1
|
Niset A, Barrit S. Smartwatch: A wearable, readily available CPR aid. Am J Emerg Med 2024; 83:149-153. [PMID: 39003197 DOI: 10.1016/j.ajem.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Affiliation(s)
- Alexandre Niset
- Médecine d'Urgence, Université Catholique de Louvain, Place de l'université 1, 1348 Louvain-la-Neuve, Belgium; Sciense, Broadway 447, New York, NY 10013, USA; Délégation des Médecins Francophones en Formation asbl, Grez-Doiceau, Belgium.
| | - Sami Barrit
- Sciense, Broadway 447, New York, NY 10013, USA; Délégation des Médecins Francophones en Formation asbl, Grez-Doiceau, Belgium; Neurochirurgie, Université Libre de Bruxelles, Avenue Franklin Roosevelt 50, 1050 Bruxelles, Belgium; Sciences Chirurgicales, Université Paris-Est Créteil, Avenue du Général de Gaulle 61, 94010 Créteil, France.
| |
Collapse
|
2
|
He W, Kong S, Lin R, Xie Y, Zheng S, Yin Z, Huang X, Su L, Zhang X. Machine Learning Assists in the Design and Application of Microneedles. Biomimetics (Basel) 2024; 9:469. [PMID: 39194448 DOI: 10.3390/biomimetics9080469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/29/2024] Open
Abstract
Microneedles (MNs), characterized by their micron-sized sharp tips, can painlessly penetrate the skin and have shown significant potential in disease treatment and biosensing. With the development of artificial intelligence (AI), the design and application of MNs have experienced substantial innovation aided by machine learning (ML). This review begins with a brief introduction to the concept of ML and its current stage of development. Subsequently, the design principles and fabrication methods of MNs are explored, demonstrating the critical role of ML in optimizing their design and preparation. Integration between ML and the applications of MNs in therapy and sensing were further discussed. Finally, we outline the challenges and prospects of machine learning-assisted MN technology, aiming to advance its practical application and development in the field of smart diagnosis and treatment.
Collapse
Affiliation(s)
- Wenqing He
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Suixiu Kong
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Rumin Lin
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
| | - Yuanting Xie
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Shanshan Zheng
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Ziyu Yin
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xin Huang
- Institute of Chemical Materials, China Academy of Engineering Physics, Mianyang 621900, China
| | - Lei Su
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518000, China
- School of Biomedical Engineering, Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Shenzhen Key Laboratory of Nano-Biosensing Technology, Marshall Laboratory of Biomedical Engineering, International Health Science Innovation Center, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Ahmad S, Raza K. An extensive review on lung cancer therapeutics using machine learning techniques: state-of-the-art and perspectives. J Drug Target 2024; 32:635-646. [PMID: 38662768 DOI: 10.1080/1061186x.2024.2347358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024]
Abstract
There are over 100 types of human cancer, accounting for millions of deaths every year. Lung cancer alone claims over 1.8 million lives per year and is expected to surpass 3.2 million by 2050, which underscores the urgent need for rapid drug development and repurposing initiatives. The application of AI emerges as a pivotal solution to developing anti-cancer therapeutics. This state-of-the-art review aims to explore the various applications of AI in lung cancer therapeutics. Predictive models can analyse large datasets, including clinical data, genetic information, and treatment outcomes, for novel drug design and to generate personalised treatment recommendations, potentially optimising therapeutic strategies, enhancing treatment efficacy, and minimising adverse effects. A thorough literature review study was conducted based on articles indexed in PubMed and Scopus. We compiled the use of various machine learning approaches, including CNN, RNN, GAN, VAEs, and other AI techniques, enhancing efficiency with accuracy exceeding 95%, which is validated through a computer-aided drug design process. AI can revolutionise lung cancer therapeutics, streamlining processes and saving biological scientists' time and effort-however, further research is needed to overcome challenges and fully unlock AI's potential in Lung Cancer Therapeutics.
Collapse
Affiliation(s)
- Shaban Ahmad
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
4
|
Singh M, Kumar A, Khanna NN, Laird JR, Nicolaides A, Faa G, Johri AM, Mantella LE, Fernandes JFE, Teji JS, Singh N, Fouda MM, Singh R, Sharma A, Kitas G, Rathore V, Singh IM, Tadepalli K, Al-Maini M, Isenovic ER, Chaturvedi S, Garg D, Paraskevas KI, Mikhailidis DP, Viswanathan V, Kalra MK, Ruzsa Z, Saba L, Laine AF, Bhatt DL, Suri JS. Artificial intelligence for cardiovascular disease risk assessment in personalised framework: a scoping review. EClinicalMedicine 2024; 73:102660. [PMID: 38846068 PMCID: PMC11154124 DOI: 10.1016/j.eclinm.2024.102660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/25/2024] [Accepted: 05/08/2024] [Indexed: 06/09/2024] Open
Abstract
Background The field of precision medicine endeavors to transform the healthcare industry by advancing individualised strategies for diagnosis, treatment modalities, and predictive assessments. This is achieved by utilizing extensive multidimensional biological datasets encompassing diverse components, such as an individual's genetic makeup, functional attributes, and environmental influences. Artificial intelligence (AI) systems, namely machine learning (ML) and deep learning (DL), have exhibited remarkable efficacy in predicting the potential occurrence of specific cancers and cardiovascular diseases (CVD). Methods We conducted a comprehensive scoping review guided by the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework. Our search strategy involved combining key terms related to CVD and AI using the Boolean operator AND. In August 2023, we conducted an extensive search across reputable scholarly databases including Google Scholar, PubMed, IEEE Xplore, ScienceDirect, Web of Science, and arXiv to gather relevant academic literature on personalised medicine for CVD. Subsequently, in January 2024, we extended our search to include internet search engines such as Google and various CVD websites. These searches were further updated in March 2024. Additionally, we reviewed the reference lists of the final selected research articles to identify any additional relevant literature. Findings A total of 2307 records were identified during the process of conducting the study, consisting of 564 entries from external sites like arXiv and 1743 records found through database searching. After 430 duplicate articles were eliminated, 1877 items that remained were screened for relevancy. In this stage, 1241 articles remained for additional review after 158 irrelevant articles and 478 articles with insufficient data were removed. 355 articles were eliminated for being inaccessible, 726 for being written in a language other than English, and 281 for not having undergone peer review. Consequently, 121 studies were deemed suitable for inclusion in the qualitative synthesis. At the intersection of CVD, AI, and precision medicine, we found important scientific findings in our scoping review. Intricate pattern extraction from large, complicated genetic datasets is a skill that AI algorithms excel at, allowing for accurate disease diagnosis and CVD risk prediction. Furthermore, these investigations have uncovered unique genetic biomarkers linked to CVD, providing insight into the workings of the disease and possible treatment avenues. The construction of more precise predictive models and personalised treatment plans based on the genetic profiles of individual patients has been made possible by the revolutionary advancement of CVD risk assessment through the integration of AI and genomics. Interpretation The systematic methodology employed ensured the thorough examination of available literature and the inclusion of relevant studies, contributing to the robustness and reliability of the study's findings. Our analysis stresses a crucial point in terms of the adaptability and versatility of AI solutions. AI algorithms designed in non-CVD domains such as in oncology, often include ideas and tactics that might be modified to address cardiovascular problems. Funding No funding received.
