1
|
Kumar P, Kedaria D, Mahapatra C, Mohandas M, Chatterjee K. A designer cell culture insert with a nanofibrous membrane toward engineering an epithelial tissue model validated by cellular nanomechanics. NANOSCALE ADVANCES 2021; 3:4714-4725. [PMID: 36134314 PMCID: PMC9419865 DOI: 10.1039/d1na00280e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 07/04/2021] [Indexed: 05/13/2023]
Abstract
Engineered platforms for culturing cells of the skin and other epithelial tissues are useful for the regeneration and development of in vitro tissue models used in drug screening. Recapitulating the biomechanical behavior of the cells is one of the important hallmarks of successful tissue generation on these platforms. The biomechanical behavior of cells profoundly affects the physiological functions of the generated tissue. In this work, a designer nanofibrous cell culture insert (NCCI) device was developed, consisting of a free-hanging polymeric nanofibrous membrane. The free-hanging nanofibrous membrane has a well-tailored architecture, stiffness, and topography to better mimic the extracellular matrix of any soft tissue than conventional, flat tissue culture polystyrene (TCPS) surfaces. Human keratinocytes (HaCaT cells) cultured on the designer NCCIs exhibited a 3D tissue-like phenotype compared to the cells cultured on TCPS. Furthermore, the biomechanical characterization by bio-atomic force microscopy (Bio-AFM) revealed a markedly altered cellular morphology and stiffness of the cellular cytoplasm, nucleus, and cell-cell junctions. The nuclear and cytoplasmic moduli were reduced, while the stiffness of the cellular junctions was enhanced on the NCCI compared to cells on TCPS, which are indicative of the fluidic state and migratory phenotype on the NCCI. These observations were corroborated by immunostaining, which revealed enhanced cell-cell contact along with a higher expression of junction proteins and enhanced migration in a wound-healing assay. Taken together, these results underscore the role of the novel designer NCCI device as an in vitro platform for epithelial cells with several potential applications, including drug testing, disease modeling, and tissue regeneration.
Collapse
Affiliation(s)
- Prasoon Kumar
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela 769008 India
| | - Dhaval Kedaria
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
| | - Chinmaya Mahapatra
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
- School of Chemical Engineering, Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University Suwon 16419 Republic of Korea
| | - Monisha Mohandas
- Centre for BioSystems Science and Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India +91-80-22933408
- Centre for BioSystems Science and Engineering, Indian Institute of Science C.V. Raman Avenue Bangalore 560012 India
| |
Collapse
|
2
|
Lu Z, Wang Z, Li D. Application of atomic force microscope in diagnosis of single cancer cells. BIOMICROFLUIDICS 2020; 14:051501. [PMID: 32922587 PMCID: PMC7474552 DOI: 10.1063/5.0021592] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Changes in mechanical properties of cells are closely related to a variety of diseases. As an advanced technology on the micro/nano scale, atomic force microscopy is the most suitable tool for information acquisition of living cells in human body fluids. AFMs are able to measure and characterize the mechanical properties of cells which can be used as effective markers to distinguish between different cell types and cells in different states (benign or cancerous). Therefore, they can be employed to obtain additional information to that obtained via the traditional biochemistry methods for better identifying and diagnosing cancer cells for humans, proposing better treatment methods and prognosis, and unravelling the pathogenesis of the disease. In this report, we review the use of AFMs in cancerous tissues, organs, and cancer cells cultured in vitro to obtain cellular mechanical properties, demonstrate and summarize the results of AFMs in cancer biology, and look forward to possible future applications and the direction of development.
