, Daly IM, Sharkey CR, Wilby D, Roberts NW. Polarisation vision: overcoming challenges of working with a property of light we barely see. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2018; 105:27. [PMID: 29589169 PMCID: PMC5871655 DOI: 10.1007/s00114-018-1551-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/01/2022]
Abstract
In recent years, the study of polarisation vision in animals has seen numerous breakthroughs, not just in terms of what is known about the function of this sensory ability, but also in the experimental methods by which polarisation can be controlled, presented and measured. Once thought to be limited to only a few animal species, polarisation sensitivity is now known to be widespread across many taxonomic groups, and advances in experimental techniques are, in part, responsible for these discoveries. Nevertheless, its study remains challenging, perhaps because of our own poor sensitivity to the polarisation of light, but equally as a result of the slow spread of new practices and methodological innovations within the field. In this review, we introduce the most important steps in designing and calibrating polarised stimuli, within the broader context of areas of current research and the applications of new techniques to key questions. Our aim is to provide a constructive guide to help researchers, particularly those with no background in the physics of polarisation, to design robust experiments that are free from confounding factors.
Collapse
Affiliation(s)
- James J Foster
- Vision Group, Department of Biology, Lund University, Sölvegatan 35, 223 62, Lund, Sweden.
| | - Shelby E Temple
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
- Azul Optics Ltd., 7 Bishop Manor Road, Westbury-On-Trym, Bristol, BS10 5BD, UK
| | - Martin J How
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Ilse M Daly
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Camilla R Sharkey
- Department of Physiology, Development and Neuroscience, Cambridge University, Cambridge, CB2 3EG, UK
| | - David Wilby
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Nicholas W Roberts
- Ecology of Vision Laboratory, School of Biological Sciences, Life Sciences Building, University of Bristol, Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
31
|
Cronin TW, Garcia M, Gruev V. Multichannel spectrometers in animals. BIOINSPIRATION & BIOMIMETICS 2018; 13:021001. [PMID: 29313524 DOI: 10.1088/1748-3190/aaa61b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multispectral, hyperspectral, polarimetric, and other types of multichannel imaging spectrometers are coming into common use for a variety of applications, including remote sensing, material identification, forensics, and medical diagnosis. These instruments are often bulky and intolerant of field abuse, so designing compact, reliable, portable, and robust devices is a priority. In contrast to most engineering designs, animals have been building compact and robust multichannel imaging systems for millennia-their eyes. Biological sensors arise by evolution, of course, and are not designed 'for' a particular use; they exist because the creatures that were blessed with useful mutations were better able to survive and reproduce than their competitors. While this is an inefficient process for perfecting a sensor, it brings unexpected innovations and novel concepts into visual system design-concepts that may be useful in the inspiration of new engineered solutions to problematic challenges, like the ones mentioned above. Here, we review a diversity of multichannel visual systems from both vertebrate and invertebrate animals, considering the receptor molecules and cells, spectral sensitivity and its tuning, and some aspects of the higher-level processing systems used to shape spectral (and polarizational) channels in vision. The eyes of mantis shrimps are presented as potential models for biomimetic multichannel imaging systems. We end with a description of a bioinspired, newly developed multichannel spectral/polarimetric imaging system based on mantis shrimp vision that is highly adaptable to field application.