Collapse
Affiliation(s)
- Manasvi Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Bennett University, 201310, Greater Noida, India
| | - Ashish Kumar
- Bennett University, 201310, Greater Noida, India
| | - Narendra N. Khanna
- Department of Cardiology, Indraprastha APOLLO Hospitals, New Delhi, 110001, India
| | - John R. Laird
- Heart and Vascular Institute, Adventist Health St. Helena, St Helena, CA, 94574, USA
| | - Andrew Nicolaides
- Vascular Screening and Diagnostic Centre and University of Nicosia Medical School, Cyprus
| | - Gavino Faa
- Department of Pathology, University of Cagliari, Cagliari, Italy
| | - Amer M. Johri
- Department of Medicine, Division of Cardiology, Queen's University, Kingston, Canada
| | - Laura E. Mantella
- Department of Medicine, Division of Cardiology, University of Toronto, Toronto, Canada
| | | | - Jagjit S. Teji
- Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, 60611, USA
| | - Narpinder Singh
- Department of Food Science and Technology, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| | - Mostafa M. Fouda
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
| | - Rajesh Singh
- Department of Research and Innovation, Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
| | - Aditya Sharma
- Division of Cardiovascular Medicine, University of Virginia, Charlottesville, 22901, VA, USA
| | - George Kitas
- Academic Affairs, Dudley Group NHS Foundation Trust, DY1, Dudley, UK
| | - Vijay Rathore
- Nephrology Department, Kaiser Permanente, Sacramento, CA, 95823, USA
| | - Inder M. Singh
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
| | | | - Mustafa Al-Maini
- Allergy, Clinical Immunology and Rheumatology Institute, Toronto, ON, L4Z 4C4, Canada
| | - Esma R. Isenovic
- Department of Radiobiology and Molecular Genetics, National Institute of The Republic of Serbia, University of Belgrade, 110010, Serbia
| | - Seemant Chaturvedi
- Department of Neurology & Stroke Program, University of Maryland, Baltimore, MD, USA
| | | | | | - Dimitri P. Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, University College London (UCL), London, UK
| | | | | | - Zoltan Ruzsa
- Invasive Cardiology Division, University of Szeged, Szeged, Hungary
| | - Luca Saba
- Department of Radiology, Azienda Ospedaliero Universitaria, 40138, Cagliari, Italy
| | - Andrew F. Laine
- Departments of Biomedical and Radiology, Columbia University, New York, NY, USA
| | | | - Jasjit S. Suri
- Stroke Monitoring and Diagnostic Division, AtheroPoint™, Roseville, CA, 95661, USA
- Department of Electrical and Computer Engineering, Idaho State University, Pocatello, ID, 83209, USA
- Department of Computer Science, Graphic Era Deemed to Be University, Dehradun, Uttarakhand, 248002, India
| |
Collapse
|
5
|
Mut M, Zhang M, Gupta I, Fletcher PT, Farzad F, Nwafor D. Augmented surgical decision-making for glioblastoma: integrating AI tools into education and practice. Front Neurol 2024; 15:1387958. [PMID: 38911587 PMCID: PMC11191873 DOI: 10.3389/fneur.2024.1387958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Surgical decision-making for glioblastoma poses significant challenges due to its complexity and variability. This study investigates the potential of artificial intelligence (AI) tools in improving "decision-making processes" for glioblastoma surgery. A systematic review of literature identified 10 relevant studies, primarily focused on predicting resectability and surgery-related neurological outcomes. AI tools, especially rooted in radiomics and connectomics, exhibited promise in predicting resection extent through precise tumor segmentation and tumor-network relationships. However, they demonstrated limited effectiveness in predicting postoperative neurological due to dynamic and less quantifiable nature of patient-related factors. Recognizing these challenges, including limited datasets and the interpretability requirement in medical applications, underscores the need for standardization, algorithm optimization, and addressing variability in model performance and then further validation in clinical settings. While AI holds potential, it currently does not possess the capacity to emulate the nuanced decision-making process utilized by experienced neurosurgeons in the comprehensive approach to glioblastoma surgery.
Collapse
Affiliation(s)
- Melike Mut
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| | - Miaomiao Zhang
- Department of Electrical and Computer Engineering, Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Ishita Gupta
- Department of Electrical and Computer Engineering, Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - P. Thomas Fletcher
- Department of Electrical and Computer Engineering, Department of Computer Science, University of Virginia, Charlottesville, VA, United States
| | - Faraz Farzad
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| | - Divine Nwafor
- Department of Neurosurgery, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
6
|
Shao Z, Gao H, Wang B, Zhang S. Exploring the impact of pathogenic microbiome in orthopedic diseases: machine learning and deep learning approaches. Front Cell Infect Microbiol 2024; 14:1380136. [PMID: 38633744 PMCID: PMC11021578 DOI: 10.3389/fcimb.2024.1380136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Osteoporosis, arthritis, and fractures are examples of orthopedic illnesses that not only significantly impair patients' quality of life but also complicate and raise the expense of therapy. It has been discovered in recent years that the pathophysiology of orthopedic disorders is significantly influenced by the microbiota. By employing machine learning and deep learning techniques to conduct a thorough analysis of the disease-causing microbiome, we can enhance our comprehension of the pathophysiology of many illnesses and expedite the creation of novel treatment approaches. Today's science is undergoing a revolution because to the introduction of machine learning and deep learning technologies, and the field of biomedical research is no exception. The genesis, course, and management of orthopedic disorders are significantly influenced by pathogenic microbes. Orthopedic infection diagnosis and treatment are made more difficult by the lengthy and imprecise nature of traditional microbial detection and characterization techniques. These cutting-edge analytical techniques are offering previously unheard-of insights into the intricate relationships between orthopedic health and pathogenic microbes, opening up previously unimaginable possibilities for illness diagnosis, treatment, and prevention. The goal of biomedical research has always been to improve diagnostic and treatment methods while also gaining a deeper knowledge of the processes behind the onset and development of disease. Although traditional biomedical research methodologies have demonstrated certain limits throughout time, they nevertheless rely heavily on experimental data and expertise. This is the area in which deep learning and machine learning approaches excel. The advancements in machine learning (ML) and deep learning (DL) methodologies have enabled us to examine vast quantities of data and unveil intricate connections between microorganisms and orthopedic disorders. The importance of ML and DL in detecting, categorizing, and forecasting harmful microorganisms in orthopedic infectious illnesses is reviewed in this work.
Collapse
Affiliation(s)
| | | | | | - Shenqi Zhang
- Department of Joint and Sports Medicine, Zaozhuang Municipal Hospital, Affiliated to Jining Medical University, Zaozhuang, China
| |
Collapse
|
7
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
8
|
Qureshi R, Irfan M, Gondal TM, Khan S, Wu J, Hadi MU, Heymach J, Le X, Yan H, Alam T. AI in drug discovery and its clinical relevance. Heliyon 2023; 9:e17575. [PMID: 37396052 PMCID: PMC10302550 DOI: 10.1016/j.heliyon.2023.e17575] [Citation(s) in RCA: 47] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/17/2023] [Accepted: 06/21/2023] [Indexed: 07/04/2023] Open
Abstract
The COVID-19 pandemic has emphasized the need for novel drug discovery process. However, the journey from conceptualizing a drug to its eventual implementation in clinical settings is a long, complex, and expensive process, with many potential points of failure. Over the past decade, a vast growth in medical information has coincided with advances in computational hardware (cloud computing, GPUs, and TPUs) and the rise of deep learning. Medical data generated from large molecular screening profiles, personal health or pathology records, and public health organizations could benefit from analysis by Artificial Intelligence (AI) approaches to speed up and prevent failures in the drug discovery pipeline. We present applications of AI at various stages of drug discovery pipelines, including the inherently computational approaches of de novo design and prediction of a drug's likely properties. Open-source databases and AI-based software tools that facilitate drug design are discussed along with their associated problems of molecule representation, data collection, complexity, labeling, and disparities among labels. How contemporary AI methods, such as graph neural networks, reinforcement learning, and generated models, along with structure-based methods, (i.e., molecular dynamics simulations and molecular docking) can contribute to drug discovery applications and analysis of drug responses is also explored. Finally, recent developments and investments in AI-based start-up companies for biotechnology, drug design and their current progress, hopes and promotions are discussed in this article.
