1
|
Zhao B, Dercle L, Yang H, Riely GJ, Kris MG, Schwartz LH. Annotated test-retest dataset of lung cancer CT scan images reconstructed at multiple imaging parameters. Sci Data 2024; 11:1259. [PMID: 39567508 PMCID: PMC11579286 DOI: 10.1038/s41597-024-04085-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Quantitative imaging biomarkers (QIB) are increasingly used in clinical research to advance precision medicine approaches in oncology. Computed tomography (CT) is a modality of choice for cancer diagnosis, prognosis, and response assessment due to its reliability and global accessibility. Here, we contribute to the cancer imaging community through The Cancer Imaging Archive (TCIA) by providing investigator-initiated, same-day repeat CT scan images of 32 non-small cell lung cancer (NSCLC) patients, along with radiologist-annotated lesion contours as a reference standard. Each scan was reconstructed into 6 image settings using various combinations of three slice thicknesses (1.25 mm, 2.5 mm, 5 mm) and two reconstruction kernels (lung, standard; GE CT equipment), which spans a wide range of CT imaging reconstruction parameters commonly used in lung cancer clinical practice and clinical trials. This holds considerable value for advancing the development of robust Radiomics, Artificial Intelligence (AI) and machine learning (ML) methods.
Collapse
Affiliation(s)
- Binsheng Zhao
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA.
| | - Laurent Dercle
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
- Department of Radiology, Columbia University New York, New York, NY, 10032, USA
| | - Hao Yang
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Gregory J Riely
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Mark G Kris
- Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | | |
Collapse
|
2
|
Jiang Y, Gao C, Shao Y, Lou X, Hua M, Lin J, Wu L, Gao C. The prognostic value of radiogenomics using CT in patients with lung cancer: a systematic review. Insights Imaging 2024; 15:259. [PMID: 39466334 PMCID: PMC11519241 DOI: 10.1186/s13244-024-01831-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/20/2024] [Indexed: 10/30/2024] Open
Abstract
This systematic review aimed to evaluate the effectiveness of combining radiomic and genomic models in predicting the long-term prognosis of patients with lung cancer and to contribute to the further exploration of radiomics. This study retrieved comprehensive literature from multiple databases, including radiomics and genomics, to study the prognosis of lung cancer. The model construction consisted of the radiomic and genomic methods. A comprehensive bias assessment was conducted, including risk assessment and model performance indicators. Ten studies between 2016 and 2023 were analyzed. Studies were mostly retrospective. Patient cohorts varied in size and characteristics, with the number of patients ranging from 79 to 315. The construction of the model involves various radiomic and genotic datasets, and most models show promising prediction performance with the area under the receiver operating characteristic curve (AUC) values ranging from 0.64 to 0.94 and the concordance index (C-index) values from 0.28 to 0.80. The combination model typically outperforms the single method model, indicating higher prediction accuracy and the highest AUC was 0.99. Combining radiomics and genomics in the prognostic model of lung cancer may improve the predictive performance. However, further research on standardized data and larger cohorts is needed to validate and integrate these findings into clinical practice. CRITICAL RELEVANCE STATEMENT: The combination of radiomics and genomics in the prognostic model of lung cancer improved prediction accuracy in most included studies. KEY POINTS: The combination of radiomics and genomics can improve model performance in most studies. The results of establishing prognosis models by different methods are discussed. The combination of radiomics and genomics may be helpful to provide better treatment for patients.
Collapse
Affiliation(s)
- Yixiao Jiang
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chuan Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yilin Shao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinjing Lou
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqi Hua
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiangnan Lin
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Linyu Wu
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Chen Gao
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China.
- The First School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China.
| |
Collapse
|
3
|
Capasso E, Casella C, Marisei M, Tortora M, Briganti F, Di Lorenzo P. Imaging biobanks: operational limits, medical-legal and ethical reflections. Front Digit Health 2024; 6:1408619. [PMID: 39268200 PMCID: PMC11391398 DOI: 10.3389/fdgth.2024.1408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 09/15/2024] Open
Abstract
The extraordinary growth of health technologies has determined an increasing interest in biobanks that represent a unique wealth for research, experimentation, and validation of new therapies. "Human" biobanks are repositories of various types of human biological samples. Through years the paradigm has shifted from spontaneous collections of biological material all over the world to institutional, organized, and well-structured forms. Imaging biobanks represent a novel field and are defined by European Society of Radiology as: "organized databases of medical images, and associated imaging biomarkers shared among multiple researchers, linked to other biorepositories". Modern radiology and nuclear medicine can provide multiple imaging biomarkers, that express the phenotype related to certain diseases, especially in oncology. Imaging biobanks, not a mere catalogue of bioimages associated to clinical data, involve advanced computer technologies to implement the emergent field of radiomics and radiogenomics. Since Europe hosts most of the biobanks, juridical and ethical framework, with a specific referral to Italy, is analyzed. Linking imaging biobanks to traditional ones appears to be a crucial step that needs to be driven by medical imaging community under clear juridical and ethical guidelines.
Collapse
Affiliation(s)
- Emanuele Capasso
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Claudia Casella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mariagrazia Marisei
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Mario Tortora
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Francesco Briganti
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Pierpaolo Di Lorenzo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
4
|
Wang TW, Hong JS, Huang JW, Liao CY, Lu CF, Wu YT. Systematic review and meta-analysis of deep learning applications in computed tomography lung cancer segmentation. Radiother Oncol 2024; 197:110344. [PMID: 38806113 DOI: 10.1016/j.radonc.2024.110344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Accurate segmentation of lung tumors on chest computed tomography (CT) scans is crucial for effective diagnosis and treatment planning. Deep Learning (DL) has emerged as a promising tool in medical imaging, particularly for lung cancer segmentation. However, its efficacy across different clinical settings and tumor stages remains variable. METHODS We conducted a comprehensive search of PubMed, Embase, and Web of Science until November 7, 2023. We assessed the quality of these studies by using the Checklist for Artificial Intelligence in Medical Imaging and the Quality Assessment of Diagnostic Accuracy Studies-2 tools. This analysis included data from various clinical settings and stages of lung cancer. Key performance metrics, such as the Dice similarity coefficient, were pooled, and factors affecting algorithm performance, such as clinical setting, algorithm type, and image processing techniques, were examined. RESULTS Our analysis of 37 studies revealed a pooled Dice score of 79 % (95 % CI: 76 %-83 %), indicating moderate accuracy. Radiotherapy studies had a slightly lower score of 78 % (95 % CI: 74 %-82 %). A temporal increase was noted, with recent studies (post-2022) showing improvement from 75 % (95 % CI: 70 %-81 %). to 82 % (95 % CI: 81 %-84 %). Key factors affecting performance included algorithm type, resolution adjustment, and image cropping. QUADAS-2 assessments identified ambiguous risks in 78 % of studies due to data interval omissions and concerns about generalizability in 8 % due to nodule size exclusions, and CLAIM criteria highlighted areas for improvement, with an average score of 27.24 out of 42. CONCLUSION This meta-analysis demonstrates DL algorithms' promising but varied efficacy in lung cancer segmentation, particularly higher efficacy noted in early stages. The results highlight the critical need for continued development of tailored DL models to improve segmentation accuracy across diverse clinical settings, especially in advanced cancer stages with greater challenges. As recent studies demonstrate, ongoing advancements in algorithmic approaches are crucial for future applications.
Collapse
Affiliation(s)
- Ting-Wei Wang
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan; School of Medicine, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jia-Sheng Hong
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Jing-Wen Huang
- Department of Radiation Oncology, Taichung Veterans General Hospital, Taichung 407, Taiwan
| | - Chien-Yi Liao
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan; Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chia-Feng Lu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Te Wu
- Institute of Biophotonics, National Yang-Ming Chiao Tung University, Taipei, Taiwan; National Yang Ming Chiao Tung University, Brain Research Center, Taiwan.
| |
Collapse
|
5
|
Islam W, Abdoli N, Alam TE, Jones M, Mutembei BM, Yan F, Tang Q. A Neoteric Feature Extraction Technique to Predict the Survival of Gastric Cancer Patients. Diagnostics (Basel) 2024; 14:954. [PMID: 38732368 PMCID: PMC11083029 DOI: 10.3390/diagnostics14090954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND At the time of cancer diagnosis, it is crucial to accurately classify malignant gastric tumors and the possibility that patients will survive. OBJECTIVE This study aims to investigate the feasibility of identifying and applying a new feature extraction technique to predict the survival of gastric cancer patients. METHODS A retrospective dataset including the computed tomography (CT) images of 135 patients was assembled. Among them, 68 patients survived longer than three years. Several sets of radiomics features were extracted and were incorporated into a machine learning model, and their classification performance was characterized. To improve the classification performance, we further extracted another 27 texture and roughness parameters with 2484 superficial and spatial features to propose a new feature pool. This new feature set was added into the machine learning model and its performance was analyzed. To determine the best model for our experiment, Random Forest (RF) classifier, Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and Naïve Bayes (NB) (four of the most popular machine learning models) were utilized. The models were trained and tested using the five-fold cross-validation method. RESULTS Using the area under ROC curve (AUC) as an evaluation index, the model that was generated using the new feature pool yields AUC = 0.98 ± 0.01, which was significantly higher than the models created using the traditional radiomics feature set (p < 0.04). RF classifier performed better than the other machine learning models. CONCLUSIONS This study demonstrated that although radiomics features produced good classification performance, creating new feature sets significantly improved the model performance.
Collapse
Affiliation(s)
- Warid Islam
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA; (W.I.); (N.A.)
| | - Neman Abdoli
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, USA; (W.I.); (N.A.)
| | - Tasfiq E. Alam
- School of Industrial and Systems Engineering, University of Oklahoma, Norman, OK 73019, USA;
| | - Meredith Jones
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.J.); (B.M.M.); (F.Y.)
| | - Bornface M. Mutembei
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.J.); (B.M.M.); (F.Y.)
| | - Feng Yan
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.J.); (B.M.M.); (F.Y.)
| | - Qinggong Tang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Norman, OK 73019, USA; (M.J.); (B.M.M.); (F.Y.)
| |
Collapse
|
6
|
Shyamala Bharathi P, Shalini C. Advanced hybrid attention-based deep learning network with heuristic algorithm for adaptive CT and PET image fusion in lung cancer detection. Med Eng Phys 2024; 126:104138. [PMID: 38621836 DOI: 10.1016/j.medengphy.2024.104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/17/2024] [Accepted: 03/02/2024] [Indexed: 04/17/2024]
Abstract
Lung cancer is one of the most deadly diseases in the world. Lung cancer detection can save the patient's life. Despite being the best imaging tool in the medical sector, clinicians find it challenging to interpret and detect cancer from Computed Tomography (CT) scan data. One of the most effective ways for the diagnosis of certain malignancies like lung tumours is Positron Emission Tomography (PET) imaging. So many diagnosis models have been implemented nowadays to diagnose various diseases. Early lung cancer identification is very important for predicting the severity level of lung cancer in cancer patients. To explore the effective model, an image fusion-based detection model is proposed for lung cancer detection using an improved heuristic algorithm of the deep learning model. Firstly, the PET and CT images are gathered from the internet. Further, these two collected images are fused for further process by using the Adaptive Dilated Convolution Neural Network (AD-CNN), in which the hyperparameters are tuned by the Modified Initial Velocity-based Capuchin Search Algorithm (MIV-CapSA). Subsequently, the abnormal regions are segmented by influencing the TransUnet3+. Finally, the segmented images are fed into the Hybrid Attention-based Deep Networks (HADN) model, encompassed with Mobilenet and Shufflenet. Therefore, the effectiveness of the novel detection model is analyzed using various metrics compared with traditional approaches. At last, the outcome evinces that it aids in early basic detection to treat the patients effectively.
