1
|
Kalita S, Danovich D, Shaik S. Origins of the Superiority of Oscillating Electric Fields for Disrupting Senile Plaques: Insights from the 7-Residue Fragment and the Full-length Aβ-42 Peptide. J Am Chem Soc 2025; 147:2626-2641. [PMID: 39772489 DOI: 10.1021/jacs.4c14791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Our recent molecular dynamics simulations of decomposing Alzheimer's disease plaques, under oscillating- and static external electric fields (Os-EEFs and St-EEFs), revealed the superiority of Os-EEF for decomposing plaques consisting of the 7-residue peptide segment. This conclusion is now reinforced by studying the dimers of the short peptides and trimers of the full-length Aβ-42 peptide. Thus, the dispersed peptides obtained following St-EEF applications reformed the plaques once the St-EEF subsided. In contrast, plaques originating from the application of Os-EEF remained dispersed for long time scales. The present study provides insights into these results by modeling the decomposition modes that transpire under both field types. Additionally, this study provides insights into the frequency effects on the decomposition processes within the THz-MHz regions. The simulation shows that the Os-EEF in the lower frequency range (≤GHz) decomposes the plaque on a time scale of ∼50 ns, whereas the higher frequency Os-EEFs (≥THz) are less effective. As such, Os-EEFs with moderate-to-low frequencies (≤GHz) lead to an "explosion," whereby the peptides fly distantly apart and inhibit plaque reformation. By contrast, St-EEFs form parallel peptide pairs, which are stabilized by the EEF due to the large dipole moment of the ensemble. Thus, St-EEF applications lead to sluggish and reversible plaque decomposition processes. We further conclude that the Os-EEF impact is maximal for short pulses, which prevents the EEF propensity to arrange the peptides in parallel pairs. The superiority of the Os-EEF over the St-EEF is maintained irrespective of the peptides' length. A model is formulated that predicts the dependence of the decomposition time scale on the EEF.
Collapse
Affiliation(s)
- Surajit Kalita
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - David Danovich
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
2
|
Hillmann J, Maass N, Bauerschlag DO, Flörkemeier I. Promising new drugs and therapeutic approaches for treatment of ovarian cancer-targeting the hallmarks of cancer. BMC Med 2025; 23:10. [PMID: 39762846 PMCID: PMC11706140 DOI: 10.1186/s12916-024-03826-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy. Despite the approval of promising targeted therapy such as bevacizumab and PARP inhibitors, 5-year survival has not improved significantly. Thus, there is an urgent need for new therapeutics. New advancements in therapeutic strategies target the pivotal hallmarks of cancer. This review is giving an updated overview of innovative and upcoming therapies for the treatment of ovarian cancer that focuses specific on the hallmarks of cancer. The hallmarks of cancer constitute a broad concept to reenact complexity of malignancies and furthermore identify possible targets for new treatment strategies. For this purpose, we analyzed approvals and current clinical phase III studies (registered at ClinicalTrials.gov (National Library of Medicine, National Institutes of Health; U.S. Department of Health and Human Services, 2024)) for new drugs on the basis of their mechanisms of action and identified new target approaches. A broad spectrum of new promising drugs is currently under investigation in clinical phase III studies targeting mainly the hallmarks "self-sufficiency in growth signals," "genomic instability," and "angiogenesis." The benefit of immune checkpoint inhibitors in ovarian cancer has been demonstrated for the first time. Besides, targeting the tumor microenvironment is of growing interest. Replicative immortality, energy metabolism, tumor promoting inflammation, and the microbiome of ovarian cancer are still barely targeted by drugs. Nevertheless, precision medicine, which focuses on specific disease characteristics, is becoming increasingly important in cancer treatment.
Collapse
Affiliation(s)
- Julia Hillmann
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Nicolai Maass
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany
| | - Dirk O Bauerschlag
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
- Department of Gynaecology, Jena University Hospital, Jena, Germany.
| | - Inken Flörkemeier
- Department of Gynaecology and Obstetrics, University and University Medical Center Schleswig-Holstein Campus Kiel, Kiel, Germany.
| |
Collapse
|
3
|
Xiao T, Zheng H, Zu K, Yue Y, Wang Y. Tumor-treating fields in cancer therapy: advances of cellular and molecular mechanisms. Clin Transl Oncol 2025; 27:1-14. [PMID: 38884919 DOI: 10.1007/s12094-024-03551-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Tumor-Treating Fields (TTFields) use intermediate-frequency and low-intensity electric fields to inhibit tumor cells. However, their mechanisms are still not well understood. This article reviews their key antitumor mechanisms at the cellular and molecular levels, including inhibition of proliferation, induction of death, disturbance of migration, and activation of the immune system. The multifaceted biological effects in combination with other cancer treatments are also summarized. The deep insight into their mechanism will help develop more potential antitumor treatments.
Collapse
Affiliation(s)
- Tong Xiao
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Hao Zheng
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Kaiyang Zu
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Youjia Yue
- School of Biomedical Engineeringg, Capital Medical University, Beijing, 100069, China
| | - Ying Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
4
|
Weise K, Madsen KH, Worbs T, Knösche TR, Korshøj A, Thielscher A. A Leadfield-Free Optimization Framework for Transcranially Applied Electric Currents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.18.629095. [PMID: 39763744 PMCID: PMC11702683 DOI: 10.1101/2024.12.18.629095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Background Transcranial Electrical Stimulation (TES), Temporal Interference Stimulation (TIS), Electroconvulsive Therapy (ECT) and Tumor Treating Fields (TTFields) are based on the application of electric current patterns to the brain. Objective The optimal electrode positions, shapes and alignments for generating a desired current pattern in the brain vary between persons due to anatomical variability. The aim is to develop a flexible and efficient computational approach to determine individually optimal montages based on electric field simulations. Methods We propose a leadfield-free optimization framework that allows the electrodes to be placed freely on the head surface. It is designed for the optimization of montages with a low to moderate number of spatially extended electrodes or electrode arrays. Spatial overlaps are systematically prevented during optimization, enabling arbitrary electrode shapes and configurations. The approach supports maximizing the field intensity in target region-of-interests (ROI) and optimizing for a desired focality-intensity tradeoff. Results We demonstrate montage optimization for standard two-electrode TES, focal center-surround TES, TIS, ECT and TTFields. Comparisons against reference simulations are used to validate the performance of the algorithm. The system requirements are kept moderate, allowing the optimization to run on regular notebooks and promoting its use in basic and clinical research. Conclusions The new framework complements existing optimization methods that require small electrodes, a predetermined discretization of the electrode positions on the scalp and work best for multi-channel systems. It strongly extends the possibilities to optimize electrode montages towards application-specific aims and supports researchers in discovering innovative stimulation schemes. The framework is available in SimNIBS.
Collapse
Affiliation(s)
- Konstantin Weise
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Methods and Development Group "Brain Networks", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Leipzig University of Applied Sciences (HTWK), Institute for Electrical Power Engineering, Leipzig, Germany
| | - Kristoffer H Madsen
- Technical University of Denmark, Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Torge Worbs
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Technical University of Denmark, Section for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| | - Thomas R Knösche
- Leipzig University of Applied Sciences (HTWK), Institute for Electrical Power Engineering, Leipzig, Germany
| | - Anders Korshøj
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Department of Radiology and Nuclear Medicine, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
- Technical University of Denmark, Section for Magnetic Resonance, Department of Health Technology, Kongens Lyngby, Denmark
| |
Collapse
|
5
|
Hu X, Qiu Z, Yang Y, Xu T, Sheng K, Lu W, Xie J, Xu B. Implantable Ultrasound-Powered MXene/PVA Hydrogel-Based Generator for Treatment of Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2309610. [PMID: 39665226 DOI: 10.1002/advs.202309610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/17/2024] [Indexed: 12/13/2024]
Abstract
Glioblastoma (GBM) is a lethal disease with a poor prognosis due to its strong infiltration, which makes it difficult to remove completely. In this study, an implantable, modulus-tunable, and ultrasound-powered MXene/PVA hydrogel-based tumor treatment device (UP-MPH-TTD), which generates specific electromagnetic alternating fields that disrupt the mitosis of cancer cells without adversely affecting normal neurons is developed. The MXene/PVA hydrogel is used to form a tumor treatment field due to its high biocompatibility, excellent flexibility, and high conductivity, which improves ultrasonic electrical conversion efficiency and significantly reduces the size of the equipment. The implantable UP-MPH-TTD is wirelessly ultrasound-powered, small-sized, lightweight, and simply structured, significantly boosting therapeutic efficiency and reducing restrictions on patient movement. In vitro and in vivo experiments confirmed the device's therapeutic effect, demonstrating a ≈92% inhibition rate in the growth of clinical tumor cells and a 73% reduction in tumor area in tumor-bearing mice. The promising results indicate the broad application potential of the device in the treatment and prognostic improvement of GBM.
Collapse
Affiliation(s)
- Xiaoping Hu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
| | - Ziyi Qiu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
| | - Yilin Yang
- Faculty of Engineering, Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR, 999077, P. R. China
| | - Ting Xu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
| | - Kai Sheng
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
| | - Weicheng Lu
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Jingdun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Bingzhe Xu
- School of Biomedical Engineering, Sun Yat-sen University, No. 135, Xingang Xi Road, Guangzhou, 510275, P. R. China
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No.66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
| |
Collapse
|
6
|
Bai F, Deng Y, Li L, Lv M, Razzokov J, Xu Q, Xu Z, Chen Z, Chen G, Chen Z. Advancements and challenges in brain cancer therapeutics. EXPLORATION (BEIJING, CHINA) 2024; 4:20230177. [PMID: 39713205 PMCID: PMC11655316 DOI: 10.1002/exp.20230177] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/02/2024] [Indexed: 12/24/2024]
Abstract
Treating brain tumors requires a nuanced understanding of the brain, a vital and delicate organ. Location, size, tumor type, and surrounding tissue health are crucial in developing treatment plans. This review comprehensively summarizes various treatment options that are available or could be potentially available for brain tumors, including physical therapies (radiotherapy, ablation therapy, photodynamic therapy, tumor-treating field therapy, and cold atmospheric plasma therapy) and non-physical therapies (surgical resection, chemotherapy, targeted therapy, and immunotherapy). Mechanisms of action, potential side effects, indications, and latest developments, as well as their limitations, are highlighted. Furthermore, the requirements for personalized, multi-modal treatment approaches in this rapidly evolving field are discussed, emphasizing the balance between efficacy and patient safety.
Collapse
Affiliation(s)
- Fan Bai
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
| | - Yueyang Deng
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Long Li
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
| | - Ming Lv
- Department of Medical EngineeringMedical Supplies Center of Chinese PLA General HospitalBeijingChina
| | - Jamoliddin Razzokov
- Institute of Fundamental and Applied ResearchNational Research University TIIAMETashkentUzbekistan
- Laboratory of Experimental BiophysicsCentre for Advanced TechnologiesTashkentUzbekistan
- Department of Biomedical EngineeringTashkent State Technical UniversityTashkentUzbekistan
| | - Qingnan Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhen Xu
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
| | - Zhaowei Chen
- Institute of Food Safety and Environment MonitoringMOE Key Laboratory for Analytical Science of Food Safety and BiologyCollege of ChemistryFuzhou UniversityFuzhouChina
| | - Guojun Chen
- Department of Biomedical EngineeringMcGill UniversityMontrealQuebecCanada
- Rosalind & Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - Zhitong Chen
- Paul C Lauterbur Research Center for Biomedical Imaging, Institute of Biomedical and Health EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenChina
- Advanced Therapeutic CenterNational Innovation Center for Advanced Medical DevicesShenzhenChina
- University of Chinese Academy of SciencesShenzhenGuangdongP. R. China
- Key Laboratory of Biomedical Imaging Science and SystemChinese Academy of SciencesShenzhenChina
| |
Collapse
|
7
|
Minnaar CA, Szigeti GP, Szasz A. The Synergy of Thermal and Non-Thermal Effects in Hyperthermic Oncology. Cancers (Basel) 2024; 16:3908. [PMID: 39682096 DOI: 10.3390/cancers16233908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND Modulated electro-hyperthermia (mEHT) is unique due to its combination of thermal and non-thermal effects. METHOD This report summarizes the literature on the effects of mEHT observed in vitro and in vivo. RESULTS The thermal and electrical heterogeneity of tissues allows the radiofrequency signal to selectively target malignant tissue. The applied modulation appears to activate various apoptotic pathways, predominantly leading to immunogenic cell death (ICD). ICD promotes the release of damage-associated molecular patterns, potentially producing tumour-specific antigen-presenting cells. This abscopal-type effect may target distant metastases while treating the primary tumour locally. This immune memory effect is like vaccination mechanisms. CONCLUSIONS The application of mEHT has the potential to expand from local to systemic disease, enabling the simultaneous treatment of micro- and macro-metastases.
