1
|
Zheng Y, Wang M, Zhang X, Wu Z, Gao L. A bacteria-responsive nanoplatform with biofilm dispersion and ROS scavenging for the healing of infected diabetic wounds. Acta Biomater 2024:S1742-7061(24)00762-1. [PMID: 39710222 DOI: 10.1016/j.actbio.2024.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/21/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
Delayed wound healing in patients with diabetes remains a major health challenge worldwide. Uncontrolled bacterial infection leads to excessive production of reactive oxygen species (ROS) and persistent inflammatory responses, which seriously hinder conventional physiological healing processes after injury. Biofilms, as protective barriers for bacteria, pose a critical obstacle to effective bacterial eradication. Herein, an innovative therapeutic nanoplatform with in situ antibacterial and antioxidant properties is developed for enhancing infected diabetic wound healing. The enrichment of phenylboronic acid (PBA) moieties on the nanoplatform enhances biofilm penetration, actively anchors and aggregates the enclosed bacteria through the "multivalent effect", with an anchoring efficiency as high as 80 %. Additionally, glycine moieties on the nanoplatform ensure spatial extensibility by charge repulsion, enabling targeted antibiotic release around bacteria. This precise antibacterial effect increases the bactericidal activities of the nanoplatform against S. aureus or P. aeruginosa by 25 % and 22 % respectively, effectively eliminating the bacteria and dispersing the biofilms. Furthermore, 3,4-dihydropyrimidin-2(1H)-one (DHPM) moieties act as ROS scavengers that alleviate oxidative stress and inflammatory responses, promoting tissue repair progression into the proliferative phase characterized by increased extracellular matrix deposition, angiogenesis, and granulation tissue formation, ultimately accelerating diabetic wound healing. Overall, this work presents an innovative bacterial response strategy for achieving in situ antibacterial and antioxidant effects in infected tissues and provides a promising therapeutic approach for treating infected diabetic wounds. STATEMENT OF SIGNIFICANCE: Infected diabetic wound management remains a major world health issue. Severe bacterial infection leads to excessive oxidative stress and persistent inflammatory response, which seriously hinders the wound healing process. As a protective barrier for bacteria, biofilms are a key obstacle to effective bacterial clearance. This study provides a bacteria-responsive nanoplatform for the healing of infected diabetic wounds. The nanoplatform not only exhibits improved biofilm penetration but also actively anchors the enclosed bacteria and enables targeted antibiotic release to disperse the biofilm. The DHPM moieties of the nanoplatform act as ROS scavengers which could alleviate inflammatory responses, promote tissue repair progression into the proliferative phase, and ultimately accelerate diabetic wound repair.
Collapse
Affiliation(s)
- Yin Zheng
- Department of Endocrinology, Shanxi Provincial People's Hospital Affiliated to Shanxi Medical University, Shanxi Medical University, Taiyuan, Shanxi 030012, China; Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
| | - Mingyue Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China
| | - Xinge Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhongming Wu
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China; Jinan Key Laboratory of Translational Medicine on Metabolic Diseases, Shandong Institute of Endocrine and Metabolic Diseases, Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250012, China.
| | - Ling Gao
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education, Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, Shandong 250021, China; Shandong Key Laboratory of Endocrinology and Lipid Metabolism, Jinan, Shandong 250021, China.
| |
Collapse
|
2
|
Aftab R, Akbar F, Afroz A, Asif A, Khan MR, Rehman N, Zeeshan N. Mentha piperita silver nanoparticle-loaded hydrocolloid film for enhanced diabetic wound healing in rats. J Wound Care 2024; 33:xlviii-lx. [PMID: 38457268 DOI: 10.12968/jowc.2024.33.sup3a.xlviii] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
OBJECTIVE To investigate the role of Mentha piperita silver nanoparticle-loaded carbopol gel for enhanced wound healing in a diabetic rat model. This research further aims to explore bioactive compounds derived from Mentha piperita obtained from high altitude. METHOD Methanolic extracts of Mentha piperita (MP), Mentha spicata (MS) and Mentha longifolia (ML) were used to synthesise silver nanoparticles (AgNP). AgNP synthesis was confirmed by ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The antioxidant activity was assessed by 2, 2-diphenyl-1-picrylhydrazyl (DDPH) assay. Antiglycation potential was determined by measuring the fluorescent advanced glycation end products. The bioactive compound identified in the Mentha piperita methanolic (MPM) fraction through electrospray ionisation tandem mass spectrometric analysis (ESI-MS) was responsible for the highest antiglycation. The effects of MPM and MPM.AgNP-loaded Carbopol (Sanare Lab, India) on wound healing were compared in male, alloxan-induced, diabetic albino rats (200-250g), divided into control and treated groups. Effects on wound healing were assessed via histopathology. RESULTS UV-Vis and FTIR confirmed NP synthesis with peaks for flavonoids and polyphenols. SEM and XRD explored the cubical, 30-63nm crystalline NP. The maximum antioxidant and antiglycation potential was observed in order of; MP.AgNP>MS.AgNP>ML.AgNP. The highest antioxidant activity was observed by methanolic and aqueous MP.AgNPs (88.55% and 83.63%, respectively) at 2mg.ml-1, and (75.16% and 69.73%, respectively) at 1mg.ml-1, compared to ascorbic acid (acting as a positive control, 90.01%). MPM.AgNPs demonstrated the best antiglycation potential of 75.2% and 83.3% at 1mg.ml-1 and 2mg.ml-1, respectively, comparable to positive control (rutin: 88.1%) at 14 days post-incubation. A similar trend was observed for antimicrobial activity against Bacillus subtilis, Micrococcus luteus and Escherichia coli with an inhibition zone of 21mm, 21.6mm and 24.6mm. Rosmarinic acid was the active compound present in Mentha piperita, as identified by ESI-MS. MPM.AgNP-loaded Carbopol resulted in 100% wound closure compared with control at 20 days post-wounding. In the treatment group, re-epithelialisation was achieved by day 18, compared with 25 days for the positive control group. CONCLUSION MPM.AgNP-loaded Carbopol demonstrated safer and more effective biological properties, hence accelerating the diabetic excision wound healing process in alloxan-induced diabetic rats.
