1
|
Zhuang T, Wang S, Yu X, He X, Guo H, Ou C. Current status and future perspectives of platelet-derived extracellular vesicles in cancer diagnosis and treatment. Biomark Res 2024; 12:88. [PMID: 39183323 PMCID: PMC11346179 DOI: 10.1186/s40364-024-00639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
Platelets are a significant component of the cell population in the tumour microenvironment (TME). Platelets influence other immune cells and perform cross-talk with tumour cells, playing an important role in tumour development. Extracellular vesicles (EVs) are small membrane vesicles released from the cells into the TME. They can transfer biological information, including proteins, nucleic acids, and metabolites, from secretory cells to target receptor cells. This process affects the progression of various human diseases, particularly cancer. In recent years, several studies have demonstrated that platelet-derived extracellular vesicles (PEVs) can help regulate the malignant biological behaviours of tumours, including malignant proliferation, resistance to cell death, invasion and metastasis, metabolic reprogramming, immunity, and angiogenesis. Consequently, PEVs have been identified as key regulators of tumour progression. Therefore, targeting PEVs is a potential strategy for tumour treatment. Furthermore, the extensive use of nanomaterials in medical research has indicated that engineered PEVs are ideal delivery systems for therapeutic drugs. Recent studies have demonstrated that PEV engineering technologies play a pivotal role in the treatment of tumours by combining photothermal therapy, immunotherapy, and chemotherapy. In addition, aberrant changes in PEVs are closely associated with the clinicopathological features of patients with tumours, which may serve as liquid biopsy markers for early diagnosis, monitoring disease progression, and the prognostic assessment of patients with tumours. A comprehensive investigation into the role and potential mechanisms of PEVs in tumourigenesis may provide novel diagnostic biomarkers and potential therapeutic strategies for treating human tumours.
Collapse
Affiliation(s)
- Tongtao Zhuang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Shenrong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoqian Yu
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Hongbin Guo
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
2
|
Michael C, Pancaldi F, Britton S, Kim OV, Peshkova AD, Vo K, Xu Z, Litvinov RI, Weisel JW, Alber M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun Biol 2023; 6:869. [PMID: 37620422 PMCID: PMC10449797 DOI: 10.1038/s42003-023-05240-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023] Open
Abstract
While blood clot formation has been relatively well studied, little is known about the mechanisms underlying the subsequent structural and mechanical clot remodeling called contraction or retraction. Impairment of the clot contraction process is associated with both life-threatening bleeding and thrombotic conditions, such as ischemic stroke, venous thromboembolism, and others. Recently, blood clot contraction was observed to be hindered in patients with COVID-19. A three-dimensional multiscale computational model is developed and used to quantify biomechanical mechanisms of the kinetics of clot contraction driven by platelet-fibrin pulling interactions. These results provide important biological insights into contraction of platelet filopodia, the mechanically active thin protrusions of the plasma membrane, described previously as performing mostly a sensory function. The biomechanical mechanisms and modeling approach described can potentially apply to studying other systems in which cells are embedded in a filamentous network and exert forces on the extracellular matrix modulated by the substrate stiffness.
Collapse
Affiliation(s)
- Christian Michael
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Samuel Britton
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Oleg V Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
- Department of Biomedical Engineering and Mechanics, Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Alina D Peshkova
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Khoi Vo
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA.
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA, 92521, USA.
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA, 92521, USA.
- Department of Bioengineering, University of California Riverside, Riverside, CA, 92521, USA.
| |
Collapse
|
3
|
Ke R, Kucukal E, Gurkan UA, Li B. Characterization of fibronectin properties by integrated micro-fluidic experiments and fluid-structure interaction simulations. J Biomech 2023; 150:111505. [PMID: 36867952 DOI: 10.1016/j.jbiomech.2023.111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/17/2023] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
Fibronectin (Fn) has been observed to assemble in the extracellular matrix (ECM) of cell culture and stretch in response to the external force. The alteration of molecule domain functions generally follows the extension of Fn. Several researchers have investigated fibronectin extensively in molecular architecture and conformation structure. However, the bulk material behavior of the Fn in the ECM has not been fully depicted at the cell scale, and many studies have ignored physiological conditions. Conversely, microfluidic techniques that explore cellular properties based on cell deformation and adhesion have emerged as a powerful and effective platform to study cell rheological transformation in a physiological environment. However, directly quantifying properties from microfluidic measurements remains a challenge. Therefore, it is an efficient way to combine experimental measurements with a robust and reliable numerical framework to calibrate the mechanical stress distribution in the test sample. In this paper, we present a monolithic Lagrangian fluid-structure interaction (FSI) approach within the Optimal Transportation Meshfree (OTM) framework that enables the investigation of the adherent Red Blood Cell (RBC) interacting with fluid and overcomes the drawbacks of the traditional computational tools such as the mesh entanglement and interface tracking, etc. This study aims to assess the material properties of the RBC and Fn fiber by calibrating the numerical predictions to experimental measurements. Moreover, a physical-based constitutive model will be proposed to describe the bulk behavior of the Fn fiber inflow, and the rate-dependent deformation and separation of the Fn fiber will be discussed.
