1
|
Song X, Huang P, Chen X, Xu M, Ming D. The frontooccipital interaction mechanism of high-frequency acoustoelectric signal. Cereb Cortex 2023; 33:10723-10735. [PMID: 37724433 DOI: 10.1093/cercor/bhad306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 09/20/2023] Open
Abstract
Based on acoustoelectric effect, acoustoelectric brain imaging has been proposed, which is a high spatiotemporal resolution neural imaging method. At the focal spot, brain electrical activity is encoded by focused ultrasound, and corresponding high-frequency acoustoelectric signal is generated. Previous studies have revealed that acoustoelectric signal can also be detected in other non-focal brain regions. However, the processing mechanism of acoustoelectric signal between different brain regions remains sparse. Here, with acoustoelectric signal generated in the left primary visual cortex, we investigated the spatial distribution characteristics and temporal propagation characteristics of acoustoelectric signal in the transmission. We observed a strongest transmission strength within the frontal lobe, and the global temporal statistics indicated that the frontal lobe features in acoustoelectric signal transmission. Then, cross-frequency phase-amplitude coupling was used to investigate the coordinated activity in the AE signal band range between frontal and occipital lobes. The results showed that intra-structural cross-frequency coupling and cross-structural coupling co-occurred between these two lobes, and, accordingly, high-frequency brain activity in the frontal lobe was effectively coordinated by distant occipital lobe. This study revealed the frontooccipital long-range interaction mechanism of acoustoelectric signal, which is the foundation of improving the performance of acoustoelectric brain imaging.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
| | - Peishan Huang
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
| | - Xinrui Chen
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
| | - Minpeng Xu
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| | - Dong Ming
- Academy of Medical Engineering and Translation Medicine, Tianjin University, Tianjin 300072, China
- College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
2
|
Zhang H, Xu M, Liu M, Song X, He F, Chen S, Ming D. Biological current source imaging method based on acoustoelectric effect: A systematic review. Front Neurosci 2022; 16:807376. [PMID: 35924223 PMCID: PMC9339687 DOI: 10.3389/fnins.2022.807376] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroimaging can help reveal the spatial and temporal diversity of neural activity, which is of utmost importance for understanding the brain. However, conventional non-invasive neuroimaging methods do not have the advantage of high temporal and spatial resolution, which greatly hinders clinical and basic research. The acoustoelectric (AE) effect is a fundamental physical phenomenon based on the change of dielectric conductivity that has recently received much attention in the field of biomedical imaging. Based on the AE effect, a new imaging method for the biological current source has been proposed, combining the advantages of high temporal resolution of electrical measurements and high spatial resolution of focused ultrasound. This paper first describes the mechanism of the AE effect and the principle of the current source imaging method based on the AE effect. The second part summarizes the research progress of this current source imaging method in brain neurons, guided brain therapy, and heart. Finally, we discuss the problems and future directions of this biological current source imaging method. This review explores the relevant research literature and provides an informative reference for this potential non-invasive neuroimaging method.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
| | - Minpeng Xu
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Miao Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Xizi Song
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Feng He
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
| | - Shanguang Chen
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
- National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Beijing, China
| | - Dong Ming
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, Tianjin University, Tianjin, China
- *Correspondence: Dong Ming
| |
Collapse
|
3
|
Zhang H, Xu M, Zhang C, He F, Song X, Chen S, Jian X, Ming D. Experimental and simulation studies of localization and decoding of single and double dipoles. J Neural Eng 2022; 19. [PMID: 35468593 DOI: 10.1088/1741-2552/ac6a12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 04/24/2022] [Indexed: 11/11/2022]
Abstract
