1
|
Li A, Zhang X, Zhou X, Fang L, Hu J, Li B, Zhang B, Xie Q, Li F, Xiao P. Timing offset calibration for TOF PET using stationary line source scans at multiple positions. Phys Med Biol 2024; 69:175018. [PMID: 39137804 DOI: 10.1088/1361-6560/ad6edb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/13/2024] [Indexed: 08/15/2024]
Abstract
Background. Accurate timing offset calibration is crucial for time-of-flight (TOF) positron emission tomography (PET) to mitigate image artifacts and improve quantitative accuracy. However, existing methods are often time-consuming, complex, or costly.Objective. This paper presents a method for TOF PET timing offset calibration that eliminates the need for costly equipment, phantoms, short-half-life sources, and precise source positioning.Approach. We estimate channel timing offsets using stationary scans of a68Ge line source, typically used for routine quality control, at a minimum of three non-coplanar positions, with each position scanned for two minutes. The line source positions are accurately determined by applying a simple algorithm to their reconstructed images, allowing precise calculation of arrival time differences. Channel timing offsets are estimated by solving a least squares problem. This method is assessed through analyses of phantoms and patient images using a RAYSOLUTION DigitMI 930 scanner.Main results. The estimated timing offsets ranged from -500 ps to 500 ps across all channels. Calibration with a minimum of three scanned positions was sufficient to correct these offsets, achieving less than a 1% discrepancy across various metrics of the image quality (IQ) phantom compared to 12 positions. This calibration significantly reduced edge artifacts in TOF reconstruction of both phantoms and patients. Furthermore, the IQ phantom displayed a 14% increase in average contrast recovery, a 61% reduction in average background variability across all spheres, and a 90% reduction in average residual error. Consistent with the phantom results, patient data revealed enhancements in maximum standardized uptake values (SUVmax) from 14% to 55% for lesions measuring 6 mm to 14 mm. The calibration also improved lesion-to-background contrast and eliminated artifacts caused by the spillover effect of the kidneys and bladder.Significance. The proposed method is fast, user-friendly, and cost-effective, effectively improving lesion detection and diagnostic accuracy.
Collapse
Affiliation(s)
- Ang Li
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xuan Zhang
- School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaoyun Zhou
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Lei Fang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Junpeng Hu
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Bingxuan Li
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| | - Bo Zhang
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| | - Fei Li
- Department of Nuclear Medicine, Second Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Peng Xiao
- Department of Biomedical Engineering, Huazhong University of Science and Technology, Wuhan, People's Republic of China
- Department of Electronic Engineering and Information Science, University of Science and Technology of China, Hefei, People's Republic of China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, People's Republic of China
| |
Collapse
|
2
|
Nuyts J, Defrise M, Morel C, Lecoq P. The SNR of time-of-flight positron emission tomography data for joint reconstruction of the activity and attenuation images. Phys Med Biol 2023; 69:10.1088/1361-6560/ad078c. [PMID: 37890469 PMCID: PMC10811362 DOI: 10.1088/1361-6560/ad078c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/27/2023] [Indexed: 10/29/2023]
Abstract
Objective.Measurement of the time-of-flight (TOF) difference of each coincident pair of photons increases the effective sensitivity of positron emission tomography (PET). Many authors have analyzed the benefit of TOF for quantification and hot spot detection in the reconstructed activity images. However, TOF not only improves the effective sensitivity, it also enables the joint reconstruction of the tracer concentration and attenuation images. This can be used to correct for errors in CT- or MR-derived attenuation maps, or to apply attenuation correction without the help of a second modality. This paper presents an analysis of the effect of TOF on the variance of the jointly reconstructed attenuation and (attenuation corrected) tracer concentration images.Approach.The analysis is performed for PET systems that have a distribution of possibly non-Gaussian TOF-kernels, and includes the conventional Gaussian TOF-kernel as a special case. Non-Gaussian TOF-kernels are often observed in novel detector designs, which make use of two (or more) different mechanisms to convert the incoming 511 keV photon to optical photons. The analytical result is validated with a simple 2D simulation.Main results.We show that if two different TOF-kernels are equivalent for image reconstruction with known attenuation, then they are also equivalent for joint reconstruction of the activity and the attenuation images. The variance increase in the activity, caused by also jointly reconstructing the attenuation image, vanishes when the TOF-resolution approaches perfection.Significance.These results are of interest for PET detector development and for the development of stand-alone PET systems.
