1
|
Shao X, Zhang Z, Ma X, Liu F, Guo H, Ugurbil K, Wu X. Parallel-transmission spatial spectral pulse design with local specific absorption rate control: Demonstration for robust uniform water-selective excitation in the human brain at 7 T. Magn Reson Med 2025; 93:1238-1255. [PMID: 39481025 DOI: 10.1002/mrm.30346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024]
Abstract
PURPOSE To propose a novel method for parallel-transmission (pTx) spatial-spectral pulse design and demonstrate its utility for robust uniform water-selective excitation (water excitation) across the entire brain. THEORY AND METHODS Our design problem is formulated as a magnitude-least-squares minimization with joint RF and k-space optimization under explicit specific-absorption-rate constraints. For improved robustness against off-resonance effects, the spectral component of the excitation target is prescribed to have a water passband and a fat stopband. A two-step algorithm was devised to solve our design problem, with Step 1 aiming to solve a reduced problem to find a sensible start point for Step 2 to solve the original problem. The efficacy of our pulse design was evaluated in simulation, phantom, and human experiments using the commercial Nova head coil. Universal pulses were also designed based on a 10-subject training data set to demonstrate the utility of our method for plug-and-play pTx. RESULTS For kT-points and spiral nonselective parameterizations, our design method outperformed the pTx interleaved binomial approach, reducing RMS error by up to about 35% for water excitation and about 97% for fat suppression (over a 200-Hz bandwidth) while decreasing local specific absorption rate by about 30%. Both our subject-specific and universal pulses improved water excitation, restoring signal loss in the cerebellum while suppressing fat signal even in regions of large susceptibility-induced off-resonances. CONCLUSION Demonstrated useful for 4D (3D spatial, one-dimensional spectral) pTx spatial-spectral pulse design, our proposed method provides an effective solution for robust volumetric uniform water excitation, holding a promise to many ultrahigh-field applications.
Collapse
Affiliation(s)
- Xin Shao
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Zhe Zhang
- Tiantan Neuroimaging Center of Excellence, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaodong Ma
- Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, USA
| | - Fan Liu
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hua Guo
- Center for Biomedical Imaging Research, School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Völzke Y, Akbey S, Löwen D, Pracht ED, Stirnberg R, Gras V, Boulant N, Zaiss M, Stöcker T. Calibration-free whole-brain CEST imaging at 7T with parallel transmit pulse design for saturation homogeneity utilizing universal pulses (PUSHUP). Magn Reson Med 2025; 93:630-642. [PMID: 39301770 PMCID: PMC11604840 DOI: 10.1002/mrm.30305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) measurements at ultra-high field (UHF) suffer from strong saturation inhomogeneity. Retrospective correction of this inhomogeneity is possible to some extent, but requires a time-consuming repetition of the measurement. Here, we propose a calibration-free parallel transmit (pTx)-based saturation scheme that homogenizes the saturation over the imaging volume, which we call PUlse design for Saturation Homogeneity utilizing Universal Pulses (PUSHUP). THEORY Magnetization transfer effects depend on the saturationB 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ . PUSHUP homogenizes the saturationB 1 rms $$ {\mathrm{B}}_1^{\mathrm{rms}} $$ by using multiple saturation pulses with alternatingB 1 $$ {\mathrm{B}}_1 $$ -shims. Using a database ofB 1 $$ {\mathrm{B}}_1 $$ maps, universal pulses are calculated that remove the necessity of time-consuming, subject-based pulse calculation during the measurement. METHODS PUSHUP was combined with a whole-brain three-dimensional-echo planar imaging (3D-EPI) readout. Two PUSHUP saturation modules were calculated by either applying whole-brain or cerebellum masks to the database maps. The saturation homogeneity and the group mean CEST amplitudes were calculated for differentB 1 $$ {\mathrm{B}}_1 $$ -correction methods and were compared to circular polarized (CP) saturation in five healthy volunteers using an eight-channel transmit coil at 7 Tesla. RESULTS In contrast to CP saturation, where accurate CEST maps were impossible to obtain in the cerebellum, even with extensiveB 1 $$ {\mathrm{B}}_1 $$ -correction, PUSHUP CEST maps were artifact-free throughout the whole brain. A 1-point retrospectiveB 1 $$ {\mathrm{B}}_1 $$ -correction, that does not need repeated measurements, sufficiently removed the effect of residual saturation inhomogeneity. CONCLUSION The presented method allows for homogeneous whole-brain CEST imaging at 7 Tesla without the need of a repetition-basedB 1 $$ {\mathrm{B}}_1 $$ -correction or online pulse calculation. With the fast 3D-EPI readout, whole-brain CEST imaging with 45 saturation offsets is possible at 1.6 mm resolution in under 4 min.
Collapse
Affiliation(s)
- Yannik Völzke
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Suzan Akbey
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | - Daniel Löwen
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | | | - Vincent Gras
- CNRS, NeuroSpin, BaobabUniversité Paris‐Saclay, Commissariat à' l'Energie AtomiqueGif sur YvetteFrance
| | - Nicolas Boulant
- CNRS, NeuroSpin, BaobabUniversité Paris‐Saclay, Commissariat à' l'Energie AtomiqueGif sur YvetteFrance
| | - Moritz Zaiss
- Institute of Neuroradiology, Institute of NeuroradiologyFriedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Physics and AstronomyUniversity BonnBonnGermany
| |
Collapse
|
3
|
Boulant N, Mauconduit F, Gras V, Amadon A, Le Ster C, Luong M, Massire A, Pallier C, Sabatier L, Bottlaender M, Vignaud A, Le Bihan D. In vivo imaging of the human brain with the Iseult 11.7-T MRI scanner. Nat Methods 2024; 21:2013-2016. [PMID: 39420141 PMCID: PMC11541209 DOI: 10.1038/s41592-024-02472-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024]
Abstract
The understanding of the human brain is one of the main scientific challenges of the twenty-first century. In the early 2000s, the French Atomic Energy Commission launched a program to conceive and build a human magnetic resonance imaging scanner operating at 11.7 T. We have now acquired human brain images in vivo at such a magnetic field. We deployed parallel transmission tools to mitigate the radiofrequency field inhomogeneity problem and tame the specific absorption rate. The safety of human imaging at such high field strength was demonstrated using physiological, vestibular, behavioral and genotoxicity measurements on the imaged volunteers. Our technology yields T2 and T2*-weighted images reaching mesoscale resolutions within short acquisition times and with a high signal and contrast-to-noise ratio.
Collapse
Affiliation(s)
- Nicolas Boulant
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Franck Mauconduit
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Vincent Gras
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Alexis Amadon
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Caroline Le Ster
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Michel Luong
- DACM, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | | | - Christophe Pallier
- Cognitive Neuroimaging Unit, NeuroSpin, INSERM, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Laure Sabatier
- DIREI, CEA, Paris-Saclay University, Gif-sur-Yvette, France
| | | | - Alexandre Vignaud
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France
| | - Denis Le Bihan
- NeuroSpin, CEA, CNRS, Paris-Saclay University, Gif-sur-Yvette, France.
| |
Collapse
|
4
|
Yang H, Wang G, Li Z, Li H, Zheng J, Hu Y, Cao X, Liao C, Ye H, Tian Q. Artificial intelligence for neuro MRI acquisition: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:383-396. [PMID: 38922525 DOI: 10.1007/s10334-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
OBJECT To review recent advances of artificial intelligence (AI) in enhancing the efficiency and throughput of the MRI acquisition workflow in neuroimaging, including planning, sequence design, and correction of acquisition artifacts. MATERIALS AND METHODS A comprehensive analysis was conducted on recent AI-based methods in neuro MRI acquisition. The study focused on key technological advances, their impact on clinical practice, and potential risks associated with these methods. RESULTS The findings indicate that AI-based algorithms have a substantial positive impact on the MRI acquisition process, improving both efficiency and throughput. Specific algorithms were identified as particularly effective in optimizing acquisition steps, with reported improvements in workflow efficiency. DISCUSSION The review highlights the transformative potential of AI in neuro MRI acquisition, emphasizing the technological advances and clinical benefits. However, it also discusses potential risks and challenges, suggesting areas for future research to mitigate these concerns and further enhance AI integration in MRI acquisition.
Collapse
Affiliation(s)
- Hongjia Yang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Haoxiang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Jialan Zheng
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Congyu Liao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Huihui Ye
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.
| |
Collapse
|
5
|
Yetisir F, Abaci Turk E, Adalsteinsson E, Wald LL, Grant PE. Local SAR management strategies to use two-channel RF shimming for fetal MRI at 3 T. Magn Reson Med 2024; 91:1165-1178. [PMID: 37929768 PMCID: PMC10843691 DOI: 10.1002/mrm.29913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/10/2023] [Accepted: 10/16/2023] [Indexed: 11/07/2023]
Abstract
PURPOSE This study evaluates the imaging performance of two-channel RF-shimming for fetal MRI at 3 T using four different local specific absorption rate (SAR) management strategies. METHODS Due to the ambiguity of safe local SAR levels for fetal MRI, local SAR limits for RF shimming were determined based on either each individual's own SAR levels in standard imaging mode (CP mode) or the maximum SAR level observed across seven pregnant body models in CP mode. Local SAR was constrained either indirectly by further constraining the whole-body SAR (wbSAR) or directly by using subject-specific local SAR models. Each strategy was evaluated by the improvement of the transmit field efficiency (average |B1 + |) and nonuniformity (|B1 + | variation) inside the fetus compared with CP mode for the same wbSAR. RESULTS Constraining wbSAR when using RF shimming decreases B1 + efficiency inside the fetus compared with CP mode (by 12%-30% on average), making it inefficient for SAR management. Using subject-specific models with SAR limits based on each individual's own CP mode SAR value, B1 + efficiency and nonuniformity are improved on average by 6% and 13% across seven pregnant models. In contrast, using SAR limits based on maximum CP mode SAR values across seven models, B1 + efficiency and nonuniformity are improved by 13% and 25%, compared with the best achievable improvement without SAR constraints: 15% and 26%. CONCLUSION Two-channel RF-shimming can safely and significantly improve the transmit field inside the fetus when subject-specific models are used with local SAR limits based on maximum CP mode SAR levels in the pregnant population.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
| | - Esra Abaci Turk
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L. Wald
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - P. Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Gras V, Boulant N, Luong M, Morel L, Le Touz N, Adam JP, Joly JC. A Mathematical Analysis of Clustering-Free Local SAR Compression Algorithms for MRI Safety in Parallel Transmission. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:714-722. [PMID: 37747861 DOI: 10.1109/tmi.2023.3319017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Parallel transmission (pTX) is a versatile solution to enable UHF MRI of the human body, where radiofrequency (RF) field inhomogeneity appears very challenging. Today, state of the art monitoring of the local SAR in pTX consists in evaluating the RF power deposition on specific SAR matrices called Virtual Observation Points (VOPs). It essentially relies on accurate electromagnetic simulations able to return the local SAR distribution inside the body in response to any applied pTX RF waveform. In order to reduce the number of SAR matrices to a value compatible with real time SAR monitoring ( << 103) , a VOP set is obtained by partitioning the SAR model into clusters, and associating a so- called dominant SAR matrix to every cluster. More recently, a clustering-free compression method was proposed, allowing for a significant reduction in the number of SAR matrices. The concept and derivation however assumed static RF shims and their extension to dynamic pTX is not straightforward, thereby casting doubt on the strict validity of the compression approach for these more complicated RF waveforms. In this work, we provide the mathematical framework to tackle this problem and find a rigorous justification of this criterion in the light of convex optimization theory. Our analysis led us to a variant of the clustering-free compression approach exploiting convex optimization. This new compression algorithm offers computational gains for large SAR models and for high-channel count pTX RF coils.