Collapse
Affiliation(s)
- Thomas W Cronin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250, United States of America
| | | | | |
Collapse
|
32
|
Garcia M, Edmiston C, York T, Marinov R, Mondal S, Zhu N, Sudlow GP, Akers WJ, Margenthaler J, Achilefu S, Liang R, Zayed MA, Pepino MY, Gruev V. Bio-inspired imager improves sensitivity in near-infrared fluorescence image-guided surgery. OPTICA 2018; 5:413-422. [PMID: 30465019 PMCID: PMC6241325 DOI: 10.1364/optica.5.000413] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Image-guided surgery can enhance cancer treatment by decreasing, and ideally eliminating, positive tumor margins and iatrogenic damage to healthy tissue. Current state-of-the-art near-infrared fluorescence imaging systems are bulky and costly, lack sensitivity under surgical illumination, and lack co-registration accuracy between multimodal images. As a result, an overwhelming majority of physicians still rely on their unaided eyes and palpation as the primary sensing modalities for distinguishing cancerous from healthy tissue. Here we introduce an innovative design, comprising an artificial multispectral sensor inspired by the Morpho butterfly's compound eye, which can significantly improve image-guided surgery. By monolithically integrating spectral tapetal filters with photodetectors, we have realized a single-chip multispectral imager with 1000 × higher sensitivity and 7 × better spatial co-registration accuracy compared to clinical imaging systems in current use. Preclinical and clinical data demonstrate that this technology seamlessly integrates into the surgical workflow while providing surgeons with real-time information on the location of cancerous tissue and sentinel lymph nodes. Due to its low manufacturing cost, our bio-inspired sensor will provide resource-limited hospitals with much-needed technology to enable more accurate value-based health care.
Collapse
Affiliation(s)
- Missael Garcia
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christopher Edmiston
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Timothy York
- Department of Electrical and Computer Engineering, Southern Illinois University at Edwardsville, Edwardsville, Illinois 62025, USA
| | - Radoslav Marinov
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Institute for Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Suman Mondal
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
| | - Nan Zhu
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Gail P. Sudlow
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Walter J. Akers
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Julie Margenthaler
- Department of Surgery, Washington University School of Medicine, Barnes-Jewish Hospital and the Alvin J. Siteman Cancer Center, St. Louis, Missouri 63110, USA
| | - Samuel Achilefu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, USA
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Rongguang Liang
- College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, USA
| | - Mohamed A. Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, Missouri 63110, USA
- Department of Surgery, Veterans Affairs St. Louis Health Care System, St. Louis, Missouri 63106, USA
| | - Marta Y. Pepino
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Viktor Gruev
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Corresponding author:
| |
Collapse
|
33
|
Tibbs AB, Daly IM, Bull DR, Roberts NW. Noise creates polarization artefacts. BIOINSPIRATION & BIOMIMETICS 2017; 13:015005. [PMID: 29185995 DOI: 10.1088/1748-3190/aa9e22] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The accuracy of calculations of both the degree and angle of polarization depend strongly on the noise in the measurements used. The noise in the measurements recorded by both camera based systems and spectrometers can lead to significant artefacts and incorrect conclusions about high degrees of polarization when in fact none exist. Three approaches are taken in this work: firstly, the absolute error introduced as a function of the signal to noise ratio for polarization measurements is quantified in detail. An important finding here is the reason for why several studies incorrectly suggest that black (low reflectivity) objects are highly polarized. The high degree of polarization is only an artefact of the noise in the calculation. Secondly, several simple steps to avoid such errors are suggested. Thirdly, if these points can not be followed, two methods are presented for mitigating the effects of noise: a maximum likelihood estimation method and a new denoising algorithm to best calculate the degree of polarization of natural polarization information.