Collapse
Affiliation(s)
- P Shyamala Bharathi
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - C Shalini
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| |
Collapse
|
7
|
Jaksik R, Szumała K, Dinh KN, Śmieja J. Multiomics-Based Feature Extraction and Selection for the Prediction of Lung Cancer Survival. Int J Mol Sci 2024; 25:3661. [PMID: 38612473 PMCID: PMC11011391 DOI: 10.3390/ijms25073661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
Lung cancer is a global health challenge, hindered by delayed diagnosis and the disease's complex molecular landscape. Accurate patient survival prediction is critical, motivating the exploration of various -omics datasets using machine learning methods. Leveraging multi-omics data, this study seeks to enhance the accuracy of survival prediction by proposing new feature extraction techniques combined with unbiased feature selection. Two lung adenocarcinoma multi-omics datasets, originating from the TCGA and CPTAC-3 projects, were employed for this purpose, emphasizing gene expression, methylation, and mutations as the most relevant data sources that provide features for the survival prediction models. Additionally, gene set aggregation was shown to be the most effective feature extraction method for mutation and copy number variation data. Using the TCGA dataset, we identified 32 molecular features that allowed the construction of a 2-year survival prediction model with an AUC of 0.839. The selected features were additionally tested on an independent CPTAC-3 dataset, achieving an AUC of 0.815 in nested cross-validation, which confirmed the robustness of the identified features.
Collapse
Affiliation(s)
- Roman Jaksik
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Kamila Szumała
- Faculty of Automatic Control, Electronics and Computer Science, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Khanh Ngoc Dinh
- Irving Institute for Cancer Dynamics and Department of Statistics, Columbia University, New York, NY 10027, USA;
| | - Jarosław Śmieja
- Department of Systems Biology and Engineering, Silesian University of Technology, 44-100 Gliwice, Poland;
| |
Collapse
|
8
|
Viana JN, Pilbeam C, Howard M, Scholz B, Ge Z, Fisser C, Mitchell I, Raman S, Leach J. Maintaining High-Touch in High-Tech Digital Health Monitoring and Multi-Omics Prognostication: Ethical, Equity, and Societal Considerations in Precision Health for Palliative Care. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2023; 27:461-473. [PMID: 37861713 DOI: 10.1089/omi.2023.0120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Advances in digital health, systems biology, environmental monitoring, and artificial intelligence (AI) continue to revolutionize health care, ushering a precision health future. More than disease treatment and prevention, precision health aims at maintaining good health throughout the lifespan. However, how can precision health impact care for people with a terminal or life-limiting condition? We examine here the ethical, equity, and societal/relational implications of two precision health modalities, (1) integrated systems biology/multi-omics analysis for disease prognostication and (2) digital health technologies for health status monitoring and communication. We focus on three main ethical and societal considerations: benefits and risks associated with integration of these modalities into the palliative care system; inclusion of underrepresented and marginalized groups in technology development and deployment; and the impact of high-tech modalities on palliative care's highly personalized and "high-touch" practice. We conclude with 10 recommendations for ensuring that precision health technologies, such as multi-omics prognostication and digital health monitoring, for palliative care are developed, tested, and implemented ethically, inclusively, and equitably.
Collapse
Affiliation(s)
- John Noel Viana
- Australian National Centre for the Public Awareness of Science, College of Science, The Australian National University, Canberra, Australia
- Responsible Innovation Future Science Platform, Commonwealth Scientific and Industrial Research Organisation, Brisbane, Australia
| | - Caitlin Pilbeam
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Mark Howard
- Monash Data Futures Institute, Monash University, Clayton, Australia
- Department of Philosophy, School of Philosophical, Historical and International Studies, Monash University, Clayton, Australia
| | - Brett Scholz
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Zongyuan Ge
- Monash Data Futures Institute, Monash University, Clayton, Australia
- Department of Data Science & AI, Monash University, Clayton, Australia
| | - Carys Fisser
- Australian National Centre for the Public Awareness of Science, College of Science, The Australian National University, Canberra, Australia
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
| | - Imogen Mitchell
- School of Medicine and Psychology, College of Health and Medicine, The Australian National University, Canberra, Australia
- Intensive Care Unit, Canberra Hospital, Canberra, Australia
| | - Sujatha Raman
- Australian National Centre for the Public Awareness of Science, College of Science, The Australian National University, Canberra, Australia
| | - Joan Leach
- Australian National Centre for the Public Awareness of Science, College of Science, The Australian National University, Canberra, Australia
| |
Collapse
|
9
|
Borgheresi R, Barucci A, Colantonio S, Aghakhanyan G, Assante M, Bertelli E, Carlini E, Carpi R, Caudai C, Cavallero D, Cioni D, Cirillo R, Colcelli V, Dell’Amico A, Di Gangi D, Erba PA, Faggioni L, Falaschi Z, Gabelloni M, Gini R, Lelii L, Liò P, Lorito A, Lucarini S, Manghi P, Mangiacrapa F, Marzi C, Mazzei MA, Mercatelli L, Mirabile A, Mungai F, Miele V, Olmastroni M, Pagano P, Paiar F, Panichi G, Pascali MA, Pasquinelli F, Shortrede JE, Tumminello L, Volterrani L, Neri E. NAVIGATOR: an Italian regional imaging biobank to promote precision medicine for oncologic patients. Eur Radiol Exp 2022; 6:53. [PMID: 36344838 PMCID: PMC9640522 DOI: 10.1186/s41747-022-00306-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/21/2022] [Indexed: 11/09/2022] Open
Abstract
NAVIGATOR is an Italian regional project boosting precision medicine in oncology with the aim of making it more predictive, preventive, and personalised by advancing translational research based on quantitative imaging and integrative omics analyses. The project’s goal is to develop an open imaging biobank for the collection and preservation of a large amount of standardised imaging multimodal datasets, including computed tomography, magnetic resonance imaging, and positron emission tomography data, together with the corresponding patient-related and omics-related relevant information extracted from regional healthcare services using an adapted privacy-preserving model. The project is based on an open-source imaging biobank and an open-science oriented virtual research environment (VRE). Available integrative omics and multi-imaging data of three use cases (prostate cancer, rectal cancer, and gastric cancer) will be collected. All data confined in NAVIGATOR (i.e., standard and novel imaging biomarkers, non-imaging data, health agency data) will be used to create a digital patient model, to support the reliable prediction of the disease phenotype and risk stratification. The VRE that relies on a well-established infrastructure, called D4Science.org, will further provide a multiset infrastructure for processing the integrative omics data, extracting specific radiomic signatures, and for identification and testing of novel imaging biomarkers through big data analytics and artificial intelligence.
Collapse
|
10
|
Huang K, Yang L, Wang Y, Huang L, Zhou X, Zhang W. Identification of non-small-cell lung cancer subtypes by unsupervised clustering of CT image features with distinct prognoses and gene pathway activities. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
A Comparison of Computer-Aided Diagnosis Schemes Optimized Using Radiomics and Deep Transfer Learning Methods. Bioengineering (Basel) 2022; 9:bioengineering9060256. [PMID: 35735499 PMCID: PMC9219621 DOI: 10.3390/bioengineering9060256] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/25/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023] Open
Abstract
Objective: Radiomics and deep transfer learning are two popular technologies used to develop computer-aided detection and diagnosis (CAD) schemes of medical images. This study aims to investigate and to compare the advantages and the potential limitations of applying these two technologies in developing CAD schemes. Methods: A relatively large and diverse retrospective dataset including 3000 digital mammograms was assembled in which 1496 images depicted malignant lesions and 1504 images depicted benign lesions. Two CAD schemes were developed to classify breast lesions. The first scheme was developed using four steps namely, applying an adaptive multi-layer topographic region growing algorithm to segment lesions, computing initial radiomics features, applying a principal component algorithm to generate an optimal feature vector, and building a support vector machine classifier. The second CAD scheme was built based on a pre-trained residual net architecture (ResNet50) as a transfer learning model to classify breast lesions. Both CAD schemes were trained and tested using a 10-fold cross-validation method. Several score fusion methods were also investigated to classify breast lesions. CAD performances were evaluated and compared by the areas under the ROC curve (AUC). Results: The ResNet50 model-based CAD scheme yielded AUC = 0.85 ± 0.02, which was significantly higher than the radiomics feature-based CAD scheme with AUC = 0.77 ± 0.02 (p < 0.01). Additionally, the fusion of classification scores generated by the two CAD schemes did not further improve classification performance. Conclusion: This study demonstrates that using deep transfer learning is more efficient to develop CAD schemes and it enables a higher lesion classification performance than CAD schemes developed using radiomics-based technology.
Collapse
|
12
|
Elsherif SB, Javadi S, Le O, Lamba N, Katz MHG, Tamm EP, Bhosale PR. Baseline CT-based Radiomic Features Aid Prediction of Nodal Positivity after Neoadjuvant Therapy in Pancreatic Cancer. Radiol Imaging Cancer 2022; 4:e210068. [PMID: 35333131 PMCID: PMC8965532 DOI: 10.1148/rycan.210068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Purpose To study the association between CT-derived textural features of pancreatic cancer and patient outcome. Materials and Methods This retrospective study evaluated 54 patients (median age, 62 years [range, 40-88 years]; 32 men) with pancreatic cancer who underwent chemoradiation followed by surgical resection and lymph node dissection from May 2012 to June 2016. Three-dimensional segmentation of the pancreatic tumor was performed on baseline dual-energy CT images: 70-keV pancreatic parenchymal phase (PPP) images and iodine material density images. Then, 15 and 19 radiomic features were extracted from each phase, respectively. Logistic regression with elastic net regularization was used to select textural features associated with outcome, and receiver operating characteristic analysis evaluated feature performance. Survival curves were generated using the Kaplan-Meier method. Results The feature of integral total (∫ T), representing the mean intensity in Hounsfield units times the contour volume in milliliters of PPP imaging (hereafter, "∫ T (HU·mL) (PPP)"), is inversely associated with posttherapy pathologic lymph node (ypN) category. A threshold ∫ T (HU·mL) (PPP) less than 507.85 predicted ypN1-2 classification with 96% sensitivity, 34% specificity, and area under the curve of 0.61. Patients with an ∫ T (HU·mL) (PPP) of less than 507.85 had decreased overall survival (median, 2.8 years) compared with patients with an ∫ T (HU·mL) (PPP) of 507.85 or greater (one event at 3.4 years) (P = .006). Patients with an ∫ T (HU·mL) (PPP) of less than 507.85 had decreased progression-free survival (median, 1.5 years) compared with patients with an ∫ T (HU·mL) (PPP) of 507.85 or greater (median, 2.7 years) (P = .001). Conclusion A CT-based radiomic signature may help predict ypN category in patients with pancreatic cancer. Keywords: CT-Dual Energy, Abdomen/GI, Pancreas, Tumor Response, Outcomes Analysis © RSNA, 2022 Supplemental material is available for this article.
