1
|
Fan Y, Lyu H, Chen L, Wang J, Gao Y. Effects of unilateral and bilateral lower extremity fatigue on static stance and postural adjustments response to the externally initiated perturbation. J Electromyogr Kinesiol 2024; 78:102918. [PMID: 39191094 DOI: 10.1016/j.jelekin.2024.102918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/19/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
The study investigated the effects of unilateral and bilateral lower extremity fatigue on both postural stability and postural adjustments. Fourteen young male subjects performed unilateral and bilateral dynamic lower extremity pedaling exercises with 5 sets of 20 times at 50 % maximum voluntary contraction. Center of pressure (COP) signals were recorded before and after the fatigue exercise. Electromyography activities of six trunk and leg muscles were recorded and analyzed during the anticipatory (APAs) and compensatory (CPAs) postural adjustments. The results showed that both fatiguing exercises caused an increase in COP and larger APAs and CPAs in the rectus femoris and tibialis anterior during externally initiated perturbation. However, the observed indicators showed no clear difference between unilateral and bilateral fatigue. These results validated that when enlarged APAs were not sufficient to resist the external perturbation, the central nervous system increased the strength of CPAs to maintain the stability of the body. These findings provided a perspective on the association between APAs and CPAs, which may apply to the athletic training or rehabilitation on postural control.
Collapse
Affiliation(s)
- Yong Fan
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310058, China
| | - Hui Lyu
- Ningbo Innovation Center, Zhejiang University, Ningbo 315100, China
| | - Lanlan Chen
- School of Physical Education, Hangzhou Normal University, Hangzhou 311121, China
| | - Jian Wang
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310058, China; Centre for Psychological Sciences, Zhejiang University, Hangzhou 310028, China
| | - Ying Gao
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
2
|
Ben Othman A, Hadjizadeh Anvar S, Aragão-Santos JC, Behm DG, Chaouachi A. Relative Cross-Education Training Effects of Male Youth Exceed Male Adults. J Strength Cond Res 2024; 38:881-890. [PMID: 38219228 DOI: 10.1519/jsc.0000000000004724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
ABSTRACT Ben Othman, A, Anvar, SH, Aragão-Santos, JC, Behm, DG, and Chaouachi, A. Relative cross-education training effects of male youth exceed male adults. J Strength Cond Res 38(5): 881-890, 2024-Cross-education has been studied extensively with adults, examining the training effects on contralateral homologous muscles. There is less information on the cross-education effects on contralateral heterologous muscles and scant information comparing these responses between adults and youth. The objective was to compare cross-education training effects in male youth and adults to contralateral homologous and heterologous muscles. Forty-two male children (10-13-years) and 42 adults (18-21-years) were tested before and following an 8-week unilateral, dominant or nondominant arm, chest press (CP) training program or control group (14 subjects each). Unilateral testing assessed dominant and nondominant limb strength with leg press and CP 1 repetition maximum (1RM), knee extensors, elbow extensors (EE), elbow flexors, and handgrip maximum voluntary isometric contraction (MVIC) strength and shot put distance and countermovement jump height. Upper-body tests demonstrated large magnitude increases, with children overall exceeding adults ( p = 0.05- p < 0.0001, η2 : 0.51, 10.4 ± 11.1%). The dominant trained limb showed significantly higher training adaptations than the nondominant limb for the adults with CP 1RM ( p = 0.03, η2 : 0.26, 6.7 ± 11.5%) and EE ( p = 0.008, η2 : 0.27, 8.8 ± 10.3%) MVIC force. Unilateral CP training induced significantly greater training adaptations with the ipsilateral vs. contralateral limb ( p = 0.008, η2 : 0.93, 27.8 ± 12.7%). In conclusion, children demonstrated greater training adaptations than adults, upper-body strength increased with no significant lower-body improvements, and ipsilateral training effects were greater than contralateral training in adults.
Collapse
Affiliation(s)
- Ayem Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation" National Center of Medicine and Science in Sports, Tunis, Tunisia
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - José Carlos Aragão-Santos
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- Department of Physical Education, Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Brazil
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation" National Center of Medicine and Science in Sports, Tunis, Tunisia
- High Institute of Sport and Physical Education, Ksar-Said, Manouba University, Tunis, Tunisia; and
- Sports Performance Research Institute New Zealand, AUT University, Auckland, New Zealand
| |
Collapse
|
3
|
Agostino S, Calandretti M, Veglio F, Abate Daga F. Physical strength levels and short-term memory efficiency in primary school children: a possible match? J Sports Med Phys Fitness 2023; 63:1343-1349. [PMID: 37736663 DOI: 10.23736/s0022-4707.23.14996-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
BACKGROUND Physical strength stimulation and, in general, physical activity induces brain plasticity (functional and structural adaptations) in different cerebral areas, benefiting executive function, cognition, attention and academic performance, which is usually estimated by measuring the Intelligent Quotient (IQ), and IQ is related to short-term memory, generally during school age. However, very little is known about the role of physical strength on short-term memory efficiency. Therefore, the primary aim of this study is to examine whether the level of physical strength can positively impact short-term memory efficiency in primary school children. Additionally, if this effect is observed, the secondary goal of this study is to determine whether the age of the participants plays a role in mediating and moderating this influence. METHODS Seventy-five children from a primary school in the metropolitan area of Turin were recruited for this study. Each subject performed the overhead medicine ball toss (backwards) test to assess physical strength and the Digit Span test from the Wechsler Intelligence Scale for Children (WISC) to evaluate short-term memory efficiency. Firstly, a simple mediation model was used to identify the possible impact of physical strength levels on short-term memory efficiency and the potential role of participants' chronological age. Secondly, a moderation model was carried out to observe if age could moderate the impact of physical training on short-term memory efficiency and the different significance levels of the moderator. Significance was assumed at P<0.05. RESULTS The results showed a statistically significant direct effect of physical strength on short-term memory (Β=0.429, t(72)=3.247, P<0.01). On the contrary, age was not statistically significant (Β=0.167, t(72)=3.247, P=0.211). Furthermore, a significant interaction between strength and age was identified by the moderation model (β=-0.270, P<0.01). Specifically, the impact of physical strength levels on short-term memory increased for individuals who were above the mean age (β=0.755, P<0.001). but not for those under the mean age (β=0.215, P=0.153). This model explains 37.2% of the variance in memory (R2=0.372, F(3, 71)=14.031, P<0.001). CONCLUSIONS These findings suggest that physical strength can positively influence short-term memory. In addition, this impact is enhanced in older-age children. Thus, primary school programs should stimulate physical strength to help children develop cognitive abilities.
Collapse
Affiliation(s)
- Samuel Agostino
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | | | - Franco Veglio
- Department of Medical Sciences, University of Turin, Turin, Italy
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federico Abate Daga
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy -
| |
Collapse
|
4
|
Handedness did not affect motor skill acquisition by the dominant hand or interlimb transfer to the non-dominant hand regardless of task complexity level. Sci Rep 2022; 12:18181. [PMID: 36307488 PMCID: PMC9616877 DOI: 10.1038/s41598-022-21962-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/06/2022] [Indexed: 12/31/2022] Open
Abstract
Patients undergoing unilateral orthopedic or neurological rehabilitation have different levels of impairments in the right- or left-dominant hand. However, how handedness and the complexity of the motor task affect motor skill acquisition and its interlimb transfer remains unknown. In the present study, participants performed finger key presses on a numeric keypad at 4 levels of sequence complexities with each hand in a randomized order. Furthermore, they also performed motor sequence practice with the dominant hand to determine its effect on accuracy, reaction time, and movement time. The NASA-TLX at the end of each block of both testing and practice was used to confirm participants' mental workload related to sequence complexity. Both right- and left-handed participants performed the motor sequence task with faster RT when using their right hand. Although participants had increasing RT with increasing sequence complexity, this association was unrelated to handedness. Motor sequence practice produced motor skill acquisition and interlimb transfer indicated by a decreased RT, however, these changes were independent of handedness. Higher sequence complexity was still associated with longer RT after the practice, moreover, both right- and left-handed participants' RT increased with the same magnitude with the increase in sequence complexity. Similar behavioral pattern was observed in MT as in RT. Overall, our RT results may indicate left-hemisphere specialization for motor sequencing tasks, however, neuroimaging studies are needed to support these findings. On the other hand, handedness did not affect motor skill acquisition by the dominant hand or interlimb transfer to the non-dominant hand regardless of task complexity level.
Collapse
|
5
|
Calvert GHM, Carson RG. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. Neurosci Biobehav Rev 2021; 132:260-288. [PMID: 34801578 DOI: 10.1016/j.neubiorev.2021.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/03/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022]
Abstract
CALVERT, G.H.M., and CARSON, R.G. Neural mechanisms mediating cross education: With additional considerations for the ageing brain. NEUROSCI BIOBEHAV REV 21(1) XXX-XXX, 2021. - Cross education (CE) is the process whereby a regimen of unilateral limb training engenders bilateral improvements in motor function. The contralateral gains thus derived may impart therapeutic benefits for patients with unilateral deficits arising from orthopaedic injury or stroke. Despite this prospective therapeutic utility, there is little consensus concerning its mechanistic basis. The precise means through which the neuroanatomical structures and cellular processes that mediate CE may be influenced by age-related neurodegeneration are also almost entirely unknown. Notwithstanding the increased incidence of unilateral impairment in later life, age-related variations in the expression of CE have been examined only infrequently. In this narrative review, we consider several mechanisms which may mediate the expression of CE with specific reference to the ageing CNS. We focus on the adaptive potential of cellular processes that are subserved by a specific set of neuroanatomical pathways including: the corticospinal tract, corticoreticulospinal projections, transcallosal fibres, and thalamocortical radiations. This analysis may inform the development of interventions that exploit the therapeutic utility of CE training in older persons.