Collapse
Affiliation(s)
- Rizwan Qureshi
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
- Department of Imaging Physics, MD Anderson Cancer Center, The University of Texas, Houston, USA
| | - Muhammad Irfan
- Faculty of Electrical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Swabi, Pakistan
| | | | - Sheheryar Khan
- School of Professional Education & Executive Development, The Hong Kong Polytechnic University, Hong Kong
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, The University of Texas, Houston, USA
| | | | - John Heymach
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Xiuning Le
- Department of Thoracic Head and Neck Medical Oncology, Division of Cancer Medicine, The University of Texas, MD Anderson Cancer Center, Houston, USA
| | - Hong Yan
- Department of Electrical Engineering, City University of Hong Kong, Kowloon, Hong Kong
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
9
|
Deniz-Garcia A, Fabelo H, Rodriguez-Almeida AJ, Zamora-Zamorano G, Castro-Fernandez M, Alberiche Ruano MDP, Solvoll T, Granja C, Schopf TR, Callico GM, Soguero-Ruiz C, Wägner AM. Quality, Usability, and Effectiveness of mHealth Apps and the Role of Artificial Intelligence: Current Scenario and Challenges. J Med Internet Res 2023; 25:e44030. [PMID: 37140973 PMCID: PMC10196903 DOI: 10.2196/44030] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/19/2023] [Accepted: 03/10/2023] [Indexed: 03/12/2023] Open
Abstract
The use of artificial intelligence (AI) and big data in medicine has increased in recent years. Indeed, the use of AI in mobile health (mHealth) apps could considerably assist both individuals and health care professionals in the prevention and management of chronic diseases, in a person-centered manner. Nonetheless, there are several challenges that must be overcome to provide high-quality, usable, and effective mHealth apps. Here, we review the rationale and guidelines for the implementation of mHealth apps and the challenges regarding quality, usability, and user engagement and behavior change, with a special focus on the prevention and management of noncommunicable diseases. We suggest that a cocreation-based framework is the best method to address these challenges. Finally, we describe the current and future roles of AI in improving personalized medicine and provide recommendations for developing AI-based mHealth apps. We conclude that the implementation of AI and mHealth apps for routine clinical practice and remote health care will not be feasible until we overcome the main challenges regarding data privacy and security, quality assessment, and the reproducibility and uncertainty of AI results. Moreover, there is a lack of both standardized methods to measure the clinical outcomes of mHealth apps and techniques to encourage user engagement and behavior changes in the long term. We expect that in the near future, these obstacles will be overcome and that the ongoing European project, Watching the risk factors (WARIFA), will provide considerable advances in the implementation of AI-based mHealth apps for disease prevention and health promotion.
Collapse
Affiliation(s)
- Alejandro Deniz-Garcia
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
| | - Himar Fabelo
- Complejo Hospitalario Universitario Insular - Materno Infantil, Fundación Canaria Instituto de Investigación Sanitaria de Canarias, Las Palmas de Gran Canaria, Spain
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Antonio J Rodriguez-Almeida
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Garlene Zamora-Zamorano
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Castro-Fernandez
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Maria Del Pino Alberiche Ruano
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Terje Solvoll
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Conceição Granja
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| | - Thomas Roger Schopf
- Norwegian Centre for E-health Research, University Hospital of North-Norway, Tromsø, Norway
| | - Gustavo M Callico
- Research Institute for Applied Microelectronics, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| | - Cristina Soguero-Ruiz
- Departamento de Teoría de la Señal y Comunicaciones y Sistemas Telemáticos y Computación, Universidad Rey Juan Carlos, Madrid, Spain
| | - Ana M Wägner
- Endocrinology and Nutrition Department, Complejo Hospitalario Universitario Insular Materno Infantil, Las Palmas de Gran Canaria, Spain
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias, Universidad de Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
| |
Collapse
|
10
|
Truchot A, Raynaud M, Kamar N, Naesens M, Legendre C, Delahousse M, Thaunat O, Buchler M, Crespo M, Linhares K, Orandi BJ, Akalin E, Pujol GS, Silva HT, Gupta G, Segev DL, Jouven X, Bentall AJ, Stegall MD, Lefaucheur C, Aubert O, Loupy A. Machine learning does not outperform traditional statistical modelling for kidney allograft failure prediction. Kidney Int 2023; 103:936-948. [PMID: 36572246 DOI: 10.1016/j.kint.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/04/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Machine learning (ML) models have recently shown potential for predicting kidney allograft outcomes. However, their ability to outperform traditional approaches remains poorly investigated. Therefore, using large cohorts of kidney transplant recipients from 14 centers worldwide, we developed ML-based prediction models for kidney allograft survival and compared their prediction performances to those achieved by a validated Cox-Based Prognostication System (CBPS). In a French derivation cohort of 4000 patients, candidate determinants of allograft failure including donor, recipient and transplant-related parameters were used as predictors to develop tree-based models (RSF, RSF-ERT, CIF), Support Vector Machine models (LK-SVM, AK-SVM) and a gradient boosting model (XGBoost). Models were externally validated with cohorts of 2214 patients from Europe, 1537 from North America, and 671 from South America. Among these 8422 kidney transplant recipients, 1081 (12.84%) lost their grafts after a median post-transplant follow-up time of 6.25 years (Inter Quartile Range 4.33-8.73). At seven years post-risk evaluation, the ML models achieved a C-index of 0.788 (95% bootstrap percentile confidence interval 0.736-0.833), 0.779 (0.724-0.825), 0.786 (0.735-0.832), 0.527 (0.456-0.602), 0.704 (0.648-0.759) and 0.767 (0.711-0.815) for RSF, RSF-ERT, CIF, LK-SVM, AK-SVM and XGBoost respectively, compared with 0.808 (0.792-0.829) for the CBPS. In validation cohorts, ML models' discrimination performances were in a similar range of those of the CBPS. Calibrations of the ML models were similar or less accurate than those of the CBPS. Thus, when using a transparent methodological pipeline in validated international cohorts, ML models, despite overall good performances, do not outperform a traditional CBPS in predicting kidney allograft failure. Hence, our current study supports the continued use of traditional statistical approaches for kidney graft prognostication.
Collapse
Affiliation(s)
- Agathe Truchot
- Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France
| | - Marc Raynaud
- Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France
| | - Nassim Kamar
- Université Paul Sabatier, INSERM, Department of Nephrology and Organ Transplantation, CHU Rangueil and Purpan, Toulouse, France
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Christophe Legendre
- Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France; Kidney Transplant Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Michel Delahousse
- Department of Transplantation, Nephrology and Clinical Immunology, Foch Hospital, Suresnes, France
| | - Olivier Thaunat
- Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Lyon, France
| | - Matthias Buchler
- Nephrology and Immunology Department, Bretonneau Hospital, Tours, France
| | - Marta Crespo
- Department of Nephrology, Hospital del Mar Barcelona, Barcelona, Spain
| | - Kamilla Linhares
- Hospital do Rim, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Babak J Orandi
- University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, USA
| | - Enver Akalin
- Renal Division, Montefiore Medical Centre, Kidney Transplantation Program, Albert Einstein College of Medicine, New York, New York, USA
| | - Gervacio Soler Pujol
- Unidad de Trasplante Renopancreas, Centro de Educacion Medica e Investigaciones Clinicas Buenos Aires, Buenos Aires, Argentina
| | - Helio Tedesco Silva
- Hospital do Rim, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gaurav Gupta
- Division of Nephrology, Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, Virginia, USA
| | - Dorry L Segev
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Xavier Jouven
- Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France; Cardiology Department, European Georges Pompidou Hospital, Paris, France
| | - Andrew J Bentall
- William J von Liebig Centre for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - Mark D Stegall
- William J von Liebig Centre for Transplantation and Clinical Regeneration, Mayo Clinic, Rochester, Minnesota, USA
| | - Carmen Lefaucheur
- Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France; Kidney Transplant Department, Saint-Louis Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Olivier Aubert
- Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France; Kidney Transplant Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandre Loupy
- Université de Paris, INSERM, PARCC, Paris Translational Research Centre for Organ Transplantation, Paris, France; Kidney Transplant Department, Necker Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
11
|
Luckett PH, Lee JJ, Park KY, Raut RV, Meeker KL, Gordon EM, Snyder AZ, Ances BM, Leuthardt EC, Shimony JS. Resting state network mapping in individuals using deep learning. Front Neurol 2023; 13:1055437. [PMID: 36712434 PMCID: PMC9878609 DOI: 10.3389/fneur.2022.1055437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/28/2022] [Indexed: 01/14/2023] Open
Abstract
Introduction Resting state functional MRI (RS-fMRI) is currently used in numerous clinical and research settings. The localization of resting state networks (RSNs) has been utilized in applications ranging from group analysis of neurodegenerative diseases to individual network mapping for pre-surgical planning of tumor resections. Reproducibility of these results has been shown to require a substantial amount of high-quality data, which is not often available in clinical or research settings. Methods In this work, we report voxelwise mapping of a standard set of RSNs using a novel deep 3D convolutional neural network (3DCNN). The 3DCNN was trained on publicly available functional MRI data acquired in n = 2010 healthy participants. After training, maps that represent the probability of a voxel belonging to a particular RSN were generated for each participant, and then used to calculate mean and standard deviation (STD) probability maps, which are made publicly available. Further, we compared our results to previously published resting state and task-based functional mappings. Results Our results indicate this method can be applied in individual subjects and is highly resistant to both noisy data and fewer RS-fMRI time points than are typically acquired. Further, our results show core regions within each network that exhibit high average probability and low STD. Discussion The 3DCNN algorithm can generate individual RSN localization maps, which are necessary for clinical applications. The similarity between 3DCNN mapping results and task-based fMRI responses supports the association of specific functional tasks with RSNs.