Collapse
|
13
|
Arjmand B, Hamidpour SK, Tayanloo-Beik A, Goodarzi P, Aghayan HR, Adibi H, Larijani B. Machine Learning: A New Prospect in Multi-Omics Data Analysis of Cancer. Front Genet 2022; 13:824451. [PMID: 35154283 PMCID: PMC8829119 DOI: 10.3389/fgene.2022.824451] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/10/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer is defined as a large group of diseases that is associated with abnormal cell growth, uncontrollable cell division, and may tend to impinge on other tissues of the body by different mechanisms through metastasis. What makes cancer so important is that the cancer incidence rate is growing worldwide which can have major health, economic, and even social impacts on both patients and the governments. Thereby, the early cancer prognosis, diagnosis, and treatment can play a crucial role at the front line of combating cancer. The onset and progression of cancer can occur under the influence of complicated mechanisms and some alterations in the level of genome, proteome, transcriptome, metabolome etc. Consequently, the advent of omics science and its broad research branches (such as genomics, proteomics, transcriptomics, metabolomics, and so forth) as revolutionary biological approaches have opened new doors to the comprehensive perception of the cancer landscape. Due to the complexities of the formation and development of cancer, the study of mechanisms underlying cancer has gone beyond just one field of the omics arena. Therefore, making a connection between the resultant data from different branches of omics science and examining them in a multi-omics field can pave the way for facilitating the discovery of novel prognostic, diagnostic, and therapeutic approaches. As the volume and complexity of data from the omics studies in cancer are increasing dramatically, the use of leading-edge technologies such as machine learning can have a promising role in the assessments of cancer research resultant data. Machine learning is categorized as a subset of artificial intelligence which aims to data parsing, classification, and data pattern identification by applying statistical methods and algorithms. This acquired knowledge subsequently allows computers to learn and improve accurate predictions through experiences from data processing. In this context, the application of machine learning, as a novel computational technology offers new opportunities for achieving in-depth knowledge of cancer by analysis of resultant data from multi-omics studies. Therefore, it can be concluded that the use of artificial intelligence technologies such as machine learning can have revolutionary roles in the fight against cancer.
Collapse
Affiliation(s)
- Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| | - Shayesteh Kokabi Hamidpour
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Goodarzi
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Adibi
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- *Correspondence: Babak Arjmand, ; Bagher Larijani,
| |
Collapse
|
14
|
Kavithaa G, Balakrishnan P, Yuvaraj SA. Lung Cancer Detection and Improving Accuracy Using Linear Subspace Image Classification Algorithm. Interdiscip Sci 2021; 13:779-786. [PMID: 34351570 DOI: 10.1007/s12539-021-00468-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
The ability to identify lung cancer at an early stage is critical, because it can help patients live longer. However, predicting the affected area while diagnosing cancer is a huge challenge. An intelligent computer-aided diagnostic system can be utilized to detect and diagnose lung cancer by detecting the damaged region. The suggested Linear Subspace Image Classification Algorithm (LSICA) approach classifies images in a linear subspace. This methodology is used to accurately identify the damaged region, and it involves three steps: image enhancement, segmentation, and classification. The spatial image clustering technique is used to quickly segment and identify the impacted area in the image. LSICA is utilized to determine the accuracy value of the affected region for classification purposes. Therefore, a lung cancer detection system with classification-dependent image processing is used for lung cancer CT imaging. Therefore, a new method to overcome these deficiencies of the process for detection using LSICA is proposed in this work on lung cancer. MATLAB has been used in all programs. A proposed system designed to easily identify the affected region with help of the classification technique to enhance and get more accurate results.
Collapse
Affiliation(s)
- G Kavithaa
- Department of Electronics and Communication Engineering, Government College of Engineering, Salem, Tamilnadu, India.
| | - P Balakrishnan
- Malla Reddy Engineering College for Women (Autonomous), Hyderabad, 500100, India
| | - S A Yuvaraj
- Department of ECE, GRT Institute of Engineering and Technology, Tiruttani, Tamilnadu, India
| |
Collapse
|
15
|
Impact of Interobserver Variability in Manual Segmentation of Non-Small Cell Lung Cancer (NSCLC) Applying Low-Rank Radiomic Representation on Computed Tomography. Cancers (Basel) 2021; 13:cancers13235985. [PMID: 34885094 PMCID: PMC8657389 DOI: 10.3390/cancers13235985] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 12/04/2022] Open
Abstract
Simple Summary Discovery of predictive and prognostic radiomic features in cancer is currently of great interest to the radiologic and oncologic community. Tumor phenotypic and prognostic information can be obtained by extracting features on tumor segmentations, and it is typically imaging analysts, physician trainees, and attending physicians who provide these labeled datasets for analysis. The potential impact of level and type of specialty training on interobserver variability in manual segmentation of NSCLC was examined. Although there was some variability in segmentation between readers, the subsequently extracted radiomic features were overall well correlated. High fidelity radiomic feature extraction relies on accurate feature extraction from imaging that produce robust prognostic and predictive radiomic NSCLC biomarkers. This study concludes that this goal can be obtained using segmenters of different levels of training and clinical experience. Abstract This study tackles interobserver variability with respect to specialty training in manual segmentation of non-small cell lung cancer (NSCLC). Four readers included for segmentation are: a data scientist (BY), a medical student (LS), a radiology trainee (MH), and a specialty-trained radiologist (SK) for a total of 293 patients from two publicly available databases. Sørensen–Dice (SD) coefficients and low rank Pearson correlation coefficients (CC) of 429 radiomics were calculated to assess interobserver variability. Cox proportional hazard (CPH) models and Kaplan-Meier (KM) curves of overall survival (OS) prediction for each dataset were also generated. SD and CC for segmentations demonstrated high similarities, yielding, SD: 0.79 and CC: 0.92 (BY-SK), SD: 0.81 and CC: 0.83 (LS-SK), and SD: 0.84 and CC: 0.91 (MH-SK) in average for both databases, respectively. OS through the maximal CPH model for the two datasets yielded c-statistics of 0.7 (95% CI) and 0.69 (95% CI), while adding radiomic and clinical variables (sex, stage/morphological status, and histology) together. KM curves also showed significant discrimination between high- and low-risk patients (p-value < 0.005). This supports that readers’ level of training and clinical experience may not significantly influence the ability to extract accurate radiomic features for NSCLC on CT. This potentially allows flexibility in the training required to produce robust prognostic imaging biomarkers for potential clinical translation.
Collapse
|
16
|
Deep radiomics-based survival prediction in patients with chronic obstructive pulmonary disease. Sci Rep 2021; 11:15144. [PMID: 34312450 PMCID: PMC8313653 DOI: 10.1038/s41598-021-94535-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 07/05/2021] [Indexed: 12/16/2022] Open
Abstract
Heterogeneous clinical manifestations and progression of chronic obstructive pulmonary disease (COPD) affect patient health risk assessment, stratification, and management. Pulmonary function tests are used to diagnose and classify the severity of COPD, but they cannot fully represent the type or range of pathophysiologic abnormalities of the disease. To evaluate whether deep radiomics from chest computed tomography (CT) images can predict mortality in patients with COPD, we designed a convolutional neural network (CNN) model for extracting representative features from CT images and then performed random survival forest to predict survival in COPD patients. We trained CNN-based binary classifier based on six-minute walk distance results (> 440 m or not) and extracted high-throughput image features (i.e., deep radiomics) directly from the last fully connected layer of it. The various sizes of fully connected layers and combinations of deep features were experimented using a discovery cohort with 344 patients from the Korean Obstructive Lung Disease cohort and an external validation cohort with 102 patients from Penang General Hospital in Malaysia. In the integrative analysis of discovery and external validation cohorts, with combining 256 deep features from the coronal slice of the vertebral body and two sagittal slices of the left/right lung, deep radiomics for survival prediction achieved concordance indices of 0.8008 (95% CI, 0.7642–0.8373) and 0.7156 (95% CI, 0.7024–0.7288), respectively. Deep radiomics from CT images could be used to predict mortality in COPD patients.
Collapse
|
17
|
Cucchiara F, Petrini I, Romei C, Crucitta S, Lucchesi M, Valleggi S, Scavone C, Capuano A, De Liperi A, Chella A, Danesi R, Del Re M. Combining liquid biopsy and radiomics for personalized treatment of lung cancer patients. State of the art and new perspectives. Pharmacol Res 2021; 169:105643. [PMID: 33940185 DOI: 10.1016/j.phrs.2021.105643] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/22/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022]
Abstract
Lung cancer has become a paradigm for precision medicine in oncology, and liquid biopsy (LB) together with radiomics may have a great potential in this scenario. They are both minimally invasive, easy to perform, and can be repeated during patient's follow-up. Also, increasing evidence suggest that LB and radiomics may provide an efficient way to screen and diagnose tumors at an early stage, including the monitoring of any change in the tumor molecular profile. This could allow treatment optimization, improvement of patients' quality of life, and healthcare-related costs reduction. Latest reports on lung cancer patients suggest a combination of these two strategies, along with cutting-edge data analysis, to decode valuable information regarding tumor type, aggressiveness, progression, and response to treatment. The approach seems more compatible with clinical practice than the current standard, and provides new diagnostic companions being able to suggest the best treatment strategy compared to conventional methods. To implement radiomics and liquid biopsy directly into clinical practice, an artificial intelligence (AI)-based system could help to link patients' clinical data together with tumor molecular profiles and imaging characteristics. AI could also solve problems and limitations related to LB and radiomics methodologies. Further work is needed, including new health policies and the access to large amounts of high-quality and well-organized data, allowing a complementary and synergistic combination of LB and imaging, to provide an attractive choice e in the personalized treatment of lung cancer.
Collapse
Affiliation(s)
- Federico Cucchiara
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Iacopo Petrini
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Chiara Romei
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Stefania Crucitta
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Simona Valleggi
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Cristina Scavone
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa Capuano
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Annalisa De Liperi
- Unit II of Radio-diagnostics, Department of Diagnostic and Imaging, University Hospital of Pisa, Pisa, Italy
| | - Antonio Chella
- Unit of Pneumology, Department of Translational Research and New Technologies in Medicine, University Hospital of Pisa, Pisa, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy.
| | - Marzia Del Re
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Cui S, Tang T, Su Q, Wang Y, Shu Z, Yang W, Gong X. Radiomic nomogram based on MRI to predict grade of branching type intraductal papillary mucinous neoplasms of the pancreas: a multicenter study. Cancer Imaging 2021; 21:26. [PMID: 33750453 PMCID: PMC7942000 DOI: 10.1186/s40644-021-00395-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 02/26/2021] [Indexed: 12/15/2022] Open
Abstract
Background Accurate diagnosis of high-grade branching type intraductal papillary mucinous neoplasms (BD-IPMNs) is challenging in clinical setting. We aimed to construct and validate a nomogram combining clinical characteristics and radiomic features for the preoperative prediction of low and high-grade in BD-IPMNs. Methods Two hundred and two patients from three medical centers were enrolled. The high-grade BD-IPMN group comprised patients with high-grade dysplasia and invasive carcinoma in BD-IPMN (n = 50). The training cohort comprised patients from the first medical center (n = 103), and the external independent validation cohorts comprised patients from the second and third medical centers (n = 48 and 51). Within 3 months prior to surgery, all patients were subjected to magnetic resonance examination. The volume of interest was delineated on T1-weighted (T1-w) imaging, T2-weighted (T2-w) imaging, and contrast-enhanced T1-weighted (CET1-w) imaging, respectively, on each tumor slice. Quantitative image features were extracted using MITK software (G.E.). The Mann-Whitney U test or independent-sample t-test, and LASSO regression, were applied for data dimension reduction, after which a radiomic signature was constructed for grade assessment. Based on the training cohort, we developed a combined nomogram model incorporating clinical variables and the radiomic signature. Decision curve analysis (DCA), a receiver operating characteristic curve (ROC), a calibration curve, and the area under the ROC curve (AUC) were used to evaluate the utility of the constructed model based on the external independent validation cohorts. Results To predict tumor grade, we developed a nine-feature-combined radiomic signature. For the radiomic signature, the AUC values of high-grade disease were 0.836 in the training cohort, 0.811 in external validation cohort 1, and 0.822 in external validation cohort 2. The CA19–9 level and main pancreatic duct size were identified as independent parameters of high-grade of BD-IPMNs using multivariate logistic regression analysis. The CA19–9 level and main pancreatic duct size were then used to construct the radiomic nomogram. Using the radiomic nomogram, the high-grade disease-associated AUC values were 0.903 (training cohort), 0.884 (external validation cohort 1), and 0.876 (external validation cohort 2). The clinical utility of the developed nomogram was verified using the calibration curve and DCA. Conclusions The developed radiomic nomogram model could effectively distinguish high-grade patients with BD-IPMNs preoperatively. This preoperative identification might improve treatment methods and promote personalized therapy in patients with BD-IPMNs. Supplementary Information The online version contains supplementary material available at 10.1186/s40644-021-00395-6.