Collapse
Affiliation(s)
- Glenn H M Calvert
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Richard G Carson
- Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin, Dublin, Ireland; School of Psychology, Queen's University Belfast, Belfast, Northern Ireland, UK; School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
6
|
Manca A, Hortobágyi T, Carroll TJ, Enoka RM, Farthing JP, Gandevia SC, Kidgell DJ, Taylor JL, Deriu F. Contralateral Effects of Unilateral Strength and Skill Training: Modified Delphi Consensus to Establish Key Aspects of Cross-Education. Sports Med 2021; 51:11-20. [PMID: 33175329 PMCID: PMC7806569 DOI: 10.1007/s40279-020-01377-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Background Cross-education refers to increased motor output (i.e., force generation, skill) of the opposite, untrained limb following a period of unilateral exercise training. Despite extensive research, several aspects of the transfer phenomenon remain controversial. Methods A modified two-round Delphi online survey was conducted among international experts to reach consensus on terminology, methodology, mechanisms of action, and translational potential of cross-education, and to provide a framework for future research. Results Through purposive sampling of the literature, we identified 56 noted experts in the field, of whom 32 completed the survey, and reached consensus (75% threshold) on 17 out of 27 items. Conclusion Our consensus-based recommendations for future studies are that (1) the term ‘cross-education’ should be adopted to refer to the transfer phenomenon, also specifying if transfer of strength or skill is meant; (2) functional magnetic resonance imaging, short-interval intracortical inhibition and interhemispheric inhibition appear to be promising tools to study the mechanisms of transfer; (3) strategies which maximize cross-education, such as high-intensity training, eccentric contractions, and mirror illusion, seem worth being included in the intervention plan; (4) study protocols should be designed to include at least 13–18 sessions or 4–6 weeks to produce functionally meaningful transfer of strength, and (5) cross-education could be considered as an adjuvant treatment particularly for unilateral orthopedic conditions and sports injuries. Additionally, a clear gap in views emerged between the research field and the purely clinical field. The present consensus statement clarifies relevant aspects of cross-education including neurophysiological, neuroanatomical, and methodological characteristics of the transfer phenomenon, and provides guidance on how to improve the quality and usability of future cross-education studies. Electronic supplementary material The online version of this article (10.1007/s40279-020-01377-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- A Manca
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy
| | - T Hortobágyi
- Center for Human Movement Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - T J Carroll
- Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - R M Enoka
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, USA
| | - J P Farthing
- University of Saskatchewan College of Kinesiology, Saskatoon, SK, Canada
| | - S C Gandevia
- Neuroscience Research Australia (NeuRA), The University of New South Wales, Sydney, Australia
| | - D J Kidgell
- Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Science, Monash University, Melbourne, Australia
| | - J L Taylor
- School of Medical and Health Sciences, Edit Cowan University, Joondalup, Australia
| | - F Deriu
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/b, 07100, Sassari, Italy.
| |
Collapse
|
7
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. NEUROLOGÍA (ENGLISH EDITION) 2021. [DOI: 10.1016/j.nrleng.2017.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
8
|
Elsotohy NM, Salim YE, Nassif NS, Hanafy AF. Cross-education effect of balance training program in patients with chronic ankle instability: A randomized controlled trial. Injury 2021; 52:625-632. [PMID: 33041018 DOI: 10.1016/j.injury.2020.09.065] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 02/02/2023]
Abstract
UNLABELLED Chronic ankle instability (CAI) is frequently developed due to failure of the functional rehabilitation after acute ankle sprain. So, there is a need for an alternative way by which we can begin neuro-muscular control retraining sooner. PURPOSE This study was conducted to examine the effect of 6-week Single-limb Balance Training Program of the non-affected side on the Overall Stability Index (OASI), Antero-Posterior Stability Index (APSI), and the Medio-Lateral Stability Index (MLSI) of the affected side in females with unilateral CAI. METHODS Thirty-two female patients with CAI with mean age 20.96 ± 1.69 years participated in this study. They were randomly assigned into three groups: experimental group A (Cross-Education) (n = 11) performed the exercises for the non-affected side, experimental group B (Traditional Training) (n = 11) performed the exercises for the affected side, and Control group C (n = 10) did not perform any exercises. The randomization was done using statistical random tables. Data were collected using the Biodex Balance system before and after training. RESULTS Two-way mixed design MANOVA revealed that there were significant improvements in the mean values of the OASI, APSI and MLSI after training (p < .05) in both the Cross-Education group (A) and Traditional Training group (B) with no significant difference in-between for the OASI, MLSI and APSI after training. There was no significant difference (p > .05) between the pre and post-training mean values of the OASI, MLSI and APSI in the Control group (C). CONCLUSION Single-limb balance training for the non-affected side is effective in improving the postural control of the affected side in patients with CAI.
Collapse
Affiliation(s)
- Nadia Magdy Elsotohy
- Demonstrator of Biomechanics, Department of Biomechanics, Faculty of Physical Therapy, Cairo University, 7 Ahmed Ezzayyat street, Bein Essarayat, Giza, Egypt, 0236717691
| | - Yassmin Essam Salim
- Lecturer of Biomechanics, Department of Biomechanics, Faculty of Physical Therapy, Cairo University, 7 Ahmed Ezzayyat Street, Bein Essarayat, Giza, Egypt, 0236717691
| | - Nagui Sobhi Nassif
- Professor of Biomechanics, Departement of Biomechanics, Faculty of Physical Therapy, Cairo University
| | - Abeer Farag Hanafy
- Lecturer of Biomechanics, Department of Biomechanics, Faculty of Physical Therapy, Cairo University, 7 Ahmed Ezzayyat Street, Bein Essarayat, Giza, Egypt, 0236717691.
| |
Collapse
|
9
|
Eisdorfer JT, Phelan MA, Keefe KM, Rollins MM, Campion TJ, Rauscher KM, Sobotka-Briner H, Senior M, Gordon G, Smith GM, Spence AJ. Addition of angled rungs to the horizontal ladder walking task for more sensitive probing of sensorimotor changes. PLoS One 2021; 16:e0246298. [PMID: 33544764 PMCID: PMC7864417 DOI: 10.1371/journal.pone.0246298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 01/19/2021] [Indexed: 12/12/2022] Open
Abstract
One method for the evaluation of sensorimotor therapeutic interventions, the horizontal ladder walking task, analyzes locomotor changes that may occur after disease, injury, or by external manipulation. Although this task is well suited for detection of large effects, it may overlook smaller changes. The inability to detect small effect sizes may be due to a neural compensatory mechanism known as "cross limb transfer", or the contribution of the contralateral limb to estimate an injured or perturbed limb's position. The robust transfer of compensation from the contralateral limb may obscure subtle locomotor outcomes that are evoked by clinically relevant therapies, in the early onset of disease, or between higher levels of recovery. Here, we propose angled rungs as a novel modification to the horizontal ladder walking task. Easily-adjustable angled rungs force rats to locomote across a different locomotion path for each hindlimb and may therefore make information from the contralateral limb less useful. Using hM3Dq (excitatory) Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) expressed in large diameter peripheral afferents of the hindlimb in the intact animal, we characterized the sensitivity of our design to detect stepping differences by comparing locomotor changes observed on angled rungs to those observed on a standard horizontal ladder. On our novel asymmetrical ladder, activation of DREADDs resulted in significant differences in rung misses (p = 0.000011) and weight-supporting events (p = 0.049). By comparison, on a standard ladder, we did not observe differences in these parameters (p = 0.86 and p = 0.98, respectively). Additionally, no locomotor differences were detected in baseline and inactivated DREADDs trials when we compared ladder types, suggesting that the angled rungs do not change animal gait behavior unless intervention or injury is introduced. Significant changes observed with angled rungs may demonstrate more sensitive probing of locomotor changes due to the decoupling of cross limb transfer.
Collapse
Affiliation(s)
- Jaclyn T. Eisdorfer
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Michael A. Phelan
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kathleen M. Keefe
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Morgan M. Rollins
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Thomas J. Campion
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kaitlyn M. Rauscher
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Hannah Sobotka-Briner
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Mollie Senior
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Gabrielle Gordon
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| | - George M. Smith
- Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, United States of America
- Shriners Hospitals Pediatric Research Center, Philadelphia, Pennsylvania, United States of America
| | - Andrew J. Spence
- Department of Bioengineering, Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
10
|
Behm DG, Alizadeh S, Anvar SH, Drury B, Granacher U, Moran J. Non-local Acute Passive Stretching Effects on Range of Motion in Healthy Adults: A Systematic Review with Meta-analysis. Sports Med 2021; 51:945-959. [PMID: 33459990 DOI: 10.1007/s40279-020-01422-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Stretching a muscle not only increases the extensibility or range of motion (ROM) of the stretched muscle or joint but there is growing evidence of increased ROM of contralateral and other non-local muscles and joints. OBJECTIVE The objective of this meta-analysis was to quantify crossover or non-local changes in passive ROM following an acute bout of unilateral stretching and to examine potential dose-response relations. METHODS Eleven studies involving 14 independent measures met the inclusion criteria. The meta-analysis included moderating variables such as sex, trained state, stretching intensity and duration. RESULTS The analysis revealed that unilateral passive static stretching induced moderate magnitude (standard mean difference within studies: SMD: 0.86) increases in passive ROM with non-local, non-stretched joints. Moderating variables such as sex, trained state, stretching intensity, and duration did not moderate the results. Although stretching duration did not present statistically significant differences, greater than 240-s of stretching (SMD: 1.24) exhibited large magnitude increases in non-local ROM compared to moderate magnitude improvements with shorter (< 120-s: SMD: 0.72) durations of stretching. CONCLUSION Passive static stretching of one muscle group can induce moderate magnitude, global increases in ROM. Stretching durations greater than 240 s may have larger effects compared with shorter stretching durations.