Electroencephalography (EEG) is a technique for measuring normal or abnormal neuronal activity in the human brain, but its low spatial resolution makes it difficult to locate the precise locations of neurons due to the volume conduction effect of brain tissue. The acoustoelectric (AE) effect has the advantage of detecting electrical signals with high temporal resolution and focused ultrasound with high spatial resolution. In this paper, we use dipoles to simulate real single and double neurons, and further investigate the localization and decoding of single and double dipoles based on AE effects from numerical simulations, brain tissue phantom experiments, and fresh porcine brain tissue experiments. The results show that the localization error of a single dipole is less than 0.3 mm, the decoding signal is highly correlated with the source signal, and the decoding accuracy is greater than 0.94; the location of double dipoles with an interval of 0.4 mm or more can be localized, the localization error tends to increase as the interval of dipoles decreases, and the decoding accuracy tends to decrease as the frequency of dipoles decreases. This study localizes and decodes dipole signals with high accuracy, and provides a technical method for the development of EEG.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, Tianjin, 300072, CHINA
| | - Minpeng Xu
- Biomedical Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Chen Zhang
- Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, Tianjin, 300072, CHINA
| | - Feng He
- Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Xizi Song
- Academy of Medical Engineering and Translation Medicine, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Shanguang Chen
- Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, Tianjin, Tianjin, 300072, CHINA
| | - Xiqi Jian
- School of biomedical and engineering, Tianjin Medical University, No.22, Qixiangtai Road, Heping District, Tianjin, 300070, CHINA
| | - Dong Ming
- Department of Biomedical Engineering, Tianjin University, No.92 Weijin Road, Nankai District, Tianjin, Tianjin, 300072, CHINA
| |
Collapse
|
4
|
Song X, Chen X, Guo J, Xu M, Ming D. Living Rat SSVEP Mapping with Acoustoelectric Brain Imaging. IEEE Trans Biomed Eng 2021; 69:75-82. [PMID: 34101579 DOI: 10.1109/tbme.2021.3087177] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Acoustoelectric Brain Imaging (ABI) is a potential method for mapping brain electrical activity with high spatial resolution (millimeter). To resolve the key issue for eventual realization of ABI, testing the hypothesis that recorded acoustoelectric (AE) signal can be used to decode intrinsic brain electrical activity, the experiment of living rat SSVEP measurement with ABI is implemented. METHOD A 1-MHz ultrasound transducer is focused on the visual cortex of anesthetized rat. With visual stimulus, the electroencephalogram and AE signal are simultaneously recorded with Ag electrode. Besides, with FUS transducer scanning at the visual cortex, corresponding AE signals at different spatial positions are decoded and imaged. RESULTS Consistent with that of direct measurement of SSVEP, the decoded AE signal presents a clear event-related spectral perturbation (ERSP). And, the decoded AE signal is of high amplitude response at the base and harmonics of the visual stimulus frequency. Whats more, for timing signal, a significant positive amplitude correlation is observed between decoded AE signal and simultaneously measured SSVEP. In addition, the mean SNRs of SSVEP and decoded AE signal are both significantly higher than that of background EEG. Finally, with one fixed recording electrode, the active area with an inner diameter of 1mm is located within the 4mm4mm measurement region. CONCLUSION These experimental results demonstrate that the millimeter-level spatial resolution SSVEP measurement of living rat is achieved through ABI for the first time. SIGNIFICANCE This study confirms that ABI should shed light on spatiotemporal resolution neuroimaging.
Collapse
|
5
|
Alvarez A, Preston C, Trujillo T, Wilhite C, Burton A, Vohnout S, Witte RS. In vivo acoustoelectric imaging for high-resolution visualization of cardiac electric spatiotemporal dynamics. APPLIED OPTICS 2020; 59:11292-11300. [PMID: 33362052 PMCID: PMC8569939 DOI: 10.1364/ao.410172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 05/13/2023]
Abstract
Acoustoelectric cardiac imaging (ACI) is a hybrid modality that exploits the interaction of an ultrasonic pressure wave and the resistivity of tissue to map current densities in the heart. This study demonstrates for the first time in vivo ACI in a swine model. ACI measured beat-to-beat variability (n=20) of the peak of the cardiac activation wave at one location of the left ventricle as 5.32±0.74µV, 3.26±0.54mm below the epicardial surface, and 2.67±0.56ms before the peak of the local electrogram. Cross-sectional ACI images exhibited propagation velocities of 0.192±0.061m/s along the epicardial-endocardial axis with an SNR of 24.9 dB. This study demonstrates beat-to-beat and multidimensional ACI, which might reveal important information to help guide electroanatomic mapping procedures during ablation therapy.