Collapse
Affiliation(s)
- Sijia Cui
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China.,The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Tianyu Tang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, China
| | - Qiuming Su
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yajie Wang
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China
| | - Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China
| | - Wei Yang
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China.,Bengbu Medical College, Bengbu, 233000, China
| | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310000, China. .,Institute of Artificial Intelligence and Remote Imaging, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
19
|
A Systematic Review of PET Textural Analysis and Radiomics in Cancer. Diagnostics (Basel) 2021; 11:diagnostics11020380. [PMID: 33672285 PMCID: PMC7926413 DOI: 10.3390/diagnostics11020380] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Although many works have supported the utility of PET radiomics, several authors have raised concerns over the robustness and replicability of the results. This study aimed to perform a systematic review on the topic of PET radiomics and the used methodologies. Methods: PubMed was searched up to 15 October 2020. Original research articles based on human data specifying at least one tumor type and PET image were included, excluding those that apply only first-order statistics and those including fewer than 20 patients. Each publication, cancer type, objective and several methodological parameters (number of patients and features, validation approach, among other things) were extracted. Results: A total of 290 studies were included. Lung (28%) and head and neck (24%) were the most studied cancers. The most common objective was prognosis/treatment response (46%), followed by diagnosis/staging (21%), tumor characterization (18%) and technical evaluations (15%). The average number of patients included was 114 (median = 71; range 20–1419), and the average number of high-order features calculated per study was 31 (median = 26, range 1–286). Conclusions: PET radiomics is a promising field, but the number of patients in most publications is insufficient, and very few papers perform in-depth validations. The role of standardization initiatives will be crucial in the upcoming years.
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW Radiogenomics is a growing field that has garnered immense interest over the past decade, owing to its numerous applications in the field of oncology and its potential value in improving patient outcomes. Current applications have only begun to delve into the potential of radiogenomics, and particularly in interventional oncology, there is room for development and increased value of these applications. RECENT FINDINGS The field of interventional oncology (IO) has seen valuable radiogenomic applications, from prediction of response to locoregional therapies in hepatocellular carcinoma to identification of genetic mutations in non-small cell lung cancer. Future directions that can increase the value of radiogenomics include applications that address tumor heterogeneity, predict immune responsiveness of tumors, and differentiate between oligoprogression and early widespread progression, among others. Radiogenomics, whether in terms of methodologies or applications, is still in the early stages of development and far from maturation. Future applications, particularly in the field of interventional oncology, will allow realization of its full potential.
Collapse
|
21
|
El Naqa I, Li H, Fuhrman J, Hu Q, Gorre N, Chen W, Giger ML. Lessons learned in transitioning to AI in the medical imaging of COVID-19. J Med Imaging (Bellingham) 2021; 8:010902-10902. [PMID: 34646912 PMCID: PMC8488974 DOI: 10.1117/1.jmi.8.s1.010902] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has wreaked havoc across the world. It also created a need for the urgent development of efficacious predictive diagnostics, specifically, artificial intelligence (AI) methods applied to medical imaging. This has led to the convergence of experts from multiple disciplines to solve this global pandemic including clinicians, medical physicists, imaging scientists, computer scientists, and informatics experts to bring to bear the best of these fields for solving the challenges of the COVID-19 pandemic. However, such a convergence over a very brief period of time has had unintended consequences and created its own challenges. As part of Medical Imaging Data and Resource Center initiative, we discuss the lessons learned from career transitions across the three involved disciplines (radiology, medical imaging physics, and computer science) and draw recommendations based on these experiences by analyzing the challenges associated with each of the three associated transition types: (1) AI of non-imaging data to AI of medical imaging data, (2) medical imaging clinician to AI of medical imaging, and (3) AI of medical imaging to AI of COVID-19 imaging. The lessons learned from these career transitions and the diffusion of knowledge among them could be accomplished more effectively by recognizing their associated intricacies. These lessons learned in the transitioning to AI in the medical imaging of COVID-19 can inform and enhance future AI applications, making the whole of the transitions more than the sum of each discipline, for confronting an emergency like the COVID-19 pandemic or solving emerging problems in biomedicine.
Collapse
Affiliation(s)
- Issam El Naqa
- Moffitt Cancer Center, Department of Machine Learning, Tampa, Florida, United States
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
| | - Hui Li
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Jordan Fuhrman
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Qiyuan Hu
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| | - Naveena Gorre
- Moffitt Cancer Center, Department of Machine Learning, Tampa, Florida, United States
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
| | - Weijie Chen
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- US FDA, CDRH, Office of Science and Engineering Laboratories, Division of Imaging, Diagnosis, and Software Reliability, Silver Spring, Maryland, United States
| | - Maryellen L. Giger
- The University of Chicago, Medical Imaging Data and Resource Center, Chicago, Illinois, United States
- The University of Chicago, Department of Radiology, Chicago, Illinois, United States
| |
Collapse
|
22
|
Del Re M, Cucchiara F, Rofi E, Fontanelli L, Petrini I, Gri N, Pasquini G, Rizzo M, Gabelloni M, Belluomini L, Crucitta S, Ciampi R, Frassoldati A, Neri E, Porta C, Danesi R. A multiparametric approach to improve the prediction of response to immunotherapy in patients with metastatic NSCLC. Cancer Immunol Immunother 2021; 70:1667-1678. [PMID: 33315149 PMCID: PMC8139911 DOI: 10.1007/s00262-020-02810-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND It is still unclear how to combine biomarkers to identify patients who will truly benefit from anti-PD-1 agents in NSCLC. This study investigates exosomal mRNA expression of PD-L1 and IFN-γ, PD-L1 polymorphisms, tumor mutational load (TML) in circulating cell-free DNA (cfDNA) and radiomic features as possible predictive markers of response to nivolumab and pembrolizumab in metastatic NSCLC patients. METHODS Patients were enrolled and blood (12 ml) was collected at baseline before receiving anti-PD-1 therapy. Exosome-derived mRNA and cfDNA were extracted to analyse PD-L1 and IFN-γ expression and tumor mutational load (TML) by digital droplet PCR (ddPCR) and next-generation sequencing (NGS), respectively. The PD-L1 single nucleotide polymorphisms (SNPs) c.-14-368 T > C and c.*395G > C, were analysed on genomic DNA by Real-Time PCR. A radiomic analysis was performed on the QUIBIM Precision® V3.0 platform. RESULTS Thirty-eight patients were enrolled. High baseline IFN-γ was independently associated with shorter median PFS (5.6 months vs. not reached p = 0.0057), and levels of PD-L1 showed an increase at 3 months vs. baseline in patients who progressed (p = 0.01). PD-L1 baseline levels showed significant direct and inverse relationships with radiomic features. Radiomic features also inversely correlated with PD-L1 expression in tumor tissue. In subjects receiving nivolumab, median PFS was shorter in carriers of c.*395GG vs. c.*395GC/CC genotype (2.3 months vs. not reached, p = 0.041). Lastly, responders had higher non-synonymous mutations and more links between co-occurring genetic somatic mutations and ARID1A alterations as well. CONCLUSIONS A combined multiparametric approach may provide a better understanding of the molecular determinants of response to immunotherapy.
Collapse
Affiliation(s)
- Marzia Del Re
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Federico Cucchiara
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Fontanelli
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Iacopo Petrini
- grid.5395.a0000 0004 1757 3729General Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Nicole Gri
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Giulia Pasquini
- grid.5395.a0000 0004 1757 3729General Pathology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Mimma Rizzo
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy
| | - Michela Gabelloni
- grid.5395.a0000 0004 1757 3729Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Lorenzo Belluomini
- grid.416315.4Unit of Clinical Oncology, Specialist Medical Department, S. Anna University Hospital, Ferrara, Italy
| | - Stefania Crucitta
- grid.5395.a0000 0004 1757 3729Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Raffaele Ciampi
- grid.5395.a0000 0004 1757 3729Endocrinology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonio Frassoldati
- grid.416315.4Unit of Clinical Oncology, Specialist Medical Department, S. Anna University Hospital, Ferrara, Italy
| | - Emanuele Neri
- grid.5395.a0000 0004 1757 3729Diagnostic and Interventional Radiology, Department of Translational Research and New Technologies in Medicine, University of Pisa, Pisa, Italy
| | - Camillo Porta
- Division of Translational Oncology, IRCCS Istituti Clinici Scientifici Maugeri, Pavia, Italy ,grid.8982.b0000 0004 1762 5736Department of Internal Medicine and Therapeutics, University of Pavia, Pavia, Italy ,grid.7644.10000 0001 0120 3326Present Address: Unit of Medical Oncology, Department of Biomedical Sciences and Human Oncology, University of Bari ‘A. Moro’, Bari, Italy
| | - Romano Danesi
- Unit of Clinical Pharmacology and Pharmacogenetics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
23
|
Cucchiara F, Del Re M, Valleggi S, Romei C, Petrini I, Lucchesi M, Crucitta S, Rofi E, De Liperi A, Chella A, Russo A, Danesi R. Integrating Liquid Biopsy and Radiomics to Monitor Clonal Heterogeneity of EGFR-Positive Non-Small Cell Lung Cancer. Front Oncol 2020; 10:593831. [PMID: 33489892 PMCID: PMC7819134 DOI: 10.3389/fonc.2020.593831] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
Background EGFR-positive Non-small Cell Lung Cancer (NSCLC) is a dynamic entity and tumor progression and resistance to tyrosine kinase inhibitors (TKIs) arise from the accumulation, over time and across different disease sites, of subclonal genetic mutations. For instance, the occurrence of EGFR T790M is associated with resistance to gefitinib, erlotinib, and afatinib, while EGFR C797S causes osimertinib to lose activity. Sensitive technologies as radiomics and liquid biopsy have great potential to monitor tumor heterogeneity since they are both minimally invasive, easy to perform, and can be repeated over patient’s follow-up, enabling the extraction of valuable information. Yet, to date, there are no reported cases associating liquid biopsy and radiomics during treatment. Case presentation In this case series, seven patients with metastatic EGFR-positive NSCLC have been monitored during target therapy. Plasma-derived cell free DNA (cfDNA) was analyzed by a digital droplet PCR (ddPCR), while radiomic analyses were performed using the validated LifeX® software on computed tomography (CT)-images. The dynamics of EGFR mutations in cfDNA was compared with that of radiomic features. Then, for each EGFR mutation, a radiomic signature was defines as the sum of the most predictive features, weighted by their corresponding regression coefficients for the least absolute shrinkage and selection operator (LASSO) model. The receiver operating characteristic (ROC) curves were computed to estimate their diagnostic performance. The signatures achieved promising performance on predicting the presence of EGFR mutations (R2 = 0.447, p <0.001 EGFR activating mutations R2 = 0.301, p = 0.003 for T790M; and R2 = 0.354, p = 0.001 for activating plus resistance mutations), confirmed by ROC analysis. Conclusion To our knowledge, these are the first cases to highlight a potentially promising strategy to detect clonal heterogeneity and ultimately identify patients at risk of progression during treatment. Together, radiomics and liquid biopsy could detect the appearance of new mutations and therefore suggest new therapeutic management.
