1
|
Zhang J, Guo Y, Zhou L, Wang L, Wu W, Shen D. Constructing hierarchical attentive functional brain networks for early AD diagnosis. Med Image Anal 2024; 94:103137. [PMID: 38507893 DOI: 10.1016/j.media.2024.103137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/22/2024]
Abstract
Analyzing functional brain networks (FBN) with deep learning has demonstrated great potential for brain disorder diagnosis. The conventional construction of FBN is typically conducted at a single scale with a predefined brain region atlas. However, numerous studies have identified that the structure and function of the brain are hierarchically organized in nature. This urges the need of representing FBN in a hierarchical manner for more effective analysis of the complementary diagnostic insights at different scales. To this end, this paper proposes to build hierarchical FBNs adaptively within the Transformer framework. Specifically, a sparse attention-based node-merging module is designed to work alongside the conventional network feature extraction modules in each layer. The proposed module generates coarser nodes for further FBN construction and analysis by combining fine-grained nodes. By stacking multiple such layers, a hierarchical representation of FBN can be adaptively learned in an end-to-end manner. The hierarchical structure can not only integrate the complementary information from multiscale FBN for joint analysis, but also reduce the model complexity due to decreasing node sizes. Moreover, this paper argues that the nodes defined by the existing atlases are not necessarily the optimal starting level to build FBN hierarchy and exploring finer nodes may further enrich the FBN representation. In this regard, each predefined node in an atlas is split into multiple sub-nodes, overcoming the scale limitation of the existing atlases. Extensive experiments conducted on various data sets consistently demonstrate the superior performance of the proposed method over the competing methods.
Collapse
Affiliation(s)
- Jianjia Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, China.
| | - Yunan Guo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, China.
| | - Luping Zhou
- School of Electrical and Computer Engineering, University of Sydney, Australia.
| | - Lei Wang
- School of Computing and Information Technology, University of Wollongong, Australia.
| | - Weiwen Wu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, China.
| | - Dinggang Shen
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, China; Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China; Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
3
|
Tang H, Ma G, Zhang Y, Ye K, Guo L, Liu G, Huang Q, Wang Y, Ajilore O, Leow AD, Thompson PM, Huang H, Zhan L. A comprehensive survey of complex brain network representation. META-RADIOLOGY 2023; 1:100046. [PMID: 39830588 PMCID: PMC11741665 DOI: 10.1016/j.metrad.2023.100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent years have shown great merits in utilizing neuroimaging data to understand brain structural and functional changes, as well as its relationship to different neurodegenerative diseases and other clinical phenotypes. Brain networks, derived from different neuroimaging modalities, have attracted increasing attention due to their potential to gain system-level insights to characterize brain dynamics and abnormalities in neurological conditions. Traditional methods aim to pre-define multiple topological features of brain networks and relate these features to different clinical measures or demographical variables. With the enormous successes in deep learning techniques, graph learning methods have played significant roles in brain network analysis. In this survey, we first provide a brief overview of neuroimaging-derived brain networks. Then, we focus on presenting a comprehensive overview of both traditional methods and state-of-the-art deep-learning methods for brain network mining. Major models, and objectives of these methods are reviewed within this paper. Finally, we discuss several promising research directions in this field.