Collapse
Affiliation(s)
- A B Tibbs
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, United Kingdom. Department of Electrical and Electronic Engineering, University of Bristol, Bristol, BS8 1UB, United Kingdom
| | | | | | | |
Collapse
|
34
|
Han G, Hu X, Lian J, He X, Zhang L, Wang Y, Dong F. Design and Calibration of a Novel Bio-Inspired Pixelated Polarized Light Compass. SENSORS 2017; 17:s17112623. [PMID: 29135927 PMCID: PMC5713120 DOI: 10.3390/s17112623] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 10/19/2017] [Accepted: 11/11/2017] [Indexed: 11/30/2022]
Abstract
Animals, such as Savannah sparrows and North American monarch butterflies, are able to obtain compass information from skylight polarization patterns to help them navigate effectively and robustly. Inspired by excellent navigation ability of animals, this paper proposes a novel image-based polarized light compass, which has the advantages of having a small size and being light weight. Firstly, the polarized light compass, which is composed of a Charge Coupled Device (CCD) camera, a pixelated polarizer array and a wide-angle lens, is introduced. Secondly, the measurement method of a skylight polarization pattern and the orientation method based on a single scattering Rayleigh model are presented. Thirdly, the error model of the sensor, mainly including the response error of CCD pixels and the installation error of the pixelated polarizer, is established. A calibration method based on iterative least squares estimation is proposed. In the outdoor environment, the skylight polarization pattern can be measured in real time by our sensor. The orientation accuracy of the sensor increases with the decrease of the solar elevation angle, and the standard deviation of orientation error is 0.15∘ at sunset. Results of outdoor experiments show that the proposed polarization navigation sensor can be used for outdoor autonomous navigation.
Collapse
Affiliation(s)
- Guoliang Han
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Xiaoping Hu
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Junxiang Lian
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Xiaofeng He
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Lilian Zhang
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Yujie Wang
- College of Mechatronics and Automation, National University of Defense Technology, Changsha 410073, China.
| | - Fengliang Dong
- Nanofabrication Laboratory, Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
| |
Collapse
|
35
|
Garcia M, Gruev V. Optical characterization of rigid endoscopes and polarization calibration methods. OPTICS EXPRESS 2017; 25:15713-15728. [PMID: 28789084 DOI: 10.1364/oe.25.015713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Polarization imaging can reveal orthogonal information with respect to color about the structural composition of biological tissue, and with the advance of superior polarimeters its use for biomedical applications has proliferated in the last decade. Polarimetry can be used in pre-clinical and clinical settings for the early detection of cancerous tissue. Polarization-based endoscopy with the complementary near-infrared fluorescence imaging modality improves the early diagnosis of flat cancerous lesions in colorectal tumor models. With the development of new polarization sensors the need to use standard laboratory optics to create custom imaging systems increases. These additional optics can behave as polarization filters effectively degrading and modifying the original tissue's polarization signatures leading to erroneous judgments. Here, we present a framework to characterize the spectral and polarization properties of rigid endoscopes for polarization-based endoscopic imaging. We describe and evaluate two calibration schemes based on Mueller calculus to reconstruct the original polarization information. Optical limitations of the endoscopes and minimum polarimeter requirements are discussed that may be of interest to other researchers working with custom polarization-based imaging systems.
Collapse
|
36
|
Ahmed A, Zhao X, Gruev V, Zhang J, Bermak A. Residual interpolation for division of focal plane polarization image sensors. OPTICS EXPRESS 2017; 25:10651-10662. [PMID: 28468436 DOI: 10.1364/oe.25.010651] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Division of focal plane (DoFP) polarization image sensors capture polarization properties of light at every imaging frame. However, these imaging sensors capture only partial polarization information, resulting in reduced spatial resolution output and a varying instantaneous field of overview (IFoV). Interpolation methods are used to reduce the drawbacks and recover the missing polarization information. In this paper, we propose residual interpolation as an alternative to normal interpolation for division of focal plane polarization image sensors, where the residual is the difference between an observed and a tentatively estimated pixel value. Our results validate that our proposed algorithm using residual interpolation can give state-of-the-art performance over several previously published interpolation methods, namely bilinear, bicubic, spline and gradient-based interpolation. Visual image evaluation as well as mean square error analysis is applied to test images. For an outdoor polarized image of a car, residual interpolation has less mean square error and better visual evaluation results.