Collapse
Affiliation(s)
- Renjie Ke
- Department of Mechanical and Aerospace Engineering, Case Western Reserve, University, Cleveland, 44106 OH, USA
| | - Erdem Kucukal
- Department of Mechanical and Aerospace Engineering, Case Western Reserve, University, Cleveland, 44106 OH, USA
| | - Umut A Gurkan
- Department of Mechanical and Aerospace Engineering, Case Western Reserve, University, Cleveland, 44106 OH, USA
| | - Bo Li
- College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Pancaldi F, Kim OV, Weisel JW, Alber M, Xu Z. Computational Biomechanical Modeling of Fibrin Networks and Platelet-Fiber Network Interactions. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2022; 22:100369. [PMID: 35386550 PMCID: PMC8979495 DOI: 10.1016/j.cobme.2022.100369] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibrin deformation and interaction of fibrin with other blood components play critical roles in hemostasis and thrombosis. In this review, computational and mathematical biomechanical models of fibrin network deformation and contraction at different spatio-temporal scales as well as challenges in developing and calibrating multiscale models are discussed. There are long standing challenges. For instance, applicability of models to identify and test potential mechanisms of the biomechanical processes mediating interactions between platelets and fiber networks in blood clot stretching and contraction needs to be examined carefully. How the structural and mechanical properties of major blood clot components influences biomechanical responses of the entire clot subjected to external forces, such as blood flow or vessel wall deformations needs to be investigated thoroughly.
Collapse
Affiliation(s)
- Francesco Pancaldi
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Oleg V. Kim
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - John W. Weisel
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA, 19104, USA
| | - Mark Alber
- Department of Mathematics, University of California Riverside, Riverside, CA 92505, USA
- Center for Quantitative Modeling in Biology, University of California Riverside, Riverside, CA 92505, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Yi Y, Tamagawa M. Development of a novel hybrid method combining finite difference method and dissipative particle dynamics to simulate thrombus formation on orifice flow. Comput Methods Biomech Biomed Engin 2020; 23:611-626. [PMID: 32310682 DOI: 10.1080/10255842.2020.1755274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
In our previous works, the transport of activated platelets (APs) on orifice flow has been simulated by finite difference method (FDM). And the distribution of AP concentration on the flow was obtained. However, the effect of platelet aggregation on the distribution of AP concentration can't be investigated by FDM because FDM can't simulate platelet aggregation. On the other hand, platelet aggregation has been simulated by dissipative particle dynamics (DPD). In this paper, a hybrid method combining FDM and DPD is proposed to investigate the effect of platelet aggregation on the distribution of AP concentration. And the hybrid method is used to simulate thrombus formation on orifice flow. As for the effect of platelet aggregation, it is found that the distribution of AP concentration in the hybrid method is different from the distribution in FDM at the places of platelet aggregation. It is considered that the difference is induced by platelet aggregation. As for the distribution of thrombus, higher AP concentration and more aggregated APs are found around the reattachment point and in the recirculation area. It is considered that thrombus is mainly distributed at these places in the simulation. And according to our previous experimental results, thrombus is mainly distributed around the reattachment point and in the recirculation area. It is concluded that the effect of platelet aggregation on the distribution of AP concentration can be investigated by the hybrid method, and the computational results agree with our previous experimental results.