Collapse
Affiliation(s)
- Reema Aftab
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Fatima Akbar
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Amber Afroz
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Awais Asif
- Nawaz Sharif Medical College, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| | - Muhammad Ramzan Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nazia Rehman
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad 45500, Pakistan
| | - Nadia Zeeshan
- Department of Biochemistry and Biotechnology, University of Gujrat, Hafiz Hayat Campus Gujrat, Punjab, Pakistan
| |
Collapse
|
3
|
Gattu R, Ramesh SS, Ramesh S. Role of small molecules and nanoparticles in effective inhibition of microbial biofilms: A ray of hope in combating microbial resistance. Microb Pathog 2024; 188:106543. [PMID: 38219923 DOI: 10.1016/j.micpath.2024.106543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
Microbial biofilms pose a severe threat to global health, as they are associated with deadly chronic infections and antibiotic resistance. To date, very few drugs are in clinical practice that specifically target microbial biofilms. Therefore, there is an urgent need for the development of novel therapeutic options targeting biofilm-related infections. In this review, we discuss nearly seventy-five different molecular scaffolds published over the last decade (2010-2023) which have exhibited their biofilm inhibition potential. For convenience, we have classified these into five different sub-groups based on their origin and design (excluding peptides as they are placed in between small molecules and biologics), namely, heterocycles; inorganic small molecules & metal complexes; small molecules decorated nanoparticles; small molecules derived from natural products (both plant and marine sources); and small molecules designed by in-silico approach. These antibiofilm agents are capable of disrupting microbial biofilms and can offer a promising avenue for future developments in human medicine. A hitherto review of this kind will lay a platform for the researchers to find new molecular entities to curb the serious menace of antimicrobial resistance especially caused by biofilms.
Collapse
Affiliation(s)
- Rohith Gattu
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Sanjay S Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India
| | - Suhas Ramesh
- Postgraduate Department of Chemistry, JSS College of Arts, Commerce and Science (A Recognized Research Centre of University of Mysore), Ooty Road, Mysuru, 570025, Karnataka, India.
| |
Collapse
|
4
|
Li B, Mao J, Wu J, Mao K, Jia Y, Chen F, Liu J. Nano-Bio Interactions: Biofilm-Targeted Antibacterial Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306135. [PMID: 37803439 DOI: 10.1002/smll.202306135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Biofilm is a spatially organized community formed by the accumulation of both microorganisms and their secretions, leading to persistent and chronic infections because of high resistance toward conventional antibiotics. In view of the tunable physicochemical properties and the related unique biological behavior (e.g., size-, shape-, and surface charge-dependent penetration, protein corona endowed targeting, catalytic- and electronic-related oxidative stress, optical- and magnetic-associated hyperthermia, etc.), nanomaterials-based therapeutics are widely used for the treatment of biofilm-associated infections. In this review, the biological characteristics of biofilm are introduced. And the nanomaterials-based antibacterial strategies are further discussed via biofilm targeting, including preventing biofilm formation, enhancing biofilm penetration, disrupting the mature biofilm, and acting as drug delivery systems. In which, the interactions between biofilm and nanomaterials include mechanical disruption, electron transfer, enzymatic degradation, oxidative stress, and hyperthermia. Additionally, the current advances of nanomaterials for antibacterial nanomaterials by biofilm targeting are summarized. This review aims to present a complete vision of antibacterial nanomaterials-biofilm (nano-bio) interactions, paving the way for the future development and clinical translation of effective antibacterial nanomedicines.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiahui Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Kerou Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Yangrui Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
5
|
Akar Z, Akay S, Ejder N, Özad Düzgün A. Determination of the Cytotoxicity and Antibiofilm Potential Effect of Equisetum arvense Silver Nanoparticles. Appl Biochem Biotechnol 2024; 196:909-922. [PMID: 37273097 DOI: 10.1007/s12010-023-04587-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to synthesize and characterize silver nanoparticles (AgNPs) by green synthesis from Equisetum arvense (Ea) extracts and to investigate their cytotoxicity, antibiofilm activity, and α-glucosidase enzyme inhibition. Diverse characterization techniques were applied to verify the production of nanoparticles. SEM examination confirmed that the size of nanoparticles is in the range of 40-60 nm. Also, interactions between silver and natural compounds of plant extract were confirmed through FT-IR and EDX analyses. It was determined that Equisetum arvense silver nanoparticles had antibiofilm activity against three different clinical strains with high biofilm-forming ability. AgNPs reduced the biofilm-forming capacity of clinical A. baumannii isolate with strong biofilm-forming capacity by approximately twofold, while the capacity of clinical K.pneumonaie and E.coli isolates decreased by 1.5 and 1.2 fold, respectively. The α-glucosidase enzyme inhibition potential of the AgNPs, which is determined as 93.50%, was higher than the plant extract with, and the α- 30.37%. MTT was performed to assess whether incubation of nanoparticles with A549 and ARPE-19 cell lines affected their viability, and a dramatic reduction in cell growth inhibition of both A549 and ARPE-19 cells was observed. It has been shown that A549 cells treated with 200 and 150 µg/mL nanoparticles had less cell proliferation compared to control cells at 24-h and 48-h incubation time. According to these results, Ea-derived AgNPs appear to have potential anticancer activity against A549 cancer cells. Investigating the effects of green synthesis nanoparticles on microbial biofilm and various tumors may be important for developing new therapies. The outcomes of this study have showed that Ea-AgNPsmay have a high potential both in the treatment of pathogenic strains that form biofilms, as well as in anticancer therapy use.