Collapse
|
37
|
Skelley NW, Castile RM, Cannon PC, Weber CI, Brophy RH, Lake SP. Regional Variation in the Mechanical and Microstructural Properties of the Human Anterior Cruciate Ligament. Am J Sports Med 2016; 44:2892-2899. [PMID: 27456027 DOI: 10.1177/0363546516654480] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND The anteromedial (AM) bundle of the anterior cruciate ligament (ACL) has a higher modulus and failure stress than does the posterolateral (PL) bundle. However, it is unknown how these properties vary within each bundle. PURPOSE To quantify mechanical and microstructural properties of samples within ACL bundles to elucidate any regional variation across the ligament. We hypothesized that there are no differences within each bundle in contrast to cross-bundle variation. STUDY DESIGN Descriptive laboratory study. METHODS Sixteen human ACLs were dissected into AM and PL bundles. Three samples were taken from each bundle in an ordered sequence from AM (region 1 AM bundle) to PL (region 6 PL bundle). Each sample was tested in uniaxial tension, using quantitative polarized light imaging (QPLI) to quantify collagen fiber alignment. After preconditioning, samples were subjected to a stress-relaxation (SR) test followed by quasistatic ramp-to-failure (RF). Peak and equilibrium stress values were computed from the SR test and modulus quantified in the toe- and linear-regions of the RF. QPLI values describing collagen orientation (angle of polarization [AoP]) and strength of alignment (degree of linear polarization [DoLP]) were computed for the SR test and at points corresponding to the zero, transition point, and linear region of the RF. RESULTS Toe- and linear-region modulus values decreased from region 1 to 6. Slopes of regression lines increased for the average DoLP during RF, with significance at higher strains. The standard deviation of AoP values decreased during RF, indicating tighter distribution of orientation angles, with significant correlations at all points of the RF. During SR, stress values uniformly decreased but did not show significant linear regression by region. DoLP and AoP values changed slightly during SR and demonstrated significant linear variation by region at both peak and equilibrium points. CONCLUSION Most microstructural and material properties evaluated in this study appear to follow a linear gradient across the ACL, rather than varying by bundle. CLINICAL RELEVANCE This AM-to-PL variation provides a more accurate description of functional tissue anatomy and can be used to assess and guide techniques of ACL reconstruction.
Collapse
Affiliation(s)
- Nathan W Skelley
- Department of Orthopaedic Surgery, Barnes-Jewish Hospital/Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Ryan M Castile
- Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, Missouri, USA
| | - Paul C Cannon
- Monsanto Global Production Technology Analytics, St Louis, Missouri, USA
| | - Christian I Weber
- Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| | - Robert H Brophy
- Department of Orthopaedic Surgery, Barnes-Jewish Hospital/Washington University in St Louis School of Medicine, St Louis, Missouri, USA
| | - Spencer P Lake
- Department of Orthopaedic Surgery, Barnes-Jewish Hospital/Washington University in St Louis School of Medicine, St Louis, Missouri, USA .,Department of Mechanical Engineering and Materials Science, Washington University in St Louis, St Louis, Missouri, USA.,Department of Biomedical Engineering, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
38
|
Wright JO, Skelley NW, Schur RP, Castile RM, Lake SP, Brophy RH. Microstructural and Mechanical Properties of the Posterior Cruciate Ligament: A Comparison of the Anterolateral and Posteromedial Bundles. J Bone Joint Surg Am 2016; 98:1656-1664. [PMID: 27707852 DOI: 10.2106/jbjs.16.00032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The microstructural organization (collagen fiber alignment) of the posterior cruciate ligament (PCL), which likely corresponds with its functional properties, has only been described qualitatively in the literature, to our knowledge. The goal of this study was to quantify the tensile mechanical and microstructural properties of the PCL and compare these qualities between the anterolateral and posteromedial bundles. METHODS Twenty-two knee specimens from 13 donors (8 male and 5 female; mean age [and standard deviation] at the time of death, 43.0 ± 4.1 years; mean body mass index, 30.0 ± 6.7 kg/m2) were dissected to isolate the PCL, and each bundle was split into 3 regions. Mechanical testing of each regional sample consisted of preconditioning followed by a ramp-and-hold stress-relaxation test and a quasi-static ramp-to-failure test. Microstructural analysis was performed with use of a high-resolution, division-of-focal-plane polarization camera to evaluate the average direction of collagen orientation and the degree to which the collagen fibers were aligned in that direction. Results were compared between the anterolateral and posteromedial bundles and across the regions of each bundle. RESULTS The anterolateral and posteromedial bundles demonstrated largely equivalent mechanical