Collapse
Affiliation(s)
- Y Yi
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| | - M Tamagawa
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan
| |
Collapse
|
6
|
Ye T, Shi H, Phan-Thien N, Lim CT. The key events of thrombus formation: platelet adhesion and aggregation. Biomech Model Mechanobiol 2019; 19:943-955. [PMID: 31754949 DOI: 10.1007/s10237-019-01262-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/11/2019] [Indexed: 01/20/2023]
Abstract
Thrombus formation is a complex, dynamic and multistep process, involving biochemical reactions, mechanical stimulation, hemodynamics, and so on. In this study, we concentrate on its two crucial steps: (i) platelets adhered to a vessel wall, or simply platelet adhesion, and (ii) platelets clumping and arrested to the adherent platelets, named platelet aggregation. We report the first direct simulation of three modes of platelet adhesion, detachment, rolling adhesion and firm adhesion, as well as the formation, disintegration, arrestment and consolidation of platelet plugs. The results show that the bond dissociation in the detachment mode is mainly attributed to a high probability of rupturing bonds, such that any existing bond can be quickly ruptured and all bonds would be completely broken. In the rolling adhesion, however, it is mainly attributed to the strong traction from the shear flow or erythrocytes, causing that the bonds are ruptured at the trailing edge of the platelet. The erythrocytes play an important role in platelet activities, such as the formation, disintegration, arrestment and consolidation of platelet plugs. They exert an aggregate force on platelets, a repulsion at a near distance but an attraction at a far distance to the platelets. This aggregate force can promote platelets to form a plug and/or bring along a part of a platelet plug causing its disintegration. It also greatly influences the arrestment and consolidation of platelet plugs, together with the adhesive force from the thrombus.
Collapse
Affiliation(s)
- Ting Ye
- School of Mathematics, Jilin University, Qianjin Ave. 2699, Changchun, 130012, China.
| | - Huixin Shi
- School of Mathematics, Jilin University, Qianjin Ave. 2699, Changchun, 130012, China
| | - Nhan Phan-Thien
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Chwee Teck Lim
- Department of Mechanical Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
7
|
Gupta P, Zhang P, Sheriff J, Bluestein D, Deng Y. A Multiscale Model for Recruitment Aggregation of Platelets by Correlating with In Vitro Results. Cell Mol Bioeng 2019; 12:327-343. [PMID: 31662802 DOI: 10.1007/s12195-019-00583-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Introduction We developed a multiscale model to simulate the dynamics of platelet aggregation by recruitment of unactivated platelets flowing in viscous shear flows by an activated platelet deposited onto a blood vessel wall. This model uses coarse grained molecular dynamics (CGMD) for platelets at the microscale and dissipative particle dynamics (DPD) for the shear flow at the macroscale. Under conditions of relatively low shear, aggregation is mediated by fibrinogen via αIIbβ3 receptors. Methods The binding of αIIbβ3 and fibrinogen is modeled by a molecular-level hybrid force field consisting of Morse potential and Hooke law for the nonbonded and bonded interactions, respectively. The force field, parametrized in two different interaction scales, is calculated by correlating with the platelet contact area measured in vitro and the detaching force between αIIbβ3 and fibrinogen. Results Using our model, we derived, the relationship between recruitment force and distance between the centers of mass of two platelets, by integrating the molecular-scale inter-platelet interactions during recruitment aggregation in shear flows. Our model indicates that assuming a rigid-platelet model, underestimates the contact area by 89% and the detaching force by 93% as compared to a model that takes into account the platelet deformability leading to a prediction of a significantly lower attachment during recruitment. Conclusions The molecular-level predictive capability of our model sheds a light on differences observed between transient and permanent platelet aggregation patterns. The model and simulation framework can be further adapted to simulate initial thrombus formation involving multiple flowing platelets as well as deposition and adhesion onto blood vessels.
Collapse
Affiliation(s)
- Prachi Gupta
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600 USA
| | - Peng Zhang
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Jawaad Sheriff
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Danny Bluestein
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794 USA
| | - Yuefan Deng
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-3600 USA
| |
Collapse
|
8
|
Xu S, Xu Z, Kim OV, Litvinov RI, Weisel JW, Alber M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J R Soc Interface 2018; 14:rsif.2017.0441. [PMID: 29142014 DOI: 10.1098/rsif.2017.0441] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/19/2017] [Indexed: 01/20/2023] Open
Abstract
Thromboembolism, one of the leading causes of morbidity and mortality worldwide, is characterized by formation of obstructive intravascular clots (thrombi) and their mechanical breakage (embolization). A novel two-dimensional multi-phase computational model is introduced that describes active interactions between the main components of the clot, including platelets and fibrin, to study the impact of various physiologically relevant blood shear flow conditions on deformation and embolization of a partially obstructive clot with variable permeability. Simulations provide new insights into mechanisms underlying clot stability and embolization that cannot be studied experimentally at this time. In particular, model simulations, calibrated using experimental intravital imaging of an established arteriolar clot, show that flow-induced changes in size, shape and internal structure of the clot are largely determined by two shear-dependent mechanisms: reversible attachment of platelets to the exterior of the clot and removal of large clot pieces. Model simulations predict that blood clots with higher permeability are more prone to embolization with enhanced disintegration under increasing shear rate. In contrast, less permeable clots are more resistant to rupture due to shear rate-dependent clot stiffening originating from enhanced platelet adhesion and aggregation. These results can be used in future to predict risk of thromboembolism based on the data about composition, permeability and deformability of a clot under specific local haemodynamic conditions.