Collapse
Affiliation(s)
- Johan Nuyts
- KU Leuven, University of Leuven, Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging; Medical Imaging Research Center (MIRC), B-3000, Leuven, Belgium
| | - Michel Defrise
- Department of Nuclear Medicine, Vrije Universiteit Brussel, B-1090, Brussels, Belgium
| | | | - Paul Lecoq
- Polytechnic University of Valencia, Spain
| |
Collapse
|
3
|
Krokos G, MacKewn J, Dunn J, Marsden P. A review of PET attenuation correction methods for PET-MR. EJNMMI Phys 2023; 10:52. [PMID: 37695384 PMCID: PMC10495310 DOI: 10.1186/s40658-023-00569-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Despite being thirteen years since the installation of the first PET-MR system, the scanners constitute a very small proportion of the total hybrid PET systems installed. This is in stark contrast to the rapid expansion of the PET-CT scanner, which quickly established its importance in patient diagnosis within a similar timeframe. One of the main hurdles is the development of an accurate, reproducible and easy-to-use method for attenuation correction. Quantitative discrepancies in PET images between the manufacturer-provided MR methods and the more established CT- or transmission-based attenuation correction methods have led the scientific community in a continuous effort to develop a robust and accurate alternative. These can be divided into four broad categories: (i) MR-based, (ii) emission-based, (iii) atlas-based and the (iv) machine learning-based attenuation correction, which is rapidly gaining momentum. The first is based on segmenting the MR images in various tissues and allocating a predefined attenuation coefficient for each tissue. Emission-based attenuation correction methods aim in utilising the PET emission data by simultaneously reconstructing the radioactivity distribution and the attenuation image. Atlas-based attenuation correction methods aim to predict a CT or transmission image given an MR image of a new patient, by using databases containing CT or transmission images from the general population. Finally, in machine learning methods, a model that could predict the required image given the acquired MR or non-attenuation-corrected PET image is developed by exploiting the underlying features of the images. Deep learning methods are the dominant approach in this category. Compared to the more traditional machine learning, which uses structured data for building a model, deep learning makes direct use of the acquired images to identify underlying features. This up-to-date review goes through the literature of attenuation correction approaches in PET-MR after categorising them. The various approaches in each category are described and discussed. After exploring each category separately, a general overview is given of the current status and potential future approaches along with a comparison of the four outlined categories.
Collapse
Affiliation(s)
- Georgios Krokos
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK.
| | - Jane MacKewn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Joel Dunn
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| | - Paul Marsden
- School of Biomedical Engineering and Imaging Sciences, The PET Centre at St Thomas' Hospital London, King's College London, 1st Floor Lambeth Wing, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
4
|
Koole M, Armstrong I, Krizsan AK, Stromvall A, Visvikis D, Sattler B, Nekolla SG, Dickson J. EANM guidelines for PET-CT and PET-MR routine quality control. Z Med Phys 2023; 33:103-113. [PMID: 36167600 PMCID: PMC10068535 DOI: 10.1016/j.zemedi.2022.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/25/2022] [Indexed: 01/29/2023]
Abstract
We present guidelines by the European Association of Nuclear Medicine (EANM) for routine quality control (QC) of PET-CT and PET-MR systems. These guidelines are partially based on the current EANM guidelines for routine quality control of Nuclear Medicine instrumentation but focus more on the inherent multimodal aspect of the current, state-of-the-art PET-CT and PET-MR scanners. We briefly discuss the regulatory context put forward by the International Electrotechnical Commission (IEC) and European Commission (EC) and consider relevant guidelines and recommendations by other societies and professional organizations. As such, a comprehensive overview of recommended quality control procedures is provided to ensure the optimal operational status of a PET system, integrated with either a CT or MR system. In doing so, we also discuss the rationale of the different tests, advice on the frequency of each test and present the relevant MR and CT tests for an integrated system. In addition, we recommend a scheme of preventive actions to avoid QC tests from drifting out of the predefined range of acceptable performance values such that an optimal performance of the PET system is maintained for routine clinical use.