Collapse
|
7
|
Tyshchenko I, Lévy S, Jin J, Tahayori B, Blunck Y, Johnston LA. What can we gain from subpopulation universal pulses? A simulation-based study. Magn Reson Med 2024; 91:570-582. [PMID: 37849035 DOI: 10.1002/mrm.29884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/25/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
PURPOSE The aim of the study was to explore a novel methodology for designing universal pulses (UPs) that balances the benefits of a calibration-free approach with subject-specific online pulse design. METHODS The proposed method involves segmenting the population into subpopulations with variability in anatomical shapes and positions reduced to 75%, 50%, and 25% of their original values while keeping the mean values unchanged. An additional 25% extreme case with a large volume of interest and shifted position was included. For each group, a 5kT-points universal inversion pulse was designed and assessed by the normalized root mean square error (NRMSE) on the target longitudinal magnetization profile. The performance was compared to the conventional one-size-fits-all approach. A total of 132 electromagnetic simulations were executed to generate representative anatomies and specific absorption rate (SAR) distributions in a three-dimensional parameter space comprised of head breadth, head length, and Y-shift. The 99.9th percentile on the peak local SAR distribution was utilized to establish an intersubject variability safety margin. RESULTS UPs designed for subpopulations with decreased head shape and position variability reduced the anatomical safety margin by up to 20%. Furthermore, when a head was significantly different to the average case, the proposed approach improved the inversion homogeneity by up to 24%, compared to the conventional one-size-fits-all approach. CONCLUSION Subpopulation UPs present an opportunity to improve theB 1 + $$ {\mathrm{B}}_1^{+} $$ homogeneity and reduce anatomical SAR safety margins at 7T without additional acquisition time for calibration.
Collapse
Affiliation(s)
- Igor Tyshchenko
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia
| | - Simon Lévy
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Australia
| | - Jin Jin
- MR Research Collaborations, Siemens Healthcare Pty Ltd, Australia
| | - Bahman Tahayori
- The Florey Institute of Neuroscience and Mental Health, Heidelberg, Victoria, Australia
| | - Yasmin Blunck
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia
| | - Leigh A Johnston
- Department of Biomedical Engineering, The University of Melbourne, Parkville, Victoria, Australia
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Kim JH, Shin J, Jung KJ, Cui C, Kim SY, Lee JH, Kim DH. Technical note: Multi-receiver combination method for phase-based electrical property tomography of the breast. Med Phys 2023; 50:1660-1669. [PMID: 36585806 DOI: 10.1002/mp.16195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Phase-based electrical property tomography (EPT) is a technique that allows conductivity reconstruction with only phase of the B1 field under the assumption that the magnitude of the B1 fields are homogeneous. The more this assumption is violated, the less accurate the reconstructed conductivity. Thus, a method that ensures homogeneity of | B 1 - | $| {{\rm{B}}_1^ - } |$ field is important for breast image using multi-receiver coil. PURPOSE To develop a method for multi-receiver combination for phase-based EPT usable for breast EPT imaging in the clinic. METHODS Theory of the proposed method is presented. To validate the proposed method, the phantom and in-vivo experiments were conducted. Conductivity images were reconstructed using the transceive phase of the combined image and results were compared with another combination method. RESULTS The proposed method's conductivity results were more stable than those of the previous method when | B 1 + | $| {{\rm{B}}_1^ + } |$ was not homogeneous and when the homogeneous contrast region was small. The phantom and in-vivo results indicate that the proposed method produces improved conductivity images than the previous method. The proposed combination method also increased the conductivity contrast between benign and cancerous tissues. CONCLUSION The proposed method produced more stable multi-receiver combination for phase-based EPT of the breast in a clinical environment.
Collapse
Affiliation(s)
- Jun-Hyeong Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Jaewook Shin
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Kyu-Jin Jung
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Chuanjiang Cui
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Soo-Yeon Kim
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jae-Hun Lee
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
9
|
Yetisir F, Poser BA, Grant PE, Adalsteinsson E, Wald LL, Guerin B. Parallel transmission 2D RARE imaging at 7T with transmit field inhomogeneity mitigation and local SAR control. Magn Reson Imaging 2022; 93:87-96. [PMID: 35940379 PMCID: PMC9789791 DOI: 10.1016/j.mri.2022.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/15/2022] [Accepted: 08/02/2022] [Indexed: 12/26/2022]
Abstract
PURPOSE We develop and test a parallel transmit (pTx) pulse design framework to mitigate transmit field inhomogeneity with control of local specific absorption rate (SAR) in 2D rapid acquisition with relaxation enhancement (RARE) imaging at 7T. METHODS We design large flip angle RF pulses with explicit local SAR constraints by numerical simulation of the Bloch equations. Parallel computation and analytical expressions for the Jacobian and the Hessian matrices are employed to reduce pulse design time. The refocusing-excitation "spokes" pulse pairs are designed to satisfy the Carr-Purcell-Meiboom-Gill (CPMG) condition using a combined magnitude least squares-least squares approach. RESULTS In a simulated dataset, the proposed approach reduced peak local SAR by up to 56% for the same level of refocusing uniformity error and reduced refocusing uniformity error by up to 59% (from 32% to 7%) for the same level of peak local SAR compared to the circularly polarized birdcage mode of the pTx array. Using explicit local SAR constraints also reduced peak local SAR by up to 46% compared to an RF peak power constrained design. The excitation and refocusing uniformity error were reduced from 20%-33% to 4%-6% in single slice phantom experiments. Phantom experiments demonstrated good agreement between the simulated excitation and refocusing uniformity profiles and experimental image shading. CONCLUSION PTx-designed excitation and refocusing CPMG pulse pairs can mitigate transmit field inhomogeneity in the 2D RARE sequence. Moreover, local SAR can be decreased significantly using pTx, potentially leading to better slice coverage, enabling larger flip angles or faster imaging.
Collapse
Affiliation(s)
- Filiz Yetisir
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA.
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Universiteitssingel 40, 6229 ER Maastricht, the Netherlands
| | - P Ellen Grant
- Fetal-Neonatal Neuroimaging & Developmental Science Center, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Elfar Adalsteinsson
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA
| | - Lawrence L Wald
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, 77 MA Avenue, Cambridge, MA 02139, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| | - Bastien Guerin
- Department of Radiology, Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA; Athinoula A. Martinos Center for Biomedical Imaging, MA General Hospital, 149 13th Street, Charlestown, MA 02129, USA
| |
Collapse
|
10
|
Hardy BM, Banik R, Yan X, Anderson AW. Bench to bore ramifications of inter-subject head differences on RF shimming and specific absorption rates at 7T. Magn Reson Imaging 2022; 92:187-196. [PMID: 35842192 DOI: 10.1016/j.mri.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022]
Abstract
PURPOSE This study shows how inter-subject variation over a dataset of 72 head models results in specific absorption rate (SAR) and B1+ field homogeneity differences using common shim scenarios. METHODS MR-CT datasets were used to segment 71 head models into 10 tissue compartments. These head models were affixed to the shoulders and neck of the virtual family Duke model and placed within an 8 channel transmit surface-loop array to simulate the electromagnetic fields of a 7T imaging experiment. Radio frequency (RF) shimming using the Gerchberg-Saxton algorithm and Circularly Polarized shim weights over the entire brain and select slices of each model was simulated. Various SAR metrics and B1+ maps were calculated to demonstrate the contribution of head variation to transmit inhomogeneity and SAR variability. RESULTS With varying head geometries the loading for each transmit loop changes as evidenced by changes in S-parameters. The varying shim conditions and head geometries are shown to affect excitation uniformity, spatial distributions of local SAR, and SAR averaging over different pulse sequences. The Gerchberg-Saxton RF shimming algorithm outperforms circularly polarized shimming for all head models. Peak local SAR within the coil most often occurs nearest the coil on the periphery of the body. Shim conditions vary the spatial distribution of SAR. CONCLUSION The work gives further support to the need for fast and more subject specific SAR calculations to maintain safety. Local SAR10g is shown to vary spatially given shim conditions, subject geometry and composition, and position within the coil.
Collapse
Affiliation(s)
- Benjamin M Hardy
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Physics and Astronomy, Vanderbilt University, 6301 Stevenson Science Center, Nashville, TN 37232, USA.
| | - Rana Banik
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA.
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, 1161 21st Avenue South, Nashville, TN 37232, USA; Department of Biomedical Engineering, Vanderbilt University, PMB 351631, 2301 Vanderbilt Place, Nashville, TN 37235, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Medical Center North, 1161 21st Ave. South, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Geldschläger O, Bosch D, Henning A. OTUP workflow: target specific optimization of the transmit k-space trajectory for flexible universal parallel transmit RF pulse design. NMR IN BIOMEDICINE 2022; 35:e4728. [PMID: 35297104 DOI: 10.1002/nbm.4728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
PURPOSE To optimize transmit k-space trajectories for a wide range of excitation targets and to design "universal pTx RF pulses" based on these trajectories. METHODS Transmit k-space trajectories (stack of spirals and SPINS) were optimized to best match different excitation targets using the parameters of the analytical equations of spirals and SPINS. The performances of RF pulses designed based on optimized and non-optimized trajectories were compared. The optimized trajectories were utilized for universal pulse design. The universal pulse performances were compared with subject specific tailored pulse performances. The OTUP workflow (optimization of transmit k-space trajectories and universal pulse calculation) was tested on three test target excitation patterns. For one target (local excitation of a central area in the human brain) the pulses were tested in vivo at 9.4 T. RESULTS The workflow produced appropriate transmit k-space trajectories for each test target. Utilization of an optimized trajectory was crucial for the pulse performance. Using unsuited trajectories diminished the performance. It was possible to create target specific universal pulses. However, not every test target is equally well suited for universal pulse design. There was no significant difference in the in vivo performance between subject specific tailored pulses and a universal pulse at 9.4 T. CONCLUSIONS The proposed workflow further exploited and improved the universal pulse concept by combining it with gradient trajectory optimization for stack of spirals and SPINS. It emphasized the importance of a well suited trajectory for pTx RF pulse design. Universal and tailored pulses performed with a sufficient degree of similarity in simulations and a high degree of similarity in vivo. The implemented OTUP workflow and the B0 /B1+ map data from 18 subjects measured at 9.4 T are available as open source (https://github.com/ole1965/workflow_OTUP.git).