Collapse
Affiliation(s)
- Zhengcheng Lu
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| | - Zuobin Wang
- Authors to whom correspondence should be addressed: and
| | - Dayou Li
- JR3CN and IRAC, University of Bedfordshire, Luton LU1 3JU, United Kingdom
| |
Collapse
|
3
|
Kwon S, Kim KS. Qualitative analysis of contribution of intracellular skeletal changes to cellular elasticity. Cell Mol Life Sci 2020; 77:1345-1355. [PMID: 31605149 PMCID: PMC11105102 DOI: 10.1007/s00018-019-03328-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/25/2019] [Accepted: 09/30/2019] [Indexed: 01/07/2023]
Abstract
Cells are dynamic structures that continually generate and sustain mechanical forces within their environments. Cells respond to mechanical forces by changing their shape, moving, and differentiating. These reactions are caused by intracellular skeletal changes, which induce changes in cellular mechanical properties such as stiffness, elasticity, viscoelasticity, and adhesiveness. Interdisciplinary research combining molecular biology with physics and mechanical engineering has been conducted to characterize cellular mechanical properties and understand the fundamental mechanisms of mechanotransduction. In this review, we focus on the role of cytoskeletal proteins in cellular mechanics. The specific role of each cytoskeletal protein, including actin, intermediate filaments, and microtubules, on cellular elasticity is summarized along with the effects of interactions between the fibers.
Collapse
Affiliation(s)
- Sangwoo Kwon
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Republic of Korea.
| |
Collapse
|
4
|
Gosenca Matjaž M, Škarabot M, Gašperlin M, Janković B. Lamellar liquid crystals maintain keratinocytes' membrane fluidity: An AFM qualitative and quantitative study. Int J Pharm 2019; 572:118712. [PMID: 31593808 DOI: 10.1016/j.ijpharm.2019.118712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 01/21/2023]
Abstract
Despite extensive investigations of lamellar liquid crystals for dermal application, the effects of these systems at the cellular level are still not well elucidated. The key aim of this study was to determine the elasticity and morphological features of keratinocytes after exposure to a lamellar liquid crystal system (LLCS) using atomic force microscopy (AFM) as the method of choice. Prior to AFM assessment, a cell proliferation test and light plus fluorescence imaging were applied to determine the sub-toxic concentration of LLCS. According to the AFM results, slightly altered morphology was observed in the case of fixed keratinocytes, while an intact morphology was visualized on live cells. From the quantitative study, decreased Young's moduli were determined for fixed cells (i.e., 8.6 vs. 15.2 MPa and 1.3 vs. 2.9 MPa for ethanol or PFA-fixed LLCS-treated vs. control cells, respectively) and live cells (i.e., ranging from 0.6 to 2.8 for LLCS-treated vs. 1.1-4.5 MPa for untreated cells), clearly demonstrating increased cell elasticity. This is related to improved membrane fluidity as a consequence of interactions between the acyl chains of cell membrane phosphatidylcholine and those of LLCS. What seems to be of major importance is that the study confirms the potential clinical relevance of such systems in treatment of aged skin with characteristically more rigid epithelial cells.
Collapse
Affiliation(s)
- Mirjam Gosenca Matjaž
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Miha Škarabot
- Jožef Stefan Institute, Department of Condensed Matter Physics, Jamova cesta 39, Ljubljana, Slovenia
| | - Mirjana Gašperlin
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia
| | - Biljana Janković
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva cesta 7, Ljubljana, Slovenia.
| |
Collapse
|
5
|
Mobasseri SA, Zijl S, Salameti V, Walko G, Stannard A, Garcia-Manyes S, Watt FM. Patterning of human epidermal stem cells on undulating elastomer substrates reflects differences in cell stiffness. Acta Biomater 2019; 87:256-264. [PMID: 30710711 PMCID: PMC6401207 DOI: 10.1016/j.actbio.2019.01.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 01/15/2019] [Accepted: 01/29/2019] [Indexed: 11/27/2022]
Abstract
In human skin the junction between epidermis and dermis undulates, the width and depth of the undulations varying with age and disease. When primary human epidermal keratinocytes are seeded on collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the epidermal-dermal interface, the stem cells become patterned by 24 h, resembling their organisation in living skin. We found that cell density and nuclear height were higher at the base than the tips of the PDMS features. Cells on the tips not only expressed higher levels of the stem cell marker β1 integrin but also had elevated E-cadherin, Desmoglein 3 and F-actin than cells at the base. In contrast, levels of the transcriptional cofactor MAL were higher at the base. AFM measurements established that the Young’s modulus of cells on the tips was lower than on the base or cells on flat substrates. The differences in cell stiffness were dependent on Rho kinase activity and intercellular adhesion. On flat substrates the Young’s modulus of calcium-dependent intercellular junctions was higher than that of the cell body, again dependent on Rho kinase. Cell patterning was influenced by the angle of the slope on undulating substrates. Our observations are consistent with the concept that epidermal stem cell patterning is dependent on mechanical forces exerted at intercellular junctions in response to undulations in the epidermal-dermal interface. Statement of significance In human skin the epidermal-dermal junction undulates and epidermal stem cells are patterned according to their position. We previously created collagen-coated polydimethylsiloxane (PDMS) elastomer substrates that mimic the undulations and provide sufficient topographical information for stem cells to cluster on the tips. Here we show that the stiffness of cells on the tips is lower than cells on the base. The differences in cell stiffness depend on Rho kinase activity and intercellular adhesion. We propose that epidermal stem cell patterning is determined by mechanical forces exerted at intercellular junctions in response to the slope of the undulations.