Collapse
Affiliation(s)
- Shixin Xu
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Zhiliang Xu
- Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Oleg V Kim
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rustem I Litvinov
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Biochemistry and Biotechnology, Kazan Federal University, Kazan 420008, Russian Federation
| | - John W Weisel
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark Alber
- Department of Mathematics, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA .,Department of Internal Medicine, Division of Clinical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.,Department of Applied and Computational Mathematics and Statistics, University of Notre Dame, Notre Dame, IN 46556, USA.,Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
9
|
Lykov K, Nematbakhsh Y, Shang M, Lim CT, Pivkin IV. Probing eukaryotic cell mechanics via mesoscopic simulations. PLoS Comput Biol 2017; 13:e1005726. [PMID: 28922399 PMCID: PMC5619828 DOI: 10.1371/journal.pcbi.1005726] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/28/2017] [Accepted: 08/16/2017] [Indexed: 11/18/2022] Open
Abstract
Cell mechanics has proven to be important in many biological processes. Although there is a number of experimental techniques which allow us to study mechanical properties of cell, there is still a lack of understanding of the role each sub-cellular component plays during cell deformations. We present a new mesoscopic particle-based eukaryotic cell model which explicitly describes cell membrane, nucleus and cytoskeleton. We employ Dissipative Particle Dynamics (DPD) method that provides us with the unified framework for modeling of a cell and its interactions in the flow. Data from micropipette aspiration experiments were used to define model parameters. The model was validated using data from microfluidic experiments. The validated model was then applied to study the impact of the sub-cellular components on the cell viscoelastic response in micropipette aspiration and microfluidic experiments.
Collapse
Affiliation(s)
- Kirill Lykov
- Institute of Computational Science, Faculty of Informatics, USI Lugano, Lugano, Switzerland
| | - Yasaman Nematbakhsh
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Menglin Shang
- BioSystems and Micromechanics (BioSyM) IRG, Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore, Singapore
| | - Chwee Teck Lim
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, Singapore
| | - Igor V. Pivkin
- Institute of Computational Science, Faculty of Informatics, USI Lugano, Lugano, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
10
|
Blumers AL, Tang YH, Li Z, Li X, Karniadakis GE. GPU-accelerated Red Blood Cells Simulations with Transport Dissipative Particle Dynamics. COMPUTER PHYSICS COMMUNICATIONS 2017; 217:171-179. [PMID: 29104303 PMCID: PMC5667691 DOI: 10.1016/j.cpc.2017.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mesoscopic numerical simulations provide a unique approach for the quantification of the chemical influences on red blood cell functionalities. The transport Dissipative Particles Dynamics (tDPD) method can lead to such effective multiscale simulations due to its ability to simultaneously capture mesoscopic advection, diffusion, and reaction. In this paper, we present a GPU-accelerated red blood cell simulation package based on a tDPD adaptation of our red blood cell model, which can correctly recover the cell membrane viscosity, elasticity, bending stiffness, and cross-membrane chemical transport. The package essentially processes all computational workloads in parallel by GPU, and it incorporates multi-stream scheduling and non-blocking MPI communications to improve inter-node scalability. Our code is validated for accuracy and compared against the CPU counterpart for speed. Strong scaling and weak scaling are also presented to characterizes scalability. We observe a speedup of 10.1 on one GPU over all 16 cores within a single node, and a weak scaling efficiency of 91% across 256 nodes. The program enables quick-turnaround and high-throughput numerical simulations for investigating chemical-driven red blood cell phenomena and disorders.