Collapse
Affiliation(s)
- Patrick H. Luckett
- Division of Neurotechnology, Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - John J. Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| | - Ki Yun Park
- Division of Neurotechnology, Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
| | - Ryan V. Raut
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
- MindScope Program, Allen Institute, Seattle, WA, United States
| | - Karin L. Meeker
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Evan M. Gordon
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Abraham Z. Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Beau M. Ances
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
| | - Eric C. Leuthardt
- Division of Neurotechnology, Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, United States
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO, United States
- Center for Innovation in Neuroscience and Technology, Division of Neurotechnology, Washington University School of Medicine, St. Louis, MO, United States
- Brain Laser Center, Washington University School of Medicine, St. Louis, MO, United States
- National Center for Adaptive Neurotechnologies, Albany, NY, United States
| | - Joshua S. Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
12
|
Chung SY, Chang JS, Kim YB. Comprehensive clinical evaluation of deep learning-based auto-segmentation for radiotherapy in patients with cervical cancer. Front Oncol 2023; 13:1119008. [PMID: 37188180 PMCID: PMC10175826 DOI: 10.3389/fonc.2023.1119008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Background and purpose Deep learning-based models have been actively investigated for various aspects of radiotherapy. However, for cervical cancer, only a few studies dealing with the auto-segmentation of organs-at-risk (OARs) and clinical target volumes (CTVs) exist. This study aimed to train a deep learning-based auto-segmentation model for OAR/CTVs for patients with cervical cancer undergoing radiotherapy and to evaluate the model's feasibility and efficacy with not only geometric indices but also comprehensive clinical evaluation. Materials and methods A total of 180 abdominopelvic computed tomography images were included (training set, 165; validation set, 15). Geometric indices such as the Dice similarity coefficient (DSC) and the 95% Hausdorff distance (HD) were analyzed. A Turing test was performed and physicians from other institutions were asked to delineate contours with and without using auto-segmented contours to assess inter-physician heterogeneity and contouring time. Results The correlation between the manual and auto-segmented contours was acceptable for the anorectum, bladder, spinal cord, cauda equina, right and left femoral heads, bowel bag, uterocervix, liver, and left and right kidneys (DSC greater than 0.80). The stomach and duodenum showed DSCs of 0.67 and 0.73, respectively. CTVs showed DSCs between 0.75 and 0.80. Turing test results were favorable for most OARs and CTVs. No auto-segmented contours had large, obvious errors. The median overall satisfaction score of the participating physicians was 7 out of 10. Auto-segmentation reduced heterogeneity and shortened contouring time by 30 min among radiation oncologists from different institutions. Most participants favored the auto-contouring system. Conclusion The proposed deep learning-based auto-segmentation model may be an efficient tool for patients with cervical cancer undergoing radiotherapy. Although the current model may not completely replace humans, it can serve as a useful and efficient tool in real-world clinics.
Collapse
Affiliation(s)
- Seung Yeun Chung
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jee Suk Chang
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Bae Kim
- Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, Republic of Korea
- *Correspondence: Yong Bae Kim,
| |
Collapse
|
13
|
A Holistic Architecture for a Sales Enablement Sensing-as-a-Service Model in the IoT Environment. INFORMATION 2022. [DOI: 10.3390/info13110514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Sales enablement sensing-as-a-service (SESaaS) is an organisation’s future process management for any sales management operation. With an expanding base of dynamic customer demands and the adoption of multiple technological advancements, there is a high possibility that human-centric sales management will be transformed into a fully automated form aimed at increasing productivity and being able to cater to effectively a broader customer base. A review of the relevant literature demonstrates that machine learning is one of the most prevalent techniques in analytics for predicting sales behaviour. However, SESaaS includes many features beyond the sales component. Internet-of-Things (IoT) can additionally be used for networking and data analytics to enrich sales data. Therefore, the proposed scheme introduces a novel SESaaS model capable of balancing the sales team’s needs with those of the customers to maximise profits. The proposed model also presents a novel learning scheme in the IoT environment that aids in projecting the service quality score to the final customer, thereby positively influencing the customer to pay a service fee for a superior and desired quality of experience. Unlike any existing sales management scheme, the proposed scheme offers a novel research methodology for improving sales enablement practices, emphasising service scalability, and forecasting company profit. In contrast to any existing system for sales management, the proposed scheme provides greater accuracy, higher service quality, and faster response time in its predictive strategy for projecting the cost of the adoption of SESaaS, which is not reported in any existing studies. In an extensive testing environment, it is determined that the proposed scheme achieves accuracy and service quality of approximately 98.75% and 92.91%, respectively. In addition, the proposed SESaaS model has a significantly faster response time of 1.256 s. These quantifiable outcomes were validated after being compared with commonly adopted learning programs.
Collapse
|
14
|
Yu Z, Wang K, Wan Z, Xie S, Lv Z. Popular deep learning algorithms for disease prediction: a review. CLUSTER COMPUTING 2022; 26:1231-1251. [PMID: 36120180 PMCID: PMC9469816 DOI: 10.1007/s10586-022-03707-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/07/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Due to its automatic feature learning ability and high performance, deep learning has gradually become the mainstream of artificial intelligence in recent years, playing a role in many fields. Especially in the medical field, the accuracy rate of deep learning even exceeds that of doctors. This paper introduces several deep learning algorithms: Artificial Neural Network (NN), FM-Deep Learning, Convolutional NN and Recurrent NN, and expounds their theory, development history and applications in disease prediction; we analyze the defects in the current disease prediction field and give some current solutions; our paper expounds the two major trends in the future disease prediction and medical field-integrating Digital Twins and promoting precision medicine. This study can better inspire relevant researchers, so that they can use this article to understand related disease prediction algorithms and then make better related research.