Collapse
|
6
|
Vielmuth F, Spindler V, Waschke J. Atomic Force Microscopy Provides New Mechanistic Insights into the Pathogenesis of Pemphigus. Front Immunol 2018; 9:485. [PMID: 29643851 PMCID: PMC5883869 DOI: 10.3389/fimmu.2018.00485] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/23/2018] [Indexed: 12/19/2022] Open
Abstract
Autoantibodies binding to the extracellular domains of desmoglein (Dsg) 3 and 1 are critical in the pathogenesis of pemphigus by mechanisms leading to impaired function of desmosomes and blister formation in the epidermis and mucous membranes. Desmosomes are highly organized protein complexes which provide strong intercellular adhesion. Desmosomal cadherins such as Dsgs, proteins of the cadherin superfamily which interact via their extracellular domains in Ca2+-dependent manner, are the transmembrane adhesion molecules clustered within desmosomes. Investigations on pemphigus cover a wide range of experimental approaches including biophysical methods. Especially atomic force microscopy (AFM) has recently been applied increasingly because it allows the analysis of native materials such as cultured cells and tissues under near-physiological conditions. AFM provides information about the mechanical properties of the sample together with detailed interaction analyses of adhesion molecules. With AFM, it was recently demonstrated that autoantibodies directly inhibit Dsg interactions on the surface of living keratinocytes, a phenomenon which has long been considered the main mechanism causing loss of cell cohesion in pemphigus. In addition, AFM allows to study how signaling pathways altered in pemphigus control binding properties of Dsgs. More general, AFM and other biophysical studies recently revealed the importance of keratin filaments for regulation of Dsg binding and keratinocyte mechanical properties. In this mini-review, we reevaluate AFM studies in pemphigus and keratinocyte research, recapitulate what is known about the interaction mechanisms of desmosomal cadherins and discuss the advantages and limitations of AFM in these regards.
Collapse
Affiliation(s)
| | | | - Jens Waschke
- Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
7
|
Viela F, Navarro-Baena I, Hernández JJ, Osorio MR, Rodríguez I. Moth-eye mimetic cytocompatible bactericidal nanotopography: a convergent design. BIOINSPIRATION & BIOMIMETICS 2018; 13:026011. [PMID: 29350201 DOI: 10.1088/1748-3190/aaa903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The rapid emergence of antibiotic resistant bacteria has prompted the need for radically different approaches to combat bacterial infections. Among these, bioinspired surface topographies have emerged as an effective sustainable strategy to deter bacterial infection. This study demonstrates the bactericidal activity and cytocompatibility of the moth-eye mimetic topography produced by thermal polymer nanoimprinting. The moth-eye topography was found to have bactericidal capabilities against Gram negative and Gram positive bacteria. Electron microscopy imaging revealed the bactericidal effect caused by mechanical rupture of the bacteria wall inflicted by the topography on the adhered cells. The cytocompatibility of the surfaces was evidenced by assessing the proliferation and morphology of keratinocytes cultured on the nanotopography. The technology meets important needs in medical implant technology for materials that not only have good biocompatibility but also antibacterial properties for reducing the risk of infections and related health complications.