Collapse
Affiliation(s)
- Carrie Anne Minnaar
- Department of Radiation Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Gyula Peter Szigeti
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- MedTech Innovation and Education Center, University Research and Innovation Center, Óbuda University, 1034 Budapest, Hungary
| | - Andras Szasz
- Department of Biotechnics, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| |
Collapse
|
8
|
Wen J, Xiong L, Wang S, Qiu X, Cui J, Peng F, Liu X, Lu J, Bian H, Chen D, Chang J, Yao Z, Fan S, Zhou D, Li Z, Liu J, Liu H, Chen X, Chen L. Prediction of intracranial electric field strength and analysis of treatment protocols in tumor electric field therapy targeting gliomas of the brain. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108490. [PMID: 39520874 DOI: 10.1016/j.cmpb.2024.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Tumor Electric Field Therapy (TEFT) is a new treatment for glioblastoma cells with significant effect and few side effects. However, it is difficult to directly measure the intracranial electric field generated by TEFT, and the inability to control the electric field intensity distribution in the tumor target area also limits the clinical therapeutic effect of TEFT. It is a safe and effective way to construct an efficient and accurate prediction model of intracranial electric field intensity of TEFT by numerical simulation. METHODS Different from the traditional methods, in this study, the brain tissue was segmented based on the MRI data of patients with retained spatial location information, and the spatial position of the brain tissue was given the corresponding electrical parameters after segmentation. Then, a single geometric model of the head profile with the transducer array is constructed, which is assembled with an electrical parameter matrix containing tissue position information. After applying boundary conditions on the transducer, the intracranial electric field intensity could be solved in the frequency domain. The effects of transducer array mode, load voltage and voltage frequency on the intracranial electric field strength were further analyzed. Finally, planning system software was developed for optimizing TEFT treatment regimens for patients. RESULTS Experimental validation and comparison with existing results demonstrate the proposed method has a more efficient and pervasive modeling approach with higher computational accuracy while preserving the details of MRI brain tissue structure completely. In the optimization analysis of treatment protocols, it was found that increasing the load voltage could effectively increase the electric field intensity in the target area, while the effect of voltage frequency on the electric field intensity was very limited. CONCLUSIONS The results showed that adjusting the transducer array mode was the key method for making targeted treatment plans. The proposed method is capable prediction of intracranial electric field strength with high accuracy and provide guidance for the design of the TEFT therapy process. This study provides a valuable reference for the application of TEFT in clinical practice.
Collapse
Affiliation(s)
- Jun Wen
- College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Lingzhi Xiong
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Shulu Wang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jianqiao Cui
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Fan Peng
- Public Course Teaching Department, Changsha Health Vocational College, Changsha 410100, China
| | - Xiang Liu
- Hunan Drug Inspection Center, Changsha, Hunan, China
| | - Jian Lu
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Haikuo Bian
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dikang Chen
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Jiusheng Chang
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Zhengxi Yao
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Sheng Fan
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Dan Zhou
- Hunan An Tai Kang Cheng Biotechnology Co., Changsha, Hunan, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China
| | - Xu Chen
- The First Clinical College, China Medical University, Shenyang, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
9
|
Chen H, Xu R, Xu E, Chen Y, Niu C, Chen Y. Construction and performance evaluation of polyguluronic acid polysaccharides-based drug delivery systems. Colloids Surf B Biointerfaces 2024; 242:114083. [PMID: 39029246 DOI: 10.1016/j.colsurfb.2024.114083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/05/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
Polysaccharides have garnered significant attention as potential nanoparticle carriers for targeted tumor therapy due to their excellent biodegradability and biocompatibility. Polyguluronic acid (PG) is a homogeneous acidic polysaccharide fragment derived from alginate, which is found in brown algae, possesses excellent bioactivities, unique properties. This study explored the immunomodulatory activity of PG and developed PG-based nanogels through modified disulfide bonds and Ca2+ dual crosslinking. We characterized their structure, assessed their drug-loading and release properties, and ultimately validated both the safety of the nanocarrier and the in vitro anti-tumor efficacy of the encapsulated drug. Results indicated that PG significantly enhanced the proliferative activity and phagocytosis of RAW264.7 cells while promoting reactive oxygen species (ROS) production and cytokine secretion. The study identified TLR4 as the primary receptor for PG recognition in RAW264.7 cells. Furthermore, PG-based drug-carrying nanogels were prepared, exhibiting uniform sizes of about 184 nm and demonstrating exceptional encapsulation efficiency (82.15 ± 0.82 %) and drug loading capacity (8.12 ± 0.08 %). In vitro release experiments showed that these nanogels could responsively release drugs under conditions of high glutathione (GSH) reduction, facilitating drug accumulation at tumor sites and enhancing therapeutic efficacy. This research not only expands the application of PG in drug delivery systems but also provides valuable insights into leveraging natural immunomodulatory polysaccharides as carriers for targeted drug delivery.
Collapse
Affiliation(s)
- Huilin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Ran Xu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Enyu Xu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Yan Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China
| | - Chunyu Niu
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| | - Yin Chen
- College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, People's Republic of China.
| |
Collapse
|
10
|
Wang L, Chen C, Xiao Y, Gong R, Shen J, Lu M. Personalized optimization strategy for electrode array layout in TTFields of glioblastoma. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING 2024; 40:e3859. [PMID: 39154656 DOI: 10.1002/cnm.3859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/16/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024]
Abstract
Tumor treating fields (TTFields) is a novel therapeutic approach for the treatment of glioblastoma. The electric field intensity is a critical factor in the therapeutic efficacy of TTFields, as stronger electric field can more effectively impede the proliferation and survival of tumor cells. In this study, we aimed to improve the therapeutic effectiveness of TTFields by optimizing the position of electrode arrays, resulting in an increased electric field intensity at the tumor. Three representative head models of real glioblastoma patients were used as the research subjects in this study. The improved subtraction-average-based optimization (ISABO) algorithm based on circle chaos mapping, opposition-based learning and golden sine strategy, was employed to optimize the positions of the four sets of electrode arrays on the scalp. The electrode positions are dynamically adjusted through iterative search to maximize the electric field intensity at the tumor. The experimental results indicate that, in comparison to the conventional layout, the positions of the electrode arrays obtained by the ISABO algorithm can achieve average electric field intensity of 1.7887, 2.0058, and 1.3497 V/cm at the tumor of three glioblastoma patients, which are 23.6%, 29.4%, and 8.5% higher than the conventional layout, respectively. This study demonstrates that optimizing the location of the TTFields electrode array using the ISABO algorithm can effectively enhance the electric field intensity and treatment coverage in the tumor area, offering a more effective approach for personalized TTFields treatment.
Collapse
Affiliation(s)
- Liang Wang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Chunxiao Chen
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Yueyue Xiao
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Rongfang Gong
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Jun Shen
- Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Ming Lu
- Department of Radiology, GuiQian International General Hospital, Guiyang, China
| |
Collapse
|
11
|
Zheng M, Wang Y, Chen S, Suo Y, Yu J, Zhang X. Enhancing Electric Field Distribution in the Pancreas for Improved TTFields Therapy: A Computational Modeling Investigation. IEEE Trans Biomed Eng 2024; 71:2612-2619. [PMID: 38564342 DOI: 10.1109/tbme.2024.3383818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Tumor treating fields (TTFields) therapy has shown effectiveness in glioblastoma treatment and holds potential for other cancers. However, its application in pancreatic cancer and the distribution of electric fields in pancreas remain unexplored. This study aims to investigate the electric field distributions in pancreatic regions using different array configurations for TTFields therapy. METHODS Computational modelling was employed to simulate electric field distributions, and quantitative analysis was conducted. Human body impedance measurements were used to optimize the electric properties of the model. Various array configurations were examined to assess their impact on the electric field distributions. RESULTS The study revealed that well-positioned arrays, specifically the combination of 20-piece transducer arrays in anterior-posterior orientation and 13-piece transducer arrays in left-right orientation, consistently achieved electric fields exceeding the 1V/cm threshold in over 99.4% of the pancreas. Even with a reduced number of transducers (13 pieces for both orientations), sufficient electric field coverage was achieved, exceeding the threshold in over 92.9% of the pancreas. Additionally, different array placements within the same orientation were explored to address clinical challenges such as skin rash and patient anatomical variations. CONCLUSIONS This research lays the groundwork for understanding TTFields distribution within the abdomen, offering insights into optimizing array configurations for improved electric field delivery. These results offer promises of advancing TTFields therapy for pancreatic cancer towards clinical applications, and potentially enhancing treatment efficacy and patient outcomes.
Collapse
|
12
|
Liang T, Gu L, Kang X, Li J, Song Y, Wang Y, Ma W. Programmed cell death disrupts inflammatory tumor microenvironment (TME) and promotes glioblastoma evolution. Cell Commun Signal 2024; 22:333. [PMID: 38890642 PMCID: PMC11184850 DOI: 10.1186/s12964-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/01/2024] [Indexed: 06/20/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor and has a dismal prognosis even under the current first-line treatment, with a 5-year survival rate less than 7%. Therefore, it is important to understand the mechanism of treatment resistance and develop new anti-tumor strategies. Induction of programmed cell death (PCD) has become a promising anti-tumor strategy, but its effectiveness in treating GBM remains controversial. On the one hand, PCD triggers tumor cell death and then release mediators to draw in immune cells, creating a pro-inflammatory tumor microenvironment (TME). One the other hand, mounting evidence suggests that PCD and inflammatory TME will force tumor cells to evolve under survival stress, leading to tumor recurrence. The purpose of this review is to summarize the role of PCD and inflammatory TME in the tumor evolution of GBM and promising methods to overcome tumor evolution.
Collapse
Affiliation(s)
- Tingyu Liang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lingui Gu
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xiaoman Kang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- '4+4' Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junlin Li
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yixuan Song
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Eight-year Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
13
|
Lan J, Liu Y, Chen J, Liu H, Feng Y, Liu J, Chen L. Advanced tumor electric fields therapy: A review of innovative research and development and prospect of application in glioblastoma. CNS Neurosci Ther 2024; 30:e14720. [PMID: 38715344 PMCID: PMC11077002 DOI: 10.1111/cns.14720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is an aggressive malignant tumor with a high mortality rate and is the most prevalent primary intracranial tumor that remains incurable. The current standard treatment, which involves surgery along with concurrent radiotherapy and chemotherapy, only yields a survival time of 14-16 months. However, the introduction of tumor electric fields therapy (TEFT) has provided a glimmer of hope for patients with newly diagnosed and recurrent GBM, as it has been shown to extend the median survival time to 20 months. The combination of TEFT and other advanced therapies is a promising trend in the field of GBM, facilitated by advancements in medical technology. AIMS In this review, we provide a concise overview of the mechanism and efficacy of TEFT. In addition, we mainly discussed the innovation of TEFT and our proposed blueprint for TEFT implementation. CONCLUSION Tumor electric fields therapy is an effective and highly promising treatment modality for GBM. The full therapeutic potential of TEFT can be exploited by combined with other innovative technologies and treatments.