Collapse
Affiliation(s)
- Ansel L Blumers
- Department of Physics, Brown University, Providence, RI, USA
| | - Yu-Hang Tang
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Zhen Li
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | - Xuejin Li
- Division of Applied Mathematics, Brown University, Providence, RI, USA
| | | |
Collapse
|
11
|
Kamada H, Imai Y, Nakamura M, Ishikawa T, Yamaguchi T. Shear-induced platelet aggregation and distribution of thrombogenesis at stenotic vessels. Microcirculation 2017; 24. [PMID: 28109051 DOI: 10.1111/micc.12355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/17/2017] [Indexed: 12/31/2022]
Abstract
OBJECTIVE SIPA, which is mediated by vWF, is a key mechanism in arterial thrombosis under an abnormally high shear rate of blood flow. We investigated the influence of SIPA on thrombogenesis, focusing on alterations in blood flow at stenotic vessels. METHODS We carried out a computer simulation of thrombogenesis in stenotic vessels at three different injury positions (ie, upstream, apex, and downstream of the stenosis) to evaluate the effect of SIPA. RESULTS The results demonstrated that thrombus volume increased downstream of the stenosis. In particular, growth was enhanced significantly as blood flow velocity and severity of stenosis increased. The influence of SIPA was induced by continuous exposure to high shear rate; thus, SIPA had a greater effect from the apex to downstream of the stenosis along the vessel wall. The asymmetry of the impact of SIPA contributed to the distribution of the thrombus. Furthermore, we found that the degree of SIPA was prolonged in a stenotic vessel with a distal injury, whereas it was moderate with thrombus growth in a nonstenosed vessel. This occurred because platelets and vWF that underwent a high shear rate around the apex were transported to the region downstream of the stenosis. CONCLUSIONS These results suggest that thrombus formation downstream of the stenosis is easily affected by SIPA and hemodynamics.
Collapse
Affiliation(s)
- Hiroki Kamada
- Department of Diagnostic Radiology, Tohoku University Hospital, Sendai, Japan
| | - Yohsuke Imai
- School of Engineering, Tohoku University, Sendai, Japan
| | - Masanori Nakamura
- Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Takuji Ishikawa
- Department of Finemechanics, Tohoku University, Sendai, Japan
| | - Takami Yamaguchi
- Department of Biomedical Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
12
|
Fitzgibbon S, Spann AP, Qi QM, Shaqfeh ESG. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit. Biophys J 2016; 108:2601-2608. [PMID: 25992738 DOI: 10.1016/j.bpj.2015.04.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 01/07/2015] [Accepted: 04/09/2015] [Indexed: 10/23/2022] Open
Abstract
It has long been known that platelets undergo margination when flowing in blood vessels, such that there is an excess concentration near the vessel wall. We conduct experiments and three-dimensional boundary integral simulations of platelet-sized spherical particles in a microchannel 30 μm in height to measure the particle-concentration distribution profile and observe its margination at 10%, 20%, and 30% red blood cell hematocrit. The experiments involved adding 2.15-μm-diameter spheres into a solution of red blood cells, plasma, and water and flowing this mixture down a microfluidic channel at a wall shear rate of 1000 s(-1). Fluorescence imaging was used to determine the height and velocity of particles in the channel. Experimental results indicate that margination has largely occurred before particles travel 1 cm downstream and that hematocrit plays a role in the degree of margination. With simulations, we can track the trajectories of the particles with higher resolution. These simulations also confirm that margination from an initially uniform distribution of spheres and red blood cells occurs over the length scale of O(1 cm), with higher hematocrit showing faster margination. The results presented here, from both experiments and 3D simulations, may help explain the relationship between bleeding time in vessel trauma and red blood cell hematocrit as platelets move to a vessel wall.
Collapse
Affiliation(s)
- Sean Fitzgibbon
- Chemical Engineering, Stanford University, Stanford, California
| | - Andrew P Spann
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California
| | - Qin M Qi
- Chemical Engineering, Stanford University, Stanford, California.
| | - Eric S G Shaqfeh
- Chemical Engineering, Stanford University, Stanford, California; Mechanical Engineering, Stanford University, Stanford, California; Institute for Computational and Mathematical Engineering, Stanford University, Stanford, California
| |
Collapse
|
13
|
Li Z, Yazdani A, Tartakovsky A, Karniadakis GE. Transport dissipative particle dynamics model for mesoscopic advection-diffusion-reaction problems. J Chem Phys 2015; 143:014101. [PMID: 26156459 PMCID: PMC4491025 DOI: 10.1063/1.4923254] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/18/2015] [Indexed: 12/15/2022] Open
Abstract
We present a transport dissipative particle dynamics (tDPD) model for simulating mesoscopic problems involving advection-diffusion-reaction (ADR) processes, along with a methodology for implementation of the correct Dirichlet and Neumann boundary conditions in tDPD simulations. tDPD is an extension of the classic dissipative particle dynamics (DPD) framework with extra variables for describing the evolution of concentration fields. The transport of concentration is modeled by a Fickian flux and a random flux between tDPD particles, and the advection is implicitly considered by the movements of these Lagrangian particles. An analytical formula is proposed to relate the tDPD parameters to the effective diffusion coefficient. To validate the present tDPD model and the boundary conditions, we perform three tDPD simulations of one-dimensional diffusion with different boundary conditions, and the results show excellent agreement with the theoretical solutions. We also performed two-dimensional simulations of ADR systems and the tDPD simulations agree well with the results obtained by the spectral element method. Finally, we present an application of the tDPD model to the dynamic process of blood coagulation involving 25 reacting species in order to demonstrate the potential of tDPD in simulating biological dynamics at the mesoscale. We find that the tDPD solution of this comprehensive 25-species coagulation model is only twice as computationally expensive as the conventional DPD simulation of the hydrodynamics only, which is a significant advantage over available continuum solvers.