Collapse
Affiliation(s)
- Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Belgium.
| | - Ian Armstrong
- Nuclear Medicine, Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | | | - Anne Stromvall
- Radiation Physics, Department of Radiation Sciences, Umeå universitet, Umeå, Sweden
| | | | - Bernhard Sattler
- Department of Nuclear Medicine, University Medical Centre Leipzig, Leipzig, Germany
| | - Stephan G Nekolla
- Nuklearmedizinische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, München, Germany
| | - John Dickson
- Institute of Nuclear Medicine, University College London Hospital, London, United Kingdom
| | | |
Collapse
|
5
|
Bailly P, Bouzerar R, Galan R, Meyer ME. Phantom study of an in-house amplitude-gating respiratory method with silicon photomultiplier technology positron emission tomography/computed tomography. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 221:106907. [PMID: 35660941 DOI: 10.1016/j.cmpb.2022.106907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
PURPOSE The objective of this phantom study was to determine whether breathing-synchronized, silicon photomultiplier (SiPM)-based PET/CT has a suitable acquisition time for routine clinical use. METHODS Acquisitions were performed in list mode on a 4-ring SiPM-based PET/CT system. The experimental setup consisted of an external respiratory tracking device placed on a commercial dynamic thorax phantom containing a sphere filled with [F-18]-fluorodeoxyglucose. Three-dimensional sinusoidal motion was imposed on the sphere. Data were processed using frequency binning and amplitude binning (the "DMI" and "OFFLINE" methods, respectively). PET sinograms were reconstructed with a Bayesian penalized likelihood algorithm. RESULTS Respiratory gating from a 150‑sec acquisition was successful. The DMI and OFFLINE methods gave similar activity profiles but both were slightly shifted in space; the latter profile was closest to the reference acquisition. CONCLUSION With SiPM PET/CT systems, the amplitude-based processing of breathing-synchronized data is likely to be feasible in routine clinical practice.
Collapse
Affiliation(s)
- Pascal Bailly
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France.
| | - Roger Bouzerar
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Romain Galan
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| | - Marc-Etienne Meyer
- Nuclear Medicine Department, Amiens University Medical Center, Amiens, France; Jules Verne University of Picardie, Amiens, France; Department of Nuclear Medicine, Amiens University Hospital, Amiens, France
| |
Collapse
|
6
|
Schaart DR, Schramm G, Nuyts J, Surti S. Time of Flight in Perspective: Instrumental and Computational Aspects of Time Resolution in Positron Emission Tomography. IEEE TRANSACTIONS ON RADIATION AND PLASMA MEDICAL SCIENCES 2021; 5:598-618. [PMID: 34553105 PMCID: PMC8454900 DOI: 10.1109/trpms.2021.3084539] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The first time-of-flight positron emission tomography (TOF-PET) scanners were developed as early as in the 1980s. However, the poor light output and low detection efficiency of TOF-capable detectors available at the time limited any gain in image quality achieved with these TOF-PET scanners over the traditional non-TOF PET scanners. The discovery of LSO and other Lu-based scintillators revived interest in TOF-PET and led to the development of a second generation of scanners with high sensitivity and spatial resolution in the mid-2000s. The introduction of the silicon photomultiplier (SiPM) has recently yielded a third generation of TOF-PET systems with unprecedented imaging performance. Parallel to these instrumentation developments, much progress has been made in the development of image reconstruction algorithms that better utilize the additional information provided by TOF. Overall, the benefits range from a reduction in image variance (SNR increase), through allowing joint estimation of activity and attenuation, to better reconstructing data from limited angle systems. In this work, we review these developments, focusing on three broad areas: 1) timing theory and factors affecting the time resolution of a TOF-PET system; 2) utilization of TOF information for improved image reconstruction; and 3) quantification of the benefits of TOF compared to non-TOF PET. Finally, we offer a brief outlook on the TOF-PET developments anticipated in the short and longer term. Throughout this work, we aim to maintain a clinically driven perspective, treating TOF as one of multiple (and sometimes competitive) factors that can aid in the optimization of PET imaging performance.