Collapse
Affiliation(s)
- David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Shahab Alizadeh
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Saman Hadjizadeh Anvar
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada.,Faculty of Physical Education and Sport Sciences, University of Tehran, Tehran, Iran
| | - Ben Drury
- Department of Applied Sport Sciences, Hartpury University, Hartpury, UK
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Potsdam, Germany
| | - Jason Moran
- School of Sport, Rehabilitation and Exercise Sciences, University of Essex, Essex, UK.
| |
Collapse
|
11
|
Taghizadeh Delkhoush C, Bagheri R, Mashhadi Hashemi H, Fatemy E, Hedayati R. The immediate effect of whole body vibration training on the electromyographic activity of contralateral hand muscles; a randomized controlled trial. J Bodyw Mov Ther 2020; 24:293-299. [PMID: 32826003 DOI: 10.1016/j.jbmt.2020.02.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 01/01/2020] [Accepted: 02/24/2020] [Indexed: 11/24/2022]
Abstract
Whole Body Vibration (WBV) has been used as a useful adjunct to improve the neuromuscular function of the upper limb. Cross-transfer of strength plays an important role in rehabilitation of unilateral injuries. The present research intended to evaluate the acute effect of low frequency WBV training on cross-transfer of electromyographic activity and hand muscles strength when the measurement was performed on the contralateral limb. This was a randomized crossover trial conducted in a clinical biomechanics laboratory. Twenty-eight healthy participants aging between 20 and 35 years were included who were involved in two sessions with two weeks of rest. The participants were randomly assigned in two groups as follows: 1) active WBV/sham WBV; 2) sham WBV/active WBV. The participants were asked to stand on the vibrating plate and pull its belt in a vibrating mode using their dominant hand. Then, after a two-week rest, they performed the same task in the vibrating mode (35 Hz). Grip strength and electromyography (root mean square) in flexor digitorum profundus (FDP), flexor digitorum superficialis (FDS), extensor carpi radialis (ECR), and extensor carpi ulnaris (ECU) muscles of the contralateral limb were measured before and after exercise in both phases. No significant change was observed in the electrical activity of FDP, FDS, ECR, ECU muscles, and hands' grip strength of the contralateral limb (P > 0.05). WBV (35 Hz) was not able to augment cross-transfer in electromyographic activity and neuromuscular performance of the upper limb. Further studies would help to explore these results for several sessions of WBV on cross-transfer of training.
Collapse
Affiliation(s)
| | - Rasool Bagheri
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran.
| | - Hamideh Mashhadi Hashemi
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Elham Fatemy
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Rozita Hedayati
- Neuromuscular Rehabilitation Research Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
12
|
Manca A, Peruzzi A, Aiello E, Cereatti A, Martinez G, Deriu F, Della Croce U. Gait changes following direct versus contralateral strength training: A randomized controlled pilot study in individuals with multiple sclerosis. Gait Posture 2020; 78:13-18. [PMID: 32171169 DOI: 10.1016/j.gaitpost.2020.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 02/02/2023]
Abstract
BACKGROUND Contralateral strength training (CST) is increasingly investigated and employed as a non-conventional way to induce an indirect gain in strength in the weakened untrained limb. However, its effects on gait performance are more controversial. RESEARCH QUESTION To assess and compare the effects of contralateral (CST) and direct (DST) strength training on spatio-temporal parameters, kinematic and kinetic descriptors of gait in persons with relapsing-remitting multiple sclerosis (PwMS). METHODS Twenty-eight PwMS (EDSS 2.0-5.5) with inter-side difference in ankle dorsiflexors' strength ≥ 20 % and moderate gait impairment (walking speed 0.70-0.94 m/s), were randomly assigned to a CST (undergoing training of the less-affected dorsiflexors) or DST group (where the most-affected dorsiflexors were trained). Before and after a 6-week high-intensity resistance training (three 25-minute sessions/week), PwMS underwent bilateral measurements of dorsiflexors' maximal strength and assessment of gait spatio-temporal parameters, lower limb joint kinematics and kinetics. RESULTS AND SIGNIFICANCE Following the training period, muscle strength increased significantly in both groups (on average, CST + 29.5 %, p < 0.0005; DST + 15.7 %, p = 0.001) with no difference between the two interventions. Significant changes in gait speed (+16.5 %; p < 0.0001) and stride length (+6.0 %; p = 0.04) were detected only after DST, while no difference was detected in the CST group. Ankle moment and ROM were unaffected by the training. In PwMS with mild to moderate disability and lower limb dorsiflexors' strength asymmetry, CST was not inferior to DST in inducing significant strength gains in the untrained most-affected limb. However, only DST significantly improved gait performance and, specifically, walking speed. Even though CST did not worsen asymmetry, data suggest that contralateral approaches should not be recommended straightaway if the training goal is to improve outcomes other than strength and, specifically, walking speed.
Collapse
Affiliation(s)
- A Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - A Peruzzi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - E Aiello
- Department of Medical, Surgical and Experimental Sciences, Italy
| | - A Cereatti
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - G Martinez
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - F Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| | - U Della Croce
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
13
|
Unilateral Elbow Flexion and Leg Press Training Induce Cross-Education But Not Global Training Gains in Children. Pediatr Exerc Sci 2020; 32:36-47. [PMID: 31653801 DOI: 10.1123/pes.2019-0079] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 07/12/2019] [Accepted: 08/07/2019] [Indexed: 11/18/2022]
Abstract
PURPOSE Whereas cross-education has been extensively investigated with adults, there are far fewer youth investigations. Two studies suggested that children had greater global responses to unilateral knee extensor fatigue and training, respectively, than adults. The objective of this study was to compare global training responses and cross-education effects after unilateral elbow flexion (EFlex) and leg press (LP) training. METHODS Forty-three prepubertal youths (aged 10-13 y) were randomly allocated into dominant LP (n = 15), EFlex (n = 15) training groups, or a control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pretraining and posttraining for ipsilateral and contralateral 1-repetition maximum LP; knee extensor, knee flexors, elbow flexors; and handgrip maximum voluntary isometric contractions (MVIC), and countermovement jump. RESULTS In comparison to no significant changes with the control group, dominant elbow flexors training demonstrated significant ( P < .001) improvements only with ipsilateral and contralateral upper body testing (EFlex MVIC [15.9-21.5%], EFlex 1-repetition maximum [22.9-50.8%], handgrip MVIC [5.5-13.8%]). Dominant LP training similarly exhibited only significant ( P < .001) improvements for ipsilateral and contralateral lower body testing (LP 1-repetition maximum [59.6-81.8%], knee extensor MVIC [12.4-18.3%], knee flexor MVIC [7.9-22.3%], and countermovement jump [11.1-18.1%]). CONCLUSIONS The ipsilateral and contralateral training adaptations in youth were specific to upper or lower body training, respectively.
Collapse
|
14
|
Ehrensberger M, Simpson D, Broderick P, Blake C, Horgan F, Hickey P, OʼReilly J, Monaghan K. Unilateral Strength Training and Mirror Therapy in Patients With Chronic Stroke: A Pilot Randomized Trial. Am J Phys Med Rehabil 2019; 98:657-665. [PMID: 31318745 DOI: 10.1097/phm.0000000000001162] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of the study was to investigate the feasibility and potential effectiveness of mirror-aided cross-education compared with cross-education alone in poststroke upper limb recovery. DESIGN A pilot randomized controlled parallel group study was carried out. Thirty-two patients with chronic stroke followed a 4-wk isometric strength training program performed with the less-affected upper limb three times per week. Participants in the mirror and strength training group observed the reflection of the exercising arm in the mirror. Participants in the strength training only group exercised without a mirror entirely. Participant compliance, adverse effects, and suitability of outcome measures assessed feasibility. Effectiveness outcomes included maximal isometric strength measured with the Biodex Dynamometer, the Modified Ashworth Scale, and the Chedoke Arm and Hand Activity Inventory. RESULTS Compliance was high with no adverse effects. The use of the Biodex Dynamometer must be reviewed. Mirror therapy did not augment the cross-education effect (P > 0.05) in patients with chronic stroke when training isometrically. CONCLUSIONS This pilot trial established the feasibility of a randomized controlled trial comparing mirror-aided cross-education with cross-education alone for poststroke upper limb recovery. Mirror therapy did not augment cross-education when training isometrically. However, results indicate that the combination of interventions should be investigated further applying an altered training protocol.
Collapse
Affiliation(s)
- Monika Ehrensberger
- From the Clinical Health & Nutrition Centre (CHANCE), Department of Life Sciences, Institute of Technology, Sligo, Ireland (ME, DS, PB, KM); Physiotherapy & Population Science, University College Dublin, Dublin, Ireland (CB); Faculty of Medicine & Health Sciences, Royal College of Surgeons Ireland, Dublin, Ireland (FH); and University Hospital, Sligo, Ireland (PH, JO)
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Simpson D, Ehrensberger M, Horgan F, Blake C, Roberts D, Broderick P, Monaghan K. Unilateral dorsiflexor strengthening with mirror therapy to improve motor function after stroke: A pilot randomized study. PHYSIOTHERAPY RESEARCH INTERNATIONAL 2019; 24:e1792. [PMID: 31264770 DOI: 10.1002/pri.1792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 02/27/2019] [Accepted: 05/17/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND Independently, cross-education, the performance improvement of the untrained limb following unilateral training, and mirror therapy have shown to improve lower limb functioning poststroke. Mirror therapy has shown to augment the cross-education effect in healthy populations. However, this concept has not yet been explored in a clinical setting. OBJECTIVES This study set out to investigate the feasibility and potential efficacy of applying cross-education combined with mirror therapy compared with cross-education alone for lower limb recovery poststroke. METHODS Thirty-one chronic stroke participants (age 61.7 ± 13.3) completed either a unilateral strength training (ST; n = 15) or unilateral strength training with mirror-therapy (MST; n = 16) intervention. Both groups isometrically strength trained the less-affected ankle dorsiflexors three times per week for 4 weeks. Only the MST group observed the mirror reflection of the training limb. Patient eligibility, compliance, treatment reliability, and outcome measures were assessed for feasibility. Maximal voluntary contraction (MVC; peak torque, rate of torque development, and average torque), 10-m walk test, timed up and go (TUG), Modified Ashworth Scale (MAS), and the London Handicap Scale (LHS) were assessed at pretraining and posttraining. RESULTS Treatment and assessments were well tolerated without adverse effects. No between group differences were identified for improvement in MVC, MAS, TUG, or LHS. Only the combined treatment was associated with functional improvements with the MST group showing an increase in walking velocity. CONCLUSION Cross-education plus mirror therapy may have potential for improving motor function after stroke. This study demonstrates the feasibility of the combination treatment and the need for future studies with larger sample sizes to investigate the effectiveness of the treatment.