Collapse
Affiliation(s)
- Zeynep Akar
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey
| | - Seref Akay
- Department of Genetics and Bioengineering, Faculty of Engineering, Alanya Alaaddin Keykubat University, Alanya/Antalya, Turkey
| | - Nebahat Ejder
- Department of Medical Microbiology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Azer Özad Düzgün
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gumushane University, 29100, Gümüşhane, Turkey.
| |
Collapse
|
6
|
Blanco-Cabra N, Alcàcer-Almansa J, Admella J, Arévalo-Jaimes BV, Torrents E. Nanomedicine against biofilm infections: A roadmap of challenges and limitations. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1944. [PMID: 38403876 DOI: 10.1002/wnan.1944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 01/27/2024] [Indexed: 02/27/2024]
Abstract
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Júlia Alcàcer-Almansa
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Joana Admella
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Betsy Verónica Arévalo-Jaimes
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Eduard Torrents
- Bacterial Infections and Antimicrobial Therapy Group (BIAT), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Microbiology Section, Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Gheorghiță D, Antoniac I, Moldovan H, Antoniac A, Grosu E, Motelica L, Ficai A, Oprea O, Vasile E, Dițu LM, Raiciu AD. Influence of Lavender Essential Oil on the Physical and Antibacterial Properties of Chitosan Sponge for Hemostatic Applications. Int J Mol Sci 2023; 24:16312. [PMID: 38003499 PMCID: PMC10671502 DOI: 10.3390/ijms242216312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Uncontrollable bleeding continues to stand as the primary cause of fatalities globally following surgical procedures, traumatic incidents, disasters, and combat scenarios. The swift and efficient management of bleeding through the application of hemostatic agents has the potential to significantly reduce associated mortality rates. One significant drawback of currently available hemostatic products is their susceptibility to bacterial infections at the bleeding site. As this is a prevalent issue that can potentially delay or compromise the healing process, there is an urgent demand for hemostatic agents with antibacterial properties to enhance survival rates. To mitigate the risk of infection at the site of a lesion, we propose an alternative solution in the form of a chitosan-based sponge and antimicrobial agents such as silver nanoparticles (AgNPs) and lavender essential oil (LEO). The aim of this work is to provide a new type of hemostatic sponge with an antibacterial barrier against a wide range of Gram-positive and Gram-negative microorganisms: Staphylococcus epidermidis 2018 and Enterococcus faecalis VRE 2566 (Gram-positive strains) and Klebsiella pneumoniae ATCC 10031 and Escherichia coli ATCC 35218 (Gram-negative strains).
Collapse
Affiliation(s)
- Daniela Gheorghiță
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
| | - Horațiu Moldovan
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiovascular Surgery, Emergency Clinical Hospital Bucharest, 014461 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
| | - Elena Grosu
- Faculty of Material Science and Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independentei, 060042 Bucharest, Romania; (D.G.); (I.A.); (E.G.)
| | - Ludmila Motelica
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
| | - Anton Ficai
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Ovidiu Oprea
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania; (A.F.); (O.O.)
- National Research Center for Micro and Nanomaterials, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania;
- National Research Center for Food Safety, National University of Science and Technology Politehnica Bucharest, Splaiul Independentei 313, 060042 Bucharest, Romania
- Faculty of Chemical Engineering and Biotechnologies, National University of Science and Technology Politehnica Bucharest, 1-7 Polizu St., 011061 Bucharest, Romania
| | - Eugeniu Vasile
- Department of Oxide Materials Science and Engineering, National University of Science and Technology Politehnica Bucharest, 1–7 Gh. Polizu, 060042 Bucharest, Romania;
| | - Lia Mara Dițu
- Botanic and Microbiology Department, Faculty of Biology, University of Bucharest, 3, Aleea Portocalelor, 17 District 5, Grădina Botanică, 030018 București, Romania;
| | - Anca Daniela Raiciu
- Faculty of Pharmacy, Titu Maiorescu University, 22 Dambovnicului Street, 040441 Bucharest, Romania;
- S.C. Hofigal Import Export S.A., 2 Intrarea Serelor Street, 042124 Bucharest, Romania
| |
Collapse
|
8
|
Miron A, Giurcaneanu C, Mihai MM, Beiu C, Voiculescu VM, Popescu MN, Soare E, Popa LG. Antimicrobial Biomaterials for Chronic Wound Care. Pharmaceutics 2023; 15:1606. [PMID: 37376055 DOI: 10.3390/pharmaceutics15061606] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chronic wounds encompass a myriad of lesions, including venous and arterial leg ulcers, diabetic foot ulcers (DFUs), pressure ulcers, non-healing surgical wounds and others. Despite the etiological differences, chronic wounds share several features at a molecular level. The wound bed is a convenient environment for microbial adherence, colonization and infection, with the initiation of a complex host-microbiome interplay. Chronic wound infections with mono- or poly-microbial biofilms are frequent and their management is challenging due to tolerance and resistance to antimicrobial therapy (systemic antibiotic or antifungal therapy or antiseptic topicals) and to the host's immune defense mechanisms. The ideal dressing should maintain moisture, allow water and gas permeability, absorb wound exudates, protect against bacteria and other infectious agents, be biocompatible, be non-allergenic, be non-toxic and biodegradable, be easy to use and remove and, last but not least, it should be cost-efficient. Although many wound dressings possess intrinsic antimicrobial properties acting as a barrier to pathogen invasion, adding anti-infectious targeted agents to the wound dressing may increase their efficiency. Antimicrobial biomaterials may represent a potential substitute for systemic treatment of chronic wound infections. In this review, we aim to describe the available types of antimicrobial biomaterials for chronic wound care and discuss the host response and the spectrum of pathophysiologic changes resulting from the contact between biomaterials and host tissues.
Collapse
Affiliation(s)
- Adrian Miron
- Department of General Surgery, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of General Surgery, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Calin Giurcaneanu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Mara Madalina Mihai
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
- Department of Microbiology, Faculty of Biology, ICUB-Research Institute, University of Bucharest, No. 90 Panduri Str., 050663 Bucharest, Romania
| | - Cristina Beiu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Vlad Mihai Voiculescu
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Marius Nicolae Popescu
- Department of Microbiology, Faculty of Biology, ICUB-Research Institute, University of Bucharest, No. 90 Panduri Str., 050663 Bucharest, Romania
- Department of Physical and Rehabilitation Medicine, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Physical and Rehabilitation Medicine, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| | - Elena Soare
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
| | - Liliana Gabriela Popa
- Department of Oncologic Dermatology, Elias Emergency University Hospital, Carol Davila University of Medicine and Pharmacy, No. 37 Dionisie Lupu Str., 030167 Bucharest, Romania
- Clinic of Dermatology, Elias Emergency University Hospital, No. 17 Marasti Blvd., 011461 Bucharest, Romania
| |
Collapse
|
9
|
Mendes AI, Fraga AG, Peixoto MJ, Aroso I, Longatto‐Filho A, Marques AP, Pedrosa J. Gellan gum spongy-like hydrogel-based dual antibiotic therapy for infected diabetic wounds. Bioeng Transl Med 2023; 8:e10504. [PMID: 37206216 PMCID: PMC10189450 DOI: 10.1002/btm2.10504] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/15/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023] Open
Abstract
Diabetic foot infection (DFI) is an important cause of morbidity and mortality. Antibiotics are fundamental for treating DFI, although bacterial biofilm formation and associated pathophysiology can reduce their effectiveness. Additionally, antibiotics are often associated with adverse reactions. Hence, improved antibiotic therapies are required for safer and effective DFI management. On this regard, drug delivery systems (DDSs) constitute a promising strategy. We propose a gellan gum (GG)-based spongy-like hydrogel as a topical and controlled DDS of vancomycin and clindamycin, for an improved dual antibiotic therapy against methicillin-resistant Staphylococcus aureus (MRSA) in DFI. The developed DDS presents suitable features for topical application, while promoting the controlled release of both antibiotics, resulting in a significant reduction of in vitro antibiotic-associated cytotoxicity without compromising antibacterial activity. The therapeutic potential of this DDS was further corroborated in vivo, in a diabetic mouse model of MRSA-infected wounds. A single DDS administration allowed a significant bacterial burden reduction in a short period of time, without exacerbating host inflammatory response. Taken together, these results suggest that the proposed DDS represents a promising strategy for the topical treatment of DFI, potentially overcoming limitations associated with systemic antibiotic administration and minimizing the frequency of administration.