Collapse
Affiliation(s)
- Jinxin Lan
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Medical School of Chinese PLABeijingChina
| | - Yuyang Liu
- Medical School of Chinese PLABeijingChina
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Junyi Chen
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Hongyu Liu
- Medical School of Chinese PLABeijingChina
- Department of NeurosurgeryHainan Hospital of Chinese PLA General HospitalHainanChina
| | - Yaping Feng
- Department of Neurosurgery920th Hospital of Joint Logistics Support ForceKunmingChina
| | - Jialin Liu
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- Medical School of Chinese PLABeijingChina
| | - Ling Chen
- Department of NeurosurgeryChinese PLA General HospitalBeijingChina
- School of MedicineNankai UniversityTianjinChina
- Medical School of Chinese PLABeijingChina
| |
Collapse
|
14
|
Nguyen H, Schubert KE, Pohling C, Chang E, Yamamoto V, Zeng Y, Nie Y, Van Buskirk S, Schulte RW, Patel CB. Impact of glioma peritumoral edema, tumor size, and tumor location on alternating electric fields (AEF) therapy in realistic 3D rat glioma models: a computational study. Phys Med Biol 2024; 69:085015. [PMID: 38417178 DOI: 10.1088/1361-6560/ad2e6c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Objective.Alternating electric fields (AEF) therapy is a treatment modality for patients with glioblastoma. Tumor characteristics such as size, location, and extent of peritumoral edema may affect the AEF strength and distribution. We evaluated the sensitivity of the AEFs in a realistic 3D rat glioma model with respect to these properties.Approach.The electric properties of the peritumoral edema were varied based on calculated and literature-reported values. Models with different tumor composition, size, and location were created. The resulting AEFs were evaluated in 3D rat glioma models.Main results.In all cases, a pair of 5 mm diameter electrodes induced an average field strength >1 V cm-1. The simulation results showed that a negative relationship between edema conductivity and field strength was found. As the tumor core size was increased, the average field strength increased while the fraction of the shell achieving >1.5 V cm-1decreased. Increasing peritumoral edema thickness decreased the shell's mean field strength. Compared to rostrally/caudally, shifting the tumor location laterally/medially and ventrally (with respect to the electrodes) caused higher deviation in field strength.Significance.This study identifies tumor properties that are key drivers influencing AEF strength and distribution. The findings might be potential preclinical implications.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX, 76706, United States of America
| | | | - Christoph Pohling
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Edwin Chang
- Stanford University, Stanford, CA, 94305, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA, 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE, 19716, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA, 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX, 78249, United States of America
| | | | - Chirag B Patel
- The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, United States of America
| |
Collapse
|
15
|
Ledbetter D, de Almeida RAA, Wu X, Naveh A, Patel CB, Gonzalez Q, Beckham TH, North R, Rhines L, Li J, Ghia A, Aten D, Tatsui C, Alvarez-Breckenridge C. Tumor treating fields suppress tumor cell growth and neurologic decline in models of spinal metastases. JCI Insight 2024; 9:e176962. [PMID: 38512420 PMCID: PMC11141916 DOI: 10.1172/jci.insight.176962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Spinal metastases can result in severe neurologic compromise and decreased overall survival. Despite treatment advances, local disease progression is frequent, highlighting the need for novel therapies. Tumor treating fields (TTFields) impair tumor cell replication and are influenced by properties of surrounding tissue. We hypothesized that bone's dielectric properties will enhance TTFields-mediated suppression of tumor growth in spinal metastasis models. Computational modeling of TTFields intensity was performed following surgical resection of a spinal metastasis and demonstrated enhanced TTFields intensity within the resected vertebral body. Additionally, luciferase-tagged human KRIB osteosarcoma and A549 lung adenocarcinoma cell lines were cultured in demineralized bone grafts and exposed to TTFields. Following TTFields exposure, the bioluminescence imaging (BLI) signal decreased to 10%-80% of baseline, while control cultures displayed a 4.48- to 9.36-fold increase in signal. Lastly, TTFields were applied in an orthotopic murine model of spinal metastasis. After 21 days of treatment, control mice demonstrated a 5-fold increase in BLI signal compared with TTFields-treated mice. TTFields similarly prevented tumor invasion into the spinal canal and development of neurologic symptoms. Our data suggest that TTFields can be leveraged as a local therapy within minimally conductive bone of spinal metastases. This provides the groundwork for future studies investigating TTFields for patients with treatment-refractory spinal metastases.
Collapse
Affiliation(s)
- Daniel Ledbetter
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Xizi Wu
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Queena Gonzalez
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Robert North
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Laurence Rhines
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jing Li
- Department of Radiation Oncology, CNS/Pediatrics Section, and
| | - Amol Ghia
- Department of Radiation Oncology, CNS/Pediatrics Section, and
| | - David Aten
- Department of Diagnostic Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Claudio Tatsui
- Department of Neurosurgery, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | |
Collapse
|
16
|
Kumaria A, Ashkan K. Novel therapeutic strategies in glioma targeting glutamatergic neurotransmission. Brain Res 2023; 1818:148515. [PMID: 37543066 DOI: 10.1016/j.brainres.2023.148515] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/11/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
High grade gliomas carry a poor prognosis despite aggressive surgical and adjuvant approaches including chemoradiotherapy. Recent studies have demonstrated a mitogenic association between neuronal electrical activity and glioma growth involving the PI3K-mTOR pathway. As the predominant excitatory neurotransmitter of the brain, glutamate signalling in particular has been shown to promote glioma invasion and growth. The concept of the neurogliomal synapse has been established whereby glutamatergic receptors on glioma cells have been shown to promote tumour propagation. Targeting glutamatergic signalling is therefore a potential treatment option in glioma. Antiepileptic medications decrease excess neuronal electrical activity and some may possess anti-glutamate effects. Although antiepileptic medications continue to be investigated for an anti-glioma effect, good quality randomised trial evidence is lacking. Other pharmacological strategies that downregulate glutamatergic signalling include riluzole, memantine and anaesthetic agents. Neuromodulatory interventions possessing potential anti-glutamate activity include deep brain stimulation and vagus nerve stimulation - this contributes to the anti-seizure efficacy of the latter and the possible neuroprotective effect of the former. A possible role of neuromodulation as a novel anti-glioma modality has previously been proposed and that hypothesis is extended to include these modalities. Similarly, the significant survival benefit in glioblastoma attributable to alternating electrical fields (Tumour Treating Fields) may be a result of disruption to neurogliomal signalling. Further studies exploring excitatory neurotransmission and glutamatergic signalling and their role in glioma origin, growth and propagation are therefore warranted.
Collapse
Affiliation(s)
- Ashwin Kumaria
- Department of Neurosurgery, Queen's Medical Centre, Nottingham University Hospitals, Nottingham, UK.
| | | |
Collapse
|
17
|
Nguyen H, Schubert KE, Chang E, Nie Y, Pohling C, Van Buskirk S, Yamamoto V, Zeng Y, Schulte RW, Patel CB. Electric field distributions in realistic 3D rat head models during alternating electric field (AEF) therapy: a computational study. Phys Med Biol 2023; 68:205015. [PMID: 37703902 DOI: 10.1088/1361-6560/acf98d] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/13/2023] [Indexed: 09/15/2023]
Abstract
Objective.Application of alternating electrical fields (AEFs) in the kHz range is an established treatment modality for primary and recurrent glioblastoma. Preclinical studies would enable innovations in treatment monitoring and efficacy, which could then be translated to benefit patients. We present a practical translational process converting image-based data into 3D rat head models for AEF simulations and study its sensitivity to parameter choices.Approach.Five rat head models composed of up to 7 different tissue types were created, and relative permittivity and conductivity of individual tissues obtained from the literature were assigned. Finite element analysis was used to model the AEF strength and distribution in the models with different combinations of head tissues, a virtual tumor, and an electrode pair.Main results.The simulations allowed for a sensitivity analysis of the AEF distribution with respect to different tissue combinations and tissue parameter values.Significance.For a single pair of 5 mm diameter electrodes, an average AEF strength inside the tumor exceeded 1.5 V cm-1, expected to be sufficient for a relevant therapeutic outcome. This study illustrates a robust and flexible approach for simulating AEF in different tissue types, suitable for preclinical studies in rodents and translatable to clinical use.
Collapse
Affiliation(s)
- Ha Nguyen
- Baylor University, Waco, TX 76706, United States of America
| | | | - Edwin Chang
- Stanford University, Stanford, CA 94305, United States of America
| | - Ying Nie
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Christoph Pohling
- Loma Linda University, Loma Linda, CA 92350, United States of America
| | - Samuel Van Buskirk
- University of Texas at San Antonio, San Antonio, TX 78249, United States of America
| | - Vicky Yamamoto
- University of Southern California-Keck School of Medicine, Los Angeles, CA 90033, United States of America
| | - Yuping Zeng
- University of Delaware, Newark, DE 19716, United States of America
| | | | - Chirag B Patel
- University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States of America
- The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, United States of America
| |
Collapse
|
18
|
Yu H, Zhu K, Wang M, Jiang X. TXNDC12 knockdown promotes ferroptosis by modulating SLC7A11 expression in glioma. Clin Transl Sci 2023; 16:1957-1971. [PMID: 37503932 PMCID: PMC10582671 DOI: 10.1111/cts.13604] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/18/2023] [Indexed: 07/29/2023] Open
Abstract
Ferroptosis is an iron-dependent cell death process mainly triggered by reactive oxygen species (ROS) and lipid peroxidation. Thioredoxin domain protein 12 (TXNDC12) promotes the development of some tumors; however, its function in tumor ferroptosis remains unclear. In this study, we found that knockdown of TXNDC12 promoted erastin-induced increase in ROS, lipid peroxidation, and Fe2+ levels, and decreased glutathione content. TXNDC12 is involved in ferroptosis by regulating SLC7A11. Further studies showed that TXNDC12 knockdown promoted an erastin-induced decrease in glioma cell viability. Overall, TXNDC12 played a significant role in ferroptosis by modulating SLC7A11 expression. Thus, TXNDC12 and ferroptosis may provide new targets for the treatment of gliomas.
Collapse
Affiliation(s)
- Hao Yu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Kai Zhu
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Minjie Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
19
|
Lee WS, Jang Y, Cho A, Kim YB, Bu YH, Yang S, Kim EH. Effectiveness of tumor‑treating fields to reduce the proliferation and migration of liposarcoma cell lines. Exp Ther Med 2023; 26:363. [PMID: 37408858 PMCID: PMC10318604 DOI: 10.3892/etm.2023.12062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/21/2023] [Indexed: 07/07/2023] Open
Abstract
Liposarcoma (LPS) is a rare type of soft tissue sarcoma that constitutes 20% of all sarcoma cases in adults. Effective therapeutic protocols for human LPS are not well-defined. Tumor-treating fields (TTFields) are a novel and upcoming field for antitumor therapy. TTFields combined with chemoradiotherapy have proven to be more effective than TTFields combined with radiotherapy or chemotherapy alone. The present study aimed to assess the effectiveness of TTFields in inhibiting cell proliferation and viability for the anticancer treatment of LPS. The present study used TTFields (frequency, 150 kHz; intensity, 1.0 V/cm) to treat two LPS cell lines (94T778 and SW872) and analyzed the antitumor effects. According to trypan blue and MTT assay results, TTFields markedly reduced the viability and proliferation of LPS cell lines along with the formation of colonies in three-dimensional culture. Based on the Transwell chamber assay, TTFields treatment also markedly reduced the migration of LPS cells. Furthermore, as shown by the higher activation of caspase-3 in the Caspase-3 activity assay and the results of the reactive oxygen species (ROS) assay, TTFields increased the formation of ROS in the cells and enhanced the proportion of apoptotic cells. The present study also investigated the inhibitory effect of TTFields in combination with doxorubicin (DOX) on the migratory capacity of tumor cells. The results demonstrated that TTFields treatment synergistically induced the ROS-induced apoptosis of LPS cancer cell lines and inhibited their migratory behavior. In conclusion, the present study demonstrated the potential of TTFields in improving the sensitivity of LPS cancer cells, which may lay the foundation for future clinical trials of this combination treatment strategy.
Collapse
Affiliation(s)
- Won Seok Lee
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yoonjung Jang
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Gyeongsangbuk-do 42988, Republic of Korea
| | - Ahyeon Cho
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Yu Bin Kim
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Young Hyun Bu
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Somi Yang
- School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| | - Eun Ho Kim
- Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, Gyeongsangbuk-do 42472, Republic of Korea
| |
Collapse
|
20
|
Obrador E, Jihad-Jebbar A, Salvador-Palmer R, López-Blanch R, Oriol-Caballo M, Moreno-Murciano MP, Navarro EA, Cibrian R, Estrela JM. Externally Applied Electromagnetic Fields and Hyperthermia Irreversibly Damage Cancer Cells. Cancers (Basel) 2023; 15:3413. [PMID: 37444524 DOI: 10.3390/cancers15133413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
At present, the applications and efficacy of non-ionizing radiations (NIR) in oncotherapy are limited. In terms of potential combinations, the use of biocompatible magnetic nanoparticles as heat mediators has been extensively investigated. Nevertheless, developing more efficient heat nanomediators that may exhibit high specific absorption rates is still an unsolved problem. Our aim was to investigate if externally applied magnetic fields and a heat-inducing NIR affect tumor cell viability. To this end, under in vitro conditions, different human cancer cells (A2058 melanoma, AsPC1 pancreas carcinoma, MDA-MB-231 breast carcinoma) were treated with the combination of electromagnetic fields (EMFs, using solenoids) and hyperthermia (HT, using a thermostated bath). The effect of NIR was also studied in combination with standard chemotherapy and targeted therapy. An experimental device combining EMFs and high-intensity focused ultrasounds (HIFU)-induced HT was tested in vivo. EMFs (25 µT, 4 h) or HT (52 °C, 40 min) showed a limited effect on cancer cell viability in vitro. However, their combination decreased viability to approximately 16%, 50%, and 21% of control values in A2058, AsPC1, and MDA-MB-231 cells, respectively. Increased lysosomal permeability, release of cathepsins into the cytosol, and mitochondria-dependent activation of cell death are the underlying mechanisms. Cancer cells could be completely eliminated by combining EMFs, HT, and standard chemotherapy or EMFs, HT, and anti-Hsp70-targeted therapy. As a proof of concept, in vivo experiments performed in AsPC1 xenografts showed that a combination of EMFs, HIFU-induced HT, standard chemotherapy, and a lysosomal permeabilizer induces a complete cancer regression.
