1
|
Ferguson AM, Lin AC. Themes, Rates, and Risk of Adverse Events of the Artificial Pancreas in the United States Using MAUDE. Ann Biomed Eng 2024; 52:2282-2286. [PMID: 38740730 PMCID: PMC11247049 DOI: 10.1007/s10439-024-03529-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024]
Abstract
Three manufacturers sell artificial pancreas systems in the United States for management of Type 1 Diabetes. Given the life-saving task required of an artificial pancreas there needs to be a high level of trust and safety in the devices. This evaluation sought to find the adjusted safety event reporting rate and themes along with device-associated risk in events reported utilizing the MAUDE database. We searched device names in the MAUDE database over the period from 2016 until August 2023 (the date of retrieval). Thematic analysis was performed using dual-reviewer examination with a 96% concurrence. Relative risk (RR) was calculated for injury, malfunction, and overall, for each manufacturer, as well as adjusted event rate per manufacturer. Most events reported related to defects in the manufacturing of the casing materials which resulted in non-delivery of therapy. Tandem Diabetes Care, Inc. had an adjusted event rate of 50 per 100,000 units and RR of 0.0225. Insulet had an adjusted event rate of 300 per 100,000 units and RR of 0.1684. Medtronic has an adjusted event rate of 2771.43 per 100,000 units and RR of 20.7857. The newer Medtronic devices show improvements in likely event rate. While the artificial pancreas is still in its infancy, these event rates are not at an acceptable level for a device which can precipitate death from malfunctions. Further exploration into safety events and much more research and development is needed for devices to reduce the event rates. Improved manufacturing practices, especially the casing materials, are highly recommended. The artificial pancreas holds promise for millions but must be improved before it becomes a true life-saving device that it has the potential to become.
Collapse
Affiliation(s)
- Andrew M Ferguson
- University of Cincinnati College of Medicine, Cincinnati, USA.
- University of Cincinnati College of Pharmacy, Cincinnati, USA.
| | - Alex C Lin
- University of Cincinnati College of Pharmacy, Cincinnati, USA
| |
Collapse
|
2
|
Puginier E, Leal-Fischer K, Gaitan J, Lallouet M, Scotti PA, Raoux M, Lang J. Extracellular electrophysiology on clonal human β-cell spheroids. Front Endocrinol (Lausanne) 2024; 15:1402880. [PMID: 38883608 PMCID: PMC11176477 DOI: 10.3389/fendo.2024.1402880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024] Open
Abstract
Background Pancreatic islets are important in nutrient homeostasis and improved cellular models of clonal origin may very useful especially in view of relatively scarce primary material. Close 3D contact and coupling between β-cells are a hallmark of physiological function improving signal/noise ratios. Extracellular electrophysiology using micro-electrode arrays (MEA) is technically far more accessible than single cell patch clamp, enables dynamic monitoring of electrical activity in 3D organoids and recorded multicellular slow potentials (SP) provide unbiased insight in cell-cell coupling. Objective We have therefore asked whether 3D spheroids enhance clonal β-cell function such as electrical activity and hormone secretion using human EndoC-βH1, EndoC-βH5 and rodent INS-1 832/13 cells. Methods Spheroids were formed either by hanging drop or proprietary devices. Extracellular electrophysiology was conducted using multi-electrode arrays with appropriate signal extraction and hormone secretion measured by ELISA. Results EndoC-βH1 spheroids exhibited increased signals in terms of SP frequency and especially amplitude as compared to monolayers and even single cell action potentials (AP) were quantifiable. Enhanced electrical signature in spheroids was accompanied by an increase in the glucose stimulated insulin secretion index. EndoC-βH5 monolayers and spheroids gave electrophysiological profiles similar to EndoC-βH1, except for a higher electrical activity at 3 mM glucose, and exhibited moreover a biphasic profile. Again, physiological concentrations of GLP-1 increased AP frequency. Spheroids also exhibited a higher secretion index. INS-1 cells did not form stable spheroids, but overexpression of connexin 36, required for cell-cell coupling, increased glucose responsiveness, dampened basal activity and consequently augmented the stimulation index. Conclusion In conclusion, spheroid formation enhances physiological function of the human clonal β-cell lines and these models may provide surrogates for primary islets in extracellular electrophysiology.