Collapse
Affiliation(s)
- Daniel Simpson
- Clinical Health & Nutrition Centre (CHANCE), School of Science, Institute of Technology, Sligo, Ireland
| | - Monika Ehrensberger
- Clinical Health & Nutrition Centre (CHANCE), School of Science, Institute of Technology, Sligo, Ireland
| | - Frances Horgan
- School of Physiotherapy, RCSI (Royal College of Surgeons in Ireland), Dublin, Ireland
| | - Catherine Blake
- School of Public Health, Physiotherapy and Sport Science, University College Dublin, Dublin, Ireland
| | - David Roberts
- Clinical Health & Nutrition Centre (CHANCE), School of Science, Institute of Technology, Sligo, Ireland
| | - Patrick Broderick
- Clinical Health & Nutrition Centre (CHANCE), School of Science, Institute of Technology, Sligo, Ireland
| | - Kenneth Monaghan
- Clinical Health & Nutrition Centre (CHANCE), School of Science, Institute of Technology, Sligo, Ireland
| |
Collapse
|
16
|
Ben Othman A, Chaouachi A, Chaouachi M, Makhlouf I, Farthing JP, Granacher U, Behm DG. Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children. Appl Physiol Nutr Metab 2019; 44:973-984. [PMID: 30664382 DOI: 10.1139/apnm-2018-0766] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6%-81.8%; nondominant: 59.5%-96.3%), KE MVIC (dominant: 12.4%-18.3%; nondominant: 8.6%-18.6%), KF MVIC (dominant: 7.9%-22.3%; nondominant: nonsignificant-3.8%), and power (CMJ: dominant: 11.1%-18.1%; nondominant: 7.7%-16.6%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2%) and THT (9.6%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg.
Collapse
Affiliation(s)
- Aymen Ben Othman
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Anis Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,AUT University, Sports Performance Research Institute New Zealand, 17 Antares Place, Rosedale, Auckland 0632, New Zealand.,PVF Football Academy, Hang Yen, Vietnam
| | - Mehdi Chaouachi
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,Movement Sport and Health Sciences Laboratory, Université Rennes 2-ENS, 35170 Bruz, France
| | - Issam Makhlouf
- Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - Jonathan P Farthing
- College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Urs Granacher
- Division of Training and Movement Science, University of Potsdam, Campus Am Neuen Palais, Am Neuen Palais 10, D-14469 Potsdam, Germany
| | - David G Behm
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
17
|
Barss TS, Klarner T, Pearcey GEP, Sun Y, Zehr EP. Time course of interlimb strength transfer after unilateral handgrip training. J Appl Physiol (1985) 2018; 125:1594-1608. [PMID: 30188797 DOI: 10.1152/japplphysiol.00390.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
"Cross-education" is the increase in strength or functional performance of an untrained limb after unilateral training. A major limitation for clinical translation from unilateral injury includes knowledge on the minimum time for the emergence of crossed effects. Therefore, the primary purpose was to characterize the time course of bilateral strength changes during both "traditional" ( n = 11) and "daily" ( n = 8) unilateral handgrip training in neurologically intact participants. Traditional training included five sets of five maximal voluntary handgrip contractions 3 times/wk for 6 wk whereas daily training included the same number of sessions and contractions but over 18 consecutive days. Three pre- and one posttest session evaluated strength, muscle activation, and reflex excitability bilaterally. Time course information was assessed by recording handgrip force for every contraction in the trained limb and from a single contraction on every third training session in the untrained limb. Six weeks of traditional training increased handgrip strength in the trained limb after the 9th session whereas the untrained limb was stronger after the 12th session. This was accompanied by increased peak muscle activation and bilateral alterations in Hoffmann reflex excitability. Daily training revealed a similar number of sessions (15) were required to induce significant strength gains in the untrained limb (7.8% compared with 12.5%) in approximately half the duration of traditional training. Therefore, minimizing rest days may improve the efficiency of unilateral training when the trained limb is not the focus. Establishing a "dose" for the time course of adaptation to strength training is paramount for effective translation to rehabilitative interventions. NEW & NOTEWORTHY Unilateral handgrip training using a "traditional" protocol (3 times/wk; 6 wk) increased strength bilaterally after 9 (trained arm) and 12 (untrained arm) sessions. "Daily" training (18 consecutive days) increased strength in the untrained limb in a similar number of training sessions, which was accomplished in approximately half the time. Within clinical populations when the focus is on the untrained limb, reducing rest days may optimize the recovery of strength.
Collapse
Affiliation(s)
- Trevor S Barss
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Taryn Klarner
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,School of Kinesiology, Lakehead University , Thunder Bay, Ontario , Canada
| | - Gregory E P Pearcey
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - Yao Sun
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada
| | - E Paul Zehr
- Rehabilitation Neuroscience Laboratory, University of Victoria , Victoria, British Columbia , Canada.,Human Discovery Science, International Collaboration on Repair Discoveries , Vancouver, British Columbia , Canada.,Centre for Biomedical Research, University of Victoria , Victoria, British Columbia , Canada.,Division of Medical Sciences, University of Victoria , Victoria, British Columbia , Canada
| |
Collapse
|
18
|
Green LA, Gabriel DA. The cross education of strength and skill following unilateral strength training in the upper and lower limbs. J Neurophysiol 2018. [PMID: 29668382 DOI: 10.1152/jn.00116.2018.-cross] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023] Open
Abstract
UNLABELLED Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-wk unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pretraining, posttraining, and following 6 wk of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or nondominant). There were no sex differences in the training response. Cross education of strength at posttraining was 6% ( P < 0.01) in the untrained arm and 13% ( P < 0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm ( P < 0.01) and 14% in the leg ( P < 0.01). There was no difference in strength gains between upper and lower limbs ( P > 0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared with the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude ( P = 0.02) and central activation ( P < 0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs ( P > 0.05). The neuromuscular mechanisms mirrored the force increases at posttraining and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability. NEW & NOTEWORTHY We examined cross education of strength and skill following 6 wk of unilateral training and 6 wk of detraining. A novel finding was the continued increase in contralateral strength following both training and detraining. Neuromuscular adaptations were highly correlated with strength gains in the trained and contralateral limbs. Motor learning was evident in the trained and contralateral limbs during contractions performed without concurrent feedback.
Collapse
Affiliation(s)
- Lara A Green
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| |
Collapse
|
19
|
Bartolomei S, Hoffman JR, Stout JR, Merni F. Effect of Lower-Body Resistance Training on Upper-Body Strength Adaptation in Trained Men. J Strength Cond Res 2018; 32:13-18. [PMID: 29257792 DOI: 10.1519/jsc.0000000000001639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bartolomei, S, Hoffman, JR, Stout, JR, and Merni, F. Effect of lower-body resistance training on upper-body strength adaptation in trained men. J Strength Cond Res 32(1): 13-18, 2018-The aim of this study was to examine the effect of 2 different lower-body strength training schemes on upper-body adaptations to resistance training. Twenty resistance-trained men (4.25 ± 1.6 years of experience) were randomly assigned to either a high intensity (HI; n = 9; age = 24.9 ± 2.9 years; body mass = 88.7 ± 17.2 kg; height = 177.0 ± 5.6 cm) or a mixed high volume and HI resistance training program (MP; n = 11; age = 26.0 ± 4.7 years; body mass = 82.8 ± 9.1 kg; height = 177.54 ± 5.9 cm). High-intensity group followed a HI training for both upper and lower body (4-5 reps at 88%-90% of 1 repetition maximum (1RM)), whereas the MP group performed high-volume training sessions focused on muscle hypertrophy for lower body (10-12 reps at 65%-70% of 1-RM) and a HI protocol for the upper body. Maximal strength and power testing occurred before and after the 6-week training program. Analysis of covariance was used to compare performance measures between the groups. Greater increases in MP groups compared with HI groups were observed for bench press 1RM (p = 0.007), bench press power at 50% of 1RM (p = 0.011), and for arm muscle area (p = 0.046). Significant difference between the 2 groups at posttest were also observed for fat mass (p = 0.009). Results indicated that training programs focused on lower-body muscle hypertrophy and maximal strength for upper body can stimulate greater strength and power gains in the upper body compared with HI resistance training programs for both the upper and lower body.
Collapse
Affiliation(s)
- Sandro Bartolomei
- 1Sport and Exercise Science, University of Central Florida, Orlando, Florida; and2Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | | | | | | |
Collapse
|
20
|
Manca A, Hortobágyi T, Rothwell J, Deriu F. Neurophysiological adaptations in the untrained side in conjunction with cross-education of muscle strength: a systematic review and meta-analysis. J Appl Physiol (1985) 2018; 124:1502-1518. [DOI: 10.1152/japplphysiol.01016.2017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We reviewed the evidence from randomized controlled trials (RCTs) focusing on the neurophysiological adaptations in the untrained side associated with cross-education of strength (CE) and pooled data into definite effect estimates for neurophysiological variables assessed in chronic CE studies. Furthermore, scoping directions for future research were provided to enhance the homogeneity and comparability of studies investigating the neural responses to CE. The magnitude of CE was 21.1 ± 18.2% (mean ± SD; P < 0.0001) in 22 RCTs ( n = 467 subjects) that measured at least 1 neurophysiological variable in the untrained side, including the following: electromyography (EMG; 14 studies); motor evoked potential (MEP; 8 studies); short-interval intracortical inhibition (SICI), recruitment curve, and M wave (6 studies); cortical silent period (cSP; 5 studies); interhemispheric inhibition, intracortical facilitation (ICF), and H reflex (2 studies); and V wave, short-interval ICF, short-latency afferent inhibition, and long-latency afferent inhibition (1 study). Only EMG, MEP, ICF, cSP, and SICI could be included in the meta-analysis (18 studies, n = 387). EMG ( P = 0.26, n = 235) and MEP amplitude ( P = 0.11, n = 145) did not change in the untrained limb after CE. cSP duration ( P = 0.02, n = 114) and SICI ( P = 0.001, n = 95) decreased in the untrained hemisphere according to body region and type and intensity of training. The magnitude of CE did not correlate with changes in these transcranial magnetic stimulation (TMS) measures. The design of this meta-analytical study and the lack of correlations prevented the ability to link mechanistically the observed neurophysiological changes to CE. Notwithstanding the limited amount of data available for pooling, the use of TMS to assess the ipsilateral neurophysiological responses to unilateral training still confirms the central neural origin hypothesis of chronic CE induced by strength training. However, how these neural adaptations contribute to CE remains unclear.