Collapse
Affiliation(s)
- Zengchen Yu
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Ke Wang
- Psychiatric Department, Qingdao Municipal Hospital, Zhuhai Road, Qingdao, 266071 China
| | - Zhibo Wan
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Shuxuan Xie
- College of Computer Science and Technology, Qingdao University, Ningxia Road, Qingdao, 266071 China
| | - Zhihan Lv
- Department of Game Design, Faculty of Arts, Uppsala University, 75105 Uppsala, Sweden
| |
Collapse
|
15
|
Nussinov R, Zhang M, Liu Y, Jang H. AlphaFold, Artificial Intelligence (AI), and Allostery. J Phys Chem B 2022; 126:6372-6383. [PMID: 35976160 PMCID: PMC9442638 DOI: 10.1021/acs.jpcb.2c04346] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/03/2022] [Indexed: 02/08/2023]
Abstract
AlphaFold has burst into our lives. A powerful algorithm that underscores the strength of biological sequence data and artificial intelligence (AI). AlphaFold has appended projects and research directions. The database it has been creating promises an untold number of applications with vast potential impacts that are still difficult to surmise. AI approaches can revolutionize personalized treatments and usher in better-informed clinical trials. They promise to make giant leaps toward reshaping and revamping drug discovery strategies, selecting and prioritizing combinations of drug targets. Here, we briefly overview AI in structural biology, including in molecular dynamics simulations and prediction of microbiota-human protein-protein interactions. We highlight the advancements accomplished by the deep-learning-powered AlphaFold in protein structure prediction and their powerful impact on the life sciences. At the same time, AlphaFold does not resolve the decades-long protein folding challenge, nor does it identify the folding pathways. The models that AlphaFold provides do not capture conformational mechanisms like frustration and allostery, which are rooted in ensembles, and controlled by their dynamic distributions. Allostery and signaling are properties of populations. AlphaFold also does not generate ensembles of intrinsically disordered proteins and regions, instead describing them by their low structural probabilities. Since AlphaFold generates single ranked structures, rather than conformational ensembles, it cannot elucidate the mechanisms of allosteric activating driver hotspot mutations nor of allosteric drug resistance. However, by capturing key features, deep learning techniques can use the single predicted conformation as the basis for generating a diverse ensemble.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
- Department
of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Mingzhen Zhang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Yonglan Liu
- Cancer
Innovation Laboratory, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Hyunbum Jang
- Computational
Structural Biology Section, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| |
Collapse
|
16
|
Sanchez P, Voisey JP, Xia T, Watson HI, O’Neil AQ, Tsaftaris SA. Causal machine learning for healthcare and precision medicine. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220638. [PMID: 35950198 PMCID: PMC9346354 DOI: 10.1098/rsos.220638] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Causal machine learning (CML) has experienced increasing popularity in healthcare. Beyond the inherent capabilities of adding domain knowledge into learning systems, CML provides a complete toolset for investigating how a system would react to an intervention (e.g. outcome given a treatment). Quantifying effects of interventions allows actionable decisions to be made while maintaining robustness in the presence of confounders. Here, we explore how causal inference can be incorporated into different aspects of clinical decision support systems by using recent advances in machine learning. Throughout this paper, we use Alzheimer's disease to create examples for illustrating how CML can be advantageous in clinical scenarios. Furthermore, we discuss important challenges present in healthcare applications such as processing high-dimensional and unstructured data, generalization to out-of-distribution samples and temporal relationships, that despite the great effort from the research community remain to be solved. Finally, we review lines of research within causal representation learning, causal discovery and causal reasoning which offer the potential towards addressing the aforementioned challenges.
Collapse
Affiliation(s)
- Pedro Sanchez
- School of Engineering, University of Edinburgh, Edinburgh, UK
| | - Jeremy P. Voisey
- AI Research, Canon Medical Research Europe, Edinburgh, Lothian, UK
| | - Tian Xia
- School of Engineering, University of Edinburgh, Edinburgh, UK
| | - Hannah I. Watson
- AI Research, Canon Medical Research Europe, Edinburgh, Lothian, UK
| | - Alison Q. O’Neil
- School of Engineering, University of Edinburgh, Edinburgh, UK
- AI Research, Canon Medical Research Europe, Edinburgh, Lothian, UK
| | | |
Collapse
|
17
|
Egger J, Gsaxner C, Pepe A, Pomykala KL, Jonske F, Kurz M, Li J, Kleesiek J. Medical deep learning-A systematic meta-review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106874. [PMID: 35588660 DOI: 10.1016/j.cmpb.2022.106874] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/22/2022] [Accepted: 05/10/2022] [Indexed: 05/22/2023]
Abstract
Deep learning has remarkably impacted several different scientific disciplines over the last few years. For example, in image processing and analysis, deep learning algorithms were able to outperform other cutting-edge methods. Additionally, deep learning has delivered state-of-the-art results in tasks like autonomous driving, outclassing previous attempts. There are even instances where deep learning outperformed humans, for example with object recognition and gaming. Deep learning is also showing vast potential in the medical domain. With the collection of large quantities of patient records and data, and a trend towards personalized treatments, there is a great need for automated and reliable processing and analysis of health information. Patient data is not only collected in clinical centers, like hospitals and private practices, but also by mobile healthcare apps or online websites. The abundance of collected patient data and the recent growth in the deep learning field has resulted in a large increase in research efforts. In Q2/2020, the search engine PubMed returned already over 11,000 results for the search term 'deep learning', and around 90% of these publications are from the last three years. However, even though PubMed represents the largest search engine in the medical field, it does not cover all medical-related publications. Hence, a complete overview of the field of 'medical deep learning' is almost impossible to obtain and acquiring a full overview of medical sub-fields is becoming increasingly more difficult. Nevertheless, several review and survey articles about medical deep learning have been published within the last few years. They focus, in general, on specific medical scenarios, like the analysis of medical images containing specific pathologies. With these surveys as a foundation, the aim of this article is to provide the first high-level, systematic meta-review of medical deep learning surveys.
Collapse
Affiliation(s)
- Jan Egger
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Department of Oral &Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, 8036 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany.
| | - Christina Gsaxner
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Department of Oral &Maxillofacial Surgery, Medical University of Graz, Auenbruggerplatz 5/1, 8036 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria
| | - Antonio Pepe
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria
| | - Kelsey L Pomykala
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany
| | - Frederic Jonske
- Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany
| | - Manuel Kurz
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria
| | - Jianning Li
- Institute of Computer Graphics and Vision, Faculty of Computer Science and Biomedical Engineering, Graz University of Technology, Inffeldgasse 16, 8010 Graz, Styria, Austria; Computer Algorithms for Medicine Laboratory, Graz, Styria, Austria; Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany
| | - Jens Kleesiek
- Institute for AI in Medicine (IKIM), University Medicine Essen, Girardetstraße 2, 45131 Essen, Germany; Cancer Research Center Cologne Essen (CCCE), University Medicine Essen, Hufelandstraße 55, 45147 Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Hufelandstraße 55, 45147 Essen, Germany
| |
Collapse
|
18
|
SCHNYDER JASON D A, KRİSHNAN V, VİNAYACHANDRAN D. Intelligent systems for precision dental diagnosis and treatment planning – A review. CUMHURIYET DENTAL JOURNAL 2022. [DOI: 10.7126/cumudj.991480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Machines have changed the course of mankind. Simple machines were the basis of human civilization. Today with humongous technological development, machines are intelligent enough to carry out very complex nerve-racking tasks. The ability of a machine to learn from algorithms changed eventually into, the machine learning by itself, which constitutes artificial intelligence. Literature has plausible evidence for the use of intelligent systems in medical field. Artificial intelligence has been used in the multiple denominations of dentistry. These machines are used in the precision diagnosis, interpretation of medical images, accumulation of data, classification and compilation of records, determination of treatment and construction of a personalized treatment plan. Artificial intelligence can help in timely diagnosis of complex dental diseases which would ultimately aid in rapid commencement of treatment. Research helps us understand the effectiveness and challenges in the use of this technology. The apt use of intelligent systems could transform the entire medical system for the better.
Collapse
Affiliation(s)
| | - Vidya KRİSHNAN
- SRM Kattankulathur Dental College, SRM Institute of Science and Technology
| | | |
Collapse
|
19
|
Abstract
The application of machine-learning technologies to medical practice promises to enhance the capabilities of healthcare professionals in the assessment, diagnosis, and treatment, of medical conditions. However, there is growing concern that algorithmic bias may perpetuate or exacerbate existing health inequalities. Hence, it matters that we make precise the different respects in which algorithmic bias can arise in medicine, and also make clear the normative relevance of these different kinds of algorithmic bias for broader questions about justice and fairness in healthcare. In this paper, we provide the building blocks for an account of algorithmic bias and its normative relevance in medicine.