Collapse
Affiliation(s)
- Ana Isabel Mendes
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Alexandra Gabriel Fraga
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Maria João Peixoto
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| | - Ivo Aroso
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
| | - Adhemar Longatto‐Filho
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
- Molecular Oncology Research CenterBarretos Cancer HospitalBarretosSão PauloBrazil
- Laboratory of Medical Investigation (LIM) 14Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloBrazil
| | - Alexandra Pinto Marques
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and BiomimeticsHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineUniversity of MinhoGuimarãesPortugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS)School of MedicineUniversity of MinhoBragaPortugal
- ICVS/3B's–PT Government Associate LaboratoryBraga/GuimarãesPortugal
| |
Collapse
|
10
|
Goswami AG, Basu S, Banerjee T, Shukla VK. Biofilm and wound healing: from bench to bedside. Eur J Med Res 2023; 28:157. [PMID: 37098583 PMCID: PMC10127443 DOI: 10.1186/s40001-023-01121-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/14/2023] [Indexed: 04/27/2023] Open
Abstract
The bubbling community of microorganisms, consisting of diverse colonies encased in a self-produced protective matrix and playing an essential role in the persistence of infection and antimicrobial resistance, is often referred to as a biofilm. Although apparently indolent, the biofilm involves not only inanimate surfaces but also living tissue, making it truly ubiquitous. The mechanism of biofilm formation, its growth, and the development of resistance are ever-intriguing subjects and are yet to be completely deciphered. Although an abundance of studies in recent years has focused on the various ways to create potential anti-biofilm and antimicrobial therapeutics, a dearth of a clear standard of clinical practice remains, and therefore, there is essentially a need for translating laboratory research to novel bedside anti-biofilm strategies that can provide a better clinical outcome. Of significance, biofilm is responsible for faulty wound healing and wound chronicity. The experimental studies report the prevalence of biofilm in chronic wounds anywhere between 20 and 100%, which makes it a topic of significant concern in wound healing. The ongoing scientific endeavor to comprehensively understand the mechanism of biofilm interaction with wounds and generate standardized anti-biofilm measures which are reproducible in the clinical setting is the challenge of the hour. In this context of "more needs to be done", we aim to explore various effective and clinically meaningful methods currently available for biofilm management and how these tools can be translated into safe clinical practice.
Collapse
Affiliation(s)
| | - Somprakas Basu
- All India Institute of Medical Sciences, Rishikesh, 249203, India.
| | | | | |
Collapse
|
11
|
Ashar H, Ranjan A. Immunomodulation and targeted drug delivery with high intensity focused ultrasound (HIFU): Principles and mechanisms. Pharmacol Ther 2023; 244:108393. [PMID: 36965581 DOI: 10.1016/j.pharmthera.2023.108393] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
High intensity focused ultrasound (HIFU) is a non-invasive and non-ionizing sonic energy-based therapeutic technology for inducing thermal and non-thermal effects in tissues. Depending on the parameters, HIFU can ablate tissues by heating them to >55 °C to induce denaturation and coagulative necrosis, improve radio- and chemo-sensitizations and local drug delivery from nanoparticles at moderate hyperthermia (~41-43 °C), and mechanically fragment cells using acoustic cavitation (also known as histotripsy). HIFU has already emerged as an attractive modality for treating human prostate cancer, veterinary cancers, and neuromodulation. Herein, we comprehensively review the role of HIFU in enhancing drug delivery and immunotherapy in soft and calcified tissues. Specifically, the ability of HIFU to improve adjuvant treatments from various classes of drugs is described. These crucial insights highlight the opportunities and challenges of HIFU technology and its potential to support new clinical trials and translation to patients.
Collapse
Affiliation(s)
- Harshini Ashar
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America
| | - Ashish Ranjan
- Department of Physiological Sciences, College of Veterinary Medicine, Oklahoma State University, Stillwater, OK 74078, United States of America.
| |
Collapse
|
12
|
Liu T, Lu Y, Zhan R, Qian W, Luo G. Nanomaterials and nanomaterials-based drug delivery to promote cutaneous wound healing. Adv Drug Deliv Rev 2023; 193:114670. [PMID: 36538990 DOI: 10.1016/j.addr.2022.114670] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/24/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Various factors could damage the structure and integrity of skin to cause wounds. Nonhealing or chronic wounds seriously affect the well-being of patients and bring heavy burdens to the society. The past few decades have witnessed application of numerous nanomaterials to promote wound healing. Owing to the unique physicochemical characteristics at nanoscale, nanomaterials-based therapy has been regarded as a potential approach to promote wound healing. In this review, we first overview the wound categories, wound healing process and critical influencing factors. Then applications of nanomaterials with intrinsic therapeutic effect and nanomaterials-based drug delivery systems to promote wound healing are addressed in detail. Finally, current limitations and future perspectives of nanomaterials in wound healing are discussed.