Collapse
Affiliation(s)
- Zhen Li
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Alireza Yazdani
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| | - Alexandre Tartakovsky
- Computational Mathematics Group, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, Rhode Island 02912, USA
| |
Collapse
|
14
|
Tosenberger A, Ataullakhanov F, Bessonov N, Panteleev M, Tokarev A, Volpert V. Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method. J Math Biol 2015; 72:649-81. [PMID: 26001742 DOI: 10.1007/s00285-015-0891-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 04/22/2015] [Indexed: 01/04/2023]
Abstract
The paper is devoted to mathematical modelling of clot growth in blood flow. Great complexity of the hemostatic system dictates the need of usage of the mathematical models to understand its functioning in the normal and especially in pathological situations. In this work we investigate the interaction of blood flow, platelet aggregation and plasma coagulation. We develop a hybrid DPD-PDE model where dissipative particle dynamics (DPD) is used to model plasma flow and platelets, while the regulatory network of plasma coagulation is described by a system of partial differential equations. Modelling results confirm the potency of the scenario of clot growth where at the first stage of clot formation platelets form an aggregate due to weak inter-platelet connections and then due to their activation. This enables the formation of the fibrin net in the centre of the platelet aggregate where the flow velocity is significantly reduced. The fibrin net reinforces the clot and allows its further growth. When the clot becomes sufficiently large, it stops growing due to the narrowed vessel and the increase of flow shear rate at the surface of the clot. Its outer part is detached by the flow revealing the inner part covered by fibrin. This fibrin cap does not allow new platelets to attach at the high shear rate, and the clot stops growing. Dependence of the final clot size on wall shear rate and on other parameters is studied.
Collapse
Affiliation(s)
- A Tosenberger
- Institut des Hautes Etudes Scientifiques, Bures-sur-Yvette, France.
| | - F Ataullakhanov
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - N Bessonov
- Institute of Mechanical Engineering Problems, Saint Petersburg, Russian Federation
| | - M Panteleev
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - A Tokarev
- Federal Research and Clinical Centre of Pediatric Hematology, Oncology and Immunology, Ministry of Healthcare of the Russian Federation, Moscow, Russian Federation
| | - V Volpert
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Lyon, France
| |
Collapse
|
15
|
Abstract
Intravascular blood clots form in an environment in which hydrodynamic forces dominate and in which fluid-mediated transport is the primary means of moving material. The clotting system has evolved to exploit fluid dynamic mechanisms and to overcome fluid dynamic challenges to ensure that clots that preserve vascular integrity can form over the wide range of flow conditions found in the circulation. Fluid-mediated interactions between the many large deformable red blood cells and the few small rigid platelets lead to high platelet concentrations near vessel walls where platelets contribute to clotting. Receptor-ligand pairs with diverse kinetic and mechanical characteristics work synergistically to arrest rapidly flowing cells on an injured vessel. Variations in hydrodynamic stresses switch on and off the function of key clotting polymers. Protein transport to, from, and within a developing clot determines whether and how fast it grows. We review ongoing experimental and modeling research to understand these and related phenomena.
Collapse
Affiliation(s)
- Aaron L. Fogelson
- Departments of Mathematics and Bioengineering, University of Utah, Salt Lake City, Utah 84112
| | - Keith B. Neeves
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401
| |
Collapse
|
16
|
Omori T, Imai Y, Kikuchi K, Ishikawa T, Yamaguchi T. Hemodynamics in the microcirculation and in microfluidics. Ann Biomed Eng 2014; 43:238-57. [PMID: 25398331 DOI: 10.1007/s10439-014-1180-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Hemodynamics in microcirculation is important for hemorheology and several types of circulatory disease. Although hemodynamics research has a long history, the field continues to expand due to recent advancements in numerical and experimental techniques at the micro-and nano-scales. In this paper, we review recent computational and experimental studies of blood flow in microcirculation and microfluidics. We first focus on the computational studies of red blood cell (RBC) dynamics, from the single cellular level to mesoscopic multiple cellular flows, followed by a review of recent computational adhesion models for white blood cells, platelets, and malaria-infected RBCs, in which the cell adhesion to the vascular wall is essential for cellular function. Recent developments in optical microscopy have enabled the observation of flowing blood cells in microfluidics. Experimental particle image velocimetry and particle tracking velocimetry techniques are described in this article. Advancements in micro total analysis system technologies have facilitated flowing cell separation with microfluidic devices, which can be used for biomedical applications, such as a diagnostic tool for breast cancer or large intestinal tumors. In this paper, cell-separation techniques are reviewed for microfluidic devices, emphasizing recent advances and the potential of this fast-evolving research field in the near future.