Collapse
Affiliation(s)
- Elena Obrador
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - Ali Jihad-Jebbar
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rosario Salvador-Palmer
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
| | - Rafael López-Blanch
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - María Oriol-Caballo
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | | | - Enrique A Navarro
- Scientia BioTech, 46002 Valencia, Spain
- Department of Computer Sciences, Higher Technical School of Engineering, 46100 Burjassot, Spain
- IRTIC Institute, University of Valencia, 46980 Paterna, Spain
| | - Rosa Cibrian
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
| | - José M Estrela
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain
- Scientia BioTech, 46002 Valencia, Spain
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| |
Collapse
|
21
|
Zhou Y, Xing X, Zhou J, Jiang H, Cen P, Jin C, Zhong Y, Zhou R, Wang J, Tian M, Zhang H. Therapeutic potential of tumor treating fields for malignant brain tumors. Cancer Rep (Hoboken) 2023; 6:e1813. [PMID: 36987739 PMCID: PMC10172187 DOI: 10.1002/cnr2.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/02/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Malignant brain tumors are among the most threatening diseases of the central nervous system, and despite increasingly updated treatments, the prognosis has not been improved. Tumor treating fields (TTFields) are an emerging approach in cancer treatment using intermediate-frequency and low-intensity electric field and can lead to the development of novel therapeutic options. RECENT FINDINGS A series of biological processes induced by TTFields to exert anti-cancer effects have been identified. Recent studies have shown that TTFields can alter the bioelectrical state of macromolecules and organelles involved in cancer biology. Massive alterations in cancer cell proteomics and transcriptomics caused by TTFields were related to cell biological processes as well as multiple organelle structures and activities. This review addresses the mechanisms of TTFields and recent advances in the application of TTFields therapy in malignant brain tumors, especially in glioblastoma (GBM). CONCLUSIONS As a novel therapeutic strategy, TTFields have shown promising results in many clinical trials, especially in GBM, and continue to evolve. A growing number of patients with malignant brain tumors are being enrolled in ongoing clinical studies demonstrating that TTFields-based combination therapies can improve treatment outcomes.
Collapse
Affiliation(s)
- Youyou Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Xiaoqing Xing
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jinyun Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Han Jiang
- Faculty of Science and Technology, Department of Electrical and Computer Engineering, Biomedical Imaging Laboratory (BIG), University of Macau, Taipa, Macau SAR, China
| | - Peili Cen
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yan Zhong
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Mei Tian
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Institute of Nuclear Medicine and Molecular Imaging, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, Zhejiang, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
22
|
Cruz N, Herculano-Carvalho M, Roque D, Faria CC, Cascão R, Ferreira HA, Reis CP, Matela N. Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15030928. [PMID: 36986790 PMCID: PMC10054750 DOI: 10.3390/pharmaceutics15030928] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains a challenging disease, as it is the most common and deadly brain tumour in adults and has no curative solution and an overall short survival time. This incurability and short survival time means that, despite its rarity (average incidence of 3.2 per 100,000 persons), there has been an increased effort to try to treat this disease. Standard of care in newly diagnosed glioblastoma is maximal tumour resection followed by initial concomitant radiotherapy and temozolomide (TMZ) and then further chemotherapy with TMZ. Imaging techniques are key not only to diagnose the extent of the affected tissue but also for surgery planning and even for intraoperative use. Eligible patients may combine TMZ with tumour treating fields (TTF) therapy, which delivers low-intensity and intermediate-frequency electric fields to arrest tumour growth. Nonetheless, the blood–brain barrier (BBB) and systemic side effects are obstacles to successful chemotherapy in GBM; thus, more targeted, custom therapies such as immunotherapy and nanotechnological drug delivery systems have been undergoing research with varying degrees of success. This review proposes an overview of the pathophysiology, possible treatments, and the most (not all) representative examples of the latest advancements.
Collapse
Affiliation(s)
- Nuno Cruz
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuel Herculano-Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Diogo Roque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| | - Nuno Matela
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| |
Collapse
|
23
|
Ibn Essayed W, Jarvis CA, Bernstock JD, Slingerland A, Albanese J, Friedman GK, Arnaout O, Baird L. Positioning Transclival Tumor-Treating Fields for the Treatment of Diffuse Intrinsic Pontine Gliomas. Life (Basel) 2023; 13:life13030601. [PMID: 36983757 PMCID: PMC10059731 DOI: 10.3390/life13030601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/15/2023] [Indexed: 02/24/2023] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) carries an extremely poor prognosis, with 2-year survival rates of <10% despite the maximal radiation therapy. DIPG cells have previously been shown to be sensitive to low-intensity electric fields in vitro. Accordingly, we sought to determine if the endoscopic endonasal (EE) implantation of an electrode array in the clivus would be feasible for the application of tumor-treating fields (TTF) in DIPG. Anatomic constraints are the main limitation in pediatric EE approaches. In our Boston Children’s Hospital’s DIPG cohort, we measured the average intercarotid distance (1.68 ± 0.36 cm), clival width (1.62 ± 0.19 cm), and clival length from the base of the sella (1.43 ± 0.69 cm). Using a linear regression model, we found that only clival length and sphenoid pneumatization were significantly associated with age (R2 = 0.568, p = 0.005 *; R2 = 0.605, p = 0.0002 *). Critically, neither of these parameters represent limitations to the implantation of a device within the dimensions of those currently available. Our findings confirm that the anatomy present within this age group is amenable to the placement of a 2 × 1 cm electrode array in 94% of patients examined. Our work serves to demonstrate the feasibility of implantable transclival devices for the provision of TTFs as a novel adjunctive therapy for DIPG.
Collapse
Affiliation(s)
- Walid Ibn Essayed
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02144, USA
- Correspondence: (W.I.E.); (J.D.B.)
| | - Casey A. Jarvis
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02144, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence: (W.I.E.); (J.D.B.)
| | - Anna Slingerland
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - John Albanese
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02144, USA
| | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Omar Arnaout
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lissa Baird
- Department of Neurosurgery, Boston Children’s Hospital, Harvard Medical School, Boston, MA 02144, USA
| |
Collapse
|
24
|
Current status of the preclinical evaluation of alternating electric fields as a form of cancer therapy. Bioelectrochemistry 2023; 149:108287. [DOI: 10.1016/j.bioelechem.2022.108287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022]
|
25
|
Ravin R, Cai TX, Li A, Briceno N, Pursley RH, Garmendia-Cedillos M, Pohida T, Wang H, Zhuang Z, Cui J, Morgan NY, Williamson NH, Gilbert MR, Basser PJ. "Tumor Treating Fields" delivered via electromagnetic induction have varied effects across glioma cell lines and electric field amplitudes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524504. [PMID: 36789415 PMCID: PMC9928061 DOI: 10.1101/2023.01.18.524504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Previous studies reported that alternating electric fields (EFs) in the intermediate frequency (100 - 300 kHz) and low intensity (1 - 3 V/cm) regime - termed "Tumor Treating Fields" (TTFields) - have a specific, anti-proliferative effect on glioblastoma multiforme (GBM) cells. However, the mechanism(s) of action remain(s) incompletely understood, hindering the clinical adoption of treatments based on TTFields. To advance the study of such treatment in vitro , we developed an inductive device to deliver EFs to cell cultures which improves thermal and osmolar regulation compared to prior devices. Using this inductive device, we applied continuous, 200 kHz electromagnetic fields (EMFs) with a radial EF amplitude profile spanning 0 - 6.5 V/cm to cultures of primary rat astrocytes and several human GBM cell lines - U87, U118, GSC827, and GSC923 - for a duration of 72 hours. Cell density was assessed via segmented pixel densities from GFP expression (U87, U118) or from staining (astrocytes, GSC827, GSC923). Further RNA-Seq analyses were performed on GSC827 and GSC923 cells. Treated cultures of all cell lines exhibited little to no change in proliferation at lower EF amplitudes (0 - 3 V/cm). At higher amplitudes (> 4 V/cm), different effects were observed. Apparent cell densities increased (U87), decreased (GSC827, GSC923), or showed little change (U118, astrocytes). RNA-Seq analyses on treated and untreated GSC827 and GSC923 cells revealed differentially expressed gene sets of interest, such as those related to cell cycle control. Up- and down-regulation, however, was not consistent across cell lines nor EF amplitudes. Our results indicate no consistent, anti-proliferative effect of 200 kHz EMFs across GBM cell lines and thus contradict previous in vitro findings. Rather, effects varied across different cell lines and EF amplitude regimes, highlighting the need to assess the effect(s) of TTFields and similar treatments on a per cell line basis.
Collapse
|
26
|
Di Gregorio E, Israel S, Staelens M, Tankel G, Shankar K, Tuszyński JA. The distinguishing electrical properties of cancer cells. Phys Life Rev 2022; 43:139-188. [PMID: 36265200 DOI: 10.1016/j.plrev.2022.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
In recent decades, medical research has been primarily focused on the inherited aspect of cancers, despite the reality that only 5-10% of tumours discovered are derived from genetic causes. Cancer is a broad term, and therefore it is inaccurate to address it as a purely genetic disease. Understanding cancer cells' behaviour is the first step in countering them. Behind the scenes, there is a complicated network of environmental factors, DNA errors, metabolic shifts, and electrostatic alterations that build over time and lead to the illness's development. This latter aspect has been analyzed in previous studies, but how the different electrical changes integrate and affect each other is rarely examined. Every cell in the human body possesses electrical properties that are essential for proper behaviour both within and outside of the cell itself. It is not yet clear whether these changes correlate with cell mutation in cancer cells, or only with their subsequent development. Either way, these aspects merit further investigation, especially with regards to their causes and consequences. Trying to block changes at various levels of occurrence or assisting in their prevention could be the key to stopping cells from becoming cancerous. Therefore, a comprehensive understanding of the current knowledge regarding the electrical landscape of cells is much needed. We review four essential electrical characteristics of cells, providing a deep understanding of the electrostatic changes in cancer cells compared to their normal counterparts. In particular, we provide an overview of intracellular and extracellular pH modifications, differences in ionic concentrations in the cytoplasm, transmembrane potential variations, and changes within mitochondria. New therapies targeting or exploiting the electrical properties of cells are developed and tested every year, such as pH-dependent carriers and tumour-treating fields. A brief section regarding the state-of-the-art of these therapies can be found at the end of this review. Finally, we highlight how these alterations integrate and potentially yield indications of cells' malignancy or metastatic index.