Collapse
|
20
|
Lim MJR, Quek RHC, Ng KJ, Loh NHW, Lwin S, Teo K, Nga VDW, Yeo TT, Motani M. Machine Learning Models Prognosticate Functional Outcomes Better than Clinical Scores in Spontaneous Intracerebral Haemorrhage. J Stroke Cerebrovasc Dis 2021; 31:106234. [PMID: 34896819 DOI: 10.1016/j.jstrokecerebrovasdis.2021.106234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 10/19/2022] Open
Abstract
OBJECTIVE This study aims to develop and compare the use of deep neural networks (DNN) and support vector machines (SVM) to clinical prognostic scores for prognosticating 30-day mortality and 90-day poor functional outcome (PFO) in spontaneous intracerebral haemorrhage (SICH). MATERIALS AND METHODS We conducted a retrospective cohort study of 297 SICH patients between December 2014 and May 2016. Clinical data was collected from electronic medical records using standardized data collection forms. The machine learning workflow included imputation of missing data, dimensionality reduction, imbalanced-class correction, and evaluation using cross-validation and comparison of accuracy against clinical prognostic scores. RESULTS 32 (11%) patients had 30-day mortality while 177 (63%) patients had 90-day PFO. For prognosticating 30-day mortality, the class-balanced accuracies for DNN (0.875; 95% CI 0.800-0.950; McNemar's p-value 1.000) and SVM (0.848; 95% CI 0.767-0.930; McNemar's p-value 0.791) were comparable to that of the original ICH score (0.833; 95% CI 0.748-0.918). The c-statistics for DNN (0.895; DeLong's p-value 0.715), and SVM (0.900; DeLong's p-value 0.619), though greater than that of the original ICH score (0.862), were not significantly different. For prognosticating 90-day PFO, the class-balanced accuracies for DNN (0.853; 95% CI 0.772-0.934; McNemar's p-value 0.003) and SVM (0.860; 95% CI 0.781-0.939; McNemar's p-value 0.004) were better than that of the ICH-Grading Scale (0.706; 95% CI 0.600-0.812). The c-statistic for SVM (0.883; DeLong's p-value 0.022) was significantly greater than that of the ICH-Grading Scale (0.778), while the c-statistic for DNN was 0.864 (DeLong's p-value 0.055). CONCLUSION We showed that the SVM model performs significantly better than clinical prognostic scores in predicting 90-day PFO in SICH.
Collapse
Affiliation(s)
- Mervyn Jun Rui Lim
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore.
| | | | - Kai Jie Ng
- Yong Loo Lin School of Medicine, National University of Singapore
| | - Ne-Hooi Will Loh
- Department of Anaesthesia, National University Hospital, Singapore
| | - Sein Lwin
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore
| | - Kejia Teo
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore
| | - Vincent Diong Weng Nga
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore
| | - Tseng Tsai Yeo
- Division of Neurosurgery, University Surgical Centre, National University Hospital, Singapore
| | - Mehul Motani
- Department of Electrical and Computer Engineering, National University of Singapore; N.1 Institute for Health, National University of Singapore; Institute for Data Science, National University of Singapore
| |
Collapse
|
21
|
Lin E, Lin CH, Lane HY. Machine Learning and Deep Learning for the Pharmacogenomics of Antidepressant Treatments. CLINICAL PSYCHOPHARMACOLOGY AND NEUROSCIENCE : THE OFFICIAL SCIENTIFIC JOURNAL OF THE KOREAN COLLEGE OF NEUROPSYCHOPHARMACOLOGY 2021; 19:577-588. [PMID: 34690113 PMCID: PMC8553527 DOI: 10.9758/cpn.2021.19.4.577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/10/2021] [Indexed: 12/31/2022]
Abstract
A growing body of evidence now proposes that machine learning and deep learning techniques can serve as a vital foundation for the pharmacogenomics of antidepressant treatments in patients with major depressive disorder (MDD). In this review, we focus on the latest developments for pharmacogenomics research using machine learning and deep learning approaches together with neuroimaging and multi-omics data. First, we review relevant pharmacogenomics studies that leverage numerous machine learning and deep learning techniques to determine treatment prediction and potential biomarkers for antidepressant treatments in MDD. In addition, we depict some neuroimaging pharmacogenomics studies that utilize various machine learning approaches to predict antidepressant treatment outcomes in MDD based on the integration of research on pharmacogenomics and neuroimaging. Moreover, we summarize the limitations in regard to the past pharmacogenomics studies of antidepressant treatments in MDD. Finally, we outline a discussion of challenges and directions for future research. In light of latest advancements in neuroimaging and multi-omics, various genomic variants and biomarkers associated with antidepressant treatments in MDD are being identified in pharmacogenomics research by employing machine learning and deep learning algorithms.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA, USA
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung, Taiwan
- Department of Brain Disease Research Center, China Medical University Hospital, Taichung, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Artificial intelligence-enhanced white-light colonoscopy with attention guidance predicts colorectal cancer invasion depth. Gastrointest Endosc 2021; 94:627-638.e1. [PMID: 33852902 DOI: 10.1016/j.gie.2021.03.936] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Endoscopic submucosal dissection (ESD) and EMR are applied in treating superficial colorectal neoplasms but are contraindicated by deeply invasive colorectal cancer (CRC). The invasion depth of neoplasms can be examined by an automated artificial intelligence (AI) system to determine the applicability of ESD and EMR. METHODS A deep convolutional neural network with a tumor localization branch to guide invasion depth classification was constructed on the GoogLeNet architecture. The model was trained using 7734 nonmagnified white-light colonoscopy (WLC) images supplemented by image augmentation from 657 lesions labeled with histopathologic analysis of invasion depth. An independent testing dataset consisting of 1634 WLC images from 156 lesions was used to validate the model. RESULTS For predicting noninvasive and superficially invasive neoplasms, the model achieved an overall accuracy of 91.1% (95% confidence interval [CI], 89.6%-92.4%), with 91.2% sensitivity (95% CI, 88.8%-93.3%) and 91.0% specificity (95% CI, 89.0%-92.7%) at an optimal cutoff of .41 and the area under the receiver operating characteristic (AUROC) curve of .970 (95% CI, .962-.978). Inclusion of the advanced CRC data significantly increased the sensitivity in differentiating superficial neoplasms from deeply invasive early CRC to 65.3% (95% CI, 61.9%-68.8%) with an AUROC curve of .729 (95% CI, .699-.759), similar to experienced endoscopists (.691; 95% CI, .624-.758). CONCLUSIONS We have developed an AI-enhanced attention-guided WLC system that differentiates noninvasive or superficially submucosal invasive neoplasms from deeply invasive CRC with high accuracy, sensitivity, and specificity.
Collapse
|
23
|
Tanphiriyakun T, Rojanasthien S, Khumrin P. Bone mineral density response prediction following osteoporosis treatment using machine learning to aid personalized therapy. Sci Rep 2021; 11:13811. [PMID: 34226589 PMCID: PMC8257695 DOI: 10.1038/s41598-021-93152-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/22/2021] [Indexed: 11/09/2022] Open
Abstract
Osteoporosis is a global health problem for ageing populations. The goals of osteoporosis treatment are to improve bone mineral density (BMD) and prevent fractures. One major obstacle that remains a great challenge to achieve the goals is how to select the best treatment regimen for individual patients. We developed a computational model from 8981 clinical variables, including demographic data, diagnoses, laboratory results, medications, and initial BMD results, taken from 10-year period of electronic medical records to predict BMD response after treatment. We trained 7 machine learning models with 13,562 osteoporosis treatment instances [comprising 5080 (37.46%) inadequate treatment responses and 8482 (62.54%) adequate responses] and selected the best model (Random Forests with area under the receiver operating curve of 0.70, accuracy of 0.69, precision of 0.70, and recall of 0.89) to individually predict treatment responses of 11 therapeutic regimens, then selected the best predicted regimen to compare with the actual regimen. The results showed that the average treatment response of the recommended regimens was 9.54% higher than the actual regimens. In summary, our novel approach using a machine learning-based decision support system is capable of predicting BMD response after osteoporosis treatment and personalising the most appropriate treatment regimen for an individual patient.
Collapse
Affiliation(s)
- Thiraphat Tanphiriyakun
- Department of Orthopaedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Biomedical Informatics Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Sattaya Rojanasthien
- Department of Orthopaedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Piyapong Khumrin
- Department of Family Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Biomedical Informatics Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
24
|
Gojanovic B, Fourchet F, Gremeaux V. Cognitive biases cloud our clinical decisions and patient expectations: a narrative review to help bridge the gap between evidence-based and personalized medicine. Ann Phys Rehabil Med 2021; 65:101551. [PMID: 34186255 DOI: 10.1016/j.rehab.2021.101551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/29/2021] [Indexed: 11/24/2022]
Abstract
In sports medicine and rehabilitation of musculoskeletal conditions, training, knowledge and expertise of clinicians are the guarantors of good clinical practice. But are they really? Since the 1970s, a growing body of sociological and behavioral science has developed the concepts of cognitive biases and thinking errors. In a nutshell, it tries to explain how we approach decision-making using shortcuts, or heuristics. Our brains will alternatively use 2 systems to think and decide: system 1 is fast, intuitive and emotional, whereas system 2 is slow, logical and conscious. We may think clinicians use the latter systematically, but they actually use system 1 in many situations. Whether due to intrinsic thinking errors or external forces that cloud our judgment, we are under unconscious influences and so are all the stakeholders in the rehabilitation setting, including the patient/athlete. We present some of the most prevalent biases that pervade clinical decision-making and attempt to give a bit of background context starting from the typical tension between academic authority and personal experience. The field of sports performance is also riddled with beliefs, egocentrism and a general tendency to search for magic bullets that will bring the marginal gains and edge over the competition. This plays into the rehabilitation of patient-athletes in different ways. Finally, there are ways to mitigate the effect of cognitive biases to improve decision-making. This must include better communication, shared decisions and ultimately the understanding that we should drive our profession to deliver high-value care tailored to the patients, in line with the best evidence at the best possible cost. Hopefully, we can shed some light without too many of our own biases on the complexities of thinking in sports medicine and rehabilitation.