Collapse
Affiliation(s)
- Tengfei Liu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yifei Lu
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Rixing Zhan
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Wei Qian
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Laboratory of Trauma, Burn and Combined Injury, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
13
|
Dissolvable zinc oxide nanoparticle-loaded wound dressing with preferential exudate absorption and hemostatic features. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04358-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Jiang T, Li Q, Qiu J, Chen J, Du S, Xu X, Wu Z, Yang X, Chen Z, Chen T. Nanobiotechnology: Applications in Chronic Wound Healing. Int J Nanomedicine 2022; 17:3125-3145. [PMID: 35898438 PMCID: PMC9309282 DOI: 10.2147/ijn.s372211] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/06/2022] [Indexed: 12/15/2022] Open
Abstract
Wounds occur when skin integrity is broken and the skin is damaged. With progressive changes in the disease spectrum, the acute wounds caused by mechanical trauma have been become less common, while chronic wounds triggered with aging, diabetes and infection have become more frequent. Chronic wounds now affect more than 6 million people in the United States, amounting to 10 billion dollars in annual expenditure. However, the treatment of chronic wounds is associated with numerous challenges. Traditional remedies for chronic wounds include skin grafting, flap transplantation, negative-pressure wound therapy, and gauze dressing, all of which can cause tissue damage or activity limitations. Nanobiotechnology — which comprises a diverse array of technologies derived from engineering, chemistry, and biology — is now being applied in biomedical practice. Here, we review the design, application, and clinical trials for nanotechnology-based therapies for chronic wound healing, highlighting the clinical potential of nanobiotechnology in such treatments. By summarizing previous nanobiotechnology studies, we lay the foundation for future wound care via a nanotech-based multifunctional smart system.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Qianyun Li
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Jinmei Qiu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Jing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Shuang Du
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zihan Wu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| |
Collapse
|
15
|
Lukhey MS, Shende P. Advancement in wound healing treatment using functional nanocarriers. INT J POLYM MATER PO 2022. [DOI: 10.1080/00914037.2022.2099393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Mihir S. Lukhey
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| | - Pravin Shende
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM’S NMIMS, Mumbai, India
| |
Collapse
|
16
|
Xiu W, Wan L, Yang K, Li X, Yuwen L, Dong H, Mou Y, Yang D, Wang L. Potentiating hypoxic microenvironment for antibiotic activation by photodynamic therapy to combat bacterial biofilm infections. Nat Commun 2022; 13:3875. [PMID: 35790729 PMCID: PMC9256606 DOI: 10.1038/s41467-022-31479-x] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/20/2022] [Indexed: 12/20/2022] Open
Abstract
Traditional antibiotic treatment has limited efficacy for the drug-tolerant bacteria present in biofilms because of their unique metabolic conditions in the biofilm infection microenvironment. Modulating the biofilm infection microenvironment may influence the metabolic state of the bacteria and provide alternative therapeutic routes. In this study, photodynamic therapy is used not only to eradicate methicillin-resistant Staphylococcus aureus biofilms in the normoxic condition, but also to potentiate the hypoxic microenvironment, which induces the anaerobic metabolism of methicillin-resistant Staphylococcus aureus and activates the antibacterial activity of metronidazole. Moreover, the photodynamic therapy-activated chemotherapy can polarize the macrophages to a M2-like phenotype and promote the repair of the biofilm infected wounds in mice. This biofilm infection microenvironment modulation strategy, whereby the hypoxic microenvironment is potentiated to synergize photodynamic therapy with chemotherapy, provides an alternative pathway for efficient treatment of biofilm-associated infections. Bacteria in biofilms present unique metabolic conditions that limit the traditional antibiotic treatment. Here, the authors show a photodynamic therapy-activated chemotherapy potentiating the hypoxia of biofilms of methicillin-resistant Staphylococcus aureus, by developing hyaluronic acid nanoparticles functionalized with chlorin e6 and metronidazole.
Collapse
Affiliation(s)
- Weijun Xiu
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Ling Wan
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Kaili Yang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Xiao Li
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Lihui Yuwen
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| | - Heng Dong
- Nanjing Stomatological Hospital, Medicine School of Nanjing University, Nanjing, 210008, China
| | - Yongbin Mou
- Nanjing Stomatological Hospital, Medicine School of Nanjing University, Nanjing, 210008, China
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing, 211800, China
| | - Lianhui Wang
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China.
| |
Collapse
|
17
|
Ojo OE, Ilomuanya MO, Sekunowo OI, Gbenebor OP, Adeosun SO. Development and characterization of mupirocin encapsulated in animal bone-derived hydroxyapatite for management of chronic wounds. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00262-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hydroxyapatite is an important biomedical material used in drug delivery owing to its excellent bioactivity and biocompatibility. In this study, hydroxyapatite isolated from bovine and caprine bones was capped and used as a drug carrier to encapsulate mupirocin as an active pharmaceutical product in hydrogel formulations which were utilized in wound healing application using animal model (Wistar Rats).
Results
Characterization of the mupirocin-encapsulated hydroxyapatite using Fourier transform infrared spectroscopy, and X-ray diffractometer revealed the active presence of mupirocin after encapsulation. The in-vitro drug release study revealed that the capped hydroxyapatite obtained from caprine bone loaded with mupirocin gave drug release rate of 84.67% of the drug within 75 min while conventional mupirocin ointment had the lowest at 27.04% within the same time. The capped hydroxyapatite obtained from bovine bone loaded with mupirocin had the highest encapsulation efficiency of 73.67%. However, the animals treated with formulation prepared from capped hydroxyapatite obtained from caprine bone loaded with mupirocin had the highest wound closure area of 377.8 mm2, while conventional mupirocin ointment had 231.5 mm2 in 16 days of treatment. All the formulations with mupirocin except the ointment showed excellent resistance against Klebsiella pneumonia and Staphylococcus aureus of about 40 mm of inhibition zone.
Conclusions
The mupirocin encapsulated in hydroxyapatite extracted from bovine and caprine bones has been demonstrated to be more superior to the conventional ointment in the management of chronic wound conditions.