Collapse
Affiliation(s)
- Haoteng Tang
- Department of Computer Science, College of Engineering and Computer Science, University of Texas Rio Grande Valley, 1201 W University Dr, Edinburg, 78539, TX, USA
| | - Guixiang Ma
- Intel Labs, 2111 NE 25th Ave, Hillsboro, 97124, OR, USA
| | - Yanfu Zhang
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Kai Ye
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Lei Guo
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Guodong Liu
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| | - Qi Huang
- Department of Radiology, Utah Center of Advanced Imaging, University of Utah, 729 Arapeen Drive, Salt Lake City, 84108, UT, USA
| | - Yalin Wang
- School of Computing and Augmented Intelligence, Arizona State University, 699 S Mill Ave., Tempe, 85281, AZ, USA
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Alex D. Leow
- Department of Psychiatry, University of Illinois Chicago, 1601 W. Taylor St., Chicago, 60612, IL, USA
| | - Paul M. Thompson
- Department of Neurology, University of Southern California, 2001 N. Soto St., Los Angeles, 90032, CA, USA
| | - Heng Huang
- Department of Computer Science, University of Maryland, 8125 Paint Branch Dr, College Park, 20742, MD, USA
| | - Liang Zhan
- Department of Electrical and Computer Engineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara St., Pittsburgh, 15261, PA, USA
| |
Collapse
|
4
|
Wang Q, Wu M, Fang Y, Wang W, Qiao L, Liu M. Modularity-Constrained Dynamic Representation Learning for Interpretable Brain Disorder Analysis with Functional MRI. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION : MICCAI ... INTERNATIONAL CONFERENCE ON MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION 2023; 14220:46-56. [PMID: 38390374 PMCID: PMC10883232 DOI: 10.1007/978-3-031-43907-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Resting-state functional MRI (rs-fMRI) is increasingly used to detect altered functional connectivity patterns caused by brain disorders, thereby facilitating objective quantification of brain pathology. Existing studies typically extract fMRI features using various machine/deep learning methods, but the generated imaging biomarkers are often challenging to interpret. Besides, the brain operates as a modular system with many cognitive/topological modules, where each module contains subsets of densely inter-connected regions-of-interest (ROIs) that are sparsely connected to ROIs in other modules. However, current methods cannot effectively characterize brain modularity. This paper proposes a modularity-constrained dynamic representation learning (MDRL) framework for interpretable brain disorder analysis with rs-fMRI. The MDRL consists of 3 parts: (1) dynamic graph construction, (2) modularity-constrained spatiotemporal graph neural network (MSGNN) for dynamic feature learning, and (3) prediction and biomarker detection. In particular, the MSGNN is designed to learn spatiotemporal dynamic representations of fMRI, constrained by 3 functional modules (i.e., central executive network, salience network, and default mode network). To enhance discriminative ability of learned features, we encourage the MSGNN to reconstruct network topology of input graphs. Experimental results on two public and one private datasets with a total of 1,155 subjects validate that our MDRL outperforms several state-of-the-art methods in fMRI-based brain disorder analysis. The detected fMRI biomarkers have good explainability and can be potentially used to improve clinical diagnosis.
Collapse
Affiliation(s)
- Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mengqi Wu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Yuqi Fang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Wei Wang
- Department of Radiology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Shandong 252000, China
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Fu CHY, Erus G, Fan Y, Antoniades M, Arnone D, Arnott SR, Chen T, Choi KS, Fatt CC, Frey BN, Frokjaer VG, Ganz M, Garcia J, Godlewska BR, Hassel S, Ho K, McIntosh AM, Qin K, Rotzinger S, Sacchet MD, Savitz J, Shou H, Singh A, Stolicyn A, Strigo I, Strother SC, Tosun D, Victor TA, Wei D, Wise T, Woodham RD, Zahn R, Anderson IM, Deakin JFW, Dunlop BW, Elliott R, Gong Q, Gotlib IH, Harmer CJ, Kennedy SH, Knudsen GM, Mayberg HS, Paulus MP, Qiu J, Trivedi MH, Whalley HC, Yan CG, Young AH, Davatzikos C. AI-based dimensional neuroimaging system for characterizing heterogeneity in brain structure and function in major depressive disorder: COORDINATE-MDD consortium design and rationale. BMC Psychiatry 2023; 23:59. [PMID: 36690972 PMCID: PMC9869598 DOI: 10.1186/s12888-022-04509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Efforts to develop neuroimaging-based biomarkers in major depressive disorder (MDD), at the individual level, have been limited to date. As diagnostic criteria are currently symptom-based, MDD is conceptualized as a disorder rather than a disease with a known etiology; further, neural measures are often confounded by medication status and heterogeneous symptom states. METHODS We describe a consortium to quantify neuroanatomical and neurofunctional heterogeneity via the dimensions of novel multivariate coordinate system (COORDINATE-MDD). Utilizing imaging harmonization and machine learning methods in a large cohort of medication-free, deeply phenotyped MDD participants, patterns of brain alteration are defined in replicable and neurobiologically-based dimensions and offer the potential to predict