Collapse
Affiliation(s)
- Elisabetta Di Gregorio
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Simone Israel
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Autem Therapeutics, 35 South Main Street, Hanover, 03755, NH, USA
| | - Michael Staelens
- Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada
| | - Gabriella Tankel
- Department of Mathematics & Statistics, McMaster University, 1280 Main Street West, Hamilton, L8S 4K1, ON, Canada
| | - Karthik Shankar
- Department of Electrical & Computer Engineering, University of Alberta, 9211 116 Street NW, Edmonton, T6G 1H9, AB, Canada
| | - Jack A Tuszyński
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, TO, Italy; Department of Physics, University of Alberta, 11335 Saskatchewan Drive NW, Edmonton, T6G 2E1, AB, Canada; Department of Oncology, University of Alberta, 11560 University Avenue, Edmonton, T6G 1Z2, AB, Canada.
| |
Collapse
|
27
|
Le HT, Staelens M, Lazzari D, Chan G, Tuszyński JA. Real-Time Monitoring of the Effect of Tumour-Treating Fields on Cell Division Using Live-Cell Imaging. Cells 2022; 11:2712. [PMID: 36078119 PMCID: PMC9454843 DOI: 10.3390/cells11172712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
The effects of electric fields (EFs) on various cell types have been thoroughly studied, and exhibit a well-known regulatory effect on cell processes, implicating their usage in several medical applications. While the specific effect exerted on cells is highly parameter-dependent, the majority of past research has focused primarily on low-frequency alternating fields (<1 kHz) and high-frequency fields (in the order of MHz). However, in recent years, low-intensity (1-3 V/cm) alternating EFs with intermediate frequencies (100-500 kHz) have been of topical interest as clinical treatments for cancerous tumours through their disruption of cell division and the mitotic spindle, which can lead to cell death. These aptly named tumour-treating fields (TTFields) have been approved by the FDA as a treatment modality for several cancers, such as malignant pleural mesothelioma and glioblastoma multiforme, demonstrating remarkable efficacy and a high safety profile. In this work, we report the results of in vitro experiments with HeLa and MCF-10A cells exposed to TTFields for 18 h, imaged in real time using live-cell imaging. Both studied cell lines were exposed to 100 kHz TTFields with a 1-1 duty cycle, which resulted in significant mitotic and cytokinetic arrest. In the experiments with HeLa cells, the effects of the TTFields' frequency (100 kHz vs. 200 kHz) and duty cycle (1-1 vs. 1-0) were also investigated. Notably, the anti-mitotic effect was stronger in the HeLa cells treated with 100 kHz TTFields. Additionally, it was found that single and two-directional TTFields (oriented orthogonally) exhibit a similar inhibitory effect on HeLa cell division. These results provide real-time evidence of the profound ability of TTFields to hinder the process of cell division by significantly delaying both the mitosis and cytokinesis phases of the cell cycle.
Collapse
Affiliation(s)
- Hoa T. Le
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Michael Staelens
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Davide Lazzari
- Dipartimento di Ingegneria Meccanica e Aerospaziale (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
| | - Gordon Chan
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A. Tuszyński
- Department of Physics, Faculty of Science, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Oncology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
28
|
Jin T, Dou Z, Zhao Y, Jiang B, Xu J, Zhang B, Wei B, Dong F, Zhang J, Sun C. Skull defect increases the tumor treating fields strength without detrimental thermogenic effect: A computational simulating research. Cancer Med 2022; 12:1461-1470. [PMID: 35861406 PMCID: PMC9883554 DOI: 10.1002/cam4.5037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/14/2022] [Accepted: 06/29/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tumor treating fields (TTFields) is an FDA-approved adjuvant therapy for glioblastoma. The distribution of an applied electric field has been shown to be governed by distinct tissue structures and electrical conductivity. Of all the tissues the skull plays a significant role in modifying the distribution of the electric field due to its large impedance. In this study, we studied how remodeling of the skull would affect the therapeutic outcome of TTFields, using a computational approach. METHODS Head models were created from the head template ICBM152 and five realistic head models. The electric field distribution was simulated using the default TTFields array layout. To study the impact of the skull on the electric field, we compared three cases, namely, intact skull, defective skull, and insulating process, wherein a thin electrical insulating layer was added between the transducer and the hydrogel. The electric field strength and heating power were calculated using the FEM (finite element method). RESULTS Removing the skull flap increased the average field strength at the tumor site, without increasing the field strength of "brain". The ATVs of the supratentorial tumors were enhanced significantly. Meanwhile, the heating power of the gels increased, especially those overlapping the skull defect site. Insulation lightly decreased the electric field strength and significantly decreased the heating power in deep tumor models. CONCLUSION Our simulation results showed that a skull defect was beneficial for superficial tumors but had an adverse effect on deep tumors. Skull removal should be considered as an optional approach in future TTFields therapy to enhance its efficacy. An insulation process could be used as a joint option to reduce the thermogenic effect of skull defect. If excessive increase in heating power is observed in certain patients, insulating material could be used to mitigate overheating without sacrificing the therapeutic effect of TTFields.
Collapse
Affiliation(s)
- Taian Jin
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Zhangqi Dou
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Yu Zhao
- Jiangsu Hailai Xinchuang Medical Technology Co., Ltd.WuxiJiangsuChina
| | - Biao Jiang
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jinghong Xu
- Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Buyi Zhang
- Department of Pathology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Boxing Wei
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Fei Dong
- Department of Radiology, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina,Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| | - Chongran Sun
- Department of Neurosurgery, The Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina,Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological DiseasesHangzhouZhejiangChina,Clinical Research Center for Neurological Diseases of Zhejiang ProvinceHangzhouChina
| |
Collapse
|
29
|
Iredale E, Voigt B, Rankin A, Kim KW, Chen JZ, Schmid S, Hebb MO, Peters TM, Wong E. Planning System for the Optimization of Electric Field Delivery using Implanted Electrodes for Brain Tumor Control. Med Phys 2022; 49:6055-6067. [PMID: 35754362 DOI: 10.1002/mp.15825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/06/2022] [Accepted: 06/17/2022] [Indexed: 11/07/2022] Open
Abstract
BACKGROUND The use of non-ionizing electric fields from low intensity voltage sources (<10 V) to control malignant tumor growth is showing increasing potential as a cancer treatment modality. A method of applying these low intensity electric fields using multiple implanted electrodes within or adjacent to tumor volumes has been termed as intratumoral modulation therapy (IMT). PURPOSE This study explores advancements in the previously established IMT optimization algorithm, and the development of a custom treatment planning system for patient specific IMT. The practicality of the treatment planning system is demonstrated by implementing the full optimization pipeline on a brain phantom with robotic electrode implantation, post-operative imaging, and treatment stimulation. METHODS The integrated planning pipeline in 3D Slicer begins with importing and segmenting patient magnetic resonance images (MRI) or computed tomography (CT) images. The segmentation process is manual, followed by a semi-automatic smoothing step that allows the segmented brain and tumor mesh volumes to be smoothed and simplified by applying selected filters. Electrode trajectories are planned manually on the patient MRI or CT by selecting insertion and tip coordinates for a chosen number of electrodes. The electrode tip positions, and stimulation parameters (phase shift and voltage) can then be optimized with the custom semi-automatic IMT optimization algorithm where users can select the prescription electric field, voltage amplitude limit, tissue electrical properties, nearby organs at risk, optimization parameters (electrode tip location, individual contact phase shift and voltage), desired field coverage percent, and field conformity optimization. Tables of optimization results are displayed, and the resulting electric field is visualized as a field-map superimposed on the MR or CT image, with 3D renderings of the brain, tumor, and electrodes. Optimized electrode coordinates are transferred to robotic electrode implantation software to enable planning and subsequent implantation of the electrodes at the desired trajectories. RESULTS An IMT treatment planning system was developed that incorporates patient specific MRI or CT, segmentation, volume smoothing, electrode trajectory planning, electrode tip location and stimulation parameter optimization, and results visualization. All previous manual pipeline steps operating on diverse software platforms were coalesced into a single semi-automated 3D Slicer based user interface. Brain phantom validation of the full system implementation was successful in pre-operative planning, robotic electrode implantation, and post-operative treatment planning to adjust stimulation parameters based on actual implant locations. Voltage measurements were obtained in the brain phantom to determine the electrical parameters of the phantom and validate the simulated electric field distribution. CONCLUSIONS A custom treatment planning and implantation system for IMT has been developed in this study, and validated on a phantom brain model, providing an essential step in advancing IMT technology towards future clinical safety and efficacy investigations. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Erin Iredale
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Brynn Voigt
- Department of Physics and Astronomy, Western University, London, ON, Canada
| | - Adam Rankin
- Robarts Research Institute, Western University, London, ON, Canada
| | - Kyungho W Kim
- Department of Physics and Astronomy, Western University, London, ON, Canada
| | - Jeff Z Chen
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Susanne Schmid
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Matthew O Hebb
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Terry M Peters
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Robarts Research Institute, Western University, London, ON, Canada
| | - Eugene Wong
- Department of Medical Biophysics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Physics and Astronomy, Western University, London, ON, Canada
| |
Collapse
|
30
|
Cao F, Mikic N, Wong ET, Thielscher A, Korshoej AR. Guidelines for Burr Hole Surgery in Combination With Tumor Treating Fields for Glioblastoma: A Computational Study on Dose Optimization and Array Layout Planning. Front Hum Neurosci 2022; 16:909652. [PMID: 35782043 PMCID: PMC9245346 DOI: 10.3389/fnhum.2022.909652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/31/2022] [Indexed: 12/03/2022] Open
Abstract
Tumor treating fields (TTFields) is an anti-cancer technology increasingly used for the treatment of glioblastoma. Recently, cranial burr holes have been used experimentally to enhance the intensity (dose) of TTFields in the underlying tumor region. In the present study, we used computational finite element methods to systematically characterize the impact of the burr hole position and the TTFields transducer array layout on the TTFields distribution calculated in a realistic human head model. We investigated a multitude of burr hole positions and layouts to illustrate the basic principles of optimal treatment planning. The goal of the paper was to provide simple rules of thumb for physicians to use when planning the TTFields in combination with skull remodeling surgery. Our study suggests a number of key findings, namely that (1) burr holes should be placed directly above the region of interest, (2) field enhancement occurs mainly underneath the holes, (3) the ipsilateral array should directly overlap the holes and the contralateral array should be placed directly opposite, (4) arrays in a pair should be placed at far distance and not close to each other to avoid current shunting, and finally (5) rotation arrays around their central normal axis can be done without diminishing the enhancing effect of the burr holes. Minor deviations and adjustments (<3 cm) of arrays reduces the enhancement to some extent although the procedure is still effective in these settings. In conclusion, our study provides simple guiding principles for implementation of dose-enhanced TTFields in combination with burr-holes. Future studies are required to validate our findings in additional models at the patient specific level.
Collapse
Affiliation(s)
- Fang Cao
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Eric T. Wong
- Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital, Providence, RI, United States
| | - Axel Thielscher
- Department of Health Technology, Center for Magnetic Resonance, Technical University of Denmark, Kgs. Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Anders Rosendal Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- *Correspondence: Anders Rosendal Korshoej
| |
Collapse
|
31
|
Skull modulated strategies to intensify tumor treating fields on brain tumor: a finite element study. Biomech Model Mechanobiol 2022; 21:1133-1144. [PMID: 35477828 DOI: 10.1007/s10237-022-01580-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Tumor treating fields (TTFields) are a breakthrough in treating glioblastoma (GBM), whereas the intensity cannot be further enhanced, due to the limitation of scalp lesions. Skull remodeling (SR) surgery can elevate the treatment dose of TTFields in the intracranial foci. This study was aimed at exploring the characteristics of the skull modulated strategies toward TTFields augmentation. The simplified multiple-tissue-layer model (MTL) and realistic head (RH) model were reconstructed through finite element methods (FEM), to simulate the remodeling of the skull, which included skull drilling, thinning, and cranioplasty with PEEK, titanium, cerebrospinal fluid (CSF), connective tissue and autologous bone. Skull thinning could enhance the intensity of TTFields in the brain tumor, with a 10% of increase in average peritumoral intensity (API) by every 1 cm decrease in skull thickness. Cranioplasty with titanium accompanied the most enhancement of TTFields in the MTL model, but CSF was superior in TTFields enhancement when simulated in the RH model. Besides, API increased nonlinearly with the expansion of drilled burr holes. In comparison with the single drill replaced by titanium, nine burr holes could reach 96.98% of enhancement in API, but it could only reach 63.08% of enhancement under craniectomy of nine times skull defect area. Skull thinning and drilling could enhance API, which was correlated with the number and area of skull drilling. Cranioplasty with highly conductive material could also augment API, but might not provide clinical benefits as expected.
Collapse
|
32
|
Numerical study on the effect of capacitively coupled electrical stimulation on biological cells considering model uncertainties. Sci Rep 2022; 12:4744. [PMID: 35304501 PMCID: PMC8933463 DOI: 10.1038/s41598-022-08279-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 03/03/2022] [Indexed: 11/08/2022] Open
Abstract
Electrical stimulation of biological samples such as tissues and cell cultures attracts growing attention due to its capability of enhancing cell activity, proliferation, and differentiation. Eventually, a profound knowledge of the underlying mechanisms paves the way for innovative therapeutic devices. Capacitive coupling is one option of delivering electric fields to biological samples that has advantages regarding biocompatibility. However, its biological mechanism of interaction is not well understood. Experimental findings could be related to voltage-gated channels, which are triggered by changes of the transmembrane potential. Numerical simulations by the finite element method provide a possibility to estimate the transmembrane potential. Since a full resolution of the cell membrane within a macroscopic model would lead to prohibitively expensive models, we suggest the adaptation of an approximate finite element method. Starting from a basic 2.5D model, the chosen method is validated and applied to realistic experimental situations. To understand the influence of the dielectric properties on the modelling outcome, uncertainty quantification techniques are employed. A frequency-dependent influence of the uncertain dielectric properties of the cell membrane on the modelling outcome is revealed. This may have practical implications for future experimental studies. Our methodology can be easily adapted for computational studies relying on experimental data.