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Ma X, Uğurbil K, Wu X. Mitigating transmit‐B
1
artifacts by predicting parallel transmission images with deep learning: A feasibility study using high‐resolution whole‐brain diffusion at 7 Tesla. Magn Reson Med 2022; 88:727-741. [PMID: 35403237 PMCID: PMC9324974 DOI: 10.1002/mrm.29238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 11/12/2022]
Abstract
Purpose To propose a novel deep learning (DL) approach to transmit‐B1 (B1+)‐artifact mitigation without direct use of parallel transmission (pTx), by predicting pTx images from single‐channel transmission (sTx) images. Methods A deep encoder–decoder convolutional neural network was constructed and trained to learn the mapping from sTx to pTx images. The feasibility was demonstrated using 7 T Human‐Connectome Project (HCP)‐style diffusion MRI. The training dataset comprised images acquired on 5 healthy subjects using commercial Nova RF coils. Relevant hyperparameters were tuned with a nested cross‐validation, and the generalization performance evaluated using a regular cross‐validation. Results Our DL method effectively improved the image quality for sTx images by restoring the signal dropout, with quality measures (including normalized root‐mean‐square error, peak SNR, and structural similarity index measure) improved in most brain regions. The improved image quality was translated into improved performances for diffusion tensor imaging analysis; our method improved accuracy for fractional anisotropy and mean diffusivity estimations, reduced the angular errors of principal eigenvectors, and improved the fiber orientation delineation relative to sTx images. Moreover, the final DL model trained on data of all 5 subjects was successfully used to predict pTx images for unseen new subjects (randomly selected from the 7 T HCP database), effectively recovering the signal dropout and improving color‐coded fractional anisotropy maps with largely reduced noise levels. Conclusion The proposed DL method has potential to provide images with reduced B1+ artifacts in healthy subjects even when pTx resources are inaccessible on the user side.
Collapse
Affiliation(s)
- Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School University of Minnesota Minneapolis Minnesota USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School University of Minnesota Minneapolis Minnesota USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School University of Minnesota Minneapolis Minnesota USA
| |
Collapse
|
13
|
Brink WM, Yousefi S, Bhatnagar P, Remis RF, Staring M, Webb AG. Personalized local SAR prediction for parallel transmit neuroimaging at 7T from a single T1-weighted dataset. Magn Reson Med 2022; 88:464-475. [PMID: 35344602 PMCID: PMC9314883 DOI: 10.1002/mrm.29215] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/20/2022] [Accepted: 02/13/2022] [Indexed: 11/26/2022]
Abstract
Purpose Parallel RF transmission (PTx) is one of the key technologies enabling high quality imaging at ultra‐high fields (≥7T). Compliance with regulatory limits on the local specific absorption rate (SAR) typically involves over‐conservative safety margins to account for intersubject variability, which negatively affect the utilization of ultra‐high field MR. In this work, we present a method to generate a subject‐specific body model from a single T1‐weighted dataset for personalized local SAR prediction in PTx neuroimaging at 7T. Methods Multi‐contrast data were acquired at 7T (N = 10) to establish ground truth segmentations in eight tissue types. A 2.5D convolutional neural network was trained using the T1‐weighted data as input in a leave‐one‐out cross‐validation study. The segmentation accuracy was evaluated through local SAR simulations in a quadrature birdcage as well as a PTx coil model. Results The network‐generated segmentations reached Dice coefficients of 86.7% ± 6.7% (mean ± SD) and showed to successfully address the severe intensity bias and contrast variations typical to 7T. Errors in peak local SAR obtained were below 3.0% in the quadrature birdcage. Results obtained in the PTx configuration indicated that a safety margin of 6.3% ensures conservative local SAR estimates in 95% of the random RF shims, compared to an average overestimation of 34% in the generic “one‐size‐fits‐all” approach. Conclusion A subject‐specific body model can be automatically generated from a single T1‐weighted dataset by means of deep learning, providing the necessary inputs for accurate and personalized local SAR predictions in PTx neuroimaging at 7T.
Collapse
Affiliation(s)
- Wyger M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sahar Yousefi
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Prernna Bhatnagar
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands.,Circuits and Systems Group, Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Rob F Remis
- Circuits and Systems Group, Department of Microelectronics, Delft University of Technology, Delft, the Netherlands
| | - Marius Staring
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
14
|
Wireless Electromagnetic Radiation Assessment Based on the Specific Absorption Rate (SAR): A Review Case Study. ELECTRONICS 2022. [DOI: 10.3390/electronics11040511] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Employing electromagnetic fields (EMFs) in new wireless communication and sensing technologies has substantially increased the level of human exposure to EMF waves. This paper presents a useful insight into the interaction of electromagnetic fields with biological media that is defined by the heat generation due to induced currents and dielectric loss. The specific absorption rate (SAR) defines the heating amount in a biological medium that is irradiated by an electromagnetic field value. The paper reviews the radio frequency hazards due to the SAR based on various safety standards and organisations, including a detailed investigation of previously published work in terms of modelling and measurements. It also summarises the most common techniques utilised between 1978 and 2021, in terms of the operational frequency spectrum, bandwidth, and SAR values.
Collapse
|
15
|
Eberhardt B, Poser BA, Shah NJ, Felder J. B1 field map synthesis with generative deep learning used in the design of parallel-transmit RF pulses for ultra-high field MRI. Z Med Phys 2022; 32:334-345. [PMID: 35144850 PMCID: PMC9948838 DOI: 10.1016/j.zemedi.2021.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/27/2021] [Accepted: 12/23/2021] [Indexed: 10/19/2022]
Abstract
Spoke trajectory parallel transmit (pTX) excitation in ultra-high field MRI enables B1+ inhomogeneities arising from the shortened RF wavelength in biological tissue to be mitigated. To this end, current RF excitation pulse design algorithms either employ the acquisition of field maps with subsequent non-linear optimization or a universal approach applying robust pre-computed pulses. We suggest and evaluate an intermediate method that uses a subset of acquired field maps combined with generative machine learning models to reduce the pulse calibration time while offering more tailored excitation than robust pulses (RP). The possibility of employing image-to-image translation and semantic image synthesis machine learning models based on generative adversarial networks (GANs) to deduce the missing field maps is examined. Additionally, an RF pulse design that employs a predictive machine learning model to find solutions for the non-linear (two-spokes) pulse design problem is investigated. As a proof of concept, we present simulation results obtained with the suggested machine learning approaches that were trained on a limited data-set, acquired in vivo. The achieved excitation homogeneity based on a subset of half of the B1+ maps acquired in the calibration scans and half of the B1+ maps synthesized with GANs is comparable with state of the art pulse design methods when using the full set of calibration data while halving the total calibration time. By employing RP dictionaries or machine-learning RF pulse predictions, the total calibration time can be reduced significantly as these methods take only seconds or milliseconds per slice, respectively.
Collapse
Affiliation(s)
- Boris Eberhardt
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jüich, Germany; RWTH Aachen University, Aachen, Germany.
| | - Benedikt A. Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - N. Jon Shah
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jüich, Germany,Institute of Neuroscience and Medicine 11, Forschungszentrum Jülich, Jülich, Germany,Department of Neurology, RWTH Aachen University, Aachen, Germany,JARA-BRAIN, Translational Medicine, Aachen, Germany
| | - Jörg Felder
- Institute of Neuroscience and Medicine 4, Forschungszentrum Jülich, Jüich, Germany; RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
16
|
Le Ster C, Mauconduit F, Massire A, Boulant N, Gras V. Standardized universal pulse: A fast RF calibration approach to improve flip angle accuracy in parallel transmission. Magn Reson Med 2022; 87:2839-2850. [PMID: 35122302 DOI: 10.1002/mrm.29180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE In parallel transmission (pTX), subject-tailored RF pulses allow achieving excellent flip angle (FA) accuracy but often require computationally extensive online optimizations, precise characterization of the static field ( Δ B 0 ), and the transmit RF field ( B 1 + ) distributions. This costs time and requires expertise from the MR user. Universal pulses (UPs) have been proposed to reduce this burden, yet, with a penalty in FA accuracy. This study introduces the concept of standardized universal pulses (SUPs), where pulses are designed offline and adjusted to the subject through a fast online calibration scan. METHODS A SUP is designed offline using a so-called standardized database, wherein each B 1 + map has been normalized to a reference transmit RF field distribution. When scanning a new subject, a 3-slice B 1 + acquisition (scan time < 10 s) is performed and used to adjust the SUP to the subject through a linear transform. SUP performance was assessed at 7T with simulations by computing the FA-normalized root mean square error (FA-NRMSE) and the FA pattern stability as measured by the average and coefficient of variation of the FA across 15 control subjects, along with in vivo experiments using an MP2RAGE sequence implementing the SUP variant for the FLASH readout. RESULTS Adjusted SUP improved the FA-NRMSE (8.8 % for UP vs. 7.1 % for adjusted SUP). Experimentally in vivo, this translated in an improved signal homogeneity and more accurate T 1 quantification using MP2RAGE. CONCLUSION The proposed SUP approach improves excitation accuracy (FA-NRMSE) while preserving the same offline pulse design principle as offered by UPs.
Collapse
Affiliation(s)
- Caroline Le Ster
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Franck Mauconduit
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| | | | - Nicolas Boulant
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| | - Vincent Gras
- NeuroSpin, CEA, CNRS, BAOBAB, Université Paris-Saclay, Gif-Sur-Yvette, France
| |
Collapse
|
17
|
Vinding MS, Goodwin DL, Kuprov I, Lund TE. Optimal control gradient precision trade-offs: Application to fast generation of DeepControl libraries for MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 333:107094. [PMID: 34794089 DOI: 10.1016/j.jmr.2021.107094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/21/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
We have recently demonstrated supervised deep learning methods for rapid generation of radiofrequency pulses in magnetic resonance imaging (https://doi.org/10.1002/mrm.27740, https://doi.org/10.1002/mrm.28667). Unlike the previous iterative optimization approaches, deep learning methods generate a pulse using a fixed number of floating-point operations - this is important in MRI, where patient-specific pulses preferably must be produced in real time. However, deep learning requires vast training libraries, which must be generated using the traditional methods, e.g., iterative quantum optimal control methods. Those methods are usually variations of gradient descent, and the calculation of the gradient of the performance metric with respect to the pulse waveform can be the most numerically intensive step. In this communication, we explore various ways in which the calculation of gradients in quantum optimal control theory may be accelerated. Four optimization avenues are explored: truncated commutator series expansions at zeroth and first order, a novel midpoint truncation scheme at first order, and the exact complex-step method. For the spin systems relevant to MRI, the first-order midpoint truncation is found to be sufficiently accurate, but also significantly faster than the machine precision gradient. This makes the generation of training databases for the machine learning methods considerably more realistic.