treatment response at the individual level. International datasets are being shared from multi-ethnic community populations, first episode and recurrent MDD, which are medication-free, in a current depressive episode with prospective longitudinal treatment outcomes and in remission. Neuroimaging data consist of de-identified, individual, structural MRI and resting-state functional MRI with additional positron emission tomography (PET) data at specific sites. State-of-the-art analytic methods include automated image processing for extraction of anatomical and functional imaging variables, statistical harmonization of imaging variables to account for site and scanner variations, and semi-supervised machine learning methods that identify dominant patterns associated with MDD from neural structure and function in healthy participants. RESULTS We are applying an iterative process by defining the neural dimensions that characterise deeply phenotyped samples and then testing the dimensions in novel samples to assess specificity and reliability. Crucially, we aim to use machine learning methods to identify novel predictors of treatment response based on prospective longitudinal treatment outcome data, and we can externally validate the dimensions in fully independent sites. CONCLUSION We describe the consortium, imaging protocols and analytics using preliminary results. Our findings thus far demonstrate how datasets across many sites can be harmonized and constructively pooled to enable execution of this large-scale project.
Collapse
Affiliation(s)
- Cynthia H Y Fu
- Department of Psychological Sciences, University of East London, London, UK.
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK.
| | - Guray Erus
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Mathilde Antoniades
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Danilo Arnone
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- Department of Psychiatry and Behavioral Science, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Taolin Chen
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ki Sueng Choi
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Cherise Chin Fatt
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, USA
| | - Benicio N Frey
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Canada
- Mood Disorders Treatment and Research Centre and Women's Health Concerns Clinic, St Joseph's Healthcare Hamilton, Hamilton, Canada
| | - Vibe G Frokjaer
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Psychiatry, Psychiatric Centre Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Jose Garcia
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Beata R Godlewska
- Department of Psychiatry, University of Oxford, Oxford, UK
- Oxford Health NHS Foundation Trust, Warneford Hospital, Oxford, UK
| | - Stefanie Hassel
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Keith Ho
- Department of Psychiatry, University Health Network, Toronto, Canada
| | - Andrew M McIntosh
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Kun Qin
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Susan Rotzinger
- Department of Psychiatry, University Health Network, Toronto, Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Canada
| | - Matthew D Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | | | - Haochang Shou
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE) Center, Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, USA
| | - Ashish Singh
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Aleks Stolicyn
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Irina Strigo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | - Stephen C Strother
- Rotman Research Institute, Baycrest Centre, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Duygu Tosun
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, USA
| | | | - Dongtao Wei
- School of Psychology, Southwest University, Chongqing, China
| | - Toby Wise
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Rachel D Woodham
- Department of Psychological Sciences, University of East London, London, UK
| | - Roland Zahn
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Ian M Anderson
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - J F William Deakin
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Rebecca Elliott
- Division of Neuroscience and Experimental Psychology, University of Manchester, Manchester, UK
| | - Qiyong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, China
| | - Ian H Gotlib
- Department of Psychology, Stanford University, Stanford, USA
| | | | - Sidney H Kennedy
- Department of Psychiatry, University Health Network, Toronto, Canada
- Centre for Depression and Suicide Studies, Unity Health Toronto, Toronto, Canada
- Unity Health Toronto, Toronto, Canada
| | - Gitte M Knudsen
- Neurobiology Research Unit, University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Helen S Mayberg
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Jiang Qiu
- School of Psychology, Southwest University, Chongqing, China
| | - Madhukar H Trivedi
- Department of Psychiatry, Center for Depression Research and Clinical Care, University of Texas Southwestern Medical Center, Dallas, USA
| | - Heather C Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, UK
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Allan H Young
- Centre for Affective Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, Bethlem Royal Hospital, London, UK
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|