Collapse
|
33
|
Genome-Wide Expression and Anti-Proliferative Effects of Electric Field Therapy on Pediatric and Adult Brain Tumors. Int J Mol Sci 2022; 23:ijms23041982. [PMID: 35216098 PMCID: PMC8880247 DOI: 10.3390/ijms23041982] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/25/2021] [Accepted: 09/02/2021] [Indexed: 02/04/2023] Open
Abstract
The lack of treatment options for high-grade brain tumors has led to searches for alternative therapeutic modalities. Electrical field therapy is one such area. The Optune™ system is an FDA-approved novel device that delivers continuous alternating electric fields (tumor treating fields—TTFields) to the patient for the treatment of primary and recurrent Glioblastoma multiforme (GBM). Various mechanisms have been proposed to explain the effects of TTFields and other electrical therapies. Here, we present the first study of genome-wide expression of electrotherapy (delivered via TTFields or Deep Brain Stimulation (DBS)) on brain tumor cell lines. The effects of electric fields were assessed through gene expression arrays and combinational effects with chemotherapies. We observed that both DBS and TTFields significantly affected brain tumor cell line viability, with DBS promoting G0-phase accumulation and TTFields promoting G2-phase accumulation. Both treatments may be used to augment the efficacy of chemotherapy in vitro. Genome-wide expression assessment demonstrated significant overlap between the different electrical treatments, suggesting novel interactions with mitochondrial functioning and promoting endoplasmic reticulum stress. We demonstrate the in vitro efficacy of electric fields against adult and pediatric high-grade brain tumors and elucidate potential mechanisms of action for future study.
Collapse
|
34
|
Kurata K, Shimada K, Takamatsu H. Application of the Taguchi method to explore a robust condition of tumor-treating field treatment. PLoS One 2022; 17:e0262133. [PMID: 35061762 PMCID: PMC8782397 DOI: 10.1371/journal.pone.0262133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 12/16/2021] [Indexed: 11/25/2022] Open
Abstract
Tumor-treating fields have potential as minimally invasive cancer treatment. This study aimed to explore the optimum tumor-treating field conditions that minimize unpredicted variations in therapeutic outcomes resulting from differences in cell size and electrical properties. The electric field concentration that induces a dielectrophoretic force near the division plane of a mitotic cell was calculated by finite element analysis for 144 cases, based on different combinations of six noise factors associated with cells and four controllable factors including frequency, as determined by the Taguchi method. Changing the frequency from 200 to 400 kHz strongly increased robustness in producing a dielectrophoretic force, irrespective of noise factors. However, this frequency change reduced the force magnitude, which can be increased by simply applying a higher voltage. Based on additional simulations that considered this trade-off effect, a frequency of 300 kHz is recommended for a robust TTF treatment with allowable variations. The dielectrophoretic force was almost independent of the angle of applied electric field deviated from the most effective direction by ±20 degrees. Furthermore, increased robustness was observed for extracellular fluid with higher conductivity and permittivity. The Taguchi method was useful for identifying robust tumor-treating field therapy conditions from a considerably small number of replicated simulations.
Collapse
Affiliation(s)
- Kosaku Kurata
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
- * E-mail:
| | - Kazuki Shimada
- Graduate School of Engineering, Kyushu University, Fukuoka, Japan
| | - Hiroshi Takamatsu
- Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan
| |
Collapse
|
35
|
Ye E, Lee JE, Lim YS, Yang SH, Park SM. Effect of duty cycles of tumor‑treating fields on glioblastoma cells and normal brain organoids. Int J Oncol 2022; 60:8. [PMID: 34970698 PMCID: PMC8727135 DOI: 10.3892/ijo.2021.5298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 12/09/2021] [Indexed: 11/06/2022] Open
Abstract
Tumor‑treating fields (TTFields) are emerging cancer therapies based on alternating low‑intensity electric fields that interfere with dividing cells and induce cancer cell apoptosis. However, to date, there is limited knowledge of their effects on normal cells, as well as the effects of different duty cycles on outcomes. The present study evaluated the effects of TTFields with different duty cycles on glioma spheroid cells and normal brain organoids. A customized TTFields system was developed to perform in vitro experiments with varying duty cycles. Three duty cycles were applied to three types of glioma spheroid cells and brain organoids. The efficacy and safety of the TTFields were evaluated by analyzing the cell cycle of glioma cells, and markers of neural stem cells (NSCs) and astrocytes in brain organoids. The application of the TTFields at the 75 and 100% duty cycle markedly inhibited the proliferation of the U87 and U373 compared with the control. FACS analysis revealed that the higher the duty cycle of the applied fields, the greater the increase in apoptosis detected. Exposure to a higher duty cycle resulted in a greater decrease in NSC markers and a greater increase in glial fibrillary acidic protein expression in normal brain organoids. These results suggest that TTFields at the 75 and 100% duty cycle induced cancer cell death, and that the neurotoxicity of the TTFields at 75% was less prominent than that at 100%. Although clinical studies with endpoints related to safety and efficacy need to be performed before this strategy may be adopted clinically, the findings of the present study provide meaningful evidence for the further advancement of TTFields in the treatment of various types of cancer.
Collapse
Affiliation(s)
- Eunbi Ye
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Jung Eun Lee
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon-si, Gyeonggi-do 16247, Republic of Korea
| | - Young-Soo Lim
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| | - Seung Ho Yang
- Department of Neurosurgery, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon-si, Gyeonggi-do 16247, Republic of Korea
| | - Sung-Min Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang-si, Gyeongsangbuk-do 37673, Republic of Korea
| |
Collapse
|
36
|
Jones TH, Song JW, Abushahin L. Tumor treating fields: An emerging treatment modality for thoracic and abdominal cavity cancers. Transl Oncol 2022; 15:101296. [PMID: 34847422 PMCID: PMC8633677 DOI: 10.1016/j.tranon.2021.101296] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/13/2021] [Accepted: 11/22/2021] [Indexed: 01/05/2023] Open
Abstract
Tumor treating fields (TTFields)-an intermediate-frequency, electric field therapy-has emerged as a promising alternative therapy for the treatment of solid cancers. Since the first publication describing the anticancer effects of TTFields in 2004 there have been numerous follow-up studies by other groups, either to confirm the efficacy of TTFields or to study the primary mechanism of interaction. The overwhelming conclusion from these in vitro studies is that TTFields reduce the viability of aggressively replicating cell lines. However, there is still speculation as to the primary mechanism for this effect; moreover, observations both in vitro and in vivo of inhibited migration and metastases have been made, which may be unrelated to the originally proposed hypothesis of replication stress. Adding to this, the in vivo environment is much more complex spatially, structurally, and involves intricate networks of cell signaling, all of which could change the efficacy of TTFields in the same way pharmaceutical interventions often struggle transitioning in vivo. Despite this, TTFields have shown promise in clinical practice on multiple cancer types, which begs the question: has the primary mechanism carried over from in vitro to in vivo or are there new mechanisms at play? The goal of this review is to highlight the current proposed mechanism of action of TTFields based primarily on in vitro experiments and animal models, provide a summary of the clinical efficacy of TTFields, and finally, propose future directions of research to identify all possible mechanisms in vivo utilizing novel tumor-on-a-chip platforms.
Collapse
Affiliation(s)
- Travis H Jones
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201W. 19th Avenue, E406 Scott Laboratory, Columbus, OH 43210, United States; Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Canon Drive, 1300G, Columbus, OH 43210, United States
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, 201W. 19th Avenue, E406 Scott Laboratory, Columbus, OH 43210, United States; Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, United States.
| | - Laith Abushahin
- Department of Internal Medicine, Division of Medical Oncology, The Ohio State University, 1800 Canon Drive, 1300G, Columbus, OH 43210, United States; Arthur G. James Comprehensive Cancer Center and Richard J. Solove Research Institute, The Ohio State University Medical Center, Columbus, OH 43210, United States.
| |
Collapse
|
37
|
Glas M, Ballo MT, Bomzon Z, Urman N, Levi S, Lavy-Shahaf G, Jeyapalan S, Sio TT, DeRose PM, Misch M, Taillibert S, Ram Z, Hottinger AF, Easaw J, Kim CY, Mohan S, Stupp R. The Impact of Tumor Treating Fields on Glioblastoma Progression Patterns. Int J Radiat Oncol Biol Phys 2021; 112:1269-1278. [PMID: 34963556 DOI: 10.1016/j.ijrobp.2021.12.152] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/06/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Tumor-treating fields (TTFields) is an antimitotic treatment modality that interferes with glioblastoma cell division and organelle assembly by delivering low-intensity alternating electric fields to the tumor. A previous analysis from the pivotal EF-14 trial demonstrated a clear correlation between TTFields dose-density at the tumor bed and survival in patients treated with TTFields. This study tests the hypothesis that the antimitotic effects of TTFields result in measurable changes in the location and patterns of progression of newly diagnosed glioblastoma (nGBM) patients. METHODS MRI images of 428 nGBM patients that participated in the pivotal EF-14 trial were reviewed and the rates at which distant progression occurred in the TTFields treatment and control arm were compared. Realistic head models of 252 TTFields treated patients were created and TTFields intensity distributions were calculated using a Finite Elements Method. TTFields dose was calculated within regions of the tumor bed and normal brain and its relationship with progression determined. RESULTS Distant progression was frequently observed in the TTFields-treated arm, and distant lesions in the TTFields-treated arm appeared at larger distances from the primary lesion than in the control arm. Distant progression correlated with improved clinical outcome in the TTFields patients, with no such correlation observed in the controls. Areas of normal brain that remained normal were exposed to higher TTFields doses compared to normal brain that subsequently exhibited neoplastic progression. Additionally, the average dose to areas of enhancing tumor that returned to normal was significantly higher than in the areas of normal brain that progressed to enhancing tumor. CONCLUSIONS There was a direct correlation between TTFields dose distribution and tumor response, confirming the therapeutic activity of TTFields and the rationale for optimizing array placement to maximize TTFields dose in areas at highest risk of progression, as well as array layout adaptation after progression.
Collapse
Affiliation(s)
- Martin Glas
- Division of Clinical Neurooncology, Dept. of Neurology and German Cancer Consortium (DKTK) Partner Site, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Matthew T Ballo
- Department of Radiation Oncology, West Cancer Center & Research Institute, Memphis, TN.
| | | | | | | | | | | | - Terence T Sio
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ
| | - Paul M DeRose
- Department of Radiation Oncology, Methodist Dallas Medical Center, Dallas, TX
| | - Martin Misch
- Department of Neurosurgery, University Hospital Charité, Berlin, Germany
| | - Sophie Taillibert
- Department of Neurology, Hôpital Pitié-Salpêtrière, APHP, University Pierre et Marie Curie Paris VI, Paris, France
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Medical Center, Tel Aviv, Israel and Tel Aviv University School of Medicine
| | - Andreas F Hottinger
- Departments of Clinical Neurosciences and Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | | | - Chae-Yong Kim
- Seoul National University Bundang Hospital, Seoul National University College of Medicine, Korea
| | - Suyash Mohan
- Division of Neuroradiology, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Roger Stupp
- Lou and Jean Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Departments of Neurological Surgery, Neurology and Medicine (Hem/Onc), Northwestern Medicine, Chicago, IL
| |
Collapse
|
38
|
Arvind R, Chandana SR, Borad MJ, Pennington D, Mody K, Babiker H. Tumor-Treating Fields: A fourth modality in cancer treatment, new practice updates. Crit Rev Oncol Hematol 2021; 168:103535. [PMID: 34808377 DOI: 10.1016/j.critrevonc.2021.103535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 10/12/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Although major innovations in treatment are advancing, cancer persists as one of the leading causes of mortality. With the rising incidence of cancer and as we treat them, patients incur short term and long-term toxicities of current traditional therapies, including chemotherapy. This imposes a significant physical, emotional, and financial burden among patients, which affects their quality of life. Tumor-Treating Fields (TTFields) is a novel innovative new treatment modality that utilizes alternating electric fields at specific intermediate frequencies to diminish tumor growth by inhibiting mitosis and thus proliferation of malignant cells. The distinguishing feature of this new treatment modality is that it is noninvasive and tolerable. In fact, TTFields is currently FDA approved for the treatment of glioblastoma multiforme (GBM) as well as malignant pleural mesothelioma (MPM). Recently, TTFields have also been found to affect immunogenic cell death resulting in stronger anti-neoplastic effects. In this review, we discuss the mechanism of action of TTFields, the plethora of clinical trials being conducted in patients with GBM, pancreatic adenocarcinoma, ovarian cancer, non-small-cell-lung-cancer (NSCLC), brain metastasis from NSCLC, and MPM and toxicity profile.