Collapse
Affiliation(s)
- Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - John Rothwell
- Sobell Department of Motor Neuroscience and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
21
|
Green LA, Gabriel DA. The cross education of strength and skill following unilateral strength training in the upper and lower limbs. J Neurophysiol 2018; 120:468-479. [PMID: 29668382 DOI: 10.1152/jn.00116.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cross education is the strength gain or skill improvement transferred to the contralateral limb following unilateral training or practice. The present study examined the transfer of both strength and skill following a strength training program. Forty participants (20M, 20F) completed a 6-wk unilateral training program of dominant wrist flexion or dorsiflexion. Strength, force variability, and muscle activity were assessed pretraining, posttraining, and following 6 wk of detraining (retention). Analyses of covariance compared the experimental limb (trained or untrained) to the control (dominant or nondominant). There were no sex differences in the training response. Cross education of strength at posttraining was 6% ( P < 0.01) in the untrained arm and 13% ( P < 0.01) in the untrained leg. Contralateral strength continued to increase following detraining to 15% in the arm ( P < 0.01) and 14% in the leg ( P < 0.01). There was no difference in strength gains between upper and lower limbs ( P > 0.05). Cross education of skill (force variability) demonstrated greater improvements in the untrained limbs compared with the control limbs during contractions performed without concurrent feedback. Significant increases in V-wave amplitude ( P = 0.02) and central activation ( P < 0.01) were highly correlated with contralateral strength gains. There was no change in agonist amplitude or motor unit firing rates in the untrained limbs ( P > 0.05). The neuromuscular mechanisms mirrored the force increases at posttraining and retention supporting central drive adaptations of cross education. The continued strength increases at retention identified the presence of motor learning in cross education, as confirmed by force variability. NEW & NOTEWORTHY We examined cross education of strength and skill following 6 wk of unilateral training and 6 wk of detraining. A novel finding was the continued increase in contralateral strength following both training and detraining. Neuromuscular adaptations were highly correlated with strength gains in the trained and contralateral limbs. Motor learning was evident in the trained and contralateral limbs during contractions performed without concurrent feedback.
Collapse
Affiliation(s)
- Lara A Green
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| | - David A Gabriel
- Department of Kinesiology, Brock University , St. Catharines, Ontario , Canada
| |
Collapse
|
22
|
Andrushko JW, Gould LA, Farthing JP. Contralateral effects of unilateral training: sparing of muscle strength and size after immobilization. Appl Physiol Nutr Metab 2018; 43:1131-1139. [PMID: 29800529 DOI: 10.1139/apnm-2018-0073] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The contralateral effects of unilateral strength training, known as cross-education of strength, date back well over a century. In the last decade, a limited number of studies have emerged demonstrating the preservation or "sparing" effects of cross-education during immobilization. Recently published evidence reveals that the sparing effects of cross-education show muscle site specificity and involve preservation of muscle cross-sectional area. The new research also demonstrates utility of training with eccentric contractions as a potent stimulus to preserve immobilized limb strength across multiple modes of contraction. The cumulative data in nonclinical settings suggest that cross-education can completely abolish expected declines in strength and muscle size in the range of ∼13% and ∼4%, respectively, after 3-4 weeks of immobilization of a healthy arm. The evidence hints towards the possibility that unique mechanisms may be involved in preservation effects of cross-education, as compared with those that lead to functional improvements under normal conditions. Cross-education effects after strength training appear to be larger in clinical settings, but there is still only 1 randomized clinical trial demonstrating the potential utility of cross-education in addition to standard treatment. More work is necessary in both controlled and clinical settings to understand the potential interaction of neural and muscle adaptations involved in the observed sparing effects, but there is growing evidence to advocate for the clinical utility of cross-education.
Collapse
Affiliation(s)
- Justin W Andrushko
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| | - Layla A Gould
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada.,b College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan P Farthing
- a College of Kinesiology, University of Saskatchewan, Saskatoon, SK S7N 5B2, Canada
| |
Collapse
|
23
|
Colomer-Poveda D, Romero-Arenas S, Hortobagyi T, Márquez G. Does ipsilateral corticospinal excitability play a decisive role in the cross-education effect caused by unilateral resistance training? A systematic review. Neurologia 2018; 36:285-297. [PMID: 29305060 DOI: 10.1016/j.nrl.2017.09.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/22/2017] [Indexed: 10/18/2022] Open
Abstract
INTRODUCTION Unilateral resistance training has been shown to improve muscle strength in both the trained and the untrained limb. One of the most widely accepted theories is that this improved performance is due to nervous system adaptations, specifically in the primary motor cortex. According to this hypothesis, increased corticospinal excitability (CSE), measured with transcranial magnetic stimulation, is one of the main adaptations observed following prolonged periods of training. The principal aim of this review is to determine the degree of adaptation of CSE and its possible functional association with increased strength in the untrained limb. DEVELOPMENT We performed a systematic literature review of studies published between January 1970 and December 2016, extracted from Medline (via PubMed), Ovid, Web of Science, and Science Direct online databases. The search terms were as follows: (transcranial magnetic stimulation OR excitability) AND (strength training OR resistance training OR force) AND (cross transfer OR contralateral limb OR cross education). A total of 10 articles were found. CONCLUSION Results regarding increased CSE were inconsistent. Although the possibility that the methodology had a role in this inconsistency cannot be ruled out, the results appear to suggest that there may not be a functional association between increases in muscle strength and in CSE.
Collapse
Affiliation(s)
- D Colomer-Poveda
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - S Romero-Arenas
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España
| | - T Hortobagyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen, Groningen, Países Bajos
| | - G Márquez
- Departamento de Ciencias de la Actividad Física y del Deporte, Facultad de Deporte-UCAM, Universidad Católica de Murcia, Murcia, España.
| |
Collapse
|
24
|
Tøien T, Unhjem R, Øren TS, Kvellestad ACG, Hoff J, Wang E. Neural Plasticity with Age: Unilateral Maximal Strength Training Augments Efferent Neural Drive to the Contralateral Limb in Older Adults. J Gerontol A Biol Sci Med Sci 2017; 73:596-602. [DOI: 10.1093/gerona/glx218] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 10/31/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tiril Tøien
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Runar Unhjem
- Faculty of Professional Studies, Nord University, Bodø, Norway
| | - Thomas Storehaug Øren
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ann Charlotte Gjertsen Kvellestad
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jan Hoff
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Østmarka, Division of Mental Healthcare, St. Olav’s Hospital, Trondheim University Hospital, Norway
| | - Eivind Wang
- Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Research and Development, St. Olav’s University Hospital, Trondheim, Norway
- Department of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
25
|
Ben Othman A, Behm DG, Chaouachi A. Evidence of homologous and heterologous effects after unilateral leg training in youth. Appl Physiol Nutr Metab 2017; 43:282-291. [PMID: 29069548 DOI: 10.1139/apnm-2017-0338] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The positive effects of unilateral training on contralateral muscles (cross education) has been demonstrated with adults for over a century. There is limited evidence for cross education of heterologous muscles. Cross education has not been demonstrated with children. It was the objective of this study to investigate cross-education training in children examining ipsilateral and contralateral homologous and heterologous muscles. Forty-eight male children (aged 10-13 years) were assessed for unilateral, ipsilateral and contralateral lower limb strength, power and endurance (1-repetition maximum (RM) leg press, knee extensors (KE) and flexors (KF) maximum voluntary isometric contractions (MVIC), countermovement jump, muscle endurance test (leg press repetitions with 60% 1RM)), and upper body unilateral MVIC elbow flexors (EF) and handgrip strength. An 8-week training program involved 2 unilateral leg press resistance-training groups (high load/low repetitions: 4-8 sets of 5RM, and low load/high repetitions: 1-2 sets of 20RM) and control (untrained) group. All muscles exhibited improvements of 6.1% to 89.1%. The trained limb exhibited greater adaptations than the untrained limb for leg press 1RM (40.3% vs. 25.2%; p = 0.005), and 60% 1RM leg press (104.1% vs. 73.4%; p = 0.0001). The high load/low repetition training induced (p < 0.0001) greater improvements than low load/high repetition with KE, KF, EF MVIC and leg press 1RM. This is the first study to demonstrate cross-education effects with children and that the effects of unilateral training involve both contralateral homologous and heterologous muscles with the greatest strength-training responses from high-load/low-repetition training.
Collapse
Affiliation(s)
- Aymen Ben Othman
- a Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia
| | - David G Behm
- c School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Anis Chaouachi
- a Tunisian Research Laboratory "Sport Performance Optimisation", National Center of Medicine and Science in Sports (CNMSS), Tunis, Tunisia.,b AUT University, Sports Performance Research Institute New Zealand, Auckland, New Zealand
| |
Collapse
|
26
|
Kadri MA, Noé F, Nouar MB, Paillard T. Effects of training programs based on ipsilateral voluntary and stimulated contractions on muscle strength and monopedal postural control of the contralateral limb. Eur J Appl Physiol 2017; 117:1799-1806. [DOI: 10.1007/s00421-017-3676-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 06/27/2017] [Indexed: 01/15/2023]
|
27
|
De Luca A, Giannoni P, Vernetti H, Capra C, Lentino C, Checchia GA, Casadio M. Training the Unimpaired Arm Improves the Motion of the Impaired Arm and the Sitting Balance in Chronic Stroke Survivors. IEEE Trans Neural Syst Rehabil Eng 2017; 25:873-882. [DOI: 10.1109/tnsre.2016.2635806] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
28
|
Effects of 4 weeks of low-load unilateral resistance training, with and without blood flow restriction, on strength, thickness, V wave, and H reflex of the soleus muscle in men. Eur J Appl Physiol 2017; 117:1339-1347. [PMID: 28451748 DOI: 10.1007/s00421-017-3622-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/24/2017] [Indexed: 01/30/2023]
Abstract
PURPOSE To test the effects of 4 weeks of unilateral low-load resistance training (LLRT), with and without blood flow restriction (BFR), on maximal voluntary contraction (MVC), muscle thickness, volitional wave (V wave), and Hoffmann reflex (H reflex) of the soleus muscle. METHODS Twenty-two males were randomly distributed into three groups: a control group (CTR; n = 8); a low-load blood flow restriction resistance training group (BFR-LLRT; n = 7), who were an inflatable cuff to occlude blood flow; and a low-load resistance training group without blood flow restriction (LLRT; n = 7). The training consisted of four sets of unilateral isometric LLRT (25% of MVC) three times a week over 4 weeks. RESULTS MVC increased 33% (P < 0.001) and 22% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. The soleus thickness increased 9.5% (P < 0.001) and 6.5% (P < 0.01) in the trained leg of both BFR-LLRT and LLRT groups, respectively. However, neither MVC nor thickness changed in either of the legs tested in the CTR group (MVC -1 and -5%, and muscle thickness 1.9 and 1.2%, for the control and trained leg, respectively). Moreover, V wave and H reflex did not change significantly in all the groups studied (Vwave/M wave ratio -7.9 and -2.6%, and H max/M max ratio -3.8 and -4%, for the control and trained leg, respectively). CONCLUSIONS Collectively, the present data suggest that in spite of the changes occurring in soleus strength and thickness, 4 weeks of low-load resistance training, with or without BFR, does not cause any change in neural drive or motoneuronal excitability.