Collapse
Affiliation(s)
- Felipe Viela
- Madrid Institute for Advanced Studies in Nanoscience (IMDEA Nanoscience), C/Faraday 9, Ciudad Universitaria de Cantoblanco, Madrid 28049, Spain
| | | | | | | | | |
Collapse
|
8
|
Hu B, Leow WR, Amini S, Nai B, Zhang X, Liu Z, Cai P, Li Z, Wu YL, Miserez A, Lim CT, Chen X. Orientational Coupling Locally Orchestrates a Cell Migration Pattern for Re-Epithelialization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1700145. [PMID: 28585393 DOI: 10.1002/adma.201700145] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2017] [Revised: 03/06/2017] [Indexed: 06/07/2023]
Abstract
Re-epithelialization by collective migration of epithelial cells over a heterogeneous environment to restore tissue integrity and functions is critical for development and regeneration. Here, it is reported that the spatial organization of adjacent adherent paths within sparsely distributed extracellular matrix (ECM) has a significant impact on the orientational coupling between cell polarization and collective cell migration. This coupling effect determines the migration pattern for human keratinocytes to regain their cohesion, which impacts the occupancy of epithelial bridge and the migration velocity in wound repair. Statistical studies suggest the converging organization of ECM, in which adjacent paths become closer to each other and finally converge to a junctional point, facilitating collective cell migration mostly within variable ECM organization, as the polarization of the advancing cell sheet is remodeled to align along the direction of cell migration. The findings may help to design implantable ECM to optimize efficient skin regeneration.
Collapse
Affiliation(s)
- Benhui Hu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Wan Ru Leow
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Shahrouz Amini
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Brenda Nai
- Department of Biomedical Engineering, Mechanobiology Institute (MBI), National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xiaoqian Zhang
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhiyuan Liu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Zhuyun Li
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yun-Long Wu
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ali Miserez
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chwee Teck Lim
- Department of Biomedical Engineering, Mechanobiology Institute (MBI), National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Xiaodong Chen
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
9
|
Hung MS, Tsai MF. Investigating the Influence of Anti-Cancer Drugs on the Mechanics of Cells Using AFM. BIONANOSCIENCE 2015. [DOI: 10.1007/s12668-015-0174-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
10
|
Yang R, Song B, Sun Z, Lai KWC, Fung CKM, Patterson KC, Seiffert-Sinha K, Sinha AA, Xi N. Cellular level robotic surgery: Nanodissection of intermediate filaments in live keratinocytes. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2015; 11:137-45. [PMID: 25200612 PMCID: PMC4280342 DOI: 10.1016/j.nano.2014.08.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 08/25/2014] [Accepted: 08/27/2014] [Indexed: 11/29/2022]
Abstract
We present the nanosurgery on the cytoskeleton of live cells using AFM based nanorobotics to achieve adhesiolysis and mimic the effect of pathophysiological modulation of intercellular adhesion. Nanosurgery successfully severs the intermediate filament bundles and disrupts cell-cell adhesion similar to the desmosomal protein disassembly in autoimmune disease, or the cationic modulation of desmosome formation. Our nanomechanical analysis revealed that adhesion loss results in a decrease in cellular stiffness in both cases of biochemical modulation of the desmosome junctions and mechanical disruption of intercellular adhesion, supporting the notion that intercellular adhesion through intermediate filaments anchors the cell structure as focal adhesion does and that intermediate filaments are integral components in cell mechanical integrity. The surgical process could potentially help reveal the mechanism of autoimmune pathology-induced cell-cell adhesion loss as well as its related pathways that lead to cell apoptosis.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Bo Song
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - Zhiyong Sun
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA
| | - King Wai Chiu Lai
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Hong Kong
| | | | - Kevin C Patterson
- College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | | | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, Buffalo, NY, 14203, USA.