Collapse
Affiliation(s)
- Dennis R Schaart
- Section Medical Physics & Technology, Radiation Science and Technology Department, Delft University of Technology, 2629 JB Delft, The Netherlands
| | - Georg Schramm
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, 3000 Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Division of Nuclear Medicine, KU/UZ Leuven, 3000 Leuven, Belgium
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
7
|
van Aalst J, Devrome M, Van Weehaeghe D, Rezaei A, Radwan A, Schramm G, Ceccarini J, Sunaert S, Koole M, Van Laere K. Regional glucose metabolic decreases with ageing are associated with microstructural white matter changes: a simultaneous PET/MR study. Eur J Nucl Med Mol Imaging 2021; 49:664-680. [PMID: 34398271 DOI: 10.1007/s00259-021-05518-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 08/02/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE Human ageing is associated with a regional reduction in cerebral neuronal activity as assessed by numerous studies on brain glucose metabolism and perfusion, grey matter (GM) density and white matter (WM) integrity. As glucose metabolism may impact energetics to maintain myelin integrity, but changes in functional connectivity may also alter regional metabolism, we conducted a cross-sectional simultaneous FDG PET/MR study in a large cohort of healthy volunteers with a wide age range, to directly assess the underlying associations between reduced glucose metabolism, GM atrophy and decreased WM integrity in a single ageing cohort. METHODS In 94 healthy subjects between 19.9 and 82.5 years (mean 50.1 ± 17.1; 47 M/47F, MMSE ≥ 28), simultaneous FDG-PET, structural MR and diffusion tensor imaging (DTI) were performed. Voxel-wise associations between age and grey matter (GM) density, RBV partial-volume corrected (PVC) glucose metabolism, white matter (WM) fractional anisotropy (FA) and mean diffusivity (MD), and age were assessed. Clusters representing changes in glucose metabolism correlating significantly with ageing were used as seed regions for tractography. Both linear and quadratic ageing models were investigated. RESULTS An expected age-related reduction in GM density was observed bilaterally in the frontal, lateral and medial temporal cortex, striatum and cerebellum. After PVC, relative FDG uptake was negatively correlated with age in the inferior and midfrontal, cingulate and parietal cortex and subcortical regions, bilaterally. FA decreased with age throughout the entire brain WM. Four white matter tracts were identified connecting brain regions with declining glucose metabolism with age. Within these, relative FDG uptake in both origin and target clusters correlated positively with FA (0.32 ≤ r ≤ 0.71) and negatively with MD (- 0.75 ≤ r ≤ - 0.41). CONCLUSION After appropriate PVC, we demonstrated that regional cerebral glucose metabolic declines with age and that these changes are related to microstructural changes in the interconnecting WM tracts. The temporal course and potential causality between ageing effects on glucose metabolism and WM integrity should be further investigated in longitudinal cohort PET/MR studies.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Martijn Devrome
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Ahmed Radwan
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Radiology, University Hospitals Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium.
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium.
- UZ Leuven, Campus Gasthuisberg, Nucleaire Geneeskunde, E901, Herestraat 49, BE-3000 , Leuven, Belgium.