Collapse
Affiliation(s)
- Toshihiro Omori
- Department of Bioengineering and Robotics, Tohoku University, Aoba 6-6-01, Sendai, Miyagi, Japan,
| | | | | | | | | |
Collapse
|
17
|
Mountrakis L, Lorenz E, Hoekstra AG. Where do the platelets go? A simulation study of fully resolved blood flow through aneurysmal vessels. Interface Focus 2014; 3:20120089. [PMID: 24427532 DOI: 10.1098/rsfs.2012.0089] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Despite the importance of platelets in the formation of a thrombus, their transport in complex flows has not yet been studied in detail. In this paper we simulated red blood cells and platelets to explore their transport behaviour in aneurysmal geometries. We considered two aneurysms with different aspect ratios (AR = 1.0, 2.0) in the presence of fast and slow blood flows (Re = 10, 100), and examined the distributions of the cells. Low velocities in the parent vessel resulted in a large stagnation zone inside the cavity, leaving the initial distribution almost unchanged. In fast flows, an influx of platelets into the aneurysm was observed, leading to an elevated concentration. The connection of the platelet-rich cell-free layer (CFL) with the outer regions of the recirculation zones leads to their increased platelet concentration. These platelet-enhanced recirculation zones produced a diverse distribution of cells inside the aneurysm, for the different aspect ratios. A thin red blood CFL that was occupied by platelets was observed on the top of the wide-necked aneurysm, whereas a high-haematocrit region very close to the vessel wall was present in the narrow-necked case. The simulations revealed that non-trivial distributions of red blood cells and platelets are possible inside aneurysmal geometries, giving rise to several hypotheses on the formation of a thrombus, as well as to the wall weakening and the possible rupture of an aneurysm.
Collapse
Affiliation(s)
- L Mountrakis
- Computational Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - E Lorenz
- Computational Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| | - A G Hoekstra
- Computational Science, Faculty of Science, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Bodnár T, Fasano A, Sequeira A. Mathematical Models for Blood Coagulation. FLUID-STRUCTURE INTERACTION AND BIOMEDICAL APPLICATIONS 2014. [DOI: 10.1007/978-3-0348-0822-4_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Modelling of thrombus growth in flow with a DPD-PDE method. J Theor Biol 2013; 337:30-41. [DOI: 10.1016/j.jtbi.2013.07.023] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 05/24/2013] [Accepted: 07/22/2013] [Indexed: 11/22/2022]
|
20
|
Mesoscale modeling: solving complex flows in biology and biotechnology. Trends Biotechnol 2013; 31:426-34. [DOI: 10.1016/j.tibtech.2013.05.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 05/03/2013] [Accepted: 05/04/2013] [Indexed: 11/24/2022]
|
21
|
Soares JS, Gao C, Alemu Y, Slepian M, Bluestein D. Simulation of platelets suspension flowing through a stenosis model using a dissipative particle dynamics approach. Ann Biomed Eng 2013; 41:2318-33. [PMID: 23695489 DOI: 10.1007/s10439-013-0829-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Stresses on blood cellular constituents induced by blood flow can be represented by a continuum approach down to the μm level; however, the molecular mechanisms of thrombosis and platelet activation and aggregation are on the order of nm. The coupling of the disparate length and time scales between molecular and macroscopic transport phenomena represents a major computational challenge. In order to bridge the gap between macroscopic flow scales and the cellular scales with the goal of depicting and predicting flow induced thrombogenicity, multi-scale approaches based on particle methods are better suited. We present a top-scale model to describe bulk flow of platelet suspensions: we employ dissipative particle dynamics to model viscous flow dynamics and present a novel and general no-slip boundary condition that allows the description of three-dimensional viscous flows through complex geometries. Dissipative phenomena associated with boundary layers and recirculation zones are observed and favorably compared to benchmark viscous flow solutions (Poiseuille and Couette flows). Platelets in suspension, modeled as coarse-grained finite-sized ensembles of bound particles constituting an enclosed deformable membrane with flat ellipsoid shape, show self-orbiting motions in shear flows consistent with Jeffery's orbits, and are transported with the flow, flipping and colliding with the walls and interacting with other platelets.