Collapse
|
18
|
Cao L, Zhu G, Tao J, Zhang Y. Iron carriers promote biofilm formation and p-nitrophenol degradation. CHEMOSPHERE 2022; 293:133601. [PMID: 35033514 DOI: 10.1016/j.chemosphere.2022.133601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
Vertical baffled biofilm reactors (VBBR) equipped with Plastic-carriers and Fe-carriers were employed to explore the effect of biofilm carriers on biofilm formation and p-nitrophenol (PNP) degradation. The results showed that Fe-carriers enhanced biofilm formation and PNP degradation. The maximum thickness of biofilm grown on the Fe-carriers was 1.5-fold higher than that on the Plastic-carriers. The Fe-VBBR reached a maximum rate of PNP removal at 13.02 μM L-1 h-1 with less sodium acetate addition (3 mM), while the maximum rate of PNP removal was 11.53 μM L-1 h-1 with more sodium acetate addition (6 mM) in the Plastic-based VBBR. High-throughput sequencing suggested that the Fe-VBBR had a higher biodiversity of the bacterial community in evenness, and the Achromobacter genus and Xanthobacteraceae family were as main PNP degraders. Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology analysis suggested more abundances of iron uptake genes were expressed to transport iron into the cytoplasm under an iron-limited condition in two VBBRs, and the metabolic pathway of PNP degradation went through 4-nitrocatechol and 1,2,4-benzenetriol. Our results provide a new insight for iron enhancing biofilm formation and PNP degradation.
Collapse
Affiliation(s)
- Lifeng Cao
- Department of Environmental Science and Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; School of Environment and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing, 100084, China
| | - Ge Zhu
- Department of Environmental Science and Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Jinzhao Tao
- Department of Environmental Science and Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yongming Zhang
- Department of Environmental Science and Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China.
| |
Collapse
|
19
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. Angew Chem Int Ed Engl 2022; 61:e202112218. [PMID: 34806284 PMCID: PMC9303468 DOI: 10.1002/anie.202112218] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 12/02/2022]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
20
|
Darvishi S, Tavakoli S, Kharaziha M, Girault HH, Kaminski CF, Mela I. Advances in the Sensing and Treatment of Wound Biofilms. ANGEWANDTE CHEMIE (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 134:e202112218. [PMID: 38505642 PMCID: PMC10946914 DOI: 10.1002/ange.202112218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 03/21/2024]
Abstract
Wound biofilms represent a particularly challenging problem in modern medicine. They are increasingly antibiotic resistant and can prevent the healing of chronic wounds. However, current treatment and diagnostic options are hampered by the complexity of the biofilm environment. In this review, we present new chemical avenues in biofilm sensors and new materials to treat wound biofilms, offering promise for better detection, chemical specificity, and biocompatibility. We briefly discuss existing methods for biofilm detection and focus on novel, sensor-based approaches that show promise for early, accurate detection of biofilm formation on wound sites and that can be translated to point-of-care settings. We then discuss technologies inspired by new materials for efficient biofilm eradication. We focus on ultrasound-induced microbubbles and nanomaterials that can both penetrate the biofilm and simultaneously carry active antimicrobials and discuss the benefits of those approaches in comparison to conventional methods.
Collapse
Affiliation(s)
- Sorour Darvishi
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Shima Tavakoli
- Department of Chemistry-Ångstrom LaboratoryUppsala UniversitySE75121UppsalaSweden
| | - Mahshid Kharaziha
- Department of Materials EngineeringIsfahan University of TechnologyIsfahan84156-83111Iran
| | - Hubert H. Girault
- Department of Chemistry and Chemical EngineeringÉcole Polytechnique Fédérale de Lausanne1951SionSwitzerland
| | - Clemens F. Kaminski
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| | - Ioanna Mela
- Department of Chemical Engineering and BiotechnologyUniversity of CambridgePhilippa Fawcett DriveCambridgeCB3 0ASUK
| |
Collapse
|
21
|
Al-Wrafy FA, Al-Gheethi AA, Ponnusamy SK, Noman EA, Fattah SA. Nanoparticles approach to eradicate bacterial biofilm-related infections: A critical review. CHEMOSPHERE 2022; 288:132603. [PMID: 34678351 DOI: 10.1016/j.chemosphere.2021.132603] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/06/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Biofilm represents one of the crucial factors for the emergence of multi-drug resistance bacterial infections. The high mortality, morbidity and medical device-related infections are associated with biofilm formation, which requires primarily seek alternative treatment strategies. Recently, nanotechnology has emerged as a promising method for eradicating bacterial biofilm-related infection. The efficacy of nanoparticles (NPs) against bacterial infections interest great attention, and the researches on the subject are rapidly increasing. However, the majority of studies continue to focus on the antimicrobial effects of NPs in vitro, while only a few achieved in vivo and very few registered as clinical trials. The present review aimed to organize the scattered available information regarding NPs approach to eradicate bacterial biofilm-related infections. The current review highlighted the advantages and disadvantages associated with this approach, in addition to the challenges that prevent reaching the clinical applications. It was appeared that the production of NPs either as antimicrobials or as drug carriers requires further investigations to overcome the obstacles associated with their kinetic and biocompatibility.
Collapse
Affiliation(s)
- Fairoz Ali Al-Wrafy
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen.
| | - Adel Ali Al-Gheethi
- Civil Department, Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, 86400, Batu Pahat, Johor, Malaysia.
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India
| | - Efaq Ali Noman
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen
| | - Shaima Abdul Fattah
- Department of Applied Microbiology, Faculty of Applied Science, Taiz University, 6350, Taiz, Yemen; Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| |
Collapse
|
22
|
Metal Complexes—A Promising Approach to Target Biofilm Associated Infections. Molecules 2022; 27:molecules27030758. [PMID: 35164021 PMCID: PMC8838073 DOI: 10.3390/molecules27030758] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/19/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Microbial biofilms are represented by sessile microbial communities with modified gene expression and phenotype, adhered to a surface and embedded in a matrix of self-produced extracellular polymeric substances (EPS). Microbial biofilms can develop on both prosthetic devices and tissues, generating chronic and persistent infections that cannot be eradicated with classical organic-based antimicrobials, because of their increased tolerance to antimicrobials and the host immune system. Several complexes based mostly on 3D ions have shown promising potential for fighting biofilm-associated infections, due to their large spectrum antimicrobial and anti-biofilm activity. The literature usually reports species containing Mn(II), Ni(II), Co(II), Cu(II) or Zn(II) and a large variety of multidentate ligands with chelating properties such as antibiotics, Schiff bases, biguanides, N-based macrocyclic and fused rings derivatives. This review presents the progress in the development of such species and their anti-biofilm activity, as well as the contribution of biomaterials science to incorporate these complexes in composite platforms for reducing the negative impact of medical biofilms.