| |
Collapse
|
8
|
Meikle SR, Sossi V, Roncali E, Cherry SR, Banati R, Mankoff D, Jones T, James M, Sutcliffe J, Ouyang J, Petibon Y, Ma C, El Fakhri G, Surti S, Karp JS, Badawi RD, Yamaya T, Akamatsu G, Schramm G, Rezaei A, Nuyts J, Fulton R, Kyme A, Lois C, Sari H, Price J, Boellaard R, Jeraj R, Bailey DL, Eslick E, Willowson KP, Dutta J. Quantitative PET in the 2020s: a roadmap. Phys Med Biol 2021; 66:06RM01. [PMID: 33339012 PMCID: PMC9358699 DOI: 10.1088/1361-6560/abd4f7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Positron emission tomography (PET) plays an increasingly important role in research and clinical applications, catalysed by remarkable technical advances and a growing appreciation of the need for reliable, sensitive biomarkers of human function in health and disease. Over the last 30 years, a large amount of the physics and engineering effort in PET has been motivated by the dominant clinical application during that period, oncology. This has led to important developments such as PET/CT, whole-body PET, 3D PET, accelerated statistical image reconstruction, and time-of-flight PET. Despite impressive improvements in image quality as a result of these advances, the emphasis on static, semi-quantitative 'hot spot' imaging for oncologic applications has meant that the capability of PET to quantify biologically relevant parameters based on tracer kinetics has not been fully exploited. More recent advances, such as PET/MR and total-body PET, have opened up the ability to address a vast range of new research questions, from which a future expansion of applications and radiotracers appears highly likely. Many of these new applications and tracers will, at least initially, require quantitative analyses that more fully exploit the exquisite sensitivity of PET and the tracer principle on which it is based. It is also expected that they will require more sophisticated quantitative analysis methods than those that are currently available. At the same time, artificial intelligence is revolutionizing data analysis and impacting the relationship between the statistical quality of the acquired data and the information we can extract from the data. In this roadmap, leaders of the key sub-disciplines of the field identify the challenges and opportunities to be addressed over the next ten years that will enable PET to realise its full quantitative potential, initially in research laboratories and, ultimately, in clinical practice.
Collapse
Affiliation(s)
- Steven R Meikle
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Canada
| | - Emilie Roncali
- Department of Biomedical Engineering, University of California, Davis, United States of America
| | - Simon R Cherry
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Richard Banati
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Brain and Mind Centre, The University of Sydney, Australia
- Australian Nuclear Science and Technology Organisation, Sydney, Australia
| | - David Mankoff
- Department of Radiology, University of Pennsylvania, United States of America
| | - Terry Jones
- Department of Radiology, University of California, Davis, United States of America
| | - Michelle James
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), CA, United States of America
- Department of Neurology and Neurological Sciences, Stanford University, CA, United States of America
| | - Julie Sutcliffe
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Internal Medicine, University of California, Davis, CA, United States of America
| | - Jinsong Ouyang
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Yoann Petibon
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Suleman Surti
- Department of Radiology, University of Pennsylvania, United States of America
| | - Joel S Karp
- Department of Radiology, University of Pennsylvania, United States of America
| | - Ramsey D Badawi
- Department of Biomedical Engineering, University of California, Davis, United States of America
- Department of Radiology, University of California, Davis, United States of America
| | - Taiga Yamaya
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Go Akamatsu
- National Institute of Radiological Sciences (NIRS), National Institutes for Quantum and Radiological Science and Technology (QST), Chiba, Japan
| | - Georg Schramm
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Ahmadreza Rezaei
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Johan Nuyts
- Department of Imaging and Pathology, Nuclear Medicine & Molecular imaging, KU Leuven, Belgium
| | - Roger Fulton
- Brain and Mind Centre, The University of Sydney, Australia
- Department of Medical Physics, Westmead Hospital, Sydney, Australia
| | - André Kyme
- Brain and Mind Centre, The University of Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering and IT, The University of Sydney, Australia
| | - Cristina Lois