Collapse
Affiliation(s)
- Emilie Puginier
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Karen Leal-Fischer
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Julien Gaitan
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Marie Lallouet
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Pier-Arnaldo Scotti
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Matthieu Raoux
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| | - Jochen Lang
- Univiversity of Bordeaux, CNRS, Bordeaux INP, Laboratoire de Chimie et Biologie des Membranes CBMN, UMR 5248, Pessac, Bordeaux, France
| |
Collapse
|
3
|
Cobelli C, Kovatchev B. Developing the UVA/Padova Type 1 Diabetes Simulator: Modeling, Validation, Refinements, and Utility. J Diabetes Sci Technol 2023; 17:1493-1505. [PMID: 37743740 PMCID: PMC10658679 DOI: 10.1177/19322968231195081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Arguably, diabetes mellitus is one of the best quantified human conditions. In the past 50 years, the metabolic monitoring technologies progressed from occasional assessment of average glycemia via HbA1c, through episodic blood glucose readings, to continuous glucose monitoring (CGM) producing data points every few minutes. The high-temporal resolution of CGM data enabled increasingly intensive treatments, from decision support assisting insulin injection or oral medication, to automated closed-loop control, known as the "artificial pancreas." Throughout this progress, mathematical models and computer simulation of the human metabolic system became indispensable for the technological progress of diabetes treatment, enabling every step, from assessment of insulin sensitivity via the now classic Minimal Model of Glucose Kinetics, to in silico trials replacing animal experiments, to automated insulin delivery algorithms. In this review, we follow these developments, beginning with the Minimal Model, which evolved through the years to become large and comprehensive and trigger a paradigm change in the design of diabetes optimization strategies: in 2007, we introduced a sophisticated model of glucose-insulin dynamics and a computer simulator equipped with a "population" of N = 300 in silico "subjects" with type 1 diabetes. In January 2008, in an unprecedented decision, the Food and Drug Administration (FDA) accepted this simulator as a substitute to animal trials for the pre-clinical testing of insulin treatment strategies. This opened the field for rapid and cost-effective development and pre-clinical testing of new treatment approaches, which continues today. Meanwhile, animal experiments for the purpose of designing new insulin treatment algorithms have been abandoned.
Collapse
Affiliation(s)
| | - Boris Kovatchev
- Center for Diabetes Technology,
University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
4
|
Raoux M, Lablanche S, Jaffredo M, Pirog A, Benhamou PY, Lebreton F, Wojtusciszyn A, Bosco D, Berney T, Renaud S, Lang J, Catargi B. Islets-on-Chip: A Tool for Real-Time Assessment of Islet Function Prior to Transplantation. Transpl Int 2023; 36:11512. [PMID: 37885808 PMCID: PMC10598278 DOI: 10.3389/ti.2023.11512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
Islet transplantation improves metabolic control in patients with unstable type 1 diabetes. Clinical outcomes have been improving over the last decade, and the widely used beta-score allows the evaluation of transplantation results. However, predictive pre-transplantation criteria of islet quality for clinical outcomes are lacking. In this proof-of-concept study, we examined whether characterization of the electrical activity of donor islets could provide a criterion. Aliquots of 8 human donor islets from the STABILOT study, sampled from islet preparations before transplantation, were characterized for purity and split for glucose-induced insulin secretion and electrical activity using multi-electrode-arrays. The latter tests glucose concentration dependencies, biphasic activity, hormones, and drug effects (adrenalin, GLP-1, glibenclamide) and provides a ranking of CHIP-scores from 1 to 6 (best) based on electrical islet activity. The analysis was performed online in real time using a dedicated board or offline. Grouping of beta-scores and CHIP-scores with high, intermediate, and low values was observed. Further analysis indicated correlation between CHIP-score and beta-score, although significance was not attained (R = 0.51, p = 0.1). This novel approach is easily implantable in islet isolation units and might provide means for the prediction of clinical outcomes. We acknowledge the small cohort size as the limitation of this pilot study.