Collapse
Affiliation(s)
- Mads Sloth Vinding
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark.
| | - David L Goodwin
- Institute for Biological Interfaces 4 - Magnetic Resonance, Karlsruhe Institute for Technology (KIT), Karlsruhe, Germany; Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford, UK.
| | - Ilya Kuprov
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK
| | - Torben Ellegaard Lund
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Faculty of Health, Aarhus University, Denmark
| |
Collapse
|
18
|
Fiedler TM, Orzada S, Flöser M, Rietsch SHG, Quick HH, Ladd ME, Bitz AK. Performance analysis of integrated RF microstrip transmit antenna arrays with high channel count for body imaging at 7 T. NMR IN BIOMEDICINE 2021; 34:e4515. [PMID: 33942938 DOI: 10.1002/nbm.4515] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 02/18/2021] [Accepted: 03/09/2021] [Indexed: 05/12/2023]
Abstract
The aim of the current study was to investigate the performance of integrated RF transmit arrays with high channel count consisting of meander microstrip antennas for body imaging at 7 T and to optimize the position and number of transmit elements. RF simulations using multiring antenna arrays placed behind the bore liner were performed for realistic exposure conditions for body imaging. Simulations were performed for arrays with as few as eight elements and for arrays with high channel counts of up to 48 elements. The B1+ field was evaluated regarding the degrees of freedom for RF shimming in the abdomen. Worst-case specific absorption rate (SARwc ), SAR overestimation in the matrix compression, the number of virtual observation points (VOPs) and SAR efficiency were evaluated. Constrained RF shimming was performed in differently oriented regions of interest in the body, and the deviation from a target B1+ field was evaluated. Results show that integrated multiring arrays are able to generate homogeneous B1+ field distributions for large FOVs, especially for coronal/sagittal slices, and thus enable body imaging at 7 T with a clinical workflow; however, a low duty cycle or a high SAR is required to achieve homogeneous B1+ distributions and to exploit the full potential. In conclusion, integrated arrays allow for high element counts that have high degrees of freedom for the pulse optimization but also produce high SARwc , which reduces the SAR accuracy in the VOP compression for low-SAR protocols, leading to a potential reduction in array performance. Smaller SAR overestimations can increase SAR accuracy, but lead to a high number of VOPs, which increases the computational cost for VOP evaluation and makes online SAR monitoring or pulse optimization challenging. Arrays with interleaved rings showed the best results in the study.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stephan Orzada
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan H G Rietsch
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, Aachen, Germany
| |
Collapse
|
19
|
Geldschläger O, Bosch D, Glaser S, Henning A. Local excitation universal parallel transmit pulses at 9.4T. Magn Reson Med 2021; 86:2589-2603. [PMID: 34180089 DOI: 10.1002/mrm.28905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To demonstrate that the concept of "universal pTx pulses" is applicable to local excitation applications. METHODS A database of B0 / B 1 + maps from eight different subjects was acquired at 9.4T. Based on these maps, universal pulses that aim at local excitation of the visual cortex area in the human brain (with a flip angle of 90° or 7°) were calculated. The remaining brain regions should not experience any excitation. The pulses were designed with an extension of the "spatial domain method." A 2D and a 3D target excitation pattern were tested, respectively. The pulse performance was examined on non-database subjects by Bloch simulations and in vivo at 9.4T using a GRE anatomical MRI and a presaturated TurboFLASH B 1 + mapping sequence. RESULTS The calculated universal pulses show excellent performance in simulations and in vivo on subjects that were not contained in the design database. The visual cortex region is excited, while the desired non-excitation areas produce the only minimal signal. In simulations, the pulses with 3D target pattern show a lack of excitation uniformity in the visual cortex region; however, in vivo, this inhomogeneity can be deemed acceptable. A reduced field of view application of the universal pulse design concept was performed successfully. CONCLUSIONS The proposed design approach creates universal local excitation pulses for a flip angle of 7° and 90°, respectively. Providing universal pTx pulses for local excitation applications prospectively abandons the need for time-consuming subject-specific B0 / B 1 + mapping and pTx-pulse calculation during the scan session.
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Steffen Glaser
- Department for Chemistry, Technical University of Munich, Garching, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Ma J, Gruber B, Yan X, Grissom WA. k-Space Domain Parallel Transmit Pulse Design. Magn Reson Med 2021; 85:2568-2579. [PMID: 33244784 PMCID: PMC7902435 DOI: 10.1002/mrm.28601] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 12/13/2022]
Abstract
PURPOSE To accelerate the design of (under- or oversampled) multidimensional parallel transmission pulses. METHODS A k-space domain parallel transmission pulse design algorithm was proposed that produces a sparse matrix relating a complex-valued target excitation pattern to the pulses that produce it, and can be finely parallelized. The algorithm was applied in simulations to the design of 3D SPINS pulses for inner volume excitation in the brain at 7 Tesla. It was characterized in terms of the dependence of computation time, excitation error, and required memory on algorithm parameters, and it was compared to an iterative spatial domain pulse design method in terms of computation time, excitation error, Gibbs ringing, and ability to compensate off-resonance. RESULTS The proposed algorithm achieved approximately 80% faster pulse design compared to the spatial domain method with the same number of parallel threads, with the tradeoff of increased excitation error and RMS RF amplitude. It reduced the memory required to store the design matrix by 99% compared to a full matrix solution. Even with a coarse design grid, the algorithm produced patterns that were free of Gibbs ringing. It was similarly sensitive to k-space undersampling as the spatial domain method, and was similarly capable of compensating for off-resonance. CONCLUSIONS The proposed k-space domain algorithm accelerates and finely parallelizes parallel transmission pulse design, with a modest tradeoff of excitation error and RMS RF amplitude.
Collapse
Affiliation(s)
- Jun Ma
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bernhard Gruber
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Division MR Physics, Center for Medical Physics and Biomedical Engineering, Medical University Vienna, Vienna, Austria
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
21
|
Majewski K. Simultaneous optimization of radio frequency and gradient waveforms with exact Hessians and slew rate constraints applied to k T-points excitation. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106941. [PMID: 33721585 DOI: 10.1016/j.jmr.2021.106941] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
We consider an excitation pulse with piecewise constant gradient trajectories and radio frequency (RF) waveforms such that the solution of the Bloch equations without relaxation terms can be represented by rotations. Based on this analytic solution we formulate a non-linear program for finding sub-pulse durations, gradient strengths, and complex RF voltages which minimize the deviation between the achieved and desired magnetization. We develop explicit expressions for the first and second order derivatives of the objective function. We extend the non-linear program to precisely account for gradient slew rate constraints. Using an interior point solver we apply the developed theory to simultaneously optimize the positions of kT-points, their associated RF voltages and durations.
Collapse
Affiliation(s)
- Kurt Majewski
- Siemens AG, T RDA BAM ORD-DE, Munich 80200, Germany.
| |
Collapse
|
22
|
Paez A, Gu C, Cao Z. Robust RF shimming and small-tip-angle multispoke pulse design with finite-difference regularization. Magn Reson Med 2021; 86:1472-1481. [PMID: 33934406 DOI: 10.1002/mrm.28820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 03/29/2021] [Accepted: 04/07/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE A new regularizer is proposed for the magnitude least-squares optimization algorithm, to ensure robust parallel transmit RF shimming and small-tip-angle multispoke pulse designs for ultrahigh-field MRI. METHODS A finite-difference regularization term is activated as an additional regularizer in the iterative magnitude-least-squares based pulse design algorithm when an unwanted flip angle null distribution is detected. Both simulated and experimental B 1 + maps from different transmit arrays and different human subjects at 7 T were used to evaluate the proposed algorithm. The algorithm was further demonstrated in experiment with dynamic multislice RF shimming for a single-shot gradient-echo EPI for human functional MRI at 7 T. RESULTS The proposed finite-difference regularizer effectively prevented excitation null to be formed for RF shimming and small-tip-angle multispoke pulses, and improved the latter with a monotonic trade-off relationship between flip angle error and RF power. The proposed algorithm was demonstrated to be effective with several head-array geometries by simulation and with a commercial head array with 12 healthy human subjects by experiment. During a functional MRI scan at 7 T with dynamic RF shimming, the proposed algorithm ensured high image SNR throughout the human brain, compared with near-complete local signal loss by the conventional magnitude-least-squares algorithm. CONCLUSION Using finite-difference regularization to avoid unwanted solutions, the robustness of RF shimming and small-tip-angle multispoke pulse design algorithms are improved, with better flip angle homogeneity and a monotonic trade-off relationship between flip angle error and RF power.
Collapse
Affiliation(s)
- Adrian Paez
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Chunming Gu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA.,Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA.,Department of Radiology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
23
|
Improved 7 Tesla transmit field homogeneity with reduced electromagnetic power deposition using coupled Tic Tac Toe antennas. Sci Rep 2021; 11:3370. [PMID: 33564013 PMCID: PMC7873125 DOI: 10.1038/s41598-020-79807-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/26/2020] [Indexed: 12/28/2022] Open
Abstract
Recently cleared by the FDA, 7 Tesla (7 T) MRI is a rapidly growing technology that can provide higher resolution and enhanced contrast in human MRI images. However, the increased operational frequency (~ 297 MHz) hinders its full potential since it causes inhomogeneities in the images and increases the power deposition in the tissues. This work describes the optimization of an innovative radiofrequency (RF) head coil coupled design, named Tic Tac Toe, currently used in large scale human MRI scanning at 7 T; to date, this device was used in more than 1,300 neuro 7 T MRI scans. Electromagnetic simulations of the coil were performed using the finite-difference time-domain method. Numerical optimizations were used to combine the calculated electromagnetic fields produced by these antennas, based on the superposition principle, resulting in homogeneous magnetic field distributions at low levels of power deposition in the tissues. The simulations were validated in-vivo using the Tic Tac Toe RF head coil system on a 7 T MRI scanner.
Collapse
|
24
|
Herrler J, Liebig P, Gumbrecht R, Ritter D, Schmitter S, Maier A, Schmidt M, Uder M, Doerfler A, Nagel AM. Fast online-customized (FOCUS) parallel transmission pulses: A combination of universal pulses and individual optimization. Magn Reson Med 2021; 85:3140-3153. [PMID: 33400302 DOI: 10.1002/mrm.28643] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS Data sets consisting of B0 , B 1 + maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.
Collapse
Affiliation(s)
- Jürgen Herrler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Andreas Maier
- Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Manuel Schmidt
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Doerfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Institute of Medical Physics, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
25
|
Eberhardt B, Poser BA, Shah NJ, Felder J. Application of Evolution Strategies to the Design of SAR Efficient Parallel Transmit Multi-Spoke Pulses for Ultra-High Field MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:4225-4236. [PMID: 32763849 DOI: 10.1109/tmi.2020.3013982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We present an evolution-strategy based approach to solve the magnitude least squares (MLS) design problem of low flip-angle slice-selective parallel transmit RF pulses for ultra-high field MRI using SAR and peak-RF-constraints. A combined transmit k-space trajectory and RF pulse weight optimization is proposed in two algorithmic steps. The first step is a coarse grid search to find an initial solution that fulfills all constraints for the subsequent multistage optimization. This avoids convergence to the next nearest local minimum. The second step attempts to refine the results using multiple evolution strategies. We compare the performance of our approach with the non-convex optimization methods described in the literature. The proposed algorithm converges for phantom and in vivo data and only requires an initial estimate of the range of suitable regularization parameters. It demonstrates improved excitation homogeneity compared to published spoke-design methods and allows optimization for homogeneity with a subsequent reduction in the SAR burden. Moreover, excitation homogeneity and the SAR burden can be balanced against each other, enabling a further reduction in SAR at the cost of minor relaxations in excitation homogeneity. This feature makes the algorithm a good candidate for SAR limited sequences in ultra-high field imaging. The algorithm is validated using phantom and in vivo measurements obtained with a 16-channel transmit array at 9.4T.