Collapse
Affiliation(s)
- Federico Cucchiara
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Simona Valleggi
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Chiara Romei
- Radiology Unit 2, Department of Diagnostics and Imaging, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Iacopo Petrini
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy.,Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Maurizio Lucchesi
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Stefania Crucitta
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Eleonora Rofi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Annalisa De Liperi
- Radiology Unit 2, Department of Diagnostics and Imaging, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antonio Chella
- Pneumology Unit, Cardiovascular and Thoracic Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Antonio Russo
- Section of Medical Oncology, Department of Surgical, Oncological and Stomatological Sciences, University of Palermo, Palermo, Italy
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetics Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
24
|
Sollini M, Bartoli F, Marciano A, Zanca R, Slart RHJA, Erba PA. Artificial intelligence and hybrid imaging: the best match for personalized medicine in oncology. Eur J Hybrid Imaging 2020; 4:24. [PMID: 34191197 PMCID: PMC8218106 DOI: 10.1186/s41824-020-00094-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/20/2022] Open
Abstract
Artificial intelligence (AI) refers to a field of computer science aimed to perform tasks typically requiring human intelligence. Currently, AI is recognized in the broader technology radar within the five key technologies which emerge for their wide-ranging applications and impact in communities, companies, business, and value chain framework alike. However, AI in medical imaging is at an early phase of development, and there are still hurdles to take related to reliability, user confidence, and adoption. The present narrative review aimed to provide an overview on AI-based approaches (distributed learning, statistical learning, computer-aided diagnosis and detection systems, fully automated image analysis tool, natural language processing) in oncological hybrid medical imaging with respect to clinical tasks (detection, contouring and segmentation, prediction of histology and tumor stage, prediction of mutational status and molecular therapies targets, prediction of treatment response, and outcome). Particularly, AI-based approaches have been briefly described according to their purpose and, finally lung cancer-being one of the most extensively malignancy studied by hybrid medical imaging-has been used as illustrative scenario. Finally, we discussed clinical challenges and open issues including ethics, validation strategies, effective data-sharing methods, regulatory hurdles, educational resources, and strategy to facilitate the interaction among different stakeholders. Some of the major changes in medical imaging will come from the application of AI to workflow and protocols, eventually resulting in improved patient management and quality of life. Overall, several time-consuming tasks could be automatized. Machine learning algorithms and neural networks will permit sophisticated analysis resulting not only in major improvements in disease characterization through imaging, but also in the integration of multiple-omics data (i.e., derived from pathology, genomic, proteomics, and demographics) for multi-dimensional disease featuring. Nevertheless, to accelerate the transition of the theory to practice a sustainable development plan considering the multi-dimensional interactions between professionals, technology, industry, markets, policy, culture, and civil society directed by a mindset which will allow talents to thrive is necessary.
Collapse
Affiliation(s)
- Martina Sollini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
- Humanitas Clinical and Research Center, Rozzano (Milan), Italy
| | - Francesco Bartoli
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Andrea Marciano
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberta Zanca
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Riemer H J A Slart
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands
- Faculty of Science and Technology, Biomedical Photonic Imaging, University of Twente, Enschede, The Netherlands
| | - Paola A Erba
- Regional Center of Nuclear Medicine, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy.
- University Medical Center Groningen, Medical Imaging Center, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
25
|
Liu H, Li H, Habes M, Li Y, Boimel P, Janopaul-Naylor J, Xiao Y, Ben-Josef E, Fan Y. Robust Collaborative Clustering of Subjects and Radiomic Features for Cancer Prognosis. IEEE Trans Biomed Eng 2020; 67:2735-2744. [PMID: 31995474 PMCID: PMC8048106 DOI: 10.1109/tbme.2020.2969839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Feature dimensionality reduction plays an important role in radiomic studies with a large number of features. However, conventional radiomic approaches may suffer from noise, and feature dimensionality reduction techniques are not equipped to utilize latent supervision information of patient data under study, such as differences in patients, to learn discriminative low dimensional representations. To achieve robustness to noise and feature dimensionality reduction with improved discriminative power, we develop a robust collaborative clustering method to simultaneously cluster patients and radiomic features into distinct groups respectively under adaptive sparse regularization. Our method is built upon matrix tri-factorization enhanced by adaptive sparsity regularization for simultaneous feature dimensionality reduction and denoising. Particularly, latent grouping information of patients with distinct radiomic features is learned and utilized as supervision information to guide the feature dimensionality reduction, and noise in radiomic features is adaptively isolated in a Bayesian framework under a general assumption of Laplacian distributions of transform-domain coefficients. Experiments on synthetic data have demonstrated the effectiveness of the proposed approach in data clustering, and evaluation results on an FDG-PET/CT dataset of rectal cancer patients have demonstrated that the proposed method outperforms alternative methods in terms of both patient stratification and prediction of patient clinical outcomes.
Collapse
|
26
|
Abstract
Machine learning (ML) and artificial intelligence (AI) are aiding in improving sensitivity and specificity of diagnostic imaging. The rapid adoption of these advanced ML algorithms is transforming imaging analysis; taking us from noninvasive detection of pathology to noninvasive precise diagnosis of the pathology by identifying whether detected abnormality is a secondary to infection, inflammation and/or neoplasm. This is led to the emergence of “Radiobiogenomics”; referring to the concept of identifying biologic (genomic, proteomic) alterations in the detected lesion. Radiobiogenomic involves image segmentation, feature extraction, and ML model to predict underlying tumor genotype and clinical outcomes. Lung cancer is the most common cause of cancer related death worldwide. There are several histologic subtypes of lung cancer, e.g., small cell lung cancer (SCLC), non-small cell lung cancer (NSCLC) (adenocarcinoma, squamous cell carcinoma). These variable histologic subtypes not only appear different at microscopic level, but these also differ at genetic and transcription level. This intrinsic heterogeneity reveals itself as different morphologic appearances on diagnostic imaging, such as CT, PET/CT and MRI. Traditional evaluation of imaging findings of lung cancer is limited to morphologic characteristics, such as lesion size, margins, density. Radiomics takes image analysis a step further by looking at imaging phenotype with higher order statistics in efforts to quantify intralesional heterogeneity. This heterogeneity, in turn, can be potentially used to extract intralesional genomic and proteomic data. This review aims to highlight novel concepts in ML and AI and their potential applications in identifying radiobiogenomics of lung cancer.
Collapse
Affiliation(s)
- Chi Wah Wong
- Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA, USA.,Department of Diagnostic and Interventional Radiology, City of Hope National Medical Center, Duarte, CA, USA
| | - Ammar Chaudhry
- Department of Applied AI and Data Science, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
27
|
Affiliation(s)
- Yanan Gao
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Rui Zhou
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Qingwen Lyu
- Department of Information, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Dercle L, Fronheiser M, Lu L, Du S, Hayes W, Leung DK, Roy A, Wilkerson J, Guo P, Fojo AT, Schwartz LH, Zhao B. Identification of Non–Small Cell Lung Cancer Sensitive to Systemic Cancer Therapies Using Radiomics. Clin Cancer Res 2020; 26:2151-2162. [DOI: 10.1158/1078-0432.ccr-19-2942] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/27/2019] [Accepted: 01/22/2020] [Indexed: 11/16/2022]
|
29
|
Pesapane F, Suter MB, Rotili A, Penco S, Nigro O, Cremonesi M, Bellomi M, Jereczek-Fossa BA, Pinotti G, Cassano E. Will traditional biopsy be substituted by radiomics and liquid biopsy for breast cancer diagnosis and characterisation? Med Oncol 2020; 37:29. [PMID: 32180032 DOI: 10.1007/s12032-020-01353-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
The diagnosis of breast cancer currently relies on radiological and clinical evaluation, confirmed by histopathological examination. However, such approach has some limitations as the suboptimal sensitivity, the long turnaround time for recall tests, the invasiveness of the procedure and the risk that some features of target lesions may remain undetected, making re-biopsy a necessity. Recent technological advances in the field of artificial intelligence hold promise in addressing such medical challenges not only in cancer diagnosis, but also in treatment assessment, and monitoring of disease progression. In the perspective of a truly personalised medicine, based on the early diagnosis and individually tailored treatments, two new technologies, namely radiomics and liquid biopsy, are rising as means to obtain information from diagnosis to molecular profiling and response assessment, without the need of a biopsied tissue sample. Radiomics works through the extraction of quantitative peculiar features of cancer from radiological data, while liquid biopsy gets the whole of the malignancy's biology from something as easy as a blood sample. Both techniques hopefully will identify diagnostic and prognostic information of breast cancer potentially reducing the need for invasive (and often difficult to perform) biopsies and favouring an approach that is as personalised as possible for each patient. Nevertheless, such techniques will not substitute tissue biopsy in the near future, and even in further times they will require the aid of other parameters to be correctly interpreted and acted upon.
Collapse
Affiliation(s)
- Filippo Pesapane
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy.
| | | | - Anna Rotili
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Silvia Penco
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Olga Nigro
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Marta Cremonesi
- Radiation Research Unit, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Barbara Alicja Jereczek-Fossa
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Department of Radiation Oncology, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| | - Graziella Pinotti
- Medical Oncology, ASST Sette Laghi, Viale Borri 57, 21100, Varese, VA, Italy
| | - Enrico Cassano
- Breast Imaging Division, IEO European Institute of Oncology IRCCS, Via Giuseppe Ripamonti, 435, 20141, Milan, MI, Italy
| |
Collapse
|
30
|
Gatta R, Depeursinge A, Ratib O, Michielin O, Leimgruber A. Integrating radiomics into holomics for personalised oncology: from algorithms to bedside. Eur Radiol Exp 2020; 4:11. [PMID: 32034573 PMCID: PMC7007467 DOI: 10.1186/s41747-019-0143-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/06/2019] [Indexed: 12/18/2022] Open
Abstract
Radiomics, artificial intelligence, and deep learning figure amongst recent buzzwords in current medical imaging research and technological development. Analysis of medical big data in assessment and follow-up of personalised treatments has also become a major research topic in the area of precision medicine. In this review, current research trends in radiomics are analysed, from handcrafted radiomics feature extraction and statistical analysis to deep learning. Radiomics algorithms now include genomics and immunomics data to improve patient stratification and prediction of treatment response. Several applications have already shown conclusive results demonstrating the potential of including other “omics” data to existing imaging features. We also discuss further challenges of data harmonisation and management infrastructure to shed a light on the much-needed integration of radiomics and all other “omics” into clinical workflows. In particular, we point to the emerging paradigm shift in the implementation of big data infrastructures to facilitate databanks growth, data extraction and the development of expert software tools. Secured access, sharing, and integration of all health data, called “holomics”, will accelerate the revolution of personalised medicine and oncology as well as expand the role of imaging specialists.