and microstructural properties. Elastic moduli in the toe and linear regions were not different; however, the posteromedial bundle did show significantly more stress relaxation (p = 0.004). There were also few differences in microstructural properties between bundles, which again were seen only in stress relaxation. Comparing regions within each bundle, several mechanical and microstructural parameters showed significant relationships across the posteromedial bundle, following a gradient of decreasing strength and alignment from anterior to posterior. CONCLUSIONS The PCL has relatively homogenous microstructural and mechanical properties, with few differences between the anterolateral and posteromedial bundles. This finding suggests that distinct functions of the PCL bundles result primarily from size and anatomical location rather than from differences in these properties. CLINICAL RELEVANCE These properties of the PCL can be used to assess the utility of graft choices and operative techniques for PCL reconstruction and may partly explain limited differences in the outcomes of single-bundle compared with double-bundle reconstruction techniques for the PCL.
Collapse
Affiliation(s)
- Jon O Wright
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri Department of Orthopaedic Surgery, Beaumont Health, Royal Oak, Michigan
| | - Nathan W Skelley
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Reid P Schur
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Ryan M Castile
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Spencer P Lake
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| | - Robert H Brophy
- Departments of Orthopaedic Surgery (J.O.W., N.W.S., S.P.L, and R.H.B.), Mechanical Engineering and Materials Science (R.P.S., R.M.C., and S.P.L.), and Biomedical Engineering (S.P.L.), Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
39
|
Gagnon YL, Marshall NJ. Intuitive representation of photopolarimetric data using the polarization ellipse. ACTA ACUST UNITED AC 2016; 219:2430-4. [PMID: 27307490 DOI: 10.1242/jeb.139139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/09/2016] [Indexed: 11/20/2022]
Abstract
Photopolarimetry is the spatial characterization of light polarization. Unlike intensity or wavelength, we are largely insensitive to polarization and therefore find it hard to explore the multidimensional data that photopolarimetry produces (two spatial dimensions plus four polarization dimensions). Many different ways for presenting and exploring this modality of light have been suggested. Most of these ignore circular polarization, include multiple image panes that make correlating structure with polarization difficult, and obscure the main trends with overly detailed information and often misleading colour maps. Here, we suggest a novel way for presenting the main results from photopolarimetric analyses. By superimposing a grid of polarization ellipses onto the RGB image, the full polarization state of each cell is intuitively conveyed to the reader. This method presents linear and circular polarization as well as ellipticity in a graphical manner, does not require multiple panes, facilitates the correlation between structure and polarization, and requires the addition of only three novel colours. We demonstrate its usefulness in a biological context where we believe it would be most relevant.
Collapse
Affiliation(s)
- Yakir Luc Gagnon
- Queensland Brain Institute, University of Queensland, Richie Building, Level 2, Brisbane, Queensland 4072, Australia
| | - Nicholas Justin Marshall
- Queensland Brain Institute, University of Queensland, Richie Building, Level 2, Brisbane, Queensland 4072, Australia
| |
Collapse
|
40
|
Johnsen S, Gagnon YL, Marshall NJ, Cronin TW, Gruev V, Powell S. Polarization vision seldom increases the sighting distance of silvery fish. Curr Biol 2016; 26:R752-4. [DOI: 10.1016/j.cub.2016.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Wan M, Gu G, Qian W, Ren K, Chen Q. Stokes-vector-based polarimetric imaging system for adaptive target/background contrast enhancement. APPLIED OPTICS 2016; 55:5513-5519. [PMID: 27463898 DOI: 10.1364/ao.55.005513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel method to optimize the polarization state of a polarimetric imaging system is proposed to solve the problem of target/background contrast enhancement in an outdoor environment adaptively. First, the last three elements of the Stokes vector are selected to be the observed object's polarization features, the discriminant projection of which is regarded as the detecting function of our imaging system. Then, the polarization state of the system, which can be seen as a physical classifier, is calculated by training samples with a support vector machine method. Finally, images processed by the system with the designed optimal polarization state become discriminative output directly. By this means, the target/background contrast is enhanced greatly, which results in a more accurate and convenient target discrimination. Experimental results demonstrate that the effectiveness and discriminative ability of the optimal polarization state are credible and stable.