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, United States of America
| | - Hasan Sari
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Julie Price
- Department of Radiology, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
- Athinoula A. Martinos Center, Massachusetts General Hospital & Harvard Medical School, Boston, MA, United States of America
| | - Ronald Boellaard
- Radiology and Nuclear Medicine, Cancer Center Amsterdam, Amsterdam University Medical Center, location VUMC, Netherlands
| | - Robert Jeraj
- Departments of Medical Physics, Human Oncology and Radiology, University of Wisconsin, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Slovenia
| | - Dale L Bailey
- Sydney School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Australia
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Enid Eslick
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
| | - Kathy P Willowson
- Department of Nuclear Medicine, Royal North Shore Hospital, Sydney, Australia
- Faculty of Science, The University of Sydney, Australia
| | - Joyita Dutta
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, United States of America
| |
Collapse
|
9
|
Deng Z, Deng Y, Chen G. Design and Evaluation of LYSO/SiPM LIGHTENING PET Detector with DTI Sampling Method. SENSORS (BASEL, SWITZERLAND) 2020; 20:E5820. [PMID: 33076244 PMCID: PMC7650676 DOI: 10.3390/s20205820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/03/2020] [Accepted: 10/12/2020] [Indexed: 05/08/2023]
Abstract
Positron emission tomography (PET) has a wide range of applications in the treatment and prevention of major diseases owing to its high sensitivity and excellent resolution. However, there is still much room for optimization in the readout circuit and fast pulse sampling to further improve the performance of the PET scanner. In this work, a LIGHTENING® PET detector using a 13 × 13 lutetium-yttrium oxyorthosilicate (LYSO) crystal array read out by a 6 × 6 silicon photomultiplier (SiPM) array was developed. A novel sampling method, referred to as the dual time interval (DTI) method, is therefore proposed to realize digital acquisition of fast scintillation pulse. A semi-cut light guide was designed, which greatly improves the resolution of the edge region of the crystal array. The obtained flood histogram shown that all the 13 × 13 crystal pixels can be clearly discriminated. The optimum operating conditions for the detector were obtained by comparing the flood histogram quality under different experimental conditions. An average energy resolution (FWHM) of 14.3% and coincidence timing resolution (FWHM) of 972 ps were measured. The experimental results demonstrated that the LIGHTENING® PET detector achieves extremely high resolution which is suitable for the development of a high performance time-of-flight PET scanner.
Collapse
Affiliation(s)
- Zhenzhou Deng
- School of Information Engineering, Nanchang University, Nanchang 330031, China; (Y.D.); (G.C.)
| | | | | |
Collapse
|
10
|
van Aalst J, Ceccarini J, Schramm G, Van Weehaeghe D, Rezaei A, Demyttenaere K, Sunaert S, Van Laere K. Long-term Ashtanga yoga practice decreases medial temporal and brainstem glucose metabolism in relation to years of experience. EJNMMI Res 2020; 10:50. [PMID: 32410000 PMCID: PMC7225240 DOI: 10.1186/s13550-020-00636-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
Background Yoga is increasingly popular worldwide with several physical and mental benefits, but the underlying neurobiology remains unclear. Whereas many studies have focused on pure meditational aspects, the triad of yoga includes meditation, postures, and breathing. We conducted a cross-sectional study comparing experienced yoga practitioners to yoga-naive healthy subjects using a multiparametric 2 × 2 design with simultaneous positron emission tomography/magnetic resonance (PET/MR) imaging. Methods 18F-FDG PET, morphometric and diffusion tensor imaging, resting state fMRI, and MR spectroscopy were acquired in 10 experienced (4.8 ± 2.3 years of regular yoga experience) yoga practitioners and 15 matched controls in rest and after a single practice (yoga practice and physical exercise, respectively). Results In rest, decreased regional glucose metabolism in the medial temporal cortex, striatum, and brainstem was observed in yoga practitioners compared to controls (p < 0.0001), with a significant inverse correlation of resting parahippocampal and brainstem metabolism with years of regular yoga practice (ρ < − 0.63, p < 0.05). A single yoga practice resulted in significant hypermetabolism in the cerebellum (p < 0.0001). None of the MR measures differed, both at rest and after intervention. Conclusions Experienced yoga practitioners show regional long-term decreases in glucose metabolism related to years of practice. To elucidate a potential causality, a prospective longitudinal study in yoga-naive individuals is warranted.