Collapse
Affiliation(s)
- Boris Gojanovic
- Sports Medicine and Rehabilitation Department, Swiss Olympic Medical Center, Hôpital de La Tour, Meyrin, Switzerland; Centre SportAdo, Woman-mother-child Department (DFME), Lausanne University and Hospital, Switzerland.
| | - François Fourchet
- Sports Medicine and Rehabilitation Department, Swiss Olympic Medical Center, Hôpital de La Tour, Meyrin, Switzerland
| | - Vincent Gremeaux
- Swiss Olympic Medical Center, Sport Medicine Unit, Lausanne University Hospital, Lausanne, Switzerland; Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Wang H, Pujos-Guillot E, Comte B, de Miranda JL, Spiwok V, Chorbev I, Castiglione F, Tieri P, Watterson S, McAllister R, de Melo Malaquias T, Zanin M, Rai TS, Zheng H. Deep learning in systems medicine. Brief Bioinform 2021; 22:1543-1559. [PMID: 33197934 PMCID: PMC8382976 DOI: 10.1093/bib/bbaa237] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/25/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features needed for a given task from high-dimensional, heterogeneous data, deep learning (DL) holds great promise in this endeavour. This review paper addresses the main developments of DL algorithms and a set of general topics where DL is decisive, namely, within the SM landscape. It discusses how DL can be applied to SM with an emphasis on the applications to predictive, preventive and precision medicine. Several key challenges have been highlighted including delivering clinical impact and improving interpretability. We used some prototypical examples to highlight the relevance and significance of the adoption of DL in SM, one of them is involving the creation of a model for personalized Parkinson's disease. The review offers valuable insights and informs the research in DL and SM.
Collapse
Affiliation(s)
| | - Estelle Pujos-Guillot
- metabolomic platform dedicated to metabolism studies in nutrition and health in the French National Research Institute for Agriculture, Food and Environment
| | - Blandine Comte
- French National Research Institute for Agriculture, Food and Environment
| | - Joao Luis de Miranda
- (ESTG/IPP) and a Researcher (CERENA/IST) in optimization methods and process systems engineering
| | - Vojtech Spiwok
- Molecular Modelling Researcher applying machine learning to accelerate molecular simulations
| | - Ivan Chorbev
- Faculty for Computer Science and Engineering, University Ss Cyril and Methodius in Skopje, North Macedonia working in the area of eHealth and assistive technologies
| | | | - Paolo Tieri
- National Research Council of Italy (CNR) and a lecturer at Sapienza University in Rome, working in the field of network medicine and computational biology
| | | | - Roisin McAllister
- Research Associate working in CTRIC, University of Ulster, Derry, and has worked in clinical and academic roles in the fields of molecular diagnostics and biomarker discovery
| | | | - Massimiliano Zanin
- Researcher working in the Institute for Cross-Disciplinary Physics and Complex Systems, Spain, with an interest on data analysis and integration using statistical physics techniques
| | - Taranjit Singh Rai
- Lecturer in cellular ageing at the Centre for Stratified Medicine. Dr Rai’s research interests are in cellular senescence, which is thought to promote cellular and tissue ageing in disease, and the development of senolytic compounds to restrict this process
| | - Huiru Zheng
- Professor of computer sciences at Ulster University
| |
Collapse
|
26
|
Scott IA. Demystifying machine learning: a primer for physicians. Intern Med J 2021; 51:1388-1400. [PMID: 33462882 DOI: 10.1111/imj.15200] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/16/2021] [Accepted: 01/16/2021] [Indexed: 01/17/2023]
Abstract
Machine learning is a tool for analysing digitised data sets and formulating predictions that can optimise clinical decision-making. It aims to identify complex patterns in large data sets and encode them into models that can then classify new unseen cases or make predictions on new data. Machine learning methods take several forms and individual models can be of many different types. More than 50 models have been approved for use in routine healthcare, and the numbers continue to grow exponentially. The reliability and robustness of any model depends on multiple factors, including the quality and quantity of the data used to develop the models, and the selection of features in the data considered most important to maximising accuracy. In ensuring models are safe, effective and reproducible in routine care, physicians need to have some understanding of how these models are developed and evaluated, and to collaborate with data and computer scientists in their design and validation. This narrative review introduces principles, methods and examples of machine learning in a way that does not require mastery of highly complex statistical and computational concepts.
Collapse
Affiliation(s)
- Ian A Scott
- Internal Medicine and Clinical Epidemiology, Princess Alexandra Hospital, Brisbane, Queensland, Australia.,School of Clinical Medicine, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
27
|
Wilkinson J, Arnold KF, Murray EJ, van Smeden M, Carr K, Sippy R, de Kamps M, Beam A, Konigorski S, Lippert C, Gilthorpe MS, Tennant PWG. Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health 2020; 2:e677-e680. [PMID: 33328030 PMCID: PMC9060421 DOI: 10.1016/s2589-7500(20)30200-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 12/14/2022]
Abstract
Machine learning methods, combined with large electronic health databases, could enable a personalised approach to medicine through improved diagnosis and prediction of individual responses to therapies. If successful, this strategy would represent a revolution in clinical research and practice. However, although the vision of individually tailored medicine is alluring, there is a need to distinguish genuine potential from hype. We argue that the goal of personalised medical care faces serious challenges, many of which cannot be addressed through algorithmic complexity, and call for collaboration between traditional methodologists and experts in medical machine learning to avoid extensive research waste.
Collapse
Affiliation(s)
- Jack Wilkinson
- Centre for Biostatistics, Manchester Academic Health Science Centre, Division of Population Health, Health Services Research and Primary Care, University of Manchester, Manchester, UK.
| | - Kellyn F Arnold
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Eleanor J Murray
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Maarten van Smeden
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, Netherlands
| | - Kareem Carr
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Rachel Sippy
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Geography, University of Florida, Gainesville, FL, USA; Emerging Pathogens Institute, University of Florida, Gainesville, FL, USA
| | - Marc de Kamps
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; School of Computing, University of Leeds, Leeds, UK
| | - Andrew Beam
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Stefan Konigorski
- Digital Health & Machine Learning Research Group, Hasso Plattner Institut for Digital Engineering, Potsdam, Germany; Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christoph Lippert
- Digital Health & Machine Learning Research Group, Hasso Plattner Institut for Digital Engineering, Potsdam, Germany; Hasso Plattner Institute for Digital Health at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark S Gilthorpe
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; Faculty of Medicine and Health, University of Leeds, Leeds, UK; Alan Turing Institute, London, UK
| | - Peter W G Tennant
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK; Faculty of Medicine and Health, University of Leeds, Leeds, UK; Alan Turing Institute, London, UK
| |
Collapse
|
28
|
Li YS, Tseng WL, Lu CY. Sensitive detection of quinoline-derivatized sitagliptin in small volumes of human plasma by MALDI-TOF mass spectrometry. Talanta 2020; 218:121143. [PMID: 32797900 DOI: 10.1016/j.talanta.2020.121143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/04/2020] [Accepted: 05/07/2020] [Indexed: 02/08/2023]
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors are incretin-based medications used as oral antidiabetic agents for the treatment of type 2 diabetes. However, DPP-4 inhibitors produce side effects like acute pancreatitis, upper respiratory tract infection, nasopharyngitis, urinary tract infection, serious allergies, cardiovascular diseases, hemolysis, and retinopathy. Hence, the development of a fast and simple method to detect DPP-4 inhibitors in body fluids is important. In this study, we developed a derivatization-assisted microextraction method to enhance the detection sensitivity for trace levels of a DPP-4 inhibitor, sitagliptin, from a small volume (10 μL) of human plasma by using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS). Subjecting the analyte to 100 W microwave irradiation after derivatization using a quinoline alkylating reagent (8-bromomethyl quinilone, BrMQ) shortened the reaction time to ~120 s and allowed the target analyte to be easily extracted to a small volume of the organic layer (20 μL). The analyte was then detected by MALDI-TOF MS using α-cyano-4-hydroxycinnamic acid as the matrix. The relative standard deviation and relative error were below 10% in intra- and inter-day assays. Using sitagliptin-d4 as an internal standard, the limits of quantitation and detection were found to be 0.03 μg/mL and 0.01 μg/mL, respectively. All the derivatization and extraction procedures described herein were of microliter grade. This method could effectively reduce the use of organic chemicals and solvents, thereby proving to be an eco-friendly strategy that will cause no harm to the environment.