Collapse
|
29
|
Wages NP, Beck TW, Ye X, Carr JC. Unilateral fatiguing exercise and its effect on ipsilateral and contralateral resting mechanomyographic mean frequency between aerobic populations. Physiol Rep 2017; 5:e13151. [PMID: 28242828 PMCID: PMC5328779 DOI: 10.14814/phy2.13151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 11/24/2022] Open
Abstract
The purpose of this investigation was to establish a better understanding of contralateral training and its effects between homologous muscles following unilateral fatiguing aerobic exercise during variable resting postural positions, and to determine if any observable disparities could be attributed to the differences between the training ages of the participants. Furthermore, we hypothesized that we would observe a contralateral cross-over effect for both groups, with the novice trained group having the higher mechanomyographic mean frequency values in both limbs, across all resting postural positions. Twenty healthy male subjects exercised on an upright cycle ergometer, using only their dominate limb, for 30 min at 60% of their VO2 peak. Resting electromyographic and mechanomyographic signals were measured prior to and following fatiguing aerobic exercise. We found that there were resting mechanomyographic mean frequency differences of approximately 1.9 ± 0.8% and 0.9 ± 0.7%; 9.1 ± 0.3% and 10.2 ± 3.7%; 2 ± 1.8% and 3 ± 1.4%; and 0.9 ± 0.6% and 0.2 ± 1.3% between the novice and advanced trained groups (for the upright sitting position with legs extended 180°; upright sitting position with legs bent 90°; lying supine position with legs extended 180°; and lying supine with legs bent 90°, respectively), from the dominant and nondominant limbs, respectively. We have concluded that despite the relative matching of exercise intensity between groups, acute responses to contralateral training become less accentuated as one progresses in training age. Additionally, our results lend support to the notion that there are multiple, overlapping neural and mechanical mechanisms concurrently contributing to the contralateral cross-over effects observed across the postexercise resting time course.
Collapse
Affiliation(s)
- Nathan P Wages
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Travis W Beck
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| | - Xin Ye
- Department of Health, Exercise Science and Recreation Management, University of Mississippi, University, Mississippi
| | - Joshua C Carr
- Department of Health and Exercise Science, University of Oklahoma, Norman, Oklahoma
| |
Collapse
|
30
|
Paillard T. Plasticity of the postural function to sport and/or motor experience. Neurosci Biobehav Rev 2017; 72:129-152. [DOI: 10.1016/j.neubiorev.2016.11.015] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/27/2016] [Accepted: 11/15/2016] [Indexed: 11/27/2022]
|
31
|
El-Gohary TM, Khaled OA, Ibrahim SR, Alshenqiti AM, Ibrahim MI. Effect of proprioception cross training on repositioning accuracy and balance among healthy individuals. J Phys Ther Sci 2016; 28:3178-3182. [PMID: 27942145 PMCID: PMC5140825 DOI: 10.1589/jpts.28.3178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/29/2016] [Indexed: 12/27/2022] Open
Abstract
[Purpose] To investigate possible cross effects of proprioception training on
proprioception repositioning accuracy of the knee joint and on balance in healthy
subjects. [Subjects and Methods] Sixty healthy college students and faculty members from
faculty of physical therapy, Cairo University were recruited to participate. Participants
were randomly assigned to training group (n=30) and control group (n=30). The training
group received proprioceptive training program only for the dominant leg while the control
group did not receive any kind of training. Outcome measures were twofold: (1)
proprioception repositioning accuracy quantified through the active repositioning test for
the non-dominant knee; and (2) balance stability indices determined through using Biodex
balance system. Measurements were recorded before and after 8 weeks of proprioception
training. [Results] There were significant decrease in the error of repositioning accuracy
and the stability indices including anterposterior stability index, mediolateral stability
index, and overall stability index of training group, measured post training, compared
with control group. [Conclusion] Proprioception training has significant cross training
effects on proprioception repositioning accuracy of the knee joint and on balance among
healthy subjects.
Collapse
Affiliation(s)
- Tarek Mohamed El-Gohary
- Department of Physical Therapy, College of Medical Rehabilitation, Taibah University, Saudi Arabia; Department of Biomechanics, Faculty of Physical Therapy, Cairo University, Egypt
| | - Osama Ahmed Khaled
- Department of Physical Therapy, College of Medical Rehabilitation, Taibah University, Saudi Arabia; Department of Basic Science, Faculty of Physical Therapy, Cairo University, Egypt
| | - Sameh R Ibrahim
- Department of Physical Therapy, College of Medical Rehabilitation, Taibah University, Saudi Arabia; Department of Basic Science, Faculty of Physical Therapy, Cairo University, Egypt
| | - Abdullah M Alshenqiti
- Department of Physical Therapy, College of Medical Rehabilitation, Taibah University, Saudi Arabia
| | - Mahmoud I Ibrahim
- Department of Orthopedic, Faculty of Physical Therapy, Cairo University, Egypt
| |
Collapse
|
32
|
Manca A, Ginatempo F, Cabboi MP, Mercante B, Ortu E, Dragone D, De Natale ER, Dvir Z, Rothwell JC, Deriu F. No evidence of neural adaptations following chronic unilateral isometric training of the intrinsic muscles of the hand: a randomized controlled study. Eur J Appl Physiol 2016; 116:1993-2005. [DOI: 10.1007/s00421-016-3451-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/28/2016] [Indexed: 11/27/2022]
|
33
|
Ehrensberger M, Simpson D, Broderick P, Monaghan K. Cross-education of strength has a positive impact on post-stroke rehabilitation: a systematic literature review. Top Stroke Rehabil 2016; 23:126-35. [DOI: 10.1080/10749357.2015.1112062] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Reznik JE, Biros E, Bartur G. An electromyographic investigation of the pattern of overflow facilitated by manual resistive proprioceptive neuromuscular facilitation in young healthy individuals: a preliminary study. Physiother Theory Pract 2015; 31:582-6. [DOI: 10.3109/09593985.2015.1061627] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
35
|
Manca A, Solinas G, Dragone D, Dvir Z, Deriu F. Characterization of ankle dorsiflexors performance in healthy subjects following maximal-intensity isokinetic resistance training. J Electromyogr Kinesiol 2015; 25:773-81. [DOI: 10.1016/j.jelekin.2015.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/25/2022] Open
|
36
|
Manca A, Pisanu F, Ortu E, De Natale ER, Ginatempo F, Dragone D, Tolu E, Deriu F. A comprehensive assessment of the cross-training effect in ankle dorsiflexors of healthy subjects: A randomized controlled study. Gait Posture 2015; 42:1-6. [PMID: 25922111 DOI: 10.1016/j.gaitpost.2015.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE To investigate the cross-training effect, induced on ankle dorsiflexors (AD) by unilateral strength-training of the contralateral muscles, as transfer of peak torque (PT) and muscle work (MW) and their relative contributions to muscle performance. METHODS Thirty healthy volunteers were randomly assigned to a training or control group. The trained group sustained a 4-week maximal isokinetic training of the stronger AD at 90 and 45°/s. At both angular velocities, PT, MW and MW/PT ratio were measured from both legs at baseline and after intervention (trained group) or no-intervention (controls). The familiarization/learning-effect was calculated and subtracted by PT and MW measures to obtain their net changes. RESULTS Net PT increased in both legs (untrained: +27.5% at 90°/s and +17.9% at 45°/s; trained: +15% at 90°/s and +16.3% at 45°/s). Similarly, net MW increased in both the untrained (90°/s: +29.6%; 45°/s: +37%) and trained (90°/s: +23.4%; 45°/s: +18.3%) legs. PT and MW gains were larger in the untrained than trained AD (p<0.0005), with MW improving more than PT at 45°/s (p=0.04). The MW/PT ratio increased bilaterally only in the trained group (p<0.05), depending on the angular velocity. CONCLUSIONS The cross-training effect occurred in AD muscles in terms of both PT and MW, with MW adding valuable information to PT-analysis in describing muscle performance. Moreover, the MW/PT ratio allowed estimating the contributions of these parameters to muscle capability and may represent a novel index in isokinetic testing. The greater improvements in the untrained than trained limb raises interesting clinical implications in asymmetric conditions.
Collapse
Affiliation(s)
- Andrea Manca
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Francesco Pisanu
- Department of Surgical, Microsurgical and Medical Sciences, University of Sassari, Sassari, Italy
| | - Enzo Ortu
- Neurology Unit, «A. Segni» Hospital - ASL n. 1, Sassari, Italy
| | | | | | - Daniele Dragone
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Eusebio Tolu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.
| |
Collapse
|
37
|
Electrophysiological manifestations of mirror visual feedback during manual movement. Brain Res 2015; 1606:113-24. [PMID: 25721791 DOI: 10.1016/j.brainres.2015.02.029] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 02/11/2015] [Accepted: 02/12/2015] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate the neurophysiological manifestations of the mechanism underlying the effects of Mirror Visual Feedback (MVF) during manual movement. METHOD Thirteen healthy right handed individuals were assessed while performing repeated unilateral wrist extension movements with and without MVF. The effect of MVF on EEG oscillations was studied in 3 distinct frequency ranges (low mu, high mu, low beta). RESULTS Analysis of the low beta range showed that MVF reduces the magnitude of event-related de-synchronization (ERD) in the hemisphere contra-lateral to the moving hand. This effect reached significance when the moving hand was the dominant hand. In the analysis of the low mu range, bi-hemispheric amplification of ERD by the mirror pointed to an added effect of neural recruitment. This effect reached significance when the moving hand was the non-dominant hand. CONCLUSIONS MVF applied during unilateral manual movement (a) attenuates hemispheric activation asymmetry, and (b) is likely to involve recruitment of the mirror neuron system. SIGNIFICANCE As each of the above two effects reached significance only in one hand (dominant and non-dominant, respectively), clinical application of MVF might show a different level of efficacy in the treatment of right and left hemiparesis.