Collapse
Affiliation(s)
- Joao S Soares
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, T15-090, Stony Brook, NY, 11794-8151, USA
| | | | | | | | | |
Collapse
|
22
|
Whelihan MF, Mann KG. The role of the red cell membrane in thrombin generation. Thromb Res 2013; 131:377-82. [DOI: 10.1016/j.thromres.2013.01.023] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/14/2013] [Accepted: 01/14/2013] [Indexed: 11/30/2022]
|
23
|
Wang W, King MR. Multiscale Modeling of Platelet Adhesion and Thrombus Growth. Ann Biomed Eng 2012; 40:2345-54. [DOI: 10.1007/s10439-012-0558-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 03/22/2012] [Indexed: 01/14/2023]
|
24
|
Kamada H, Imai Y, Nakamura M, Ishikawa T, Yamaguchi T. Computational analysis on the mechanical interaction between a thrombus and red blood cells: possible causes of membrane damage of red blood cells at microvessels. Med Eng Phys 2012; 34:1411-20. [PMID: 22356820 DOI: 10.1016/j.medengphy.2012.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 12/08/2011] [Accepted: 01/13/2012] [Indexed: 11/15/2022]
Abstract
Previous studies investigating thrombus formation have not focused on the physical interaction between red blood cells (RBCs) and thrombus, although they have been speculated that some pathological conditions such as microangiopathic hemolytic anemia (MAHA) stem from interactions between RBCs and thrombi. In this study, we investigated the mechanical influence of RBCs on primary thrombi during hemostasis. We also explored the mechanics and aggravating factors of intravascular hemolysis. Computer simulations of primary thrombogenesis in the presence and the absence of RBCs demonstrated that RBCs are unlikely to affect the thrombus height and coverage, although their presence may change microvessel hemodynamics and platelet transportation to the injured wall. Our results suggest that intravascular hemolysis owing to RBC membrane damage would be promoted by three hemodynamic factors: (1) dispersibility of platelet thrombi, because more frequent spatial thrombus formation decreases the time available for an RBC to recover its shape and enforces more severe deformation; (2) platelet thrombus stiffness, because a stiffer thrombus increases the degree of RBC deformation upon collision; and (3) vessel size and hemocyte density, because a smaller vessel diameter and higher hemocyte density decrease the room for RBCs to escape as they come closer to a thrombus, thereby enhancing thrombus-RBC interactions.
Collapse
Affiliation(s)
- Hiroki Kamada
- School of Medicine, Tohoku University, Aoba-ku, Sendai 980-8579, Japan.
| | | | | | | | | |
Collapse
|
25
|
Janoschek F, Toschi F, Harting J. Simulations of Blood Flow in Plain Cylindrical and Constricted Vessels with Single Cell Resolution. MACROMOL THEOR SIMUL 2011. [DOI: 10.1002/mats.201100013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Lei H, Fedosov DA, Karniadakis GE. Time-dependent and outflow boundary conditions for Dissipative Particle Dynamics. JOURNAL OF COMPUTATIONAL PHYSICS 2011; 230:3765-377. [PMID: 21499548 PMCID: PMC3076898 DOI: 10.1016/j.jcp.2011.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We propose a simple method to impose both no-slip boundary conditions at fluid-wall interfaces and at outflow boundaries in fully developed regions for Dissipative Particle Dynamics (DPD) fluid systems. The procedure to enforce the no-slip condition is based on a velocity-dependent shear force, which is a generalized force to represent the presence of the solid-wall particles and to maintain locally thermodynamic consistency. We show that this method can be implemented in both steady and time-dependent fluid systems and compare the DPD results with the continuum limit (Navier-Stokes) results. We also develop a force-adaptive method to impose the outflow boundary conditions for fully developed flow with unspecified outflow velocity profile or pressure value. We study flows over the backward-facing step and in idealized arterial bifurcations using a combination of the two new boundary methods with different flow rates. Finally, we explore the applicability of the outflow method in time-dependent flow systems. The outflow boundary method works well for systems with Womersley number of O(1), i.e., when the pressure and flowrate at the outflow are approximately in-phase.
Collapse
Affiliation(s)
- Huan Lei
- Division of Applied Mathematics, Brown University, Providence, RI 02912 USA
| | - Dmitry A. Fedosov
- Division of Applied Mathematics, Brown University, Providence, RI 02912 USA
- Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - George Em Karniadakis
- Division of Applied Mathematics, Brown University, Providence, RI 02912 USA
- Corresponding author,
| |
Collapse
|