Collapse
Affiliation(s)
- June van Aalst
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Donatienne Van Weehaeghe
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Koen Demyttenaere
- Research Group Psychiatry, Neurosciences, University Psychiatric Center KU Leuven, Leuven, Belgium.,Adult Psychiatry, UZ Leuven, Leuven, Belgium
| | - Stefan Sunaert
- Translational MRI, Imaging and Pathology, KU Leuven, Leuven, Belgium.,Radiology, UZ Leuven, Leuven, Belgium
| | - Koen Van Laere
- Nuclear Medicine and Molecular Imaging, Imaging and Pathology, UZ/KU Leuven, Herestraat 49, 3000, Leuven, Belgium.,Nuclear Medicine, UZ Leuven, Leuven, Belgium
| |
Collapse
|
11
|
Van Weehaeghe D, Babu S, De Vocht J, Zürcher NR, Chew S, Tseng CEJ, Loggia ML, Koole M, Rezaei A, Schramm G, Van Damme P, Hooker JM, Van Laere K, Atassi N. Moving Toward Multicenter Therapeutic Trials in Amyotrophic Lateral Sclerosis: Feasibility of Data Pooling Using Different Translocator Protein PET Radioligands. J Nucl Med 2020; 61:1621-1627. [PMID: 32169920 DOI: 10.2967/jnumed.119.241059] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 03/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroinflammation has been implicated in amyotrophic lateral sclerosis (ALS) and can be visualized using translocator protein (TSPO) radioligands. To become a reliable pharmacodynamic biomarker for ALS multicenter trials, TSPO radioligands have some challenges to overcome. We aimed to investigate whether multicenter data pooling of different TSPO tracers (11C-PBR28 and 18F-DPA714) is feasible, after validation of an established 11C-PBR28 PET pseudo reference analysis technique for 18F-DPA714. Methods: Seven ALS patients from Belgium (58.9 ± 6.7 y old, 5 men and 2 women), 8 healthy volunteers from Belgium (52.1 ± 15.2 y old, 3 men and 5 women), 7 ALS patients from the United States (53.4 ± 9.8 y old, 5 men and 2 women), and 7 healthy volunteers from the United States (54.6 ± 9.6 y old, 4 men and 3 women) from a previously published study underwent dynamic 18F-DPA714 (Leuven, Belgium) or 11C-PBR28 (Boston, Massachusetts) PET/MRI. For 18F-DPA714, maps of total volume of distribution (VT) were compared with SUV ratio (SUVR) images from 40 to 60 min after injection (SUVR40-60) calculated using the pseudo reference regions cerebellum, occipital cortex, and whole brain (WB) without ventricles. For 11C-PBR28, SUVR images from 60 to 90 min after injection using the WB without ventricles were calculated. Results: In line with previous studies, increased 18F-DPA714 uptake (17.0% ± 5.6%) in primary motor cortices was observed in ALS subjects, as measured by both VT and SUVR40-60 approaches. The highest sensitivity was found for SUVR calculated using the WB without ventricles (average cluster, 21.6% ± 0.1%). 18F-DPA714 VT ratio was highly correlated with the SUVR40-60 (r > 0.8, P < 0.001). A similar pattern of increased uptake (average cluster, 20.5% ± 0.5%) in the primary motor cortices was observed in ALS subjects for 11C-PBR28 SUVR calculated using the WB without ventricles. Analysis of the 18F-DPA714 and 11C-PBR28 data together resulted in a more extensive pattern of significantly increased glial activation bilaterally in the primary motor cortices. Conclusion: The same pseudo reference region analysis technique for 11C-PBR28 PET can be extended toward 18F-DPA714 PET. Therefore, in ALS, standardized analysis across these 2 tracers enables pooling of TSPO PET data across multiple centers and increases the power of TSPO as a biomarker for future therapeutic trials.