Collapse
Affiliation(s)
- Yi-Shan Li
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Wei-Lung Tseng
- Department of Chemistry, College of Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Chi-Yu Lu
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
| |
Collapse
|
29
|
Sobrinho ASF, Scalassara PR, Dajer ME. Low-Cost Joystick for Pediatric Respiratory Exercises. J Med Syst 2020; 44:186. [PMID: 32926332 PMCID: PMC7488224 DOI: 10.1007/s10916-020-01655-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 08/28/2020] [Indexed: 11/28/2022]
Abstract
The use of body signals for health care applications has become ubiquitous in the last decade. One utilization of such measurements is the monitoring of respiratory flow for physiotherapy assistance. This application is based on relative flow measures which can rely on inexpensive sensors. Based on that, we present a low-cost electronic device that detects blows and suctions with a pressure sensor and emulates a keyboard for interfacing with computers. This joystick allows children to control free internet games by associating blows and suctions with different intensities to keyboard actions. Also, the intensity can be calibrated according to the user’s pulmonary capacities. This feature is adequate for gradual respiratory physiotherapy and can be customized for each patient. In order to verify the operation of the proposed device, practical tests were performed with three online free games, where the joystick functionality was assessed with different therapeutic configurations.
Collapse
Affiliation(s)
| | - Paulo Rogério Scalassara
- Department of Electrical Engineering, Federal University of Technology - Paraná, Cornélio Procópio, Brazil
| | - María Eugenia Dajer
- Department of Electrical Engineering, Federal University of Technology - Paraná, Cornélio Procópio, Brazil
| |
Collapse
|
30
|
Strianese O, Rizzo F, Ciccarelli M, Galasso G, D’Agostino Y, Salvati A, Del Giudice C, Tesorio P, Rusciano MR. Precision and Personalized Medicine: How Genomic Approach Improves the Management of Cardiovascular and Neurodegenerative Disease. Genes (Basel) 2020; 11:E747. [PMID: 32640513 PMCID: PMC7397223 DOI: 10.3390/genes11070747] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Life expectancy has gradually grown over the last century. This has deeply affected healthcare costs, since the growth of an aging population is correlated to the increasing burden of chronic diseases. This represents the interesting challenge of how to manage patients with chronic diseases in order to improve health care budgets. Effective primary prevention could represent a promising route. To this end, precision, together with personalized medicine, are useful instruments in order to investigate pathological processes before the appearance of clinical symptoms and to guide physicians to choose a targeted therapy to manage the patient. Cardiovascular and neurodegenerative diseases represent suitable models for taking full advantage of precision medicine technologies applied to all stages of disease development. The availability of high technology incorporating artificial intelligence and advancement progress made in the field of biomedical research have been substantial to understand how genes, epigenetic modifications, aging, nutrition, drugs, microbiome and other environmental factors can impact health and chronic disorders. The aim of the present review is to address how precision and personalized medicine can bring greater clarity to the clinical and biological complexity of these types of disorders associated with high mortality, involving tremendous health care costs, by describing in detail the methods that can be applied. This might offer precious tools for preventive strategies and possible clues on the evolution of the disease and could help in predicting morbidity, mortality and detecting chronic disease indicators much earlier in the disease course. This, of course, will have a major effect on both improving the quality of care and quality of life of the patients and reducing time efforts and healthcare costs.
Collapse
Affiliation(s)
- Oriana Strianese
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Francesca Rizzo
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Michele Ciccarelli
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Gennaro Galasso
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| | - Ylenia D’Agostino
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Annamaria Salvati
- Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (F.R.); (Y.D.); (A.S.)
| | - Carmine Del Giudice
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
| | - Paola Tesorio
- Unit of Cardiology, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy;
| | - Maria Rosaria Rusciano
- Clinical Research and Innovation, Clinica Montevergine S.p.A., 83013 Mercogliano, Italy; (O.S.); (C.D.G.)
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, 84084 Baronissi, Italy; (M.C.); (G.G.)
| |
Collapse
|
31
|
Lin E, Lin CH, Lane HY. Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches. Int J Mol Sci 2020; 21:ijms21030969. [PMID: 32024055 PMCID: PMC7037937 DOI: 10.3390/ijms21030969] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/25/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
A growing body of evidence now suggests that precision psychiatry, an interdisciplinary field of psychiatry, precision medicine, and pharmacogenomics, serves as an indispensable foundation of medical practices by offering the accurate medication with the accurate dose at the accurate time to patients with psychiatric disorders. In light of the latest advancements in artificial intelligence and machine learning techniques, numerous biomarkers and genetic loci associated with psychiatric diseases and relevant treatments are being discovered in precision psychiatry research by employing neuroimaging and multi-omics. In this review, we focus on the latest developments for precision psychiatry research using artificial intelligence and machine learning approaches, such as deep learning and neural network algorithms, together with multi-omics and neuroimaging data. Firstly, we review precision psychiatry and pharmacogenomics studies that leverage various artificial intelligence and machine learning techniques to assess treatment prediction, prognosis prediction, diagnosis prediction, and the detection of potential biomarkers. In addition, we describe potential biomarkers and genetic loci that have been discovered to be associated with psychiatric diseases and relevant treatments. Moreover, we outline the limitations in regard to the previous precision psychiatry and pharmacogenomics studies. Finally, we present a discussion of directions and challenges for future research.
Collapse
Affiliation(s)
- Eugene Lin
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA;
- Department of Electrical & Computer Engineering, University of Washington, Seattle, WA 98195, USA
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Correspondence: (C.-H.L.); (H.-Y.L.)
| | - Hsien-Yuan Lane
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
- Department of Psychiatry, China Medical University Hospital, Taichung 40402, Taiwan
- Brain Disease Research Center, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Psychology, College of Medical and Health Sciences, Asia University, Taichung 41354, Taiwan
- Correspondence: (C.-H.L.); (H.-Y.L.)
| |
Collapse
|
32
|
Reclaiming magical incantation in graduate medical education. Clin Rheumatol 2019; 39:703-707. [PMID: 31724095 DOI: 10.1007/s10067-019-04812-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 10/25/2022]
Abstract
Critical thinking relies upon conceptualization (what is the possible pathophysiology?), analysis (how do I relate an aberration in physiology to the lived experience of illness?), and synthesizing (how do I best intervene?). These cognitive skills are subsumed in the category of reflective competencies and are necessary for developing a differential diagnosis or a plan of care. A vulnerability of teaching medicine through the filter of heuristics is that it may simply recapitulate the teacher's style of cognitive shortcuts. Poorly calibrated heuristics may culminate in systematic errors of judgment. If the aim is to teach critical reasoning in the arena of clinical education, then a new paradigm is called for. Teaching critical reasoning as it applies to medical decision-making begins with recognizing decision scripts.Key Points• Medical heuristics are high-stakes endeavors.• The process of examining the choice of heuristics employed in any given clinical scenario is a meta-reasoning strategy.• Debiasing reduces cognitive errors due to motivated reasoning.
Collapse
|
33
|
Machine Learning in Neural Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1192:127-137. [DOI: 10.1007/978-981-32-9721-0_7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|