Collapse
|
38
|
Zult T, Goodall S, Thomas K, Hortobágyi T, Howatson G. Mirror illusion reduces motor cortical inhibition in the ipsilateral primary motor cortex during forceful unilateral muscle contractions. J Neurophysiol 2015; 113:2262-70. [PMID: 25632077 DOI: 10.1152/jn.00686.2014] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/15/2015] [Indexed: 01/28/2023] Open
Abstract
Forceful, unilateral contractions modulate corticomotor paths targeting the resting, contralateral hand. However, it is unknown whether mirror-viewing of a slowly moving but forcefully contracting hand would additionally affect these paths. Here we examined corticospinal excitability and short-interval intracortical inhibition (SICI) of the right-ipsilateral primary motor cortex (M1) in healthy young adults under no-mirror and mirror conditions at rest and during right wrist flexion at 60% maximal voluntary contraction (MVC). During the no-mirror conditions neither hand was visible, whereas in the mirror conditions participants looked at the right hand's reflection in the mirror. Corticospinal excitability increased during contractions in the left flexor carpi radialis (FCR) (contraction 0.41 mV vs. rest 0.21 mV) and extensor carpi radialis (ECR) (contraction 0.56 mV vs. rest 0.39 mV), but there was no mirror effect (FCR: P = 0.743, ηp (2) = 0.005; ECR: P = 0.712, ηp (2) = 0.005). However, mirror-viewing of the contracting and moving wrist attenuated SICI relative to test pulse in the left FCR by ∼9% compared with the other conditions (P < 0.05, d ≥ 0.62). Electromyographic activity in the resting left hand prior to stimulation was not affected by the mirror (FCR: P = 0.255, ηp (2) = 0.049; ECR: P = 0.343, ηp (2) = 0.035) but increased twofold during contractions. Thus viewing the moving hand in the mirror and not just the mirror image of the nonmoving hand seems to affect motor cortical inhibitory networks in the M1 associated with the mirror image. Future studies should determine whether the use of a mirror could increase interlimb transfer produced by cross-education, especially in patient groups with unilateral orthopedic and neurological conditions.
Collapse
Affiliation(s)
- Tjerk Zult
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands;
| | - Stuart Goodall
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Kevin Thomas
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences, Groningen, The Netherlands; Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, United Kingdom; and Water Research Group, School of Biological Sciences, North West University, Potchefstroom, South Africa
| |
Collapse
|
39
|
Neural and nonneural contributions to wrist rigidity in Parkinson's disease: an explorative study using the NeuroFlexor. BIOMED RESEARCH INTERNATIONAL 2015; 2015:276182. [PMID: 25685778 PMCID: PMC4320927 DOI: 10.1155/2015/276182] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/17/2014] [Indexed: 11/21/2022]
Abstract
Objective. The NeuroFlexor is a novel method incorporating a biomechanical model for the measurement of neural and nonneural contributions to resistance induced by passive stretch. In this study, we used the NeuroFlexor method to explore components of passive movement resistance in the wrist and finger muscles in subjects with Parkinson's disease (PD). Methods. A cross-sectional comparison was performed in twenty-five subjects with PD with clinically identified rigidity and 14 controls. Neural (NC), elastic (EC), and viscous (VC) components of the resistance to passive extension of the wrist were calculated using the NeuroFlexor. Measurements were repeated during a contralateral activation maneuver. Results. PD subjects showed greater total resistance (P < 0.001) and NC (P = 0.002) compared to controls. EC and VC did not differ significantly between groups. Contralateral activation maneuver resulted in increased NC in the PD group but this increase was due to increased resting tension. Total resistance and NC correlated with clinical ratings of rigidity and with bradykinesia. Conclusions. The findings suggest that stretch induced reflex activity, but not nonneural resistance, is the major contributor to rigidity in wrist muscles in PD. The NeuroFlexor is a potentially valuable clinical and research tool for quantification of rigidity.
Collapse
|
40
|
Direct and crossed effects of somatosensory stimulation on neuronal excitability and motor performance in humans. Neurosci Biobehav Rev 2014; 47:22-35. [DOI: 10.1016/j.neubiorev.2014.07.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/07/2014] [Accepted: 07/14/2014] [Indexed: 12/11/2022]
|
41
|
Zult T, Howatson G, Kádár EE, Farthing JP, Hortobágyi T. Role of the mirror-neuron system in cross-education. Sports Med 2014; 44:159-78. [PMID: 24122078 DOI: 10.1007/s40279-013-0105-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The present review proposes the untested hypothesis that cross-education performed with a mirror increases the transfer of motor function to the resting limb compared with standard cross-education interventions without a mirror. The hypothesis is based on neuroanatomical evidence suggesting an overlap in activated brain areas when a unilateral motor task is performed with and without a mirror in the context of cross-education of the upper extremities. The review shows that the mirror-neuron system (MNS), connecting sensory neurons responding to visual properties of an observed action and motor neurons that discharge action potentials during the execution of a similar action, has the potential to enhance cross-education.
Collapse
|
42
|
Abstract
SK is an 84-year-old woman diagnosed with essential tremor (ET) but no cognitive deficits. In this experiment, we tested the effects of mental rotation (a form of additional cognitive load) during reaching behavior (with the right hand) on the tremor profile of the non-moving left hand. We observed a marked increase in tremor and its variability, as well as the "freezing" of the movement pattern as effects of the cognitive load. These findings imply cognitive-motor overlaps in patients with ET, raising the possibility that the deficits reflect the loss of a common pool of neural resources, despite the heterogeneity of the symptoms of the disorder.
Collapse
Affiliation(s)
- S Lee Hong
- a Department of Biomedical Sciences , Ohio University , Athens , OH , USA
| | | | | | | |
Collapse
|
43
|
Goodall S, St Clair Gibson A, Voller B, Lomarev M, Howatson G, Dang N, Hortobágyi T, Hallett M. Repetitive transcranial magnetic stimulation attenuates the perception of force output production in non-exercised hand muscles after unilateral exercise. PLoS One 2013; 8:e80202. [PMID: 24278259 PMCID: PMC3838421 DOI: 10.1371/journal.pone.0080202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/29/2013] [Indexed: 11/19/2022] Open
Abstract
We examined whether unilateral exercise creates perception bias in the non-exercised limb and ascertained whether rTMS applied to the primary motor cortex (M1) interferes with this perception. All participants completed 4 interventions: 1) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand (EX), 2) 15-min learning period of intermittent isometric contractions at 35% MVC with the trained hand whilst receiving rTMS over the contralateral M1 (rTMS+EX); 3) 15-min of rTMS over the 'trained' M1 (rTMS) and 4) 15-min rest (Rest). Pre and post-interventions, the error of force output production, the perception of effort (RPE), motor evoked potentials (MEPs) and compound muscle action potentials (CMAPs) were measured in both hands. EX did not alter the error of force output production in the trained hand (Δ3%; P>0.05); however, the error of force output production was reduced in the untrained hand (Δ12%; P<0.05). rTMS+EX and rTMS alone did not show an attenuation in the error of force output production in either hand. EX increased RPE in the trained hand (9.1±0.5 vs. 11.3±0.7; P<0.01) but not the untrained hand (8.8±0.6 vs. 9.2±0.6; P>0.05). RPE was significantly higher after rTMS+EX in the trained hand (9.2±0.5 vs. 10.7±0.7; P<0.01) but ratings were unchanged in the untrained hand (8.5±0.6 vs. 9.2±0.5; P>0.05). The novel finding was that exercise alone reduced the error in force output production by over a third in the untrained hand. Further, when exercise was combined with rTMS the transfer of force perception was attenuated. These data suggest that the contralateral M1 of the trained hand might, in part, play an essential role for the transfer of force perception to the untrained hand.
Collapse
Affiliation(s)
- Stuart Goodall
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Alan St Clair Gibson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Bernhard Voller
- Department for Neurology, Medical University of Vienna, Vienna, Austria
| | - Mike Lomarev
- Bekhterev Neuropsychological Institute, St. Petersburg, Russian Federation
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom, South Africa
| | - Nguyet Dang
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tibor Hortobágyi
- University of Groningen Medical Center, Groningen, The Netherlands
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
44
|
Ruddy KL, Carson RG. Neural pathways mediating cross education of motor function. Front Hum Neurosci 2013; 7:397. [PMID: 23908616 PMCID: PMC3725409 DOI: 10.3389/fnhum.2013.00397] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 07/07/2013] [Indexed: 12/24/2022] Open
Abstract
Cross education is the process whereby training of one limb gives rise to enhancements in the performance of the opposite, untrained limb. Despite interest in this phenomenon having been sustained for more than a century, a comprehensive explanation of the mediating neural mechanisms remains elusive. With new evidence emerging that cross education may have therapeutic utility, the need to provide a principled evidential basis upon which to design interventions becomes ever more pressing. Generally, mechanistic accounts of cross education align with one of two explanatory frameworks. Models of the “cross activation” variety encapsulate the observation that unilateral execution of a movement task gives rise to bilateral increases in corticospinal excitability. The related conjecture is that such distributed activity, when present during unilateral practice, leads to simultaneous adaptations in neural circuits that project to the muscles of the untrained limb, thus facilitating subsequent performance of the task. Alternatively, “bilateral access” models entail that motor engrams formed during unilateral practice, may subsequently be utilized bilaterally—that is, by the neural circuitry that constitutes the control centers for movements of both limbs. At present there is a paucity of direct evidence that allows the corresponding neural processes to be delineated, or their relative contributions in different task contexts to be ascertained. In the current review we seek to synthesize and assimilate the fragmentary information that is available, including consideration of knowledge that has emerged as a result of technological advances in structural and functional brain imaging. An emphasis upon task dependency is maintained throughout, the conviction being that the neural mechanisms that mediate cross education may only be understood in this context.