| | - Ning Xi
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
11
|
Vielmuth F, Hartlieb E, Kugelmann D, Waschke J, Spindler V. Atomic force microscopy identifies regions of distinct desmoglein 3 adhesive properties on living keratinocytes. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 11:511-20. [PMID: 25510735 DOI: 10.1016/j.nano.2014.10.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/30/2014] [Accepted: 10/19/2014] [Indexed: 11/30/2022]
Abstract
Desmosomes provide strong cell-cell adhesion which is crucial for the integrity of tissues such as the epidermis. However, nothing is known about the distribution and binding properties of desmosomal adhesion molecules on keratinocytes. Here we used atomic force microscopy (AFM) to simultaneously visualize the topography of living human keratinocytes and the distribution and binding properties of the desmosomal adhesion molecule desmoglein 3 (Dsg3). Using recombinant Dsg3 as sensor, binding events were detectable diffusely and in clusters on the cell surface and at areas of cell-cell contact. This was blocked by removing Ca(2+) and by addition of Dsg3-specific antibodies indicating homophilic Dsg3 binding. Binding forces of Dsg3 molecules were lower on the cell surface compared to areas of cell-cell contact. Our data for the first time directly demonstrate the occurrence of Dsg3 molecules outside of desmosomes and show that Dsg3 adhesive properties differ depending on their localization. From the clinical editor: Using atomic force microscopy in the study of keratinocytes, this study directly demonstrates the occurrence of desmoglein 3 molecules outside of desmosomes and reveales that the adhesive properties of these molecules do differ depending on their localization.
Collapse
Affiliation(s)
- Franziska Vielmuth
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Eva Hartlieb
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Daniela Kugelmann
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Jens Waschke
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| | - Volker Spindler
- Institute of Anatomy and Cell Biology, Department I, Ludwig-Maximilians-Universität Munich, Munich, Germany.
| |
Collapse
|
12
|
Fredonnet J, Gasc G, Serre G, Séverac C, Simon M. Topographical and nano-mechanical characterization of native corneocytes using atomic force microscopy. J Dermatol Sci 2014; 75:63-5. [DOI: 10.1016/j.jdermsci.2014.04.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 04/16/2014] [Accepted: 04/19/2014] [Indexed: 11/28/2022]
|
13
|
Vedula SRK, Hirata H, Nai MH, Brugués A, Toyama Y, Trepat X, Lim CT, Ladoux B. Epithelial bridges maintain tissue integrity during collective cell migration. NATURE MATERIALS 2014; 13:87-96. [PMID: 24292420 DOI: 10.1038/nmat3814] [Citation(s) in RCA: 137] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 10/17/2013] [Indexed: 05/22/2023]
Abstract
The ability of skin to act as a barrier is primarily determined by the efficiency of skin cells to maintain and restore its continuity and integrity. In fact, during wound healing keratinocytes migrate collectively to maintain their cohesion despite heterogeneities in the extracellular matrix. Here, we show that monolayers of human keratinocytes migrating along functionalized micropatterned surfaces comprising alternating strips of extracellular matrix (fibronectin) and non-adherent polymer form suspended multicellular bridges over the non-adherent areas. The bridges are held together by intercellular adhesion and are subjected to considerable tension, as indicated by the presence of prominent actin bundles. We also show that a model based on force propagation through an elastic material reproduces the main features of bridge maintenance and tension distribution. Our findings suggest that multicellular bridges maintain tissue integrity during wound healing when cell-substrate interactions are weak and may prove helpful in the design of artificial scaffolds for skin regeneration.
Collapse
Affiliation(s)
| | - Hiroaki Hirata
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Mui Hoon Nai
- Mechanobiology Institute, National University of Singapore, 117411, Singapore
| | - Agustí Brugués
- Institut de Bioenginyeria de Catalunya (IBEC), ICREA, and Facultat de Medicina-Universitat de Barcelona, 08028 Barcelona, Spain
| | - Yusuke Toyama
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Department of Biological Sciences, National University of Singapore and Temasek Life Sciences Laboratory, 117543, Singapore
| | - Xavier Trepat
- Institut de Bioenginyeria de Catalunya (IBEC), ICREA, and Facultat de Medicina-Universitat de Barcelona, 08028 Barcelona, Spain
| | - Chwee Teck Lim
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Department of Biomedical Engineering and Department of Mechanical Engineering, National University of Singapore, 117576, Singapore
| | - Benoit Ladoux
- 1] Mechanobiology Institute, National University of Singapore, 117411, Singapore [2] Institut Jacques Monod (IJM), CNRS UMR 7592 and Université Paris Diderot, Paris 75013, France
| |
Collapse
|
14
|
Improving ex vivo skin permeation of non-steroidal anti-inflammatory drugs: Enhancing extemporaneous transformation of liposomes into planar lipid bilayers. Int J Pharm 2014; 461:427-36. [DOI: 10.1016/j.ijpharm.2013.12.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 12/06/2013] [Accepted: 12/09/2013] [Indexed: 01/04/2023]
|
15
|
In vivo and in vitro effects of 42-hydroxy-palytoxin on mouse skeletal muscle: structural and functional impairment. Toxicol Lett 2013; 225:285-93. [PMID: 24378260 DOI: 10.1016/j.toxlet.2013.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 11/23/2022]
Abstract