Collapse
Affiliation(s)
- Rhea Arvind
- University of Arizona, College of Science, Tucson, AZ, USA
| | - Sreenivasa R Chandana
- Department of Medicine, College of Human Medicine, Michigan State University, East Lansing, Phase I Program, START Midwest, Grand Rapids, MI, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology-Oncology, Mayo Clinic, Scottsdale, AZ, USA
| | - Danniel Pennington
- University of Arizona Cancer Center, Clinical Trials Office, Tucson, AZ, USA
| | - Kabir Mody
- Department of Medicine, Division of Hematology-Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Hani Babiker
- Department of Medicine, Division of Hematology-Oncology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
39
|
Mikic N, Poulsen FR, Kristoffersen KB, Laursen RJ, Guldberg TL, Skjøth-Rasmussen J, Wong ET, Møller S, Dahlrot RH, Sørensen JCH, Korshøj AR. Study protocol for OptimalTTF-2: enhancing Tumor Treating Fields with skull remodeling surgery for first recurrence glioblastoma: a phase 2, multi-center, randomized, prospective, interventional trial. BMC Cancer 2021; 21:1010. [PMID: 34503460 PMCID: PMC8427888 DOI: 10.1186/s12885-021-08709-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/18/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND OptimalTTF-2 is a randomized, comparative, multi-center, investigator-initiated, interventional study aiming to test skull remodeling surgery in combination with Tumor Treating Fields therapy (TTFields) and best physicians choice medical oncological therapy for first recurrence in glioblastoma patients. OptimalTTF-2 is a phase 2 trial initiated in November 2020. Skull remodeling surgery consists of five burrholes, each 15 mm in diameter, directly over the tumor resection cavity. Preclinical research indicates that this procedure enhances the effect of Tumor Treating Fields considerably. We recently concluded a phase 1 safety/feasibility trial that indicated improved overall survival and no additional toxicity. This phase 2 trial aims to validate the efficacy of the proposed intervention. METHODS The trial is designed as a comparative, 1:1 randomized, minimax two-stage phase 2 with an expected 70 patients to a maximum sample size of 84 patients. After 12-months follow-up of the first 52 patients, an interim futility analysis will be performed. The two trial arms will consist of either a) TTFields therapy combined with best physicians choice oncological treatment (control arm) or b) skull remodeling surgery, TTFields therapy and best practice oncology (interventional arm). Major eligibility criteria include age ≥ 18 years, 1st recurrence of supratentorial glioblastoma, Karnofsky performance score ≥ 70, focal tumor, and lack of significant co-morbidity. Study design aims to detect a 20% increase in overall survival after 12 months (OS12), assuming OS12 = 40% in the control group and OS12 = 60% in the intervention group. Secondary endpoints include hazard rate ratio of overall survival and progression-free survival, objective tumor response rate, quality of life, KPS, steroid dose, and toxicity. Toxicity, objective tumor response rate, and QoL will be assessed every 3rd month. Endpoint data will be collected at the end of the trial, including the occurrence of suspected unexpected serious adverse reactions (SUSARs), unacceptable serious adverse events (SAEs), withdrawal of consent, or loss-to-follow-up. DISCUSSION New treatment modalities are highly needed for first recurrence glioblastoma. Our proposed treatment modality of skull remodeling surgery, Tumor Treating Fields, and best practice medical oncological therapy may increase overall survival significantly. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0422399 , registered 13. January 2020.
Collapse
Affiliation(s)
- N Mikic
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200, Aarhus, Denmark.
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200, Aarhus, Denmark.
| | - F R Poulsen
- Department of Neurosurgery, Odense University Hospital, Kløvervænget 47, 5000, Odense, Denmark
- Clinical Institute BRIDGE (Brain Research InterDisciplinary Guided Excellence), University of Southern Denmark, Winsløwparken 19, 5000, Odense, Denmark
| | - K B Kristoffersen
- Department of Oncology, Aarhus University Hospital, Palle Juul-Jensens Blvd. 99, 8200, Aarhus, Denmark
| | - R J Laursen
- Department of Neurosurgery, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| | - T L Guldberg
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark
| | - J Skjøth-Rasmussen
- Department of Neurosurgery, Rigshospitalet, Inge Lehmanns Vej 6, 2100, København Ø, Denmark
| | - E T Wong
- Beth Israel Deaconess Medical Center, 330 Brookline Ave, Boston, MA, 02215, USA
- Harvard Medical School, 25 Shattuck St, Boston, MA, 02115, USA
| | - S Møller
- Department of Oncology, Rigshospitalet, Blegdamsvej 9, 2100, København Ø, Denmark
| | - R H Dahlrot
- Department of Oncology, Odense University Hospital, Kløvervænget 19, 5000, Odense, Denmark
| | - J C H Sørensen
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200, Aarhus, Denmark
| | - A R Korshøj
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Blvd 165, 8200, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Blvd. 82, 8200, Aarhus, Denmark
| |
Collapse
|
40
|
Jenkins EPW, Finch A, Gerigk M, Triantis IF, Watts C, Malliaras GG. Electrotherapies for Glioblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100978. [PMID: 34292672 PMCID: PMC8456216 DOI: 10.1002/advs.202100978] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/20/2021] [Indexed: 05/08/2023]
Abstract
Non-thermal, intermediate frequency (100-500 kHz) electrotherapies present a unique therapeutic strategy to treat malignant neoplasms. Here, pulsed electric fields (PEFs) which induce reversible or irreversible electroporation (IRE) and tumour-treating fields (TTFs) are reviewed highlighting the foundations, advances, and considerations of each method when applied to glioblastoma (GBM). Several biological aspects of GBM that contribute to treatment complexity (heterogeneity, recurrence, resistance, and blood-brain barrier(BBB)) and electrophysiological traits which are suggested to promote glioma progression are described. Particularly, the biological responses at the cellular and molecular level to specific parameters of the electrical stimuli are discussed offering ways to compare these parameters despite the lack of a universally adopted physical description. Reviewing the literature, a disconnect is found between electrotherapy techniques and how they target the biological complexities of GBM that make treatment difficult in the first place. An attempt is made to bridge the interdisciplinary gap by mapping biological characteristics to different methods of electrotherapy, suggesting important future research topics and directions in both understanding and treating GBM. To the authors' knowledge, this is the first paper that attempts an in-tandem assessment of the biological effects of different aspects of intermediate frequency electrotherapy methods, thus offering possible strategies toward GBM treatment.
Collapse
Affiliation(s)
- Elise P. W. Jenkins
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Alina Finch
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - Magda Gerigk
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Iasonas F. Triantis
- Department of Electrical and Electronic EngineeringCity, University of LondonLondonEC1V 0HBUK
| | - Colin Watts
- Institute of Cancer and Genomic ScienceUniversity of BirminghamBirminghamB15 2TTUK
| | - George G. Malliaras
- Division of Electrical EngineeringDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| |
Collapse
|
41
|
Makarov SN, Golestanirad L, Wartman WA, Nguyen BT, Noetscher GM, Ahveninen JP, Fujimoto K, Weise K, Nummenmaa AR. Boundary element fast multipole method for modeling electrical brain stimulation with voltage and current electrodes. J Neural Eng 2021; 18. [PMID: 34311449 DOI: 10.1088/1741-2552/ac17d7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 07/26/2021] [Indexed: 01/03/2023]
Abstract
Objective. To formulate, validate, and apply an alternative to the finite element method (FEM) high-resolution modeling technique for electrical brain stimulation-the boundary element fast multipole method (BEM-FMM). To include practical electrode models for both surface and embedded electrodes.Approach. Integral equations of the boundary element method in terms of surface charge density are combined with a general-purpose fast multipole method and are expanded for voltage, shunt, current, and floating electrodes. The solution of coupled and properly weighted/preconditioned integral equations is accompanied by enforcing global conservation laws: charge conservation law and Kirchhoff's current law.Main results.A sub-percent accuracy is reported as compared to the analytical solutions and simple validation geometries. Comparison to FEM considering realistic head models resulted in relative differences of the electric field magnitude in the range of 3%-6% or less. Quantities that contain higher order spatial derivatives, such as the activating function, are determined with a higher accuracy and a faster speed as compared to the FEM. The method can be easily combined with existing head modeling pipelines such as headreco or mri2mesh.Significance.The BEM-FMM does not rely on a volumetric mesh and is therefore particularly suitable for modeling some mesoscale problems with submillimeter (and possibly finer) resolution with high accuracy at moderate computational cost. Utilizing Helmholtz reciprocity principle makes it possible to expand the method to a solution of EEG forward problems with a very large number of cortical dipoles.
Collapse
Affiliation(s)
- Sergey N Makarov
- Electrical & Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America.,Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Laleh Golestanirad
- Biomedical Engineering and Radiology Depts., Northwestern University, Chicago, IL 60611, United States of America
| | - William A Wartman
- Electrical & Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| | - Bach Thanh Nguyen
- Biomedical Engineering and Radiology Depts., Northwestern University, Chicago, IL 60611, United States of America
| | - Gregory M Noetscher
- Electrical & Computer Engineering Department, Worcester Polytechnic Institute, Worcester, MA 01609, United States of America
| | - Jyrki P Ahveninen
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| | - Kyoko Fujimoto
- Center for Devices and Radiological Health (CDRH), FDA, Silver Spring, MD 20993, United States of America
| | - Konstantin Weise
- Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103 Leipzig, Germany
| | - Aapo R Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
42
|
Therapy of pancreatic cancer with alternating electric fields: Limitations of the method. Bioelectrochemistry 2021; 141:107881. [PMID: 34245959 DOI: 10.1016/j.bioelechem.2021.107881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/18/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant tumor with a poor prognosis. More effective treatment options are urgently needed. The use of physical and weak alternating electric fields (TTFields) can inhibit cell division of PDAC carcinoma and is currently being investigated in clinical trials. Here, we analyzed this new physical treatment under non-ideal conditions such as may occur during patient treatment. Three established human PDAC cell lines BxPC-3, gemcitabine-resistant BxPC-3 (BxGem), AsPC-1, and a non-malignant primary pancreatic cell line CRL-4023 were treated with TTFields in vitro. MTT assays, electrical impedance measurement, cell staining with Annexin V/7AAD followed by FACS analysis, digital image analysis and immunohistochemistry were performed. Treatment with TTFields smaller than 0.7 V/cm and field lines in the direction of mitotic spindle orientation significantly inhibited proliferation of all PDAC cells at 150 kHz, but significantly increased viability of AsPC-1 cells at all frequencies between 100 kHz and 300 kHz and that of BxPC-3 and BxGem cells at 250 kHz. Apoptosis or necrosis were not induced. Non-malignant CRL-4023 cells were not affected at 150 kHz. TTFields damaged PDAC cell lines but even favored their viability at very weak field strength and unfavorable frequency or inadequate field direction.
Collapse
|
43
|
Blatt R, Davidi S, Munster M, Shteingauz A, Cahal S, Zeidan A, Marciano T, Bomzon Z, Haber A, Giladi M, Weinberg U, Kinzel A, Palti Y. In Vivo Safety of Tumor Treating Fields (TTFields) Applied to the Torso. Front Oncol 2021; 11:670809. [PMID: 34249709 PMCID: PMC8264759 DOI: 10.3389/fonc.2021.670809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022] Open
Abstract
Background Tumor Treating Fields (TTFields) therapy is a non-invasive, loco-regional, anti-mitotic treatment modality that targets rapidly dividing cancerous cells, utilizing low intensity, alternating electric fields at cancer-cell-type specific frequencies. TTFields therapy is approved for the treatment of newly diagnosed and recurrent glioblastoma (GBM) in the US, Europe, Israel, Japan, and China. The favorable safety profile of TTFields in patients with GBM is partially attributed to the low rate of mitotic events in normal, quiescent brain cells. However, specific safety evaluations are warranted at locations with known high rates of cellular proliferation, such as the torso, which is a primary site of several of the most aggressive malignant tumors. Methods The safety of delivering TTFields to the torso of healthy rats at 150 or 200 kHz, which were previously identified as optimal frequencies for treating multiple torso cancers, was investigated. Throughout 2 weeks of TTFields application, animals underwent daily clinical examinations, and at treatment cessation blood samples and internal organs were examined. Computer simulations were performed to verify that the targeted internal organs of the torso were receiving TTFields at therapeutic intensities (≥ 1 V/cm root mean square, RMS). Results No treatment-related mortality was observed. Furthermore, no significant differences were observed between the TTFields-treated and control animals for all examined safety parameters: activity level, food and water intake, stools, motor neurological status, respiration, weight, complete blood count, blood biochemistry, and pathological findings of internal organs. TTFields intensities of 1 to 2.5 V/cm RMS were confirmed for internal organs within the target region. Conclusions This research demonstrates the safety of therapeutic level TTFields at frequencies of 150 and 200 kHz when applied as monotherapy to the torso of healthy rats.