Collapse
Affiliation(s)
- Kathy L Ruddy
- School of Psychology, Queen's University Belfast Belfast, UK ; Trinity College Institute of Neuroscience and School of Psychology, Trinity College Dublin Dublin, Ireland
| | | |
Collapse
|
45
|
Palmer HS, Håberg AK, Fimland MS, Solstad GM, Moe Iversen V, Hoff J, Helgerud J, Eikenes L. Structural brain changes after 4 wk of unilateral strength training of the lower limb. J Appl Physiol (1985) 2013; 115:167-75. [DOI: 10.1152/japplphysiol.00277.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Strength training enhances muscular strength and neural drive, but the underlying neuronal mechanisms remain unclear. This study used magnetic resonance imaging (MRI) to identify possible changes in corticospinal tract (CST) microstructure, cortical activation, and subcortical structure volumes following unilateral strength training of the plantar flexors. Mechanisms underlying cross-education of strength in the untrained leg were also investigated. Young, healthy adult volunteers were assigned to training ( n = 12) or control ( n = 9) groups. The 4 wk of training consisted of 16 sessions of 36 unilateral isometric plantar flexions. Maximum voluntary isometric contraction torque was tested pre- and posttraining. MRI investigation included a T1-weighted scan, diffusion tensor imaging and functional MRI. Probabilistic fiber tracking of the CST was performed on the diffusion tensor imaging images using a two-regions-of-interest approach. Fractional anisotropy and mean diffusivity were calculated for the left and right CST in each individual before and after training. Standard functional MRI analyses and volumetric analyses of subcortical structures were also performed. Maximum voluntary isometric contraction significantly increased in both the trained and untrained legs of the training group, but not the control group. A significant decrease in mean diffusivity was found in the left CST following strength training of the right leg. No significant changes were detected in the right CST. No significant changes in cortical activation were observed following training. A significant reduction in left putamen volume was found after training. This study provides the first evidence for strength training-related changes in white matter and putamen in the healthy adult brain.
Collapse
Affiliation(s)
- H. S. Palmer
- MI-Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - A. K. Håberg
- Department of Medical Imaging, St. Olavs Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - M. S. Fimland
- MI-Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - G. M. Solstad
- MI-Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - V. Moe Iversen
- MI-Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - J. Hoff
- MI-Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim, Norway
| | - J. Helgerud
- MI-Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Hokksund Medical Rehabilitation Centre, Hokksund, Norway; and
- Department of Sports and Outdoor Life Studies, Telemark University College, Bø, Norway
| | - L. Eikenes
- MI-Lab, Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
46
|
Manella KJ, Roach KE, Field-Fote EC. Operant conditioning to increase ankle control or decrease reflex excitability improves reflex modulation and walking function in chronic spinal cord injury. J Neurophysiol 2013; 109:2666-79. [PMID: 23468393 DOI: 10.1152/jn.01039.2011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Ankle clonus is common after spinal cord injury (SCI) and is attributed to loss of supraspinally mediated inhibition of soleus stretch reflexes and maladaptive reorganization of spinal reflex pathways. The maladaptive reorganization underlying ankle clonus is associated with other abnormalities, such as coactivation and reciprocal facilitation of tibialis anterior (TA) and soleus (SOL), which contribute to impaired walking ability in individuals with motor-incomplete SCI. Operant conditioning can increase muscle activation and decrease stretch reflexes in individuals with SCI. We compared two operant conditioning-based interventions in individuals with ankle clonus and impaired walking ability due to SCI. Training included either voluntary TA activation (TA↑) to enhance supraspinal drive or SOL H-reflex suppression (SOL↓) to modulate reflex pathways at the spinal cord level. We measured clonus duration, plantar flexor reflex threshold angle, timed toe tapping, dorsiflexion (DF) active range of motion, lower extremity motor scores (LEMS), walking foot clearance, speed and distance, SOL H-reflex amplitude modulation as an index of reciprocal inhibition, presynaptic inhibition, low-frequency depression, and SOL-to-TA clonus coactivation ratio. TA↑ decreased plantar flexor reflex threshold angle (-4.33°) and DF active range-of-motion angle (-4.32°) and increased LEMS of DF (+0.8 points), total LEMS of the training leg (+2.2 points), and nontraining leg (+0.8 points), and increased walking foot clearance (+ 4.8 mm) and distance (+12.09 m). SOL↓ decreased SOL-to-TA coactivation ratio (-0.21), increased nontraining leg LEMS (+1.8 points), walking speed (+0.02 m/s), and distance (+6.25 m). In sum, we found increased voluntary control associated with TA↑ outcomes and decreased reflex excitability associated with SOL↓ outcomes.
Collapse
Affiliation(s)
- Kathleen J Manella
- Department of Physical Therapy, Miller School of Medicine, University of Miami, Miami, Florida 33146, USA
| | | | | |
Collapse
|
47
|
Kwon YH, Kwon JW, Park JW. Changes in brain activation patterns according to cross-training effect in serial reaction time task: An functional MRI study. Neural Regen Res 2013; 8:639-46. [PMID: 25206709 PMCID: PMC4145986 DOI: 10.3969/j.issn.1673-5374.2013.07.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/16/2013] [Indexed: 12/03/2022] Open
Abstract
Cross-training is a phenomenon related to motor learning, where motor performance of the untrained limb shows improvement in strength and skill execution following unilateral training of the homologous contralateral limb. We used functional MRI to investigate whether motor performance of the untrained limb could be improved using a serial reaction time task according to motor sequential learning of the trained limb, and whether these skill acquisitions led to changes in brain activation patterns. We recruited 20 right-handed healthy subjects, who were randomly allocated into training and control groups. The training group was trained in performance of a serial reaction time task using their non-dominant left hand, 40 minutes per day, for 10 days, over a period of 2 weeks. The control group did not receive training. Measurements of response time and percentile of response accuracy were performed twice during pre- and post-training, while brain functional MRI was scanned during performance of the serial reaction time task using the untrained right hand. In the training group, prominent changes in response time and percentile of response accuracy were observed in both the untrained right hand and the trained left hand between pre- and post-training. The control group showed no significant changes in the untrained hand between pre- and post-training. In the training group, the activated volume of the cortical areas related to motor function (i.e., primary motor cortex, premotor area, posterior parietal cortex) showed a gradual decrease, and enhanced cerebellar activation of the vermis and the newly activated ipsilateral dentate nucleus were observed during performance of the serial reaction time task using the untrained right hand, accompanied by the cross-motor learning effect. However, no significant changes were observed in the control group. Our findings indicate that motor skills learned over the 2-week training using the trained limb were transferred to the opposite homologous limb, and motor skill acquisition of the untrained limb led to changes in brain activation patterns in the cerebral cortex and cerebellum.
Collapse
Affiliation(s)
- Yong Hyun Kwon
- Department of Physical Therapy, Yeungnam College of Science & Technology, Daegu, Damgu 705-703, Republic of Korea
| | - Jung Won Kwon
- Department of Physical Therapy, Yeungnam College of Science & Technology, Daegu, Damgu 705-703, Republic of Korea
| | - Ji Won Park
- Department of Physical Therapy, College of Health Science, Catholic University of Daegu, Gyeongsan-si, Kyeongbuk 712-702, Republic of Korea
| |
Collapse
|
48
|
Goodwill AM, Kidgell DJ. The effects of whole-body vibration on the cross-transfer of strength. ScientificWorldJournal 2012; 2012:504837. [PMID: 23365521 PMCID: PMC3529861 DOI: 10.1100/2012/504837] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/30/2012] [Indexed: 11/17/2022] Open
Abstract
This study investigated whether the use of superimposed whole-body vibration (WBV) during cross-education strength training would optimise strength transfer compared to conventional cross-education strength training. Twenty-one healthy, dominant right leg volunteers (21 ± 3 years) were allocated to a strength training (ST, m = 3, f = 4), a strength training with WBV (ST + V, m = 3, f = 4), or a control group (no training, m = 3, f = 4). Training groups performed 9 sessions over 3 weeks, involving unilateral squats for the right leg, with or without WBV (35 Hz; 2.5 mm amplitude). All groups underwent dynamic single leg maximum strength testing (1RM) and single and paired pulse transcranial magnetic stimulation (TMS) prior to and following training. Strength increased in the trained limb for the ST (41%; ES = 1.14) and ST + V (55%; ES = 1.03) groups, which resulted in a 35% (ES = 0.99) strength transfer to the untrained left leg for the ST group and a 52% (ES = 0.97) strength transfer to the untrained leg for the ST + V group, when compared to the control group. No differences in strength transfer between training groups were observed (P = 0.15). For the untrained leg, no differences in the peak height of recruitment curves or SICI were observed between ST and ST + V groups (P = 1.00). Strength training with WBV does not appear to modulate the cross-transfer of strength to a greater magnitude when compared to conventional cross-education strength training.
Collapse
Affiliation(s)
- Alicia M Goodwill
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | | |
Collapse
|
49
|
Changes in spinal but not cortical excitability following combined electrical stimulation of the tibial nerve and voluntary plantar-flexion. Exp Brain Res 2012; 222:41-53. [DOI: 10.1007/s00221-012-3194-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2011] [Accepted: 07/13/2012] [Indexed: 10/28/2022]
|
50
|
Pearce AJ, Hendy A, Bowen WA, Kidgell DJ. Corticospinal adaptations and strength maintenance in the immobilized arm following 3 weeks unilateral strength training. Scand J Med Sci Sports 2012; 23:740-8. [PMID: 22429184 DOI: 10.1111/j.1600-0838.2012.01453.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2012] [Indexed: 12/14/2022]
Abstract
Cross-education strength training has being shown to retain strength and muscle thickness in the immobilized contralateral limb. Corticospinal mechanisms have been proposed to underpin this phenomenon; however, no transcranial magnetic stimulation (TMS) data has yet been presented. This study used TMS to measure corticospinal responses following 3 weeks of unilateral arm training on the contralateral, immobilize arm. Participants (n = 28) were randomly divided into either immobilized strength training (Immob + train) immobilized no training (Immob) or control. Participants in the immobilized groups had their nondominant arm rested in a sling, 15 h/day for 3 weeks. The Immob + train group completed unilateral arm curl strength training, while the Immob and control groups did not undertake training. All participants were tested for corticospinal excitability, strength, and muscle thickness of both arms. Immobilization resulted in a group x time significant reduction in strength, muscle thickness and corticospinal excitability for the untrained limb of the Immob group. Conversely, no significant change in strength, muscle thickness, or corticospinal excitability occurred in the untrained limb of the Immob + train group. These results provide the first evidence of corticospinal mechanisms, assessed by TMS, underpinning the use of unilateral strength training to retain strength and muscle thickness following immobilization of the contralateral limb.
Collapse
Affiliation(s)
- A J Pearce
- Cognitive and Exercise Neuroscience Unit, School of Psychology, Deakin University, Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|