Collapse
Affiliation(s)
- Alexander Alvarez
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
| | - Chet Preston
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Teodoro Trujillo
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Cameron Wilhite
- Department of Medical Imaging, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
| | - Sonia Vohnout
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
| | - Russell S. Witte
- Department of Biomedical Engineering, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- Electrosonix, LLC, 435 E 9th St., Tucson, Arizona 85705, USA
- Department of Medical Imaging, University of Arizona, 1230 N Cherry Ave., Tucson, Arizona 85719, USA
- James C. Wyant College of Optical Sciences, University of Arizona, 1630 E University Blvd., Tucson, Arizona 85719, USA
| |
Collapse
|
6
|
Barragan A, Preston C, Alvarez A, Bera T, Qin Y, Weinand M, Kasoff W, Witte RS. Acoustoelectric imaging of deep dipoles in a human head phantom for guiding treatment of epilepsy. J Neural Eng 2020; 17:056040. [PMID: 33124600 DOI: 10.1088/1741-2552/abb63a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE This study employs a human head model with real skull to demonstrate the feasibility of transcranial acoustoelectric brain imaging (tABI) as a new modality for electrical mapping of deep dipole sources during treatment of epilepsy with much better resolution and accuracy than conventional mapping methods. APPROACH This technique exploits an interaction between a focused ultrasound (US) beam and tissue resistivity to localize current source densities as deep as 63 mm at high spatial resolution (1 to 4 mm) and resolve fast time-varying currents with sub-ms precision. MAIN RESULTS Detection thresholds through a thick segment of the human skull at biologically safe US intensities was below 0.5 mA and within range of strong currents generated by the human brain. SIGNIFICANCE This work suggests that 4D tABI may emerge as a revolutionary modality for real-time high-resolution mapping of neuronal currents for the purpose of monitoring, staging, and guiding treatment of epilepsy and other brain disorders characterized by abnormal rhythms.
Collapse
Affiliation(s)
- Andres Barragan
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Preston C, Alvarez AM, Barragan A, Becker J, Kasoff WS, Witte RS. High resolution transcranial acoustoelectric imaging of current densities from a directional deep brain stimulator. J Neural Eng 2020; 17:016074. [PMID: 31978914 PMCID: PMC7446234 DOI: 10.1088/1741-2552/ab6fc3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE New innovations in deep brain stimulation (DBS) enable directional current steering-allowing more precise electrical stimulation of the targeted brain structures for Parkinson's disease, essential tremor and other neurological disorders. While intra-operative navigation through MRI or CT approaches millimeter accuracy for placing the DBS leads, no existing modality provides feedback of the currents as they spread from the contacts through the brain tissue. In this study, we investigate transcranial acoustoelectric imaging (tAEI) as a new modality to non-invasively image and characterize current produced from a directional DBS lead. tAEI uses ultrasound (US) to modulate tissue resistivity to generate detectable voltage signals proportional to the local currents. APPROACH An 8-channel directional DBS lead (Infinity 6172ANS, Abbott Inc) was inserted inside three adult human skulls submerged in 0.9% NaCl. A 2.5 MHz linear array delivered US pulses through the transtemporal window and focused near the contacts on the lead, while a custom amplifier and acquisition system recorded the acoustoelectric (AE) interaction used to generate images. MAIN RESULTS tAEI detected monopolar current with stimulation pulses as short as 100 µs with an SNR ranging from 10-27 dB when using safe US pressure (mechanical indices <0.78) and injected current of ~2 mA peak amplitude. Adjacent contacts were discernable along the length and within each ring of the lead with a mean radial separation between contacts of 2.10 and 1.34 mm, respectively. SIGNIFICANCE These results demonstrate the feasibility of tAEI for high resolution mapping of directional DBS currents using clinically-relevant stimulation parameters. This new modality may improve the accuracy for placing the DBS leads, guide calibration and programming, and monitor long-term performance of DBS for treatment of Parkinson's disease.