Palytoxins (PLTXs) are known seafood contaminants and their entrance into the food chain raises concern about possible effects on human health. The increasing number of analogs being identified in edible marine organisms complicates the estimation of the real hazard associated with the presence of PLTX-like compounds. So far, 42-OH-PLTX is one of the few congeners available, and the study of its toxicity represents an important step toward a better comprehension of the mechanism of action of this family of compounds. From this perspective, the aim of this work was to investigate the in vivo and in vitro effect of 42-OH-PLTX on skeletal muscle, one of the most sensitive targets for PLTXs. Our results demonstrate that 42-OH-PLTX causes damage at the skeletal muscle level with a cytotoxic potency similar to that of PLTX. 42-OH-PLTX induces cytotoxicity and cell swelling in a Na(+)-dependent manner similar to the parent compound. However, the limited Ca(2+)-dependence of the toxic insult induced by 42-OH-PLTX suggests a specific mechanism of action for this analog. Our results also suggest an impaired response to the physiological agonist acetylcholine and altered cell elasticity.
Collapse
|
16
|
Yang R, Xi N, Lai KWC, Patterson K, Chen H, Song B, Qu C, Zhong B, Wang DH. Cellular biophysical dynamics and ion channel activities detected by AFM-based nanorobotic manipulator in insulinoma β-cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2013; 9:636-45. [PMID: 23178285 PMCID: PMC3594338 DOI: 10.1016/j.nano.2012.10.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 09/13/2012] [Accepted: 10/29/2012] [Indexed: 12/17/2022]
Abstract
Distinct biochemical, electrochemical and electromechanical coupling processes of pancreatic β-cells may well underlie different response patterns of insulin release from glucose and capsaicin stimulation. Intracellular Ca(2+) levels increased rapidly and dose-dependently upon glucose stimulation, accompanied with about threefold rapid increases in cellular stiffness. Subsequently, cellular stiffness diminished rapidly and settled at a value about twofold of the baseline. Capsaicin caused a similar transient increase in intracellular Ca(2+) changes. However, cellular stiffness increased gradually to about twofold until leveling off. The current study characterizes for the first time the biophysical properties underlying glucose-induced biphasic responses of insulin secretion, distinctive from the slow and single-phased stiffness response to capsaicin despite similar changes in intracellular Ca(2+) levels. The integrated AFM nanorobotics and optical investigation enables the fine dissection of mechano-property from ion channel activities in response to specific and non-specific agonist stimulation, providing novel biomechanical markers for the insulin secretion process. FROM THE CLINICAL EDITOR This study characterizes the biophysical properties underlying glucose-induced biphasic responses of insulin secretion. Integrated AFM nanorobotics and optical investigations provided novel biomechanical markers for the insulin secretion process.
Collapse
Affiliation(s)
- Ruiguo Yang
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Ning Xi
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - King Wai Chiu Lai
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
- Department of Mechanical and Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Kevin Patterson
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
| | - Hongzhi Chen
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Bo Song
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Chengeng Qu
- College of Engineering, Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI 48824 USA
| | - Beihua Zhong
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824 USA
- Guangzhou Medical College, Guangzhou, China
| | - Donna H. Wang
- College of Human Medicine, Michigan State University, East Lansing, MI 48824 USA
- Department of Medicine, Michigan State University, East Lansing, MI 48824 USA
- Neuroscience Program, Cell and Molecular Biology Program in Michigan State University, East Lansing, MI 48824 USA
| |
Collapse
|
17
|
Lévêque JL, Fanian F, Humbert P. Influence of skin extension upon the epidermal morphometry, an in vivo study. Skin Res Technol 2013; 20:58-61. [PMID: 23800127 DOI: 10.1111/srt.12083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2013] [Indexed: 11/28/2022]
Abstract
BACKGROUND The Dermal-Epidermal Junction (DEJ) is characterized by undulations whose apices are called papillae. With aging, epidermis becomes thinner, together with a flattening of the DEJ, leading to a decreased density of papillae. The causes of these modifications are likely as multiple as uncertain. The present paper deals with in vivo morphometric characterization of the DEJ and its changes following a skin surface deformation. METHODS Living epidermis of human adults was examined by means of in vivo Reflectance Confocal Microscopy. Distances between skin surface and papillae apex and pegs of the DEJ were, respectively, recorded in both relaxed and stretched skin situation. The number of papillae present within a single image (field of view, 500 × 500 μm) was also measured. RESULTS Skin extension has no effect upon the distance between skin surface and the apex of papillae. In contrast, the distance between skin surface and the pegs of papillae decreases. On the other hand, skin extension leads to a significant decrease in the number of papillae within a single image. CONCLUSION Epidermal atrophy and structural changes observed in the DEJ with aging may be, by some extent, related to daily and repetitive skin deformations all along the life span.