Collapse
|
26
|
Jamil R, Mauconduit F, Gras V, Boulant N. General gradient delay correction method in bipolar multispoke RF pulses using trim blips. Magn Reson Med 2020; 85:1004-1012. [PMID: 32851654 DOI: 10.1002/mrm.28478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/21/2020] [Accepted: 07/24/2020] [Indexed: 11/12/2022]
Abstract
PURPOSE To correct with gradient trim blips for gradient delays in bipolar-spoke RF pulses in slice-selective and slab-selective excitations, compatible with tilted acquisitions and anisotropic delays. THEORY The effect of small gradient delays with respect to RF pulses results in a dephasing of the second RF spoke, proportional to the slab-selection gradient amplitude and the distance of the slice center from the magnet isocenter. Accordingly, adding a trim blip along the corresponding logical gradient axis between the two spokes compensates for the same dephasing, and therefore cancels the gradient delay effects, regardless of position and orientation. METHODS Gradient delays on different axes were first measured on a 7T system based on an imaging method. Parallel transmission universal bipolar spokes were designed offline to mitigate the RF field inhomogeneity problem in the human brain. Trim blips were used to compensate for the known delays, which was validated with flip angle and temporal SNR measurements on two different volunteers at 7 T. RESULTS Pulses corrected with trim blips greatly reduced gradient delay effects. Acquisitions made with corrected and noncorrected pulses showed good fidelity with simulations. CONCLUSIONS Unlike time or phase-shifting approaches, trim blip-based methods apply to all possible bipolar spoke scenarios such as slice excitations, slab excitations, and anisotropy in the gradient delays.
Collapse
Affiliation(s)
- Redouane Jamil
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Franck Mauconduit
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Vincent Gras
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| | - Nicolas Boulant
- Université Paris-Saclay, CEA, CNRS, BAOBAB, NeuroSpin, Gif-sur-Yvette, France
| |
Collapse
|
27
|
Van Damme L, Mauconduit F, Chambrion T, Boulant N, Gras V. Universal nonselective excitation and refocusing pulses with improved robustness to off-resonance for Magnetic Resonance Imaging at 7 Tesla with parallel transmission. Magn Reson Med 2020; 85:678-693. [PMID: 32755064 DOI: 10.1002/mrm.28441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/25/2020] [Accepted: 07/01/2020] [Indexed: 11/07/2022]
Abstract
PURPOSE In MRI at ultra-high field, the k T -point and spiral nonselective (SPINS) pulse design techniques can be advantageously combined with the parallel transmission (pTX) and universal pulse techniques to create uniform excitation in a calibration-free manner. However, in these approaches, pulse duration is typically increased as compared to standard hard pulses, and excitation quality in regions exhibiting large resonance frequency offsets often suffer. This limitation is inherent to structure of k T -point or SPINS pulse, and likely can be mitigated using parameterization-free pulse design approaches. METHODS The Gradient Ascent Pulse Engineering (GRAPE) algorithm was used to design parameterization-free RF and magnetic field gradient (MFG) waveforms for creating 8 ∘ excitation, up to 105 ∘ scalable refocusing and inversion, nonselectively across the brain. Simulations were performed to provide flip angle normalized root-mean-squares error (FA-NRMSE) estimations for the 8 ∘ and the 180 ∘ k T -point, SPINS, and GRAPE pulses. GRAPE pulses were tested experimentally with anatomical head scans at 7T. RESULTS As compared to k T -points and SPINS, GRAPE provided substantial improvement of excitation, refocusing, and inversion quality at off-resonance while at least preserving the same global FA-NRMSE performance. As compared to k T -points, GRAPE allowed for a substantial reduction of the pulse duration for the 8 ∘ excitation and the 105 ∘ refocusing. CONCLUSIONS Parameterization-free universal nonselective pTX-pulses were successfully computed using GRAPE. Performance gains as compared to k T -points were validated numerically and experimentally for three imaging protocols. In its current implementation, the computational burden of GRAPE limits its use to applications where pulse computations are not subject to time constraints.
Collapse
Affiliation(s)
- L Van Damme
- Institut Elie Cartan, Université de Nancy, Nancy, France.,CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - F Mauconduit
- CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - T Chambrion
- Institut Elie Cartan, Université de Nancy, Nancy, France.,INRIA Nancy Grand Est, Vandœuvre, France
| | - N Boulant
- CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| | - V Gras
- CEA, CNRS, BAOBAB, NeuroSpin, Université Paris-Saclay, Gif-sur-Yvette, France
| |
Collapse
|
28
|
Tong Y, Jezzard P, Okell TW, Clarke WT. Improving PCASL at ultra-high field using a VERSE-guided parallel transmission strategy. Magn Reson Med 2020; 84:777-786. [PMID: 31971634 PMCID: PMC7216913 DOI: 10.1002/mrm.28173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 11/16/2022]
Abstract
Purpose To improve the labeling efficiency of pseudo‐continuous arterial spin labeling (PCASL) at 7T using parallel transmission (pTx). Methods Five healthy subjects were scanned on an 8‐channel‐transmit 7T human MRI scanner. Time‐of‐flight (TOF) angiography was acquired to identify regions of interest (ROIs) around the 4 major feeding arteries to the brain, and B1+ and B0 maps were acquired in the labeling plane for tagging pulse design. Complex weights of the labeling pulses for each of the 8 transmit channels were calculated to produce a homogenous radiofrequency (RF) ‐shimmed labeling across the ROIs. Variable‐Rate Selective Excitation (VERSE) pulses were also implemented as a part of the labeling pulse train. Whole‐brain perfusion‐weighted images were acquired under conditions of RF shimming, VERSE with RF shimming, and standard circularly polarized (CP) mode. The same subjects were scanned on a 3T scanner for comparison. Results In simulation, VERSE with RF shimming improved the flip‐angles across the ROIs in the labeling plane by 90% compared with CP mode. VERSE with RF shimming improved the temporal signal‐to‐noise ratio by 375% compared with CP mode, but did not outperform a matched 3T sequence with a matched flip‐angle. Conclusion We have demonstrated improved PCASL tagging at 7T using VERSE with RF shimming on a commercial head coil under conservative SAR limits at 7T. However, improvements of 7T over 3T may require strategies with less conservative SAR restrictions.
Collapse
Affiliation(s)
- Yan Tong
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - Thomas W Okell
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| | - William T Clarke
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, United Kingdom
| |
Collapse
|
29
|
Gras V, Poser BA, Wu X, Tomi-Tricot R, Boulant N. Optimizing BOLD sensitivity in the 7T Human Connectome Project resting-state fMRI protocol using plug-and-play parallel transmission. Neuroimage 2019; 195:1-10. [DOI: 10.1016/j.neuroimage.2019.03.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 12/18/2022] Open
|
30
|
Tomi‐Tricot R, Gras V, Thirion B, Mauconduit F, Boulant N, Cherkaoui H, Zerbib P, Vignaud A, Luciani A, Amadon A. SmartPulse, a machine learning approach for calibration‐free dynamic RF shimming: Preliminary study in a clinical environment. Magn Reson Med 2019; 82:2016-2031. [DOI: 10.1002/mrm.27870] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 12/16/2022]
Affiliation(s)
| | - Vincent Gras
- NeuroSpin, CEA, Université Paris‐Saclay Gif‐sur‐Yvette France
| | | | | | - Nicolas Boulant
- NeuroSpin, CEA, Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Hamza Cherkaoui
- Parietal, Inria Université Paris‐Saclay Gif‐sur‐Yvette France
| | - Pierre Zerbib
- Department of Radiology AP‐HP, CHU Henri Mondor Créteil France
| | | | - Alain Luciani
- Department of Radiology AP‐HP, CHU Henri Mondor Créteil France
- Université Paris‐Est Créteil Val de Marne Créteil France
- INSERM U955, Team 18, Molecular Virology and Immunology – Physiopathology and Therapeutic of Chronic Viral Hepatitis Créteil France
| | - Alexis Amadon
- NeuroSpin, CEA, Université Paris‐Saclay Gif‐sur‐Yvette France
| |
Collapse
|
31
|
Pendse M, Stara R, Khalighi MM, Rutt B. IMPULSE: A scalable algorithm for design of minimum specific absorption rate parallel transmit RF pulses. Magn Reson Med 2019; 81:2808-2822. [PMID: 30426583 PMCID: PMC6372346 DOI: 10.1002/mrm.27589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 10/10/2018] [Indexed: 12/27/2022]
Abstract
PURPOSE Managing local specific absorption rate (SAR) in parallel transmission requires ensuring that the peak SAR over a large number of voxels (> 10 5 ) is below the regulatory limit. The safety risk to the patient depends on cumulative (not instantaneous) SAR thus making a joint design of all RF pulses in a sequence desirable. We propose the Iterative Minimization Procedure with Uncompressed Local SAR Estimate (IMPULSE), an efficient optimization formulation and algorithm that can handle uncompressed SAR matrices and optimize pulses for all slices jointly within a practical time frame. THEORY AND METHODS IMPULSE optimizes parallel transmit pulses for small-tip-angle slice selective excitation to minimize a single cost function incorporating multiple quantities (local SAR, global SAR, and per-channel power) averaged over the entire multislice scan subject to a strict constraint on excitation accuracy. Pulses for an 8-channel 7T head coil were designed with IMPULSE and compared with pulses designed using generic optimization algorithms and VOPs to assess the computation time and SAR performance benefits. RESULTS IMPULSE achieves lower SAR and shorter computation time compared with a VOP approach. Compared with the generic sequential quadratic programming algorithm, computation time is reduced by a factor of 5-6 by using IMPULSE. Using as many as 6 million local SAR terms, up to 120 slices can be designed jointly with IMPULSE within 45 s. CONCLUSIONS IMPULSE can handle significantly larger number of SAR matrices and slices than conventional optimization algorithms, enabling the use of uncompressed or partially compressed SAR matrices to design pulses for a multislice scan in a practical time frame.