Collapse
|
23
|
Yi J, Huang K, Nitin N. Modeling bioaffinity-based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part II: Parameter evaluation and validation. Biotechnol Bioeng 2021; 119:247-256. [PMID: 34693998 DOI: 10.1002/bit.27969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
The design of bioaffinity-based targeted delivery systems for biofilm inactivation may require a comprehensive understanding of physicochemical and biochemical properties of biobased antimicrobial particles and their interactions with biofilm. In this study, Escherichia coli biofilm inactivation by chlorine-charged yeast microparticles was numerically simulated, and the roles of chemical stability, binding affinity, and controlled release of this targeted delivery system were assessed using this numerical simulation. The simulation results were experimentally validated using two different types of yeast microparticles. The results of this study illustrate that chorine stability achieved by yeast microparticles was a key factor for improved biofilm inactivation in an organic-rich environment (>6 additional log reduction in 20 min compared to the free chlorine treatment). Moreover, the binding affinity of yeast microparticles to E. coli biofilms was another key factor for an enhanced inactivation of biofilm, as a 10-fold increase in binding rate resulted in a 4.2-fold faster inactivation. Overall, the mechanistic modeling framework developed in this study could guide the design and development of biobased particles for targeted inactivation of biofilms.
Collapse
Affiliation(s)
- Jiyoon Yi
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA.,Department of Biological and Agricultural Engineering, University of California-Davis, Davis, California, USA
| |
Collapse
|
24
|
Yi J, Huang K, Nitin N. Modeling bioaffinity-based targeted delivery of antimicrobials to Escherichia coli biofilms using yeast microparticles. Part I: Model development and numerical simulation. Biotechnol Bioeng 2021; 119:236-246. [PMID: 34694002 DOI: 10.1002/bit.27971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/08/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Biofilms are potential reservoirs for pathogenic microbes leading to a significant challenge for food safety, ecosystems, and human health. Various micro-and nanoparticles have been experimentally evaluated to improve biofilm inactivation by targeted delivery of antimicrobials. However, the role of transport processes and reaction kinetics of these delivery systems are not well understood. In this study, a mechanistic modeling approach was developed to understand the targeted delivery of chlorine to an Escherichia coli biofilm using a novel bioaffinity-based yeast microparticle. Biofilm inactivation by this delivery system was numerically simulated as a combination of reaction kinetics and transport phenomena. Simulation results demonstrate that the targeted delivery system achieved 7 log reduction within 16.2 min, while the equivalent level of conventional free chlorine achieved only 3.6 log reduction for the same treatment time. These numerical results matched the experimental observations in our previous study. This study illustrates the potential of a mechanistic modeling approach to improve fundamental understanding and guide the design of targeted inactivation of biofilms using biobased particles.
Collapse
Affiliation(s)
- Jiyoon Yi
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA
| | - Kang Huang
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Nitin Nitin
- Department of Food Science and Technology, University of California-Davis, Davis, California, USA.,Department of Biological and Agricultural Engineering, University of California-Davis, Davis, California, USA
| |
Collapse
|
25
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
26
|
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand the basics of biofilm infection and be able to distinguish between planktonic and biofilm modes of growth. 2. Have a working knowledge of conventional and emerging antibiofilm therapies and their modes of action as they pertain to wound care. 3. Understand the challenges associated with testing and marketing antibiofilm strategies and the context within which these strategies may have effective value. SUMMARY The Centers for Disease Control and Prevention estimate for human infectious diseases caused by bacteria with a biofilm phenotype is 65 percent and the National Institutes of Health estimate is closer to 80 percent. Biofilms are hostile microbial aggregates because, within their polymeric matrix cocoons, they are protected from antimicrobial therapy and attack from host defenses. Biofilm-infected wounds, even when closed, show functional deficits such as deficient extracellular matrix and impaired barrier function, which are likely to cause wound recidivism. The management of invasive wound infection often includes systemic antimicrobial therapy in combination with débridement of wounds to a healthy tissue bed as determined by the surgeon who has no way of visualizing the biofilm. The exceedingly high incidence of false-negative cultures for bacteria in a biofilm state leads to missed diagnoses of wound infection. The use of topical and parenteral antimicrobial therapy without wound débridement have had limited impact on decreasing biofilm infection, which remains a major problem in wound care. Current claims to manage wound biofilm infection rest on limited early-stage data. In most cases, such data originate from limited experimental systems that lack host immune defense. In making decisions on the choice of commercial products to manage wound biofilm infection, it is important to critically appreciate the mechanism of action and significance of the relevant experimental system. In this work, the authors critically review different categories of antibiofilm products, with emphasis on their strengths and limitations as evident from the published literature.
Collapse
Affiliation(s)
- Chandan K Sen
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Sashwati Roy
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Shomita S Mathew-Steiner
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| | - Gayle M Gordillo
- From the Indiana University Health Comprehensive Wound Center, the Indiana Center for Regenerative Medicine & Engineering, and the Indiana University School of Medicine
| |
Collapse
|
27
|
Lazar V, Holban AM, Curutiu C, Chifiriuc MC. Modulation of Quorum Sensing and Biofilms in Less Investigated Gram-Negative ESKAPE Pathogens. Front Microbiol 2021; 12:676510. [PMID: 34394026 PMCID: PMC8359898 DOI: 10.3389/fmicb.2021.676510] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/30/2021] [Indexed: 01/20/2023] Open
Abstract
Pathogenic bacteria have the ability to sense their versatile environment and adapt by behavioral changes both to the external reservoirs and the infected host, which, in response to microbial colonization, mobilizes equally sophisticated anti-infectious strategies. One of the most important adaptive processes is the ability of pathogenic bacteria to turn from the free, floating, or planktonic state to the adherent one and to develop biofilms on alive and inert substrata; this social lifestyle, based on very complex communication networks, namely, the quorum sensing (QS) and response system, confers them an increased phenotypic or behavioral resistance to different stress factors, including host defense mechanisms and antibiotics. As a consequence, biofilm infections can be difficult to diagnose and treat, requiring complex multidrug therapeutic regimens, which often fail to resolve the infection. One of the most promising avenues for discovering novel and efficient antibiofilm strategies is targeting individual cells and their QS mechanisms. A huge amount of data related to the inhibition of QS and biofilm formation in pathogenic bacteria have been obtained using the well-established gram-positive Staphylococcus aureus and gram-negative Pseudomonas aeruginosa models. The purpose of this paper was to revise the progress on the development of antibiofilm and anti-QS strategies in the less investigated gram-negative ESKAPE pathogens Klebsiella pneumoniae, Acinetobacter baumannii, and Enterobacter sp. and identify promising leads for the therapeutic management of these clinically significant and highly resistant opportunistic pathogens.