Collapse
|
18
|
Ning Xi, Bo Song, Ruiguo Yang, King Wai Chiu Lai, Hongzhi Chen, Chengeng Qu, Liangliang Chen. Video Rate Atomic Force Microscopy: Use of compressive scanning for nanoscale video imaging. IEEE NANOTECHNOLOGY MAGAZINE 2013. [DOI: 10.1109/mnano.2013.2237711] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
19
|
Song B, Yang R, Xi N, Patterson KC, Qu C, Lai KWC. Cellular-level surgery using nano robots. ACTA ACUST UNITED AC 2012; 17:425-34. [PMID: 23015517 DOI: 10.1177/2211068212460665] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The atomic force microscope (AFM) is a popular instrument for studying the nano world. AFM is naturally suitable for imaging living samples and measuring mechanical properties. In this article, we propose a new concept of an AFM-based nano robot that can be applied for cellular-level surgery on living samples. The nano robot has multiple functions of imaging, manipulation, characterizing mechanical properties, and tracking. In addition, the technique of tip functionalization allows the nano robot the ability for precisely delivering a drug locally. Therefore, the nano robot can be used for conducting complicated nano surgery on living samples, such as cells and bacteria. Moreover, to provide a user-friendly interface, the software in this nano robot provides a "videolized" visual feedback for monitoring the dynamic changes on the sample surface. Both the operation of nano surgery and observation of the surgery results can be simultaneously achieved. This nano robot can be easily integrated with extra modules that have the potential applications of characterizing other properties of samples such as local conductance and capacitance.
Collapse
Affiliation(s)
- Bo Song
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | | | |
Collapse
|
20
|
Yang R, Chen JY, Xi N, Lai KWC, Qu C, Fung CKM, Penn LS, Xi J. Characterization of mechanical behavior of an epithelial monolayer in response to epidermal growth factor stimulation. Exp Cell Res 2011; 318:521-6. [PMID: 22227009 DOI: 10.1016/j.yexcr.2011.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 01/20/2023]
Abstract
Cell signaling often causes changes in cellular mechanical properties. Knowledge of such changes can ultimately lead to insight into the complex network of cell signaling. In the current study, we employed a combination of atomic force microscopy (AFM) and quartz crystal microbalance with dissipation monitoring (QCM-D) to characterize the mechanical behavior of A431 cells in response to epidermal growth factor receptor (EGFR) signaling. From AFM, which probes the upper portion of an individual cell in a monolayer of cells, we observed increases in energy dissipation, Young's modulus, and hysteresivity. Increases in hysteresivity imply a shift toward a more fluid-like mechanical ordering state in the bodies of the cells. From QCM-D, which probes the basal area of the monolayer of cells collectively, we observed decreases in energy dissipation factor. This result suggests a shift toward a more solid-like state in the basal areas of the cells. The comparative analysis of these results indicates a regionally specific mechanical behavior of the cell in response to EGFR signaling and suggests a correlation between the time-dependent mechanical responses and the dynamic process of EGFR signaling. This study also demonstrates that a combination of AFM and QCM-D is able to provide a more complete and refined mechanical profile of the cells during cell signaling.
Collapse
Affiliation(s)
- Ruiguo Yang
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
| | | | | | | | | | | | | | | |
Collapse
|