Collapse
|
42
|
Kanamori K. Averaged subtracted polarization imaging for endoscopic diagnostics of surface microstructures on translucent mucosae. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:71105. [PMID: 26720052 DOI: 10.1117/1.jbo.21.7.071105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 06/05/2023]
Abstract
An endoscopic image processing technique for enhancing the appearance of microstructures on translucent mucosae is described. This technique employs two pairs of co- and cross-polarization images under two different linearly polarized lights, from which the averaged subtracted polarization image (AVSPI) is calculated. Experiments were then conducted using an acrylic phantom and excised porcine stomach tissue using a manual experimental setup with ring-type lighting, two rotating polarizers, and a color camera; better results were achieved with the proposed method than with conventional color intensity image processing. An objective evaluation method that uses texture analysis was developed and used to evaluate the enhanced microstructure images. This paper introduces two types of online, rigid-type, polarimetric endoscopic implementations using a polarized ring-shaped LED and a polarimetric camera. The first type uses a beam-splitter-type color polarimetric camera, and the second uses a single-chip monochrome polarimetric camera. Microstructures on the mucosa surface were enhanced robustly with these online endoscopes regardless of the difference in the extinction ratio of each device. These results show that polarimetric endoscopy using AVSPI is both effective and practical for hardware implementation.
Collapse
|
43
|
Morel O, Seulin R, Fofi D. Handy method to calibrate division-of-amplitude polarimeters for the first three Stokes parameters. OPTICS EXPRESS 2016; 24:13634-46. [PMID: 27410379 DOI: 10.1364/oe.24.013634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
This paper presents a complete and original calibration framework for the three-CCD polarimetric cameras. These Division-of-Amplitude imaging polarimeters provide polarization images in real-time and open new applications in robotics. In order to fully exploit properties from polarization images, the sensor has to be calibrated leading sometimes to a tedious task that has to be undertaken with specific optical devices in a controlled environment. The proposed framework relies only on the use of a tablet and enables both to calibrate the geometric and the polarization settings of the camera. After rotating freely by hand the tablet in front of the camera, the system is automatically calibrated providing both the well-known geometric calibration matrix as well as the polarization calibration matrix. The last one is derived from the estimation of the orientation of the three polarizers, and the estimation of their relative values of degree of polarization and average transmittance.
Collapse
|
44
|
York T, Marinov R, Gruev V. 260 frames-per-second 648x488 resolution division-of-focal-plane polarimeter with structural dynamics and tracking applications. OPTICS EXPRESS 2016; 24:8243-8252. [PMID: 27137263 DOI: 10.1364/oe.24.008243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We have designed an image sensor that can capture the first three Stokes parameters at 648 by 488 spatial resolution at 260 frames per second. The sensor consists of a CCD image sensor monolithically integrated with pixel pitch-matched aluminum nanowire polarization filters. The sensor demonstrates a Malus law response over all pixels, and has a relatively uniform diattenuation over the visible spectrum. We demonstrate two potential applications for the sensor. The first uses circular polarization in transmission mode to observe high-speed stress failure in polycarbonate. The second uses polarization in reflected mode to track high speed automobile traffic.