Collapse
Affiliation(s)
- Mihir Pendse
- Stanford University Department of Radiology, 1201 Welch Road Stanford, CA, 94305-5105, USA
| | - Riccardo Stara
- Stanford University Department of Radiology, 1201 Welch Road Stanford, CA, 94305-5105, USA
| | | | - Brian Rutt
- Stanford University Department of Radiology, 1201 Welch Road Stanford, CA, 94305-5105, USA
| |
Collapse
|
32
|
Gras V, Pracht ED, Mauconduit F, Le Bihan D, Stöcker T, Boulant N. Robust nonadiabatic T2
preparation using universal parallel-transmit kT
-point pulses for 3D FLAIR imaging at 7 T. Magn Reson Med 2019; 81:3202-3208. [DOI: 10.1002/mrm.27645] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Vincent Gras
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay; Gif sur Yvette France
| | | | | | - Denis Le Bihan
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay; Gif sur Yvette France
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases; Bonn Germany
- Department of Physics and Astronomy; University of Bonn; Bonn Germany
| | - Nicolas Boulant
- NeuroSpin, Commissariat à l’Energie Atomique, Université Paris-Saclay; Gif sur Yvette France
| |
Collapse
|
33
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Van de Moortele PF, Yacoub E, Uğurbil K. Human Connectome Project-style resting-state functional MRI at 7 Tesla using radiofrequency parallel transmission. Neuroimage 2018; 184:396-408. [PMID: 30237033 DOI: 10.1016/j.neuroimage.2018.09.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/13/2018] [Accepted: 09/15/2018] [Indexed: 01/16/2023] Open
Abstract
We investigate the utility of radiofrequency (RF) parallel transmission (pTx) for whole-brain resting-state functional MRI (rfMRI) acquisition at 7 Tesla (7T). To this end, Human Connectome Project (HCP)-style data acquisitions were chosen as a showcase example. Five healthy subjects were scanned in pTx and single-channel transmit (1Tx) modes. The pTx data were acquired using a prototype 16-channel transmit system and a commercially available Nova 8-channel transmit 32-channel receive RF head coil. Additionally, pTx single-spoke multiband (MB) pulses were designed to image sagittal slices. HCP-style 7T rfMRI data (1.6-mm isotropic resolution, 5-fold slice and 2-fold in-plane acceleration, 3600 image volumes and ∼ 1-h scan) were acquired with pTx and the results were compared to those acquired with the original 7T HCP rfMRI protocol. The use of pTx significantly improved flip-angle uniformity across the brain, with coefficient of variation (i.e., std/mean) of whole-brain flip-angle distribution reduced on average by ∼39%. This in turn yielded ∼17% increase in group temporal SNR (tSNR) as averaged across the entire brain and ∼10% increase in group functional contrast-to-noise ratio (fCNR) as averaged across the grayordinate space (including cortical surfaces and subcortical voxels). Furthermore, when placing a seed in either the posterior parietal lobe or putamen to estimate seed-based dense connectome, the increase in fCNR was observed to translate into stronger correlation of the seed with the rest of the grayordinate space. We have demonstrated the utility of pTx for slice-accelerated high-resolution whole-brain rfMRI at 7T; as compared to current state-of-the-art, the use of pTx improves flip-angle uniformity, increases tSNR, enhances fCNR and strengthens functional connectivity estimation.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States.
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, CA, United States
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
34
|
Wu X, Auerbach EJ, Vu AT, Moeller S, Lenglet C, Schmitter S, Van de Moortele PF, Yacoub E, Uğurbil K. High-resolution whole-brain diffusion MRI at 7T using radiofrequency parallel transmission. Magn Reson Med 2018; 80:1857-1870. [PMID: 29603381 DOI: 10.1002/mrm.27189] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 12/21/2022]
Abstract
PURPOSE Investigating the utility of RF parallel transmission (pTx) for Human Connectome Project (HCP)-style whole-brain diffusion MRI (dMRI) data at 7 Tesla (7T). METHODS Healthy subjects were scanned in pTx and single-transmit (1Tx) modes. Multiband (MB), single-spoke pTx pulses were designed to image sagittal slices. HCP-style dMRI data (i.e., 1.05-mm resolutions, MB2, b-values = 1000/2000 s/mm2 , 286 images and 40-min scan) and data with higher accelerations (MB3 and MB4) were acquired with pTx. RESULTS pTx significantly improved flip-angle detected signal uniformity across the brain, yielding ∼19% increase in temporal SNR (tSNR) averaged over the brain relative to 1Tx. This allowed significantly enhanced estimation of multiple fiber orientations (with ∼21% decrease in dispersion) in HCP-style 7T dMRI datasets. Additionally, pTx pulses achieved substantially lower power deposition, permitting higher accelerations, enabling collection of the same data in 2/3 and 1/2 the scan time or of more data in the same scan time. CONCLUSION pTx provides a solution to two major limitations for slice-accelerated high-resolution whole-brain dMRI at 7T; it improves flip-angle uniformity, and enables higher slice acceleration relative to current state-of-the-art. As such, pTx provides significant advantages for rapid acquisition of high-quality, high-resolution truly whole-brain dMRI data.
Collapse
Affiliation(s)
- Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - An T Vu
- Center for Imaging of Neurodegenerative Diseases, VA Healthcare System, San Francisco, California
| | - Steen Moeller
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Sebastian Schmitter
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota.,Physikalisch-Technische Bundesanstalt, Berlin, Germany
| | | | - Essa Yacoub
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
35
|
Ianni JD, Cao Z, Grissom WA. Machine learning RF shimming: Prediction by iteratively projected ridge regression. Magn Reson Med 2018; 80:1871-1881. [PMID: 29572990 DOI: 10.1002/mrm.27192] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 02/22/2018] [Accepted: 03/05/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE To obviate online slice-by-slice RF shim optimization and reduce B1+ mapping requirements for patient-specific RF shimming in high-field magnetic resonance imaging. THEORY AND METHODS RF Shim Prediction by Iteratively Projected Ridge Regression (PIPRR) predicts patient-specific, SAR-efficient RF shims with a machine learning approach that merges learning with training shim design. To evaluate it, a set of B1+ maps was simulated for 100 human heads for a 24-element coil at 7T. Features were derived from tissue masks and the DC Fourier coefficients of the coils' B1+ maps in each slice, which were used for kernelized ridge regression prediction of SAR-efficient RF shim weights. Predicted shims were compared to directly designed shims, circularly polarized mode, and nearest-neighbor shims predicted using the same features. RESULTS PIPRR predictions had 87% and 13% lower B1+ coefficients of variation compared to circularly polarized mode and nearest-neighbor shims, respectively, and achieved homogeneity and SAR similar to that of directly designed shims. Predictions were calculated in 4.92 ms on average. CONCLUSION PIPRR predicted uniform, SAR-efficient RF shims, and could save a large amount of B1+ mapping and computation time in RF-shimmed ultra-high field magnetic resonance imaging.
Collapse
Affiliation(s)
- Julianna D Ianni
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Radiology, Vanderbilt University, Nashville, Tennessee.,Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
36
|
Majewski K. Rotation relaxation splitting for optimizing parallel RF excitation pulses with T 1- and T 2-relaxations in MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 288:43-57. [PMID: 29414063 DOI: 10.1016/j.jmr.2018.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 12/18/2017] [Accepted: 01/09/2018] [Indexed: 06/08/2023]
Abstract
Exact solutions of the Bloch equations with T1- and T2-relaxation terms for piecewise constant magnetic fields are numerically challenging. We therefore investigate an approximation for the achieved magnetization in which rotations and relaxations are split into separate operations. We develop an estimate for its accuracy and explicit first and second order derivatives with respect to the complex excitation radio frequency voltages. In practice, the deviation between an exact solution of the Bloch equations and this rotation relaxation splitting approximation seems negligible. Its computation times are similar to exact solutions without relaxation terms. We apply the developed theory to numerically optimize radio frequency excitation waveforms with T1- and T2-relaxations in several examples.
Collapse
Affiliation(s)
- Kurt Majewski
- Siemens AG, CT RDA BAM ORD-DE, 80200 Munich, Germany.
| |
Collapse
|
37
|
Beqiri A, Hoogduin H, Sbrizzi A, Hajnal JV, Malik SJ. Whole-brain 3D FLAIR at 7T using direct signal control. Magn Reson Med 2018; 80:1533-1545. [PMID: 29476551 PMCID: PMC6120540 DOI: 10.1002/mrm.27149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/02/2018] [Accepted: 02/02/2018] [Indexed: 11/10/2022]
Abstract
Purpose Image quality obtained for brain imaging at 7T can be hampered by inhomogeneities in the static magnetic field, B0, and the RF electromagnetic field, B1. In imaging sequences such as fluid‐attenuated inversion recovery (FLAIR), which is used to assess neurological disorders, these inhomogeneities cause spatial variations in signal that can reduce clinical efficacy. In this work, we aim to correct for signal inhomogeneities to ensure whole‐brain coverage with 3D FLAIR at 7T. Methods The direct signal control (DSC) framework was used to optimize channel weightings applied to the 8 transmit channels used in this work on a pulse‐by‐pulse basis through the echo train in the FLAIR sequences. 3D FLAIR brain images were acquired on 5 different subjects and compared with imaging using a quadrature‐like mode of the transmit array. Precomputed “universal” DSC solutions calculated from a separate set of 5 subjects were also explored. Results DSC consistently enabled improved imaging across all subjects, with no dropouts in signal seen over the entire brain volume, which contrasted with imaging in quadrature mode. Further, the universal DSC solutions also consistently improved imaging despite not being optimized specifically for the subject being imaged. Conclusion 3D FLAIR brain imaging at 7T is substantially improved using DSC and is able to recover regions of low signal without increasing imaging time or interecho spacing.