Collapse
Affiliation(s)
- Roberto Gatta
- Personalised Analytic Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Adrien Depeursinge
- Personalised Analytic Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.,University of Applied Sciences and Arts Western Switzerland (HES-SO), Sierre, Switzerland
| | - Osman Ratib
- Service of Medical Imaging, Riviera-Chablais Hospital, Rennaz, Switzerland.,Department of Medical Imaging, Lausanne University Hospital, Lausanne, Switzerland
| | - Olivier Michielin
- Personalised Analytic Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Antoine Leimgruber
- Personalised Analytic Oncology, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland. .,Service of Medical Imaging, Riviera-Chablais Hospital, Rennaz, Switzerland.
| |
Collapse
|
31
|
Hong D, Xu K, Zhang L, Wan X, Guo Y. Radiomics Signature as a Predictive Factor for EGFR Mutations in Advanced Lung Adenocarcinoma. Front Oncol 2020; 10:28. [PMID: 32082997 PMCID: PMC7005234 DOI: 10.3389/fonc.2020.00028] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/09/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose: To develop and validate a radiomic signature to identify EGFR mutations in patients with advanced lung adenocarcinoma. Methods: This study involved 201 patients with advanced lung adenocarcinoma (140 in the training cohort and 61 in the validation cohort). A total of 396 features were extracted from manual segmentation based on enhanced and non-enhance CT imaging after image preprocessing. The Lasso algorithm was used for feature selection, 6 machine learning methods were used to construct radiomics models. Receiver operating characteristic (ROC) curve analysis was applied to evaluate the performance of the radiomic signature between different data and methods. A nomogram was developed using clinical factors and the radiomics signature, then it was analyzed based on its discriminatory ability and calibration. Decision curve analysis (DCA) was implemented to evaluate the clinical utility. Results: Ten features for contrast data and eleven features for non-contrast data were selected through LASSO algorithm. The performance of the radiomics signature for contrast images was better than that for non-contrast images in all of the 6 different machine learning methods. Finally, the best radiomics signature was built with logistic regression method based on enhanced CT imaging with an area under the curve (AUC) of 0.851 (95% CI, 0.750 to 0.951) in the validation cohort. A nomogram was developed using the radiomics signature and sex with a C-index of 0.908 (95%CI, 0.862 to 0.954) in the training cohort and 0.835 (95% CI, 0.825 to 0.845) in the validation cohort. It showed good discrimination and calibration (Hosmer-Lemeshow test, P = 0.621 for the training cohort and P = 0.605 for the validation cohort). Conclusion: Radiomics signature can help to distinguish between EGFR positive and wild type advanced lung adenocarcinomas.
Collapse
Affiliation(s)
- Duo Hong
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Ke Xu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Lina Zhang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Xiaoting Wan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Yan Guo
- GE Healthcare, Shanghai, China
| |
Collapse
|
32
|
Ferreira-Junior JR, Koenigkam-Santos M, Magalhães Tenório AP, Faleiros MC, Garcia Cipriano FE, Fabro AT, Näppi J, Yoshida H, de Azevedo-Marques PM. CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms. Int J Comput Assist Radiol Surg 2019; 15:163-172. [PMID: 31722085 DOI: 10.1007/s11548-019-02093-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022]
Abstract
PURPOSE As some of the most important factors for treatment decision of lung cancer (which is the deadliest neoplasm) are staging and histology, this work aimed to associate quantitative contrast-enhanced computed tomography (CT) features from malignant lung tumors with distant and nodal metastases (according to clinical TNM staging) and histopathology (according to biopsy and surgical resection) using radiomics assessment. METHODS A local cohort of 85 patients were retrospectively (2010-2017) analyzed after approval by the institutional research review board. CT images acquired with the same protocol were semiautomatically segmented by a volumetric segmentation method. Tumors were characterized by quantitative CT features of shape, first-order, second-order, and higher-order textures. Statistical and machine learning analyses assessed the features individually and combined with clinical data. RESULTS Univariate and multivariate analyses identified 40, 2003, and 45 quantitative features associated with distant metastasis, nodal metastasis, and histopathology (adenocarcinoma and squamous cell carcinoma), respectively. A machine learning model yielded the highest areas under the receiver operating characteristic curves of 0.92, 0.84, and 0.88 to predict the same previous patterns. CONCLUSION Several radiomic features (including wavelet energies, information measures of correlation and maximum probability from co-occurrence matrix, busyness from neighborhood intensity-difference matrix, directionalities from Tamura's texture, and fractal dimension estimation) significantly associated with distant metastasis, nodal metastasis, and histology were discovered in this work, presenting great potential as imaging biomarkers for pathological diagnosis and target therapy decision.
Collapse
Affiliation(s)
- José Raniery Ferreira-Junior
- São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil.
- Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil.
| | - Marcel Koenigkam-Santos
- Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | | | - Matheus Calil Faleiros
- São Carlos School of Engineering, University of São Paulo, Av. Trabalhador São-Carlense, 400, São Carlos, SP, 13566-590, Brazil
| | | | - Alexandre Todorovic Fabro
- Ribeirão Preto Medical School, University of São Paulo, Av. dos Bandeirantes, 3900, Ribeirão Preto, SP, 14049-900, Brazil
| | - Janne Näppi
- Massachusetts General Hospital, Harvard Medical School, 25 New Chardon St, Boston, MA, 02114, USA
| | - Hiroyuki Yoshida
- Massachusetts General Hospital, Harvard Medical School, 25 New Chardon St, Boston, MA, 02114, USA
| | | |
Collapse
|
33
|
Wang Z, Meng Y, Weng F, Chen Y, Lu F, Liu X, Hou M, Zhang J. An Effective CNN Method for Fully Automated Segmenting Subcutaneous and Visceral Adipose Tissue on CT Scans. Ann Biomed Eng 2019; 48:312-328. [DOI: 10.1007/s10439-019-02349-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/18/2019] [Indexed: 12/28/2022]
|
34
|
Lim J, Allen PJ. The diagnosis and management of intraductal papillary mucinous neoplasms of the pancreas: has progress been made? Updates Surg 2019; 71:209-216. [PMID: 31175628 DOI: 10.1007/s13304-019-00661-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 05/31/2019] [Indexed: 12/12/2022]
Abstract
Intraductal papillary mucinous neoplasms (IPMN) of the pancreas are premalignant mucin-producing epithelial tumors that arise from the pancreatic ductal system. These cystic tumors represent 15-30% of cystic lesions of the pancreas [Basturk et al. in Am J Surg Pathol 39(12):1730-1741, 1; Ferrone et al. in Arch Surg (Chicago, Ill: 1960) 144(5):448-454, 2, Kosmahl et al. in Virchows Arch Int J Pathol 445(2):168-178, 3; Spinelli et al. in Ann Surg. 239(5):651-657, 4]. It is believed that IPMN can progress from low-grade dysplasia to high-grade dysplasia to invasive cancer, and this pathway of progression accounts for 20-30% of pancreatic cancer [Adsay et al. in Am J Surg Pathol 28(7):839-848, 5; Tanaka et al. in J Gastroenterol 40(7):669-675, 6; Wu et al. in Sci Transl Med 3(92):92ra66, 7]. Furthermore, it is also widely believed that IPMN represent a field defect of the pancreas in which the entire ductal system is at risk of developing invasive carcinoma, not only in the area of radiographically detectable IPMN, and thus the remaining gland should undergo surveillance after partial pancreatectomy [Salvia et al. in Ann Surg 239(5):678-685, 8; Izawa et al. in Cancer 92(7):1807-1817, 9; Yamaguchi and Tanaka in Jpn J Clin Oncol 41(7):836-840, 10]. Increasingly, surgeons are faced with the dilemma between recommending highly complex resections-that have significant morbidity and mortality-in patients who may have low-risk IPMN (low-grade dysplasia), or alternatively, recommending observation for those who could possibly be harboring a radiographically occult malignancy. Given the complexity of the management decisions for patients with IPMN, the purpose of this paper is to review the current literature and to provide a summary of how accurate we are currently with the identification of high-grade dysplasia or progression to carcinoma in patients who present with IPMN.
Collapse
Affiliation(s)
- Jenny Lim
- Department of Surgical Oncology, Duke University, Durham, NC, 27710, USA.
| | - Peter J Allen
- Department of Surgical Oncology, Duke University, Durham, NC, 27710, USA
- Duke Cancer Institute, Duke Health System, Durham, NC, 27710, USA
| |
Collapse
|
35
|
Bodalal Z, Trebeschi S, Nguyen-Kim TDL, Schats W, Beets-Tan R. Radiogenomics: bridging imaging and genomics. Abdom Radiol (NY) 2019; 44:1960-1984. [PMID: 31049614 DOI: 10.1007/s00261-019-02028-w] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
From diagnostics to prognosis to response prediction, new applications for radiomics are rapidly being developed. One of the fastest evolving branches involves linking imaging phenotypes to the tumor genetic profile, a field commonly referred to as "radiogenomics." In this review, a general outline of radiogenomic literature concerning prominent mutations across different tumor sites will be provided. The field of radiogenomics originates from image processing techniques developed decades ago; however, many technical and clinical challenges still need to be addressed. Nevertheless, increasingly accurate and robust radiogenomic models are being presented and the future appears to be bright.
Collapse
|
36
|
Mirniaharikandehei S, VanOsdol J, Heidari M, Danala G, Sethuraman SN, Ranjan A, Zheng B. Developing a Quantitative Ultrasound Image Feature Analysis Scheme to Assess Tumor Treatment Efficacy Using a Mouse Model. Sci Rep 2019; 9:7293. [PMID: 31086267 PMCID: PMC6513863 DOI: 10.1038/s41598-019-43847-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/02/2019] [Indexed: 12/16/2022] Open
Abstract
The aim of this study is to investigate the feasibility of identifying and applying quantitative imaging features computed from ultrasound images of athymic nude mice to predict tumor response to treatment at an early stage. A computer-aided detection (CAD) scheme with a graphic user interface was developed to conduct tumor segmentation and image feature analysis. A dataset involving ultrasound images of 23 athymic nude mice bearing C26 mouse adenocarcinomas was assembled. These mice were divided into 7 treatment groups utilizing a combination of thermal and nanoparticle-controlled drug delivery. Longitudinal ultrasound images of mice were taken prior and post-treatment in day 3 and day 6. After tumor segmentation, CAD scheme computed image features and created four feature pools including features computed from (1) prior treatment images only and (2) difference between prior and post-treatment images of day 3 and day 6, respectively. To predict tumor treatment efficacy, data analysis was performed to identify top image features and an optimal feature fusion method, which have a higher correlation to tumor size increase ratio (TSIR) determined at Day 10. Using image features computed from day 3, the highest Pearson Correlation coefficients between the top two features selected from two feature pools versus TSIR were 0.373 and 0.552, respectively. Using an equally weighted fusion method of two features computed from prior and post-treatment images, the correlation coefficient increased to 0.679. Meanwhile, using image features computed from day 6, the highest correlation coefficient was 0.680. Study demonstrated the feasibility of extracting quantitative image features from the ultrasound images taken at an early treatment stage to predict tumor response to therapies.