Collapse
Affiliation(s)
- Matthieu Raoux
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-Objects, UMR 5248, Pessac, France
| | - Sandrine Lablanche
- University of Grenoble Alpes, Clinique d’Endocrinologie, Diabétologie, Maladies Métaboliques, CHU Grenoble Alpes, U1055 INSERM, Grenoble, France
| | - Manon Jaffredo
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-Objects, UMR 5248, Pessac, France
| | - Antoine Pirog
- University of Bordeaux, CNRS, Bordeaux INP, Laboratoire de l’Intégration du Matériau au Système, IMS UMR 5218, Talence, France
| | - Pierre-Yves Benhamou
- University of Grenoble Alpes, Clinique d’Endocrinologie, Diabétologie, Maladies Métaboliques, CHU Grenoble Alpes, U1055 INSERM, Grenoble, France
| | - Fanny Lebreton
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Anne Wojtusciszyn
- Centre Hospitalier de Montpellier, Service d’Endocrinologie, Université de Montpellier, Montpellier, France
| | - Domenico Bosco
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Thierry Berney
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Sylvie Renaud
- University of Bordeaux, CNRS, Bordeaux INP, Laboratoire de l’Intégration du Matériau au Système, IMS UMR 5218, Talence, France
| | - Jochen Lang
- University of Bordeaux, CNRS, Institute of Chemistry and Biology of Membranes and Nano-Objects, UMR 5248, Pessac, France
| | - Bogdan Catargi
- Service d’Endocrinologie-Diabétologie, Hôpital St André, CHU de Bordeaux, Bordeaux, France
| |
Collapse
|
5
|
Olçomendy L, Cassany L, Pirog A, Franco R, Puginier E, Jaffredo M, Gucik-Derigny D, Ríos H, Ferreira de Loza A, Gaitan J, Raoux M, Bornat Y, Catargi B, Lang J, Henry D, Renaud S, Cieslak J. Towards the Integration of an Islet-Based Biosensor in Closed-Loop Therapies for Patients With Type 1 Diabetes. Front Endocrinol (Lausanne) 2022; 13:795225. [PMID: 35528003 PMCID: PMC9072637 DOI: 10.3389/fendo.2022.795225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/25/2022] [Indexed: 01/01/2023] Open
Abstract
In diabetes mellitus (DM) treatment, Continuous Glucose Monitoring (CGM) linked with insulin delivery becomes the main strategy to improve therapeutic outcomes and quality of patients' lives. However, Blood Glucose (BG) regulation with CGM is still hampered by limitations of algorithms and glucose sensors. Regarding sensor technology, current electrochemical glucose sensors do not capture the full spectrum of other physiological signals, i.e., lipids, amino acids or hormones, relaying the general body status. Regarding algorithms, variability between and within patients remains the main challenge for optimal BG regulation in closed-loop therapies. This work highlights the simulation benefits to test new sensing and control paradigms which address the previous shortcomings for Type 1 Diabetes (T1D) closed-loop therapies. The UVA/Padova T1DM Simulator is the core element here, which is a computer model of the human metabolic system based on glucose-insulin dynamics in T1D patients. That simulator is approved by the US Food and Drug Administration (FDA) as an alternative for pre-clinical testing of new devices and closed-loop algorithms. To overcome the limitation of standard glucose sensors, the concept of an islet-based biosensor, which could integrate multiple physiological signals through electrical activity measurement, is assessed here in a closed-loop insulin therapy. This investigation has been addressed by an interdisciplinary consortium, from endocrinology to biology, electrophysiology, bio-electronics and control theory. In parallel to the development of an islet-based closed-loop, it also investigates the benefits of robust control theory against the natural variability within a patient population. Using 4 meal scenarios, numerous simulation campaigns were conducted. The analysis of their results then introduces a discussion on the potential benefits of an Artificial Pancreas (AP) system associating the islet-based biosensor with robust algorithms.
Collapse
Affiliation(s)
- Loïc Olçomendy
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Louis Cassany
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Antoine Pirog
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Roberto Franco
- Tecnológico Nacional de México/I.T. La Laguna, Torreón, Mexico
| | | | | | | | - Héctor Ríos
- Tecnológico Nacional de México/I.T. La Laguna, Torreón, Mexico
- Cátedras CONACYT, Ciudad de México, Mexico
| | | | - Julien Gaitan
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France
| | | | - Yannick Bornat
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Bogdan Catargi
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France
- Bordeaux Hospitals, Endocrinology and Metabolic Diseases Unit, Bordeaux, France
| | - Jochen Lang
- Univ. Bordeaux, CNRS, CBMN, UMR 5248, Pessac, France
| | - David Henry
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Sylvie Renaud
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
| | - Jérôme Cieslak
- Univ. Bordeaux, CNRS, Bordeaux INP, IMS, UMR 5218, Talence, France
- *Correspondence: Jérôme Cieslak,
| |
Collapse
|