Collapse
Affiliation(s)
- Arian Beqiri
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Hans Hoogduin
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Alessandro Sbrizzi
- Center for Image Sciences, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Joseph V Hajnal
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom.,Centre for the Developing Brain, School of Imaging Sciences & Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Shaihan J Malik
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| |
Collapse
|
38
|
Jang A, Wu X, Auerbach EJ, Garwood M. Designing 3D selective adiabatic radiofrequency pulses with single and parallel transmission. Magn Reson Med 2018; 79:701-710. [PMID: 28497465 PMCID: PMC5682242 DOI: 10.1002/mrm.26720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 11/11/2022]
Abstract
PURPOSE To introduce a method of designing single and parallel transmit (pTx) 3D adiabatic π pulses for inverting and refocusing spins that are insensitive to transmit B1 ( B1+) inhomogeneity. THEORY AND METHODS A 3D adiabatic pulse is created by replacing each piece-wise constant element (or sub-pulse) of an adiabatic full passage (AFP) by a 2D selective pulse. In this study, the parent AFP is an HS1 and each sub-pulse is a 2D pulse derived from a jinc function designed using a spiral k-trajectory. Spatial selectivity in the third direction is achieved by blipping the slab-selective gradient between sub-pulses, yielding a rectangular slab profile identical to that of the parent AFP. The slew-rate limited sub-pulse can be undersampled utilizing pTx, thus shortening the overall pulse width. Simulations and experiments demonstrate the quality of spatial selectivity and adiabaticity achievable. RESULTS The 3D adiabatic pulse inverts and refocus spins in a sharply demarcated cylindrical volume. When stepping RF amplitude, an adiabatic threshold is observed above which the flip angle remains π. Experimental results demonstrate that pTx is an effective means to significantly improve pulse performance. CONCLUSION A method of designing 3D adiabatic pulses insensitive to B1 inhomogeneity has been developed. pTx can shorten these pulses while retaining their adiabatic character. Magn Reson Med 79:701-710, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Albert Jang
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
- Department of Electrical and Computer Engineering, University of Minnesota, Minnesota, United States
- Department of Medicine, Cardiovascular Division, University of Minnesota, Minnesota, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
| | - Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minnesota, United States
| |
Collapse
|
39
|
Gras V, Mauconduit F, Vignaud A, Amadon A, Le Bihan D, Stöcker T, Boulant N. Design of universal parallel-transmit refocusing k T -point pulses and application to 3D T 2 -weighted imaging at 7T. Magn Reson Med 2017; 80:53-65. [PMID: 29193250 DOI: 10.1002/mrm.27001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/02/2017] [Accepted: 10/16/2017] [Indexed: 12/18/2022]
Abstract
PURPOSE T2 -weighted sequences are particularly sensitive to the radiofrequency (RF) field inhomogeneity problem at ultra-high-field because of the errors accumulated by the imperfections of the train of refocusing pulses. As parallel transmission (pTx) has proved particularly useful to counteract RF heterogeneities, universal pulses were recently demonstrated to save precious time and computational efforts by skipping B1 calibration and online RF pulse tailoring. Here, we report a universal RF pulse design for non-selective refocusing pulses to mitigate the RF inhomogeneity problem at 7T in turbo spin-echo sequences with variable flip angles. METHOD Average Hamiltonian theory was used to synthetize a single non-selective refocusing pulse with pTx while optimizing its scaling properties in the presence of static field offsets. The design was performed under explicit power and specific absorption rate constraints on a database of 10 subjects using a 8Tx-32Rx commercial coil at 7T. To validate the proposed design, the RF pulses were tested in simulation and applied in vivo on 5 additional test subjects. RESULTS The root-mean-square rotation angle error (RA-NRMSE) evaluation and experimental data demonstrated great improvement with the proposed universal pulses (RA-NRMSE ∼8%) compared to the standard circularly polarized mode of excitation (RA-NRMSE ∼26%). CONCLUSION This work further completes the spectrum of 3D universal pulses to mitigate RF field inhomogeneity throughout all 3D MRI sequences without any pTx calibration. The approach returns a single pulse that can be scaled to match the desired flip angle train, thereby increasing the modularity of the proposed plug and play approach. Magn Reson Med 80:53-65, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Vincent Gras
- CEA, DRF, Joliot, NeuroSpin, Unirs, CEA Saclay, Gif sur Yvette, France
| | | | - Alexandre Vignaud
- CEA, DRF, Joliot, NeuroSpin, Unirs, CEA Saclay, Gif sur Yvette, France
| | - Alexis Amadon
- CEA, DRF, Joliot, NeuroSpin, Unirs, CEA Saclay, Gif sur Yvette, France
| | - Denis Le Bihan
- CEA, DRF, Joliot, NeuroSpin, Unirs, CEA Saclay, Gif sur Yvette, France
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicolas Boulant
- CEA, DRF, Joliot, NeuroSpin, Unirs, CEA Saclay, Gif sur Yvette, France
| |
Collapse
|
40
|
Tomi-Tricot R, Gras V, Mauconduit F, Legou F, Boulant N, Gebhardt M, Ritter D, Kiefer B, Zerbib P, Rahmouni A, Vignaud A, Luciani A, Amadon A. B1
artifact reduction in abdominal DCE-MRI using kT
-points: First clinical assessment of dynamic RF shimming at 3T. J Magn Reson Imaging 2017; 47:1562-1571. [DOI: 10.1002/jmri.25908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/09/2017] [Indexed: 11/05/2022] Open
Affiliation(s)
| | - Vincent Gras
- NeuroSpin/UNIRS, CEA, Paris-Saclay; Gif-sur-Yvette Cedex France
| | | | - François Legou
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
| | - Nicolas Boulant
- NeuroSpin/UNIRS, CEA, Paris-Saclay; Gif-sur-Yvette Cedex France
| | | | | | | | - Pierre Zerbib
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
| | - Alain Rahmouni
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
- Université Paris-Est Créteil Val de Marne; Créteil Cedex France
| | | | - Alain Luciani
- Department of Radiology; AP-HP, CHU Henri Mondor; Cedex France
- Université Paris-Est Créteil Val de Marne; Créteil Cedex France
- INSERM Unité U955, Equipe 18, Molecular Virology and Immunology - Physiopathology and Therapeutic of Chronic Viral Hepatitis; Créteil France
| | - Alexis Amadon
- NeuroSpin/UNIRS, CEA, Paris-Saclay; Gif-sur-Yvette Cedex France
| |
Collapse
|
41
|
Grissom WA, Setsompop K, Hurley SA, Tsao J, Velikina JV, Samsonov AA. Advancing RF pulse design using an open-competition format: Report from the 2015 ISMRM challenge. Magn Reson Med 2017; 78:1352-1361. [PMID: 27790754 PMCID: PMC5408273 DOI: 10.1002/mrm.26512] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 02/03/2023]
Abstract
PURPOSE To advance the best solutions to two important RF pulse design problems with an open head-to-head competition. METHODS Two sub-challenges were formulated in which contestants competed to design the shortest simultaneous multislice (SMS) refocusing pulses and slice-selective parallel transmission (pTx) excitation pulses, subject to realistic hardware and safety constraints. Short refocusing pulses are needed for spin echo SMS imaging at high multiband factors, and short slice-selective pTx pulses are needed for multislice imaging in ultra-high field MRI. Each sub-challenge comprised two phases, in which the first phase posed problems with a low barrier of entry, and the second phase encouraged solutions that performed well in general. The Challenge ran from October 2015 to May 2016. RESULTS The pTx Challenge winners developed a spokes pulse design method that combined variable-rate selective excitation with an efficient method to enforce SAR constraints, which achieved 10.6 times shorter pulse durations than conventional approaches. The SMS Challenge winners developed a time-optimal control multiband pulse design algorithm that achieved 5.1 times shorter pulse durations than conventional approaches. CONCLUSION The Challenge led to rapid step improvements in solutions to significant problems in RF excitation for SMS imaging and ultra-high field MRI. Magn Reson Med 78:1352-1361, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- William A. Grissom
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | - Julia V. Velikina
- Department of Medical Physics, University of Wisconsin, Madison, USA
| | | |
Collapse
|
42
|
Gras V, Boland M, Vignaud A, Ferrand G, Amadon A, Mauconduit F, Le Bihan D, Stöcker T, Boulant N. Homogeneous non-selective and slice-selective parallel-transmit excitations at 7 Tesla with universal pulses: A validation study on two commercial RF coils. PLoS One 2017; 12:e0183562. [PMID: 28827835 PMCID: PMC5565195 DOI: 10.1371/journal.pone.0183562] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/07/2017] [Indexed: 11/21/2022] Open
Abstract
Parallel transmission (pTx) technology, despite its great potential to mitigate the transmit field inhomogeneity problem in magnetic resonance imaging at ultra-high field (UHF), suffers from a cumbersome calibration procedure, thereby making the approach problematic for routine use. The purpose of this work is to demonstrate on two different 7T systems respectively equipped with 8-transmit-channel RF coils from two different suppliers (Rapid-Biomed and Nova Medical), the benefit of so-called universal pulses (UP), optimized to produce uniform excitations in the brain in a population of adults and making unnecessary the calibration procedures mentioned above. Non-selective and slice-selective UPs were designed to return homogeneous excitation profiles throughout the brain simultaneously on a group of ten subjects, which then were subsequently tested on ten additional volunteers in magnetization prepared rapid gradient echo (MPRAGE) and multi-slice gradient echo (2D GRE) protocols. The results were additionally compared experimentally with the standard non-pTx circularly-polarized (CP) mode, and in simulation with subject-specific tailored excitations. For both pulse types and both coils, the UP mode returned a better signal and contrast homogeneity than the CP mode. Retrospective analysis of the flip angle (FA) suggests that the FA deviation from the nominal FA on average over a healthy adult population does not exceed 11% with the calibration-free parallel-transmit pulses whereas it goes beyond 25% with the CP mode. As a result the universal pulses designed in this work confirm their relevance in 3D and 2D protocols with commercially available equipment. Plug-and-play pTx implementations henceforth become accessible to exploit with more flexibility the potential of UHF for brain imaging.
Collapse
Affiliation(s)
- Vincent Gras
- CEA/DRF/Joliot/NeuroSpin/Unirs, Gif sur Yvette, France
| | - Markus Boland
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | | | - Alexis Amadon
- CEA/DRF/Joliot/NeuroSpin/Unirs, Gif sur Yvette, France
| | | | | | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Nicolas Boulant
- CEA/DRF/Joliot/NeuroSpin/Unirs, Gif sur Yvette, France
- * E-mail:
| |
Collapse
|
43
|
Beqiri A, Price AN, Padormo F, Hajnal JV, Malik SJ. Extended RF shimming: Sequence-level parallel transmission optimization applied to steady-state free precession MRI of the heart. NMR IN BIOMEDICINE 2017; 30:e3701. [PMID: 28195684 PMCID: PMC5484304 DOI: 10.1002/nbm.3701] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 12/23/2016] [Accepted: 12/30/2016] [Indexed: 05/12/2023]
Abstract
Cardiac magnetic resonance imaging (MRI) at high field presents challenges because of the high specific absorption rate and significant transmit field (B1+ ) inhomogeneities. Parallel transmission MRI offers the ability to correct for both issues at the level of individual radiofrequency (RF) pulses, but must operate within strict hardware and safety constraints. The constraints are themselves affected by sequence parameters, such as the RF pulse duration and TR, meaning that an overall optimal operating point exists for a given sequence. This work seeks to obtain optimal performance by performing a 'sequence-level' optimization in which pulse sequence parameters are included as part of an RF shimming calculation. The method is applied to balanced steady-state free precession cardiac MRI with the objective of minimizing TR, hence reducing the imaging duration. Results are demonstrated using an eight-channel parallel transmit system operating at 3 T, with an in vivo study carried out on seven male subjects of varying body mass index (BMI). Compared with single-channel operation, a mean-squared-error shimming approach leads to reduced imaging durations of 32 ± 3% with simultaneous improvement in flip angle homogeneity of 32 ± 8% within the myocardium.
Collapse
Affiliation(s)
- Arian Beqiri
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Anthony N. Price
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Francesco Padormo
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| | - Joseph V. Hajnal
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
- Centre for the Developing BrainKing's College LondonLondonUK
| | - Shaihan J. Malik
- Division of Imaging Sciences and Biomedical EngineeringKing's College LondonLondonUK
| |
Collapse
|
44
|
Fiedler TM, Ladd ME, Bitz AK. SAR Simulations & Safety. Neuroimage 2017; 168:33-58. [PMID: 28336426 DOI: 10.1016/j.neuroimage.2017.03.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 02/28/2017] [Accepted: 03/16/2017] [Indexed: 01/19/2023] Open
Abstract
At ultra-high fields, the assessment of radiofrequency (RF) safety presents several new challenges compared to low-field systems. Multi-channel RF transmit coils in combination with parallel transmit techniques produce time-dependent and spatially varying power loss densities in the tissue. Further, in ultra-high-field systems, localized field effects can be more pronounced due to a transition from the quasi stationary to the electromagnetic field regime. Consequently, local information on the RF field is required for reliable RF safety assessment as well as for monitoring of RF exposure during MR examinations. Numerical RF and thermal simulations for realistic exposure scenarios with anatomical body models are currently the only practical way to obtain the requisite local information on magnetic and electric field distributions as well as tissue temperature. In this article, safety regulations and the fundamental characteristics of RF field distributions in ultra-high-field systems are reviewed. Numerical methods for computation of RF fields as well as typical requirements for the analysis of realistic multi-channel RF exposure scenarios including anatomical body models are highlighted. In recent years, computation of the local tissue temperature has become of increasing interest, since a more accurate safety assessment is expected because temperature is directly related to tissue damage. Regarding thermal simulation, bio-heat transfer models and approaches for taking into account the physiological response of the human body to RF exposure are discussed. In addition, suitable methods are presented to validate calculated RF and thermal results with measurements. Finally, the concept of generalized simulation-based specific absorption rate (SAR) matrix models is discussed. These models can be incorporated into local SAR monitoring in multi-channel MR systems and allow the design of RF pulses under constraints for local SAR.