Collapse
Affiliation(s)
| | - Joshua VanOsdol
- Center for Veterinary Health Science, Oklahoma State University, Stillwater, 74078, OK, USA
| | - Morteza Heidari
- School of Electrical and Computer Engineering, University of Oklahoma, 73019, Norman, OK, USA
| | - Gopichandh Danala
- School of Electrical and Computer Engineering, University of Oklahoma, 73019, Norman, OK, USA
| | | | - Ashish Ranjan
- Center for Veterinary Health Science, Oklahoma State University, Stillwater, 74078, OK, USA
| | - Bin Zheng
- School of Electrical and Computer Engineering, University of Oklahoma, 73019, Norman, OK, USA.
| |
Collapse
|
37
|
Astaraki M, Wang C, Buizza G, Toma-Dasu I, Lazzeroni M, Smedby Ö. Early survival prediction in non-small cell lung cancer from PET/CT images using an intra-tumor partitioning method. Phys Med 2019; 60:58-65. [DOI: 10.1016/j.ejmp.2019.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/12/2019] [Accepted: 03/21/2019] [Indexed: 12/26/2022] Open
|
38
|
Pozo G, Pérez-Escutia MA, Ruíz A, Ferrando A, Milanés A, Cabello E, Díaz R, Prado A, Pérez-Regadera JF. Management of interruptions in radiotherapy treatments: Adaptive implementation in high workload sites. Rep Pract Oncol Radiother 2019; 24:239-244. [PMID: 30858768 DOI: 10.1016/j.rpor.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 11/24/2018] [Accepted: 02/07/2019] [Indexed: 01/11/2023] Open
Abstract
Owing to predictable or unpredictable causes, interruptions may arise during therapy. On average, the extension of fractionated radiotherapy treatments is prone to be delayed by several weeks and interruptions can come up extending overall treatment time (OTT). Clonogenic cells of aggressive tumors might benefit from this situation, modifying local control (LC). Preserving treatment quality in radiotherapy is an essential issue for the treatment outcome, and our institution is increasingly concerned about this line of work. Establishing some objective criteria to schedule patients that have suffered interruptions along their treatments is of capital importance and not a trivial issue. Publications strongly encourage departments to minimize the effect of lag periods during treatments. Therefore, in July 2017, our facility implemented the so called 'Protocol to Manage Interruptions in Radiotherapy', based on a scoring system for patient categorization that considers not only histology but also associated comorbidity and sequence of the therapy.
Collapse
Affiliation(s)
- Gustavo Pozo
- Department of Medical Physics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | | - Ana Ruíz
- Department of Radiation Oncology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Ferrando
- Department of Medical Physics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Ana Milanés
- Department of Medical Physics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Eduardo Cabello
- Department of Medical Physics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Raul Díaz
- Department of Medical Physics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Alejandro Prado
- Department of Medical Physics, Hospital Universitario 12 de Octubre, Madrid, Spain
| | | |
Collapse
|
39
|
Developing global image feature analysis models to predict cancer risk and prognosis. Vis Comput Ind Biomed Art 2019; 2:17. [PMID: 32190407 PMCID: PMC7055572 DOI: 10.1186/s42492-019-0026-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/09/2019] [Indexed: 12/18/2022] Open
Abstract
In order to develop precision or personalized medicine, identifying new quantitative imaging markers and building machine learning models to predict cancer risk and prognosis has been attracting broad research interest recently. Most of these research approaches use the similar concepts of the conventional computer-aided detection schemes of medical images, which include steps in detecting and segmenting suspicious regions or tumors, followed by training machine learning models based on the fusion of multiple image features computed from the segmented regions or tumors. However, due to the heterogeneity and boundary fuzziness of the suspicious regions or tumors, segmenting subtle regions is often difficult and unreliable. Additionally, ignoring global and/or background parenchymal tissue characteristics may also be a limitation of the conventional approaches. In our recent studies, we investigated the feasibility of developing new computer-aided schemes implemented with the machine learning models that are trained by global image features to predict cancer risk and prognosis. We trained and tested several models using images obtained from full-field digital mammography, magnetic resonance imaging, and computed tomography of breast, lung, and ovarian cancers. Study results showed that many of these new models yielded higher performance than other approaches used in current clinical practice. Furthermore, the computed global image features also contain complementary information from the features computed from the segmented regions or tumors in predicting cancer prognosis. Therefore, the global image features can be used alone to develop new case-based prediction models or can be added to current tumor-based models to increase their discriminatory power.
Collapse
|
40
|
Panayides AS, Pattichis MS, Leandrou S, Pitris C, Constantinidou A, Pattichis CS. Radiogenomics for Precision Medicine With a Big Data Analytics Perspective. IEEE J Biomed Health Inform 2018; 23:2063-2079. [PMID: 30596591 DOI: 10.1109/jbhi.2018.2879381] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Precision medicine promises better healthcare delivery by improving clinical practice. Using evidence-based substratification of patients, the objective is to achieve better prognosis, diagnosis, and treatment that will transform existing clinical pathways toward optimizing care for the specific needs of each patient. The wealth of today's healthcare data, often characterized as big data, provides invaluable resources toward new knowledge discovery that has the potential to advance precision medicine. The latter requires interdisciplinary efforts that will capitalize the information, know-how, and medical data of newly formed groups fusing different backgrounds and expertise. The objective of this paper is to provide insights with respect to the state-of-the-art research in precision medicine. More specifically, our goal is to highlight the fundamental challenges in emerging fields of radiomics and radiogenomics by reviewing the case studies of Cancer and Alzheimer's disease, describe the computational challenges from a big data analytics perspective, and discuss standardization and open data initiatives that will facilitate the adoption of precision medicine methods and practices.
Collapse
|
41
|
Gong J, Liu J, Jiang Y, Sun X, Zheng B, Nie S. Fusion of quantitative imaging features and serum biomarkers to improve performance of computer‐aided diagnosis scheme for lung cancer: A preliminary study. Med Phys 2018; 45:5472-5481. [PMID: 30317652 DOI: 10.1002/mp.13237] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 10/03/2018] [Accepted: 10/03/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Jing Gong
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology 516 Jun Gong Road Shanghai 200093 China
- Department of Radiology Fudan University Shanghai Cancer Center 270 Dongan Road Shanghai 200032 China
| | - Ji‐yu Liu
- Radiology Department Shanghai Pulmonary Hospital 507 Zheng Min Road Shanghai 200433 China
| | - Yao‐jun Jiang
- Department of Radiology The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Xi‐wen Sun
- Radiology Department Shanghai Pulmonary Hospital 507 Zheng Min Road Shanghai 200433 China
| | - Bin Zheng
- School of Electrical and Computer Engineering University of Oklahoma Norman OK 73019 USA
| | - Sheng‐dong Nie
- School of Medical Instrument and Food Engineering University of Shanghai for Science and Technology 516 Jun Gong Road Shanghai 200093 China
| |
Collapse
|
42
|
Li H, Galperin-Aizenberg M, Pryma D, Simone CB, Fan Y. Unsupervised machine learning of radiomic features for predicting treatment response and overall survival of early stage non-small cell lung cancer patients treated with stereotactic body radiation therapy. Radiother Oncol 2018; 129:218-226. [PMID: 30473058 PMCID: PMC6261331 DOI: 10.1016/j.radonc.2018.06.025] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND PURPOSE To predict treatment response and survival of NSCLC patients receiving stereotactic body radiation therapy (SBRT), we develop an unsupervised machine learning method for stratifying patients and extracting meta-features simultaneously based on imaging data. MATERIAL AND METHODS This study was performed based on an 18F-FDG-PET dataset of 100 consecutive patients who were treated with SBRT for early stage NSCLC. Each patient's tumor was characterized by 722 radiomic features. An unsupervised two-way clustering method was used to identify groups of patients and radiomic features simultaneously. The groups of patients were compared in terms of survival and freedom from nodal failure. Meta-features were computed for building survival models to predict survival and free of nodal failure. RESULTS Differences were found between 2 groups of patients when the patients were clustered into 3 groups in terms of both survival (p = 0.003) and freedom from nodal failure (p = 0.038). Average concordance measures for predicting survival and nodal failure were 0.640±0.029 and 0.664±0.063 respectively, better than those obtained by prediction models built upon clinical variables (p < 0.04). CONCLUSIONS The evaluation results demonstrate that our method allows us to stratify patients and predict survival and freedom from nodal failure with better performance than current alternative methods.
Collapse
Affiliation(s)
- Hongming Li
- Department of Radiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia 19104, United States
| | - Maya Galperin-Aizenberg
- Department of Radiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia 19104, United States
| | - Daniel Pryma
- Department of Radiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia 19104, United States
| | - Charles B Simone
- Maryland Proton Treatment Center, University of Maryland School of Medicine, Baltimore 21201, United States
| | - Yong Fan
- Department of Radiology, Perelman School of Medicine, The University of Pennsylvania, Philadelphia 19104, United States.
| |
Collapse
|
43
|
Chakraborty J, Midya A, Gazit L, Attiyeh M, Langdon-Embry L, Allen PJ, Do RKG, Simpson AL. CT radiomics to predict high-risk intraductal papillary mucinous neoplasms of the pancreas. Med Phys 2018; 45:5019-5029. [PMID: 30176047 DOI: 10.1002/mp.13159] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/15/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
PURPOSE Intraductal papillary mucinous neoplasms (IPMNs) are radiographically visible precursor lesions of pancreatic cancer. Despite standard criteria for assessing risk, only 18% of cysts are malignant at resection. Thus, a large number of patients undergo unnecessary invasive surgery for benign disease. The ability to identify IPMNs with low or high risk of transforming into invasive cancer would optimize patient selection and improve surgical decision-making. The purpose of this study was to investigate quantitative CT imaging features as markers for objective assessment of IPMN risk. METHODS This retrospective study analyzed pancreatic cyst and parenchyma regions extracted from CT scans in 103 patients to predict IPMN risk. Patients who underwent resection between 2005 and 2015 with pathologically proven branch duct (BD)-IPMN and a preoperative CT scan were included in the study. Expert pathologists categorized IPMNs as low or high risk following resection as part of routine clinical care. We extracted new radiographically inspired features as well as standard texture features and designed prediction models for the categorization of high- and low-risk IPMNs. Five clinical variables were also combined with imaging features to design prediction models. RESULTS Using images from 103 patients and tenfold cross-validation technique, the novel radiographically inspired imaging features achieved an area under the receiver operating characteristic curve (AUC) of 0.77, demonstrating their predictive power. The combination of these features with clinical variables obtained the best performance (AUC = 0.81). CONCLUSION The present study demonstrates that features extracted from pretreatment CT images can predict the risk of IPMN. Development of a preoperative model to discriminate between low-risk and high-risk IPMN will improve surgical decision-making.
Collapse
Affiliation(s)
- Jayasree Chakraborty
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Abhishek Midya
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lior Gazit
- Department of Strategy and Innovation, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Marc Attiyeh
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Liana Langdon-Embry
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Peter J Allen
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Richard K G Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Amber L Simpson
- Department of Surgery, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| |
Collapse
|
44
|
Traverso A, Wee L, Dekker A, Gillies R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int J Radiat Oncol Biol Phys 2018; 102:1143-1158. [PMID: 30170872 PMCID: PMC6690209 DOI: 10.1016/j.ijrobp.2018.05.053] [Citation(s) in RCA: 527] [Impact Index Per Article: 75.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 05/15/2018] [Accepted: 05/20/2018] [Indexed: 12/15/2022]
Abstract
Purpose: An ever-growing number of predictive models used to inform clinical decision making have included quantitative, computer-extracted imaging biomarkers, or “radiomic features.” Broadly generalizable validity of radiomics-assisted models may be impeded by concerns about reproducibility. We offer a qualitative synthesis of 41 studies that specifically investigated the repeatability and reproducibility of radiomic features, derived from a systematic review of published peer-reviewed literature. Methods and Materials: The PubMed electronic database was searched using combinations of the broad Haynes and Ingui filters along with a set of text words specific to cancer, radiomics (including texture analyses), reproducibility, and repeatability. This review has been reported in compliance with Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. From each full-text article, information was extracted regarding cancer type, class of radiomic feature examined, reporting quality of key processing steps, and statistical metric used to segregate stable features. Results: Among 624 unique records, 41 full-text articles were subjected to review. The studies primarily addressed non-small cell lung cancer and oropharyngeal cancer. Only 7 studies addressed in detail every methodologic aspect related to image acquisition, preprocessing, and feature extraction. The repeatability and reproducibility of radiomic features are sensitive at various degrees to processing details such as image acquisition settings, image reconstruction algorithm, digital image preprocessing, and software used to extract radiomic features. First-order features were overall more reproducible than shape metrics and textural features. Entropy was consistently reported as one of the most stable first-order features. There was no emergent consensus regarding either shape metrics or textural features; however, coarseness and contrast appeared among the least reproducible. Conclusions: Investigations of feature repeatability and reproducibility are currently limited to a small number of cancer types. Reporting quality could be improved regarding details of feature extraction software, digital image manipulation (preprocessing), and the cutoff value used to distinguish stable features. We offer a qualitative synthesis of 41 studies that specifically investigated the repeatability and reproducibility of radiomic features. The repeatability and reproducibility of radiomic features are sensitive at various degrees to image quality and to software used to extract radiomic features. Investigations of feature repeatability and reproducibility are currently limited to a small number of cancer types. No consensus was found regarding the most repeatable and reproducible features with respect to different settings.