Collapse
Affiliation(s)
- Donatienne Van Weehaeghe
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Suma Babu
- Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Joke De Vocht
- Department of Neurology, University Hospital Leuven, and Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium; and
| | - Nicole R Zürcher
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Sheena Chew
- Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Chieh-En J Tseng
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Marco L Loggia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Michel Koole
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Ahmadreza Rezaei
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Georg Schramm
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospital Leuven, and Laboratory of Neurobiology, Center for Brain and Disease Research, VIB, Leuven, Belgium; and
| | - Jacob M Hooker
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Koen Van Laere
- Nuclear Medicine Subdivision, Department of Imaging and Pathology, University Hospital Leuven, Leuven, Belgium
| | - Nazem Atassi
- Department of Neurology, Sean M. Healey and AMG Center for ALS, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
12
|
Delva A, Van Weehaeghe D, van Aalst J, Ceccarini J, Koole M, Baete K, Nuyts J, Vandenberghe W, Van Laere K. Quantification and discriminative power of 18F-FE-PE2I PET in patients with Parkinson's disease. Eur J Nucl Med Mol Imaging 2019; 47:1913-1926. [PMID: 31776633 DOI: 10.1007/s00259-019-04587-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 10/17/2019] [Indexed: 10/25/2022]
Abstract
RATIONALE Dopamine transporter (DAT) imaging is an important adjunct in the diagnostic workup of patients with Parkinsonism. 18F-FE-PE2I is a suitable PET radioligand for DAT quantification and imaging with good pharmacokinetics. The aim of this study was to determine a clinical optimal simplified reference tissue-based image acquisition protocol and to compare the discriminatory value and effect size for 18F-FE-PE2I to that for 123I-FP-CIT scan currently used in clinical practice. METHODS Nine patients with early Parkinson's disease (PD, 64.3 ± 6.8 years, 3M), who had previously undergone a 123I-FP-CIT scan as part of their diagnostic workup, and 34 healthy volunteers (HV, 47.7 ± 16.8 years, 13M) underwent a 60-min dynamic 18F-FE-PE2I PET-MR scan on a GE Signa 3T PET-MR. Based on dynamic data and MR-based VOI delineation, BPND, semi-quantitative uptake ratio and SUVR[t1-t2] images were calculated using either occipital cortex or cerebellum as reference region. For start-and-end time of the SUVR interval, three time frames [t1-t2] were investigated: [15-40] min, [40-60] min, and [50-60] min postinjection. Data for putamen (PUT) and caudate nucleus-putamen ratio (CPR) were compared in terms of quantification bias versus BPND and discriminative power. RESULTS Using occipital cortex as reference region resulted in smaller bias of SUVR with respect to BPND + 1 and higher correlation between SUVR and BPND + 1 compared with using cerebellum, irrespective of SUVR [t1-t2] interval. Smallest bias was observed with the [15-40]-min time window, in accordance with previous literature. The correlation between BPND + 1 and SUVR was slightly better for the late time windows. Discriminant analysis between PD and HV using both PUT and CPR SUVRs showed an accuracy of ≥ 90%, for both reference regions and all studied time windows. Semi-quantitative 123I-FP-CIT and 18F-FE-PE2I values and relative decrease in the striatum for patients were highly correlated, with a higher effect size for 18F-FE-PE2I for PUT and CPR SUVR. CONCLUSION 18F-FE-PE2I is a suitable radioligand for in vivo DAT imaging with high discriminative power between early PD and healthy controls. Whereas a [15-40]-min window has lowest bias with respect to BPND, a [50-60]-min time window at pseudoequilibrium can be advocated in terms of clinical feasibility with optimal discriminative power. The occipital cortex may be slightly preferable as reference region because of the higher time stability, stronger correlation of SUVR with BPND + 1, and lower bias. Moreover, the data suggest that the diagnostic accuracy of a 10-min static 18F-FE-PE2I scan is non-inferior compared with 123I-FP-CIT scan used in standard clinical practice.
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurosciences, KU Leuven, Leuven, Belgium. .,Department of Neurology, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - June van Aalst
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Jenny Ceccarini
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Michel Koole
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Kristof Baete
- Division of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Johan Nuyts
- Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium.,Department of Neurology, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Koen Van Laere
- Division of Nuclear Medicine, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium.,Nuclear Medicine and Molecular Imaging, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
| |
Collapse
|