Collapse
Affiliation(s)
- Thomas M Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University Duisburg-Essen, Essen, Germany
| | - Andreas K Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen - University of Applied Sciences, 52066 Aachen, Germany
| |
Collapse
|
45
|
Vinding MS, Guérin B, Vosegaard T, Nielsen NC. Local SAR, global SAR, and power-constrained large-flip-angle pulses with optimal control and virtual observation points. Magn Reson Med 2017; 77:374-384. [PMID: 26715084 PMCID: PMC4929033 DOI: 10.1002/mrm.26086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 11/03/2015] [Accepted: 11/23/2015] [Indexed: 11/11/2022]
Abstract
PURPOSE To present a constrained optimal-control (OC) framework for designing large-flip-angle parallel-transmit (pTx) pulses satisfying hardware peak-power as well as regulatory local and global specific-absorption-rate (SAR) limits. The application is 2D and 3D spatial-selective 90° and 180° pulses. THEORY AND METHODS The OC gradient-ascent-pulse-engineering method with exact gradients and the limited-memory Broyden-Fletcher-Goldfarb-Shanno method is proposed. Local SAR is constrained by the virtual-observation-points method. Two numerical models facilitated the optimizations, a torso at 3 T and a head at 7 T, both in eight-channel pTx coils and acceleration-factors up to 4. RESULTS The proposed approach yielded excellent flip-angle distributions. Enforcing the local-SAR constraint, as opposed to peak power alone, reduced the local SAR 7 and 5-fold with the 2D torso excitation and inversion pulse, respectively. The root-mean-square errors of the magnetization profiles increased less than 5% with the acceleration factor of 4. CONCLUSION A local and global SAR, and peak-power constrained OC large-flip-angle pTx pulse design was presented, and numerically validated for 2D and 3D spatial-selective 90° and 180° pulses at 3 T and 7 T. Magn Reson Med 77:374-384, 2017. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mads S. Vinding
- Center of Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Bastien Guérin
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas Vosegaard
- Center of Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus C, Denmark
| | - Niels Chr. Nielsen
- Center of Insoluble Protein Structures (inSPIN), Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
46
|
Tse DHY, Wiggins CJ, Poser BA. High-resolution gradient-recalled echo imaging at 9.4T using 16-channel parallel transmit simultaneous multislice spokes excitations with slice-by-slice flip angle homogenization. Magn Reson Med 2016; 78:1050-1058. [PMID: 27774641 PMCID: PMC5574011 DOI: 10.1002/mrm.26501] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/30/2016] [Accepted: 09/17/2016] [Indexed: 11/26/2022]
Abstract
Purpose In order to fully benefit from the improved signal‐to‐noise and contrast‐to‐noise ratios at 9.4T, the challenges of
B1+ inhomogeneity and the long acquisition time of high‐resolution 2D gradient‐recalled echo (GRE) imaging were addressed. Theory and Methods Flip angle homogenized excitations were achieved by parallel transmission (pTx) of 3‐spoke pulses, designed by magnitude least‐squares optimization in a slice‐by‐slice fashion; the acquisition time reduction was achieved by simultaneous multislice (SMS) pulses. The slice‐specific spokes complex radiofrequency scaling factors were applied to sinc waveforms on a per‐channel basis and combined with the other pulses in an SMS slice group to form the final SMS‐pTX pulse. Optimal spokes locations were derived from simulations. Results Flip angle maps from presaturation TurboFLASH showed improvement of flip angle homogenization with 3‐spoke pulses over CP‐mode excitation (normalized root‐mean‐square error [NRMSE] 0.357) as well as comparable excitation homogeneity across the single‐band (NRMSE 0.119), SMS‐2 (NRMSE 0.137), and SMS‐3 (NRMSE 0.132) 3‐spoke pulses. The application of the 3‐spoke SMS‐3 pulses in a 48‐slice GRE protocol, which has an in‐plane resolution of 0.28 × 0.28 mm, resulted in a 50% reduction of scan duration (total acquisition time 6:52 min including reference scans). Conclusion Time‐efficient flip angle homogenized high‐resolution GRE imaging at 9.4T was accomplished by using slice‐specific SMS‐pTx spokes excitations. Magn Reson Med 78:1050–1058, 2017. © 2016 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Desmond H Y Tse
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | - Benedikt A Poser
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
47
|
Gras V, Vignaud A, Amadon A, Mauconduit F, Le Bihan D, Boulant N. In vivo demonstration of whole-brain multislice multispoke parallel transmit radiofrequency pulse design in the small and large flip angle regimes at 7 Tesla. Magn Reson Med 2016; 78:1009-1019. [PMID: 27774653 DOI: 10.1002/mrm.26491] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 11/07/2022]
Abstract
PURPOSE A multispoke specific absorption rate (SAR) -aware pulse design approach for homogeneous multiple-slice small and large flip angle (FA) excitations with parallel transmission is proposed. The approach aims at optimizing in a slice-specific manner the spokes locations and radiofrequency pulses. METHODS The problem is posed as a set of slice-specific magnitude-least-squares problems, linked together by hardware and SAR constraints, and solved jointly using an active-set algorithm. Average Hamiltonian theory is exploited in the large FA case to greatly reduce the computational burden. The approach is validated numerically by means of simulations and experimentally on two volunteers at 7 Tesla through application of a high-resolution T2*-weighted brain imaging protocol. RESULTS The optimization of up to 1300 variables under 745 explicit constraints could be performed in less than 1 and 4 min for the small and large FA cases, respectively. The joint design proves valuable for SAR demanding protocols. Compared with the conventional circularly polarized mode, the designed pulses increased the signal by more than 40% in 70% of the voxels. CONCLUSION The B1+ inhomogeneity problem was mitigated efficiently in a multislice near whole-brain coverage protocol in the small and large FA regimes using a rapid slice-specific pulse design algorithm where the pulses were optimized jointly. Magn Reson Med 78:1009-1019, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
|
48
|
Ertürk MA, Wu X, Eryaman Y, Van de Moortele PF, Auerbach EJ, Lagore RL, DelaBarre L, Vaughan JT, Uğurbil K, Adriany G, Metzger GJ. Toward imaging the body at 10.5 tesla. Magn Reson Med 2016; 77:434-443. [PMID: 27770469 DOI: 10.1002/mrm.26487] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/08/2016] [Accepted: 09/11/2016] [Indexed: 01/29/2023]
Abstract
PURPOSE To explore the potential of performing body imaging at 10.5 Tesla (T) compared with 7.0T through evaluating the transmit/receive performance of similarly configured dipole antenna arrays. METHODS Fractionated dipole antenna elements for 10.5T body imaging were designed and evaluated using numerical simulations. Transmit performance of antenna arrays inside the prostate, kidneys and heart were investigated and compared with those at 7.0T using both phase-only radiofrequency (RF) shimming and multi-spoke pulses. Signal-to-noise ratio (SNR) comparisons were also performed. A 10-channel antenna array was constructed to image the abdomen of a swine at 10.5T. Numerical methods were validated with phantom studies at both field strengths. RESULTS Similar power efficiencies were observed inside target organs with phase-only shimming, but RF nonuniformity was significantly higher at 10.5T. Spokes RF pulses allowed similar transmit performance with accompanying local specific absorption rate increases of 25-90% compared with 7.0T. Relative SNR gains inside the target anatomies were calculated to be >two-fold higher at 10.5T, and 2.2-fold SNR gain was measured in a phantom. Gradient echo and fast spin echo imaging demonstrated the feasibility of body imaging at 10.5T with the designed array. CONCLUSION While comparable power efficiencies can be achieved using dipole antenna arrays with static shimming at 10.5T; increasing RF nonuniformities underscore the need for efficient, robust, and safe parallel transmission methods. Magn Reson Med 77:434-443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yiğitcan Eryaman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Russell L Lagore
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Lance DelaBarre
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - J Thomas Vaughan
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA.,Department of Biomedical Engineering in The Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
49
|
Cao Z, Yan X, Grissom WA. Array-compressed parallel transmit pulse design. Magn Reson Med 2016; 76:1158-69. [PMID: 26510117 PMCID: PMC4848238 DOI: 10.1002/mrm.26020] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/27/2015] [Accepted: 09/28/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE To design array-compressed parallel transmit radiofrequency (RF) pulses and compare them to pulses designed with existing transmit array compression strategies. THEORY AND METHODS Array-compressed parallel RF pulse design is proposed as the joint optimization of a matrix of complex-valued compression weights that relate a full-channel physical array to a reduced-channel virtual array, along with a set of RF pulses for the virtual array. In this way, the physics of the RF pulse application determine the coil combination weights. Array-compressed pulse design algorithms are described for four parallel transmit applications: accelerated two-dimensional spiral excitation, multislice RF shimming, small-tip-angle kT -points excitation, and slice-selective spokes refocusing. Array-compressed designs are compared in simulations and an experiment to pulses designed using four existing array compression strategies. RESULTS In all cases, array-compressed pulses achieved the lowest root-mean-square excitation error among the array compression approaches. Low errors were generally achieved without increasing root-mean-square RF amplitudes or maximum local 10-gram specific absorption rate. Leave-one-out multisubject shimming simulations demonstrated that array-compressed RF shimming can identify useful fixed coil combination weights that perform well across a population. CONCLUSION Array-compressed pulse design jointly identifies the transmit coil array compression weights and RF pulses that perform best for a specific parallel excitation application. Magn Reson Med 76:1158-1169, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Zhipeng Cao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Radiology, Vanderbilt University, Nashville, Tennessee, USA.
- Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA.
| |
Collapse
|
50
|
Le Garrec M, Gras V, Hang MF, Ferrand G, Luong M, Boulant N. Probabilistic analysis of the specific absorption rate intersubject variability safety factor in parallel transmission MRI. Magn Reson Med 2016; 78:1217-1223. [PMID: 27670737 DOI: 10.1002/mrm.26468] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/22/2016] [Accepted: 08/26/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Specific absorption rate (SAR) calculations in parallel transmission are commonly performed by using electromagnetic simulations on generic models. In this study, we propose a probabilistic analysis to study the safety factor employed to account for SAR intersubject variability versus risk relationship in head imaging at 7T. METHODS Thirty-three finite-element electromagnetic simulations were conducted to sample the four-dimensional parameter space consisting of the head length, head breadth, and shifts in Z and Y random variables. Based on the SAR matrices for each configuration, a multivariate second-order polynomial of the SAR versus the different parameters was reconstructed for different types of radiofrequency pulses. A Monte Carlo calculation was then performed to compute the probability of occurrence of a given SAR value. RESULTS By testing a large number of radiofrequency excitation pulses, the SAR calculated for the average model amplified by a safety margin of 1.5 was found to return a probability of less than 1% to be exceeded across the adult Caucasian population given the investigated parameters. CONCLUSION The proposed method to study SAR intersubject variability uses a reasonable number of electromagnetic simulations. Look-ahead SAR safety margins can be deduced based on risk/benefit ratio assessments. Magn Reson Med 78:1217-1223, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
| | - Vincent Gras
- CEA, DRF, I2BM, NeuroSpin, Unirs, Gif sur Yvette, France
| | | | | | - Michel Luong
- CEA, DRF, Irfu, SACM, Unirs, Gif sur Yvette, France
| | | |
Collapse
|