Collapse
Affiliation(s)
- Alberto Traverso
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands.
| | - Leonard Wee
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | - Andre Dekker
- Department of Radiation Oncology, MAASTRO Clinic, Maastricht, The Netherlands; School for Oncology and Developmental Biology (GROW), Maastricht University, Maastricht, The Netherlands
| | | |
Collapse
|
45
|
Sanduleanu S, Woodruff HC, de Jong EE, van Timmeren JE, Jochems A, Dubois L, Lambin P. Tracking tumor biology with radiomics: A systematic review utilizing a radiomics quality score. Radiother Oncol 2018; 127:349-360. [DOI: 10.1016/j.radonc.2018.03.033] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 03/02/2018] [Accepted: 03/29/2018] [Indexed: 02/07/2023]
|
46
|
Ferreira Junior JR, Koenigkam-Santos M, Cipriano FEG, Fabro AT, Azevedo-Marques PMD. Radiomics-based features for pattern recognition of lung cancer histopathology and metastases. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 159:23-30. [PMID: 29650315 DOI: 10.1016/j.cmpb.2018.02.015] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 02/16/2018] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVES lung cancer is the leading cause of cancer-related deaths in the world, and its poor prognosis varies markedly according to tumor staging. Computed tomography (CT) is the imaging modality of choice for lung cancer evaluation, being used for diagnosis and clinical staging. Besides tumor stage, other features, like histopathological subtype, can also add prognostic information. In this work, radiomics-based CT features were used to predict lung cancer histopathology and metastases using machine learning models. METHODS local image datasets of confirmed primary malignant pulmonary tumors were retrospectively evaluated for testing and validation. CT images acquired with same protocol were semiautomatically segmented. Tumors were characterized by clinical features and computer attributes of intensity, histogram, texture, shape, and volume. Three machine learning classifiers used up to 100 selected features to perform the analysis. RESULTS radiomics-based features yielded areas under the receiver operating characteristic curve of 0.89, 0.97, and 0.92 at testing and 0.75, 0.71, and 0.81 at validation for lymph nodal metastasis, distant metastasis, and histopathology pattern recognition, respectively. CONCLUSIONS the radiomics characterization approach presented great potential to be used in a computational model to aid lung cancer histopathological subtype diagnosis as a "virtual biopsy" and metastatic prediction for therapy decision support without the necessity of a whole-body imaging scanning.
Collapse
Affiliation(s)
| | - Marcel Koenigkam-Santos
- Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | | | | | | |
Collapse
|
47
|
Mirniaharikandehei S, Hollingsworth AB, Patel B, Heidari M, Liu H, Zheng B. Applying a new computer-aided detection scheme generated imaging marker to predict short-term breast cancer risk. Phys Med Biol 2018; 63:105005. [PMID: 29667606 DOI: 10.1088/1361-6560/aabefe] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This study aims to investigate the feasibility of identifying a new quantitative imaging marker based on false-positives generated by a computer-aided detection (CAD) scheme to help predict short-term breast cancer risk. An image dataset including four view mammograms acquired from 1044 women was retrospectively assembled. All mammograms were originally interpreted as negative by radiologists. In the next subsequent mammography screening, 402 women were diagnosed with breast cancer and 642 remained negative. An existing CAD scheme was applied 'as is' to process each image. From CAD-generated results, four detection features including the total number of (1) initial detection seeds and (2) the final detected false-positive regions, (3) average and (4) sum of detection scores, were computed from each image. Then, by combining the features computed from two bilateral images of left and right breasts from either craniocaudal or mediolateral oblique view, two logistic regression models were trained and tested using a leave-one-case-out cross-validation method to predict the likelihood of each testing case being positive in the next subsequent screening. The new prediction model yielded the maximum prediction accuracy with an area under a ROC curve of AUC = 0.65 ± 0.017 and the maximum adjusted odds ratio of 4.49 with a 95% confidence interval of (2.95, 6.83). The results also showed an increasing trend in the adjusted odds ratio and risk prediction scores (p < 0.01). Thus, this study demonstrated that CAD-generated false-positives might include valuable information, which needs to be further explored for identifying and/or developing more effective imaging markers for predicting short-term breast cancer risk.
Collapse
Affiliation(s)
- Seyedehnafiseh Mirniaharikandehei
- School of Electrical and Computer Engineering, University of Oklahoma, Norman, OK 73019, United States of America. Author to whom any correspondence should be addressed
| | | | | | | | | | | |
Collapse
|
48
|
Tensor Sparse Representation for 3-D Medical Image Fusion Using Weighted Average Rule. IEEE Trans Biomed Eng 2018; 65:2622-2633. [PMID: 29993511 DOI: 10.1109/tbme.2018.2811243] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE The technique of fusing multimodal medical images into single image has a great impact on the clinical diagnosis. The previous works mostly concern the two-dimensional (2-D) image fusion performed on each slice individually, that may destroy the 3-D correlation across adjacent slices. To address this issue, this paper proposes a novel 3-D image fusion scheme based on Tensor Sparse Representation (TSR). METHODS First, each medical volume is arranged as a three-order tensor, and represented by TSR with learned dictionaries. Second, a novel "weighted average" rule, calculated from the tensor sparse coefficients using 3-D local-to-global strategy. The weights are then employed to combine the multimodal medical volumes through weighted average. RESULTS The visual and objective comparisons show that the proposed method is competitive to the existing methods on various medical volumes in different imaging modalities. CONCLUSION The TSR-based 3-D fusion approach with weighted average rule can preserve the 3-D structure of medical volume, and reduce the low contrast and artifacts in fused product. SIGNIFICANCE The designed weights offer the effective assigned weights and accurate salience levels measure, which can improve the performance of fusion approach.
Collapse
|
49
|
Acharya UR, Hagiwara Y, Sudarshan VK, Chan WY, Ng KH. Towards precision medicine: from quantitative imaging to radiomics. J Zhejiang Univ Sci B 2018; 19:6-24. [PMID: 29308604 PMCID: PMC5802973 DOI: 10.1631/jzus.b1700260] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 08/16/2017] [Indexed: 12/12/2022]
Abstract
Radiology (imaging) and imaging-guided interventions, which provide multi-parametric morphologic and functional information, are playing an increasingly significant role in precision medicine. Radiologists are trained to understand the imaging phenotypes, transcribe those observations (phenotypes) to correlate with underlying diseases and to characterize the images. However, in order to understand and characterize the molecular phenotype (to obtain genomic information) of solid heterogeneous tumours, the advanced sequencing of those tissues using biopsy is required. Thus, radiologists image the tissues from various views and angles in order to have the complete image phenotypes, thereby acquiring a huge amount of data. Deriving meaningful details from all these radiological data becomes challenging and raises the big data issues. Therefore, interest in the application of radiomics has been growing in recent years as it has the potential to provide significant interpretive and predictive information for decision support. Radiomics is a combination of conventional computer-aided diagnosis, deep learning methods, and human skills, and thus can be used for quantitative characterization of tumour phenotypes. This paper discusses the overview of radiomics workflow, the results of various radiomics-based studies conducted using various radiological images such as computed tomography (CT), magnetic resonance imaging (MRI), and positron-emission tomography (PET), the challenges we are facing, and the potential contribution of radiomics towards precision medicine.
Collapse
Affiliation(s)
- U. Rajendra Acharya
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
- Department of Biomedical Engineering, School of Science and Technology, Singapore University of Social Sciences, Singapore 599494, Singapore
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yuki Hagiwara
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - Vidya K. Sudarshan
- Department of Electronics and Computer Engineering, Ngee Ann Polytechnic, Singapore 599489, Singapore
| | - Wai Yee Chan
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kwan Hoong Ng
- Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
50
|
Shi L, He Y, Yuan Z, Benedict S, Valicenti R, Qiu J, Rong Y. Radiomics for Response and Outcome Assessment for Non-Small Cell Lung Cancer. Technol Cancer Res Treat 2018; 17:1533033818782788. [PMID: 29940810 PMCID: PMC6048673 DOI: 10.1177/1533033818782788] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/09/2018] [Accepted: 05/16/2018] [Indexed: 12/24/2022] Open
Abstract
Routine follow-up visits and radiographic imaging are required for outcome evaluation and tumor recurrence monitoring. Yet more personalized surveillance is required in order to sufficiently address the nature of heterogeneity in nonsmall cell lung cancer and possible recurrences upon completion of treatment. Radiomics, an emerging noninvasive technology using medical imaging analysis and data mining methodology, has been adopted to the area of cancer diagnostics in recent years. Its potential application in response assessment for cancer treatment has also drawn considerable attention. Radiomics seeks to extract a large amount of valuable information from patients' medical images (both pretreatment and follow-up images) and quantitatively correlate image features with diagnostic and therapeutic outcomes. Radiomics relies on computers to identify and analyze vast amounts of quantitative image features that were previously overlooked, unmanageable, or failed to be identified (and recorded) by human eyes. The research area has been focusing on the predictive accuracy of pretreatment features for outcome and response and the early discovery of signs of tumor response, recurrence, distant metastasis, radiation-induced lung injury, death, and other outcomes, respectively. This review summarized the application of radiomics in response assessments in radiotherapy and chemotherapy for non-small cell lung cancer, including image acquisition/reconstruction, region of interest definition/segmentation, feature extraction, and feature selection and classification. The literature search for references of this article includes PubMed peer-reviewed publications over the last 10 years on the topics of radiomics, textural features, radiotherapy, chemotherapy, lung cancer, and response assessment. Summary tables of radiomics in response assessment and treatment outcome prediction in radiation oncology have been developed based on the comprehensive review of the literature.
Collapse
Affiliation(s)
- Liting Shi
- Department of Radiology, Taishan Medical University, Tai’an, China
| | - Yaoyao He
- Department of Radiology, Taishan Medical University, Tai’an, China
| | - Zilong Yuan
- Department of Radiology, Hubei Cancer Hospital, Wuhan, China
| | - Stanley Benedict
- Department of Radiation Oncology, University of California Davis
Comprehensive Cancer Center, Sacramento, CA, USA
| | - Richard Valicenti
- Department of Radiation Oncology, University of California Davis
Comprehensive Cancer Center, Sacramento, CA, USA
| | - Jianfeng Qiu
- Department of Radiology, Taishan Medical University, Tai’an, China
| | - Yi Rong
- Department of Radiation Oncology, University of California Davis
Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|