Collapse
|
44
|
Han J, Gao Y, Nan X, Yu X, Liu F, Xin SX. Effect of radiofrequency inhomogeneity on water-content based electrical properties tomography and its correction by flip angle maps. Magn Reson Imaging 2021; 78:25-34. [PMID: 33450296 DOI: 10.1016/j.mri.2020.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 12/24/2020] [Accepted: 12/31/2020] [Indexed: 10/22/2022]
Abstract
Water-content based electrical properties tomography (wEPT) can retrieve electrical properties (EPs) from water-content maps. B1+ field information is not involved in the traditional magnetic resonance electrical properties tomography approach. wEPT can be performed through conventional MR scanning, such as T1-weighted spin-echo imaging, which provides convenient access to multiple clinical applications. However, the inhomogeneous radiofrequency (RF) field induced by RF coils would cause inaccuracy in wEPT reconstructions during MR scanning. We conducted a detailed investigation to evaluate the effect of inhomogeneous RF field on wEPT reconstructions to guarantee that EP mapping is desired for clinical practice. Two important considerations are involved, namely, multiple typical coil configurations and various flip angles (FAs). We proposed a correction scheme with actual FA mapping to calibrate the RF inhomogeneity and finally validated it by using human imaging at 3 T. This study illustrates a detailed evaluation for wEPT under imperfect RF homogeneity and further provides a feasible correction procedure to mitigate it. The profound knowledge of wEPT provided in our work will benefit its performance in clinical applications.
Collapse
Affiliation(s)
- Jijun Han
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Yunyu Gao
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Xiang Nan
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuefei Yu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China
| | - Feng Liu
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, QLD, Australia
| | - Sherman Xuegang Xin
- School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, China.
| |
Collapse
|
45
|
Shawki MM, Elabd S. Tumor treating fields (TTFs) using uninsulated electrodes induce cell death in human non-small cell lung carcinoma (NSCLC) cells. AIMS BIOPHYSICS 2021. [DOI: 10.3934/biophy.2021011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
46
|
Kalra AP, Eakins BB, Patel SD, Ciniero G, Rezania V, Shankar K, Tuszynski JA. All Wired Up: An Exploration of the Electrical Properties of Microtubules and Tubulin. ACS NANO 2020; 14:16301-16320. [PMID: 33213135 DOI: 10.1021/acsnano.0c06945] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Microtubules are hollow, cylindrical polymers of the protein α, β tubulin, that interact mechanochemically with a variety of macromolecules. Due to their mechanically robust nature, microtubules have gained attention as tracks for precisely directed transport of nanomaterials within lab-on-a-chip devices. Primarily due to the unusually negative tail-like C-termini of tubulin, recent work demonstrates that these biopolymers are also involved in a broad spectrum of intracellular electrical signaling. Microtubules and their electrostatic properties are discussed in this Review, followed by an evaluation of how these biopolymers respond mechanically to electrical stimuli, through microtubule migration, electrorotation and C-termini conformation changes. Literature focusing on how microtubules act as nanowires capable of intracellular ionic transport, charge storage, and ionic signal amplification is reviewed, illustrating how these biopolymers attenuate ionic movement in response to electrical stimuli. The Review ends with a discussion on the important questions, challenges, and future opportunities for intracellular microtubule-based electrical signaling.
Collapse
Affiliation(s)
- Aarat P Kalra
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
| | - Boden B Eakins
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Sahil D Patel
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Gloria Ciniero
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
| | - Vahid Rezania
- Department of Physical Sciences, MacEwan University, Edmonton, Alberta T5J 4S2, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, 9107-116 St, Edmonton, Alberta T6G 2 V4, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, 11335 Saskatchewan Dr NW, Edmonton, Alberta T6G 2M9, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, Torino 10129, Italy
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 1Z2, Canada
| |
Collapse
|
47
|
Li X, Yang F, Rubinsky B. A Correlation Between Electric Fields That Target the Cell Membrane Potential and Dividing HeLa Cancer Cell Growth Inhibition. IEEE Trans Biomed Eng 2020; 68:1951-1956. [PMID: 33275576 DOI: 10.1109/tbme.2020.3042650] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Clinical studies show that low intensity (single V/cm), intermediate-frequency (100 kHz-300 kHz) electric fields inhibit the growth of cancer cells, while the mechanism is not yet understood. We examine the hypothesis that electric fields modify the cell membrane potential of dividing cancer cells in a way that correlates with cells growth inhibition. METHODS A Schwan based mathematical model calculates the changes in HeLa cells membrane potential due to single V/cm electric fields and frequencies from 0.1 to 1 MHz. An experimental study examines the effect of these electric fields on the inhibition of HeLa cells growth in an incubator. RESULTS The theoretical calculation shows that the effects of these electric fields on cell membrane potential decrease with an increase in frequency. The HeLa cells experiments verified the inhibitory effect of these fields on cell growth. The inhibitory effect is decreasing with an increase in frequency, in a way that is similar to the frequency dependent effect of these fields on the cell membrane potential. CONCLUSIONS The superposition of the theoretical results and the experimental results suggest a correlation between the effect of these fields on the cell membrane potential and inhibition of cancer cell growth. It should be emphasized that correlations do not prove causality, however, they suggest an area for future research. SIGNIFICANCE These findings have value for the understanding of the mechanisms of cancer cells growth inhibition with electric fields and suggest an interesting area of research on the interaction between electromagnetic fields and cancer cells.
Collapse
|
48
|
Lang ST, Gan LS, McLennan C, Monchi O, Kelly JJP. Impact of Peritumoral Edema During Tumor Treatment Field Therapy: A Computational Modelling Study. IEEE Trans Biomed Eng 2020; 67:3327-3338. [PMID: 32286953 DOI: 10.1109/tbme.2020.2983653] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Tumor treatment fields (TTFie-lds) are an approved adjuvant therapy for glioblastoma (GBM). The magnitude of applied electrical field has been shown to be related to the anti-tumoral response. However, peritumoral edema may result in shunting of electrical current around the tumor, thereby reducing the intra-tumoral electric field. In this study, we systematically address this issue with computational simulations. METHODS Finite element models are created of a human head with varying amounts of peritumoral edema surrounding a virtual tumor. The electric field distribution was simulated using the standard TTFields electrode montage. Electric field magnitude was extracted from the tumor and related to edema thickness. Two patient specific models were created to confirm these results. RESULTS The inclusion of peritumoral edema decreased the average magnitude of the electric field within the tumor. In the model considering a frontal tumor and an anterior-posterior electrode configuration, ≥6 mm of peritumoral edema decreased the electric field by 52%. In the patient specific models, peritumoral edema decreased the electric field magnitude within the tumor by an average of 26%. The effect of peritumoral edema on the electric field distribution was spatially heterogenous, being most significant at the tissue interface between edema and tumor. CONCLUSIONS The inclusion of peritumoral edema during TTFields modelling may have a dramatic effect on the predicted electric field magnitude within the tumor. Given the importance of electric field magnitude for the anti-tumoral effects of TTFields, the presence of edema should be considered both in future modelling studies and when planning TTField therapy.
Collapse
|
49
|
Ravin R, Cai TX, Pursley RH, Garmendia-Cedillos M, Pohida T, Freidlin RZ, Wang H, Zhuang Z, Giles AJ, Williamson NH, Gilbert MR, Basser PJ. A Novel In Vitro Device to Deliver Induced Electromagnetic Fields to Cell and Tissue Cultures. Biophys J 2020; 119:2378-2390. [PMID: 33189686 DOI: 10.1016/j.bpj.2020.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/19/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
We have developed a novel, to our knowledge, in vitro instrument that can deliver intermediate-frequency (100-400 kHz), moderate-intensity (up to and exceeding 6.5 V/cm pk-pk) electric fields (EFs) to cell and tissue cultures generated using induced electromagnetic fields (EMFs) in an air-core solenoid coil. A major application of these EFs is as an emerging cancer treatment modality. In vitro studies by Novocure reported that intermediate-frequency (100-300 kHz), low-amplitude (1-3 V/cm) EFs, which they called "tumor-treating fields (TTFields)," had an antimitotic effect on glioblastoma multiforme (GBM) cells. The effect was found to increase with increasing EF amplitude. Despite continued theoretical, preclinical, and clinical study, the mechanism of action remains incompletely understood. All previous in vitro studies of "TTFields" have used attached, capacitively coupled electrodes to deliver alternating EFs to cell and tissue cultures. This contacting delivery method suffers from a poorly characterized EF profile and conductive heating that limits the duration and amplitude of the applied EFs. In contrast, our device delivers EFs with a well-characterized radial profile in a noncontacting manner, eliminating conductive heating and enabling thermally regulated EF delivery. To test and demonstrate our system, we generated continuous, 200-kHz EMF with an EF amplitude profile spanning 0-6.5 V/cm pk-pk and applied them to exemplar human thyroid cell cultures for 72 h. We observed moderate reduction in cell density (<10%) at low EF amplitudes (<4 V/cm) and a greater reduction in cell density of up to 25% at higher amplitudes (4-6.5 V/cm). Our device can be readily extended to other EF frequency and amplitude regimes. Future studies with this device should contribute to the ongoing debate about the efficacy and mechanism(s) of action of "TTFields" by better isolating the effects of EFs and providing access to previously inaccessible EF regimes.
Collapse
Affiliation(s)
- Rea Ravin
- Celoptics, Inc., Rockville, Maryland; Section on Quantitative Imaging and Tissue Sciences Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland
| | - Teddy X Cai
- Section on Quantitative Imaging and Tissue Sciences Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Randall H Pursley
- The Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Marcial Garmendia-Cedillos
- The Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Tom Pohida
- The Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Raisa Z Freidlin
- The Signal Processing and Instrumentation Section, Center for Information Technology, National Institutes of Health, Bethesda, Maryland
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Amber J Giles
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nathan H Williamson
- Section on Quantitative Imaging and Tissue Sciences Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; National Institute of General Medical Sciences, National Institutes of Health, Bethesda, Maryland
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
50
|
Carrieri FA, Smack C, Siddiqui I, Kleinberg LR, Tran PT. Tumor Treating Fields: At the Crossroads Between Physics and Biology for Cancer Treatment. Front Oncol 2020; 10:575992. [PMID: 33215030 PMCID: PMC7664989 DOI: 10.3389/fonc.2020.575992] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 12/22/2022] Open
Abstract
Despite extraordinary advances that have been achieved in the last few decades, cancer continues to represent a leading cause of mortality worldwide. Lethal cancer types ultimately become refractory to standard of care approaches; thus, novel effective treatment options are desperately needed. Tumor Treating Fields (TTFields) are an innovative non-invasive regional anti-mitotic treatment modality with minimal systemic toxicity. TTFields are low intensity (1-3 V/cm), intermediate frequency (100-300 kHz) alternating electric fields delivered to cancer cells. In patients, TTFields are applied using FDA-approved transducer arrays, orthogonally positioned on the area surrounding the tumor region, with side effects mostly limited to the skin. The precise molecular mechanism of the anti-tumor effects of TTFields is not well-understood, but preclinical research on TTFields suggests it may act during two phases of mitosis: at metaphase, by disrupting the formation of the mitotic spindle, and at cytokinesis, by dielectrophoretic dislocation of intracellular organelles leading to cell death. This review describes the mechanism of action of TTFields and provides an overview of the most important in vitro studies that investigate the disruptive effects of TTFields in different cancer cells, focusing mainly on anti-mitotic roles. Lastly, we summarize completed and ongoing TTFields clinical trials on a variety of solid tumors.
Collapse
Affiliation(s)
- Francesca A. Carrieri
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Caleb Smack
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Ismaeel Siddiqui
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lawrence R. Kleinberg
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Phuoc T. Tran
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Program in Cancer Invasion and Metastasis, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Urology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|