Collapse
Affiliation(s)
- Chet Preston
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
| | - Alexander M Alvarez
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
| | - Andres Barragan
- Department of Computer Science, University of Arizona, Tucson, AZ, United States of America
| | - Jennifer Becker
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| | - Willard S Kasoff
- Department of Surgery, University of Arizona, Tucson, AZ, United States of America
| | - Russell S Witte
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States of America
- Department of Medical Imaging, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
8
|
Berthon B, Dansette PM, Tanter M, Pernot M, Provost J. An integrated and highly sensitive ultrafast acoustoelectric imaging system for biomedical applications. Phys Med Biol 2017; 62:5808-5822. [PMID: 28436918 DOI: 10.1088/1361-6560/aa6ee7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Direct imaging of the electrical activation of the heart is crucial to better understand and diagnose diseases linked to arrhythmias. This work presents an ultrafast acoustoelectric imaging (UAI) system for direct and non-invasive ultrafast mapping of propagating current densities using the acoustoelectric effect. Acoustoelectric imaging is based on the acoustoelectric effect, the modulation of the medium's electrical impedance by a propagating ultrasonic wave. UAI triggers this effect with plane wave emissions to image current densities. An ultrasound research platform was fitted with electrodes connected to high common-mode rejection ratio amplifiers and sampled by up to 128 independent channels. The sequences developed allow for both real-time display of acoustoelectric maps and long ultrafast acquisition with fast off-line processing. The system was evaluated by injecting controlled currents into a saline pool via copper wire electrodes. Sensitivity to low current and low acoustic pressure were measured independently. Contrast and spatial resolution were measured for varying numbers of plane waves and compared to line per line acoustoelectric imaging with focused beams at equivalent peak pressure. Temporal resolution was assessed by measuring time-varying current densities associated with sinusoidal currents. Complex intensity distributions were also imaged in 3D. Electrical current densities were detected for injected currents as low as 0.56 mA. UAI outperformed conventional focused acoustoelectric imaging in terms of contrast and spatial resolution when using 3 and 13 plane waves or more, respectively. Neighboring sinusoidal currents with opposed phases were accurately imaged and separated. Time-varying currents were mapped and their frequency accurately measured for imaging frame rates up to 500 Hz. Finally, a 3D image of a complex intensity distribution was obtained. The results demonstrated the high sensitivity of the UAI system proposed. The plane wave based approach provides a highly flexible trade-off between frame rate, resolution and contrast. In conclusion, the UAI system shows promise for non-invasive, direct and accurate real-time imaging of electrical activation in vivo.
Collapse
Affiliation(s)
- Beatrice Berthon
- Institut Langevin, ESPCI Paris, PSL Research University, CNRS UMR 7587, INSERM U979, Paris, France
| | | | | | | | | |
Collapse
|
9
|
Mariappan L, Shao Q, Jiang C, Yu K, Ashkenazi S, Bischof JC, He B. Magneto acoustic tomography with short pulsed magnetic field for in-vivo imaging of magnetic iron oxide nanoparticles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 12:689-699. [PMID: 26656627 DOI: 10.1016/j.nano.2015.10.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Revised: 09/06/2015] [Accepted: 10/31/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED Nanoparticles are widely used as contrast and therapeutic agents. As such, imaging modalities that can accurately estimate their distribution in-vivo are actively sought. We present here our method Magneto Acoustic Tomography (MAT), which uses magnetomotive force due to a short pulsed magnetic field to induce ultrasound in the magnetic nanoparticle labeled tissue and estimates an image of the distribution of the nanoparticles in-vivo with ultrasound imaging resolution. In this study, we image the distribution of superparamagnetic iron oxide nanoparticles (IONP) using MAT method. In-vivo imaging was performed on live, nude mice with IONP injected into LNCaP tumors grown subcutaneously within the hind limb of the mice. Our experimental results indicate that the MAT method is capable of imaging the distribution of IONPs in-vivo. Therefore, MAT could become an imaging modality for high resolution reconstruction of MNP distribution in the body. FROM THE CLINICAL EDITOR Many magnetic nanoparticles (MNPs) have been used as contrast agents in magnetic resonance imaging. In this study, the authors investigated the use of ultrasound to detect the presence of MNPs by magneto acoustic tomography. In-vivo experiments confirmed the imaging quality of this new approach, which hopefully would provide an alternative method for accurate tumor detection.
Collapse
Affiliation(s)
- Leo Mariappan
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Qi Shao
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Chunlan Jiang
- Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Kai Yu
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Shai Ashkenazi
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - John C Bischof
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Department of Mechanical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Bin He
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA; Institute for Engineering in Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
10
|
Zhou L, Zhu S, He B. A reconstruction algorithm of magnetoacoustic tomography with magnetic induction for an acoustically inhomogeneous tissue. IEEE Trans Biomed Eng 2014; 61:1739-46. [PMID: 24845284 DOI: 10.1109/tbme.2014.2304494] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a noninvasive electrical conductivity imaging approach that measures ultrasound wave induced by magnetic stimulation, for reconstructing the distribution of electrical impedance in a biological tissue. Existing reconstruction algorithms for MAT-MI are based on the assumption that the acoustic properties in the tissue are homogeneous. However, the tissue in most parts of human body has heterogeneous acoustic properties, which leads to potential distortion and blurring of small buried objects in the impedance images. In this study, we proposed a new algorithm for MAT-MI to image the impedance distribution in tissues with inhomogeneous acoustic speed distributions. With a computer head model constructed from MR images of a human subject, a series of numerical simulation experiments were conducted. The present results indicate that the inhomogeneous acoustic properties of tissues in terms of speed variation can be incorporated in MAT-MI imaging.
Collapse
|