Collapse
|
45
|
Castile RM, Skelley NW, Babaei B, Brophy RH, Lake SP. Microstructural properties and mechanics vary between bundles of the human anterior cruciate ligament during stress-relaxation. J Biomech 2016; 49:87-93. [DOI: 10.1016/j.jbiomech.2015.11.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 11/29/2022]
|
46
|
How M, Christy J, Temple S, Hemmi J, Marshall N, Roberts N. Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab. Curr Biol 2015; 25:3069-73. [DOI: 10.1016/j.cub.2015.09.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
|
47
|
Brady PC, Gilerson AA, Kattawar GW, Sullivan JM, Twardowski MS, Dierssen HM, Gao M, Travis K, Etheredge RI, Tonizzo A, Ibrahim A, Carrizo C, Gu Y, Russell BJ, Mislinski K, Zhao S, Cummings ME. Open-ocean fish reveal an omnidirectional solution to camouflage in polarized environments. Science 2015; 350:965-9. [DOI: 10.1126/science.aad5284] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022]
|
48
|
Chang J, He H, He C, Wang Y, Zeng N, Liao R, Ma H. Optimization of GRIN lens Stokes polarimeter. APPLIED OPTICS 2015; 54:7424-7432. [PMID: 26368781 DOI: 10.1364/ao.54.007424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In a recent study we reported on the gradient index (GRIN) lens Stokes polarimeter (GLP) [Opt. Lett.39, 2656 (2014)10.1364/OL.39.002656OPLEDP0146-9592]. With a simple architecture, this polarimeter can measure the state of polarization in a single shot. In this article, we present further studies for improving the performance of the GLP. Detailed discussions are presented on the optimization process of the GLP based on different choices of data from the CCD images. It is pointed out that many optimization techniques, although developed for other types of Stokes polarimeters, can also be applied to the GLP because the GRIN lens can traverse all possible retardance and fast axis modulations.
Collapse
|
49
|
Gao S, Mondal SB, Zhu N, Liang R, Achilefu S, Gruev V. Image overlay solution based on threshold detection for a compact near infrared fluorescence goggle system. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:016018. [PMID: 25607724 PMCID: PMC4300342 DOI: 10.1117/1.jbo.20.1.016018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/18/2014] [Indexed: 05/20/2023]
Abstract
Near infrared (NIR) fluorescence imaging has shown great potential for various clinical procedures, including intraoperative image guidance. However, existing NIR fluorescence imaging systems either have a large footprint or are handheld, which limits their usage in intraoperative applications. We present a compact NIR fluorescence imaging system (NFIS) with an image overlay solution based on threshold detection, which can be easily integrated with a goggle display system for intraoperative guidance. The proposed NFIS achieves compactness, light weight, hands-free operation, high-precision superimposition, and a real-time frame rate. In addition, the miniature and ultra-lightweight light-emitting diode tracking pod is easy to incorporate with NIR fluorescence imaging. Based on experimental evaluation, the proposed NFIS solution has a lower detection limit of 25 nM of indocyanine green at 27 fps and realizes a highly precise image overlay of NIR and visible images of mice in vivo. The overlay error is limited within a 2-mm scale at a 65-cm working distance, which is highly reliable for clinical study and surgical use.
Collapse
Affiliation(s)
- Shengkui Gao
- Washington University in St. Louis, Computer Science and Engineering Department, St. Louis, Missouri 63130, United States
| | - Suman B. Mondal
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri 63130, United States
| | - Nan Zhu
- University of Arizona, College of Optical Sciences, Tucson, Arizona 85721, United States
| | - RongGuang Liang
- University of Arizona, College of Optical Sciences, Tucson, Arizona 85721, United States
| | - Samuel Achilefu
- Washington University in St. Louis, Department of Radiology, St. Louis, Missouri 63130, United States
| | - Viktor Gruev
- Washington University in St. Louis, Computer Science and Engineering Department, St. Louis, Missouri 63130, United States
- Address all correspondence to: Viktor Gruev, E-mail:
| |
Collapse
|