Collapse
Affiliation(s)
- Veronica Lazar
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Alina Maria Holban
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Carmen Curutiu
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| |
Collapse
|
28
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
29
|
Radhakrishnan MP, Suryaletha K, Shankar A, Savithri AV, George S, Thomas S. Insights into Peptide Mediated Antibiofilm Treatment in Chronic Wound: A Bench to Bedside Approach. Curr Protein Pept Sci 2021; 22:50-59. [PMID: 33143623 DOI: 10.2174/1389203721666201103084727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/08/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Chronic wound biofilm infections are a threat to the population with respect to morbidity and mortality. The presence of multidrug-resistant bacterial pathogens in chronic wound renders the action of antibiotics and antibiofilm agents difficult. Therefore an alternative therapy is essential for reducing bacterial biofilm burden. In this scenario, the peptide-based antibiofilm therapy for chronic wound biofilm management seeks more attention. A synthetic peptide with a broad range of antibiofilm activity against preformed and established biofilms, having the ability to kill multispecies bacteria within biofilms and possessing combinatorial activity with other antimicrobial agents, provides significant insights. In this review, we portray the possibilities and difficulties of peptide-mediated treatment in chronic wounds biofilm management and how it can be clinically translated into a product.
Collapse
Affiliation(s)
- Megha P Radhakrishnan
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Karthika Suryaletha
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Aparna Shankar
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Akhila Velappan Savithri
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| | - Sanil George
- Interdisciplinary Biology, Rajiv Gandhi Centre for Biotechnology, Trivandrum - 695 014, Kerala, India
| | - Sabu Thomas
- Cholera and Biofilm Research Laboratory, Pathogen Biology Group, Rajiv Gandhi Centre for Biotechnology, Govt. of India, Trivandrum - 695 014, Kerala, India
| |
Collapse
|
30
|
Nanotechnology as an Anti-Infection Strategy in Periprosthetic Joint Infections (PJI). Trop Med Infect Dis 2021; 6:tropicalmed6020091. [PMID: 34071727 PMCID: PMC8261634 DOI: 10.3390/tropicalmed6020091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Periprosthetic joint infection (PJI) represents a devastating consequence of total joint arthroplasty (TJA) because of its high morbidity and its high impact on patient quality of life. The lack of standardized preventive and treatment strategies is a major challenge for arthroplasty surgeons. The purpose of this article was to explore the potential and future uses of nanotechnology as a tool for the prevention and treatment of PJI. Methods: Multiple review articles from the PubMed, Scopus and Google Scholar databases were reviewed in order to establish the current efficacy of nanotechnology in PJI preventive or therapeutic scenarios. Results: As a prevention tool, anti-biofilm implants equipped with nanoparticles (silver, silk fibroin, poly nanofibers, nanophase selenium) have shown promising antibacterial functionality. As a therapeutic tool, drug-loaded nanomolecules have been created and a wide variety of carrier materials (chitosan, titanium, calcium phosphate) have shown precise drug targeting and efficient control of drug release. Other nanotechnology-based antibiotic carriers (lipid nanoparticles, silica, clay nanotubes), when added to common bone cements, enhanced prolonged drug delivery, making this technology promising for the creation of antibiotic-added cement joint spacers. Conclusion: Although still in its infancy, nanotechnology has the potential to revolutionize prevention and treatment protocols of PJI. Nevertheless, extensive basic science and clinical research will be needed to investigate the potential toxicities of nanoparticles.
Collapse
|
31
|
Jiang L, Loo SCJ. Intelligent Nanoparticle-Based Dressings for Bacterial Wound Infections. ACS APPLIED BIO MATERIALS 2021; 4:3849-3862. [PMID: 34056562 PMCID: PMC8155196 DOI: 10.1021/acsabm.0c01168] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Conventional wound dressing materials containing free antibiotics for bacterial wound infections are presented with several limitations, that is, lack of controlled and triggered release capabilities, and may often not be adequate to address the complex bacteria microenvironment of such infections. Additionally, the improper usage of antibiotics may also result in the emergence of drug resistant strains. While delivery systems (i.e., nanoparticles) that encapsulate antibiotics may potentially overcome some of these limitations, their therapeutic outcomes are still less than desirable. For example, premature drug release or unintended drug activation may occur, which would greatly reduce treatment efficacy. To address this, responsive nanoparticle-based antimicrobial therapies could be a promising strategy. Such nanoparticles can be functionalized to react to a single stimulus or multi stimulus within the bacteria microenvironment and subsequently elicit a therapeutic response. Such "intelligent" nanoparticles can be designed to respond to the microenvironment, that is, an acidic pH, the presence of specific enzymes, bacterial toxins, etc. or to an external stimulus, for example, light, thermal, etc. These responsive nanoparticles can be further incorporated into wound dressings to better promote wound healing. This review summarizes and highlights the recent progress on such intelligent nanoparticle-based dressings as potential wound dressings for bacteria-infected wounds, along with the current challenges and prospects for these technologies to be successfully translated into the clinic.
Collapse
Affiliation(s)
- Lai Jiang
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Say Chye Joachim Loo
- School
of Materials Science & Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
- Singapore
Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Harvard
T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
32
|
Quan K, Jiang G, Liu J, Zhang Z, Ren Y, Busscher HJ, van der Mei HC, Peterson BW. Influence of interaction between surface-modified magnetic nanoparticles with infectious biofilm components in artificial channel digging and biofilm eradication by antibiotics in vitro and in vivo. NANOSCALE 2021; 13:4644-4653. [PMID: 33616592 DOI: 10.1039/d0nr08537e] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Magnetic targeting of antimicrobial-loaded magnetic nanoparticles to micrometer-sized infectious biofilms is challenging. Bacterial biofilms possess water channels that facilitate transport of nutrient and metabolic waste products, but are insufficient to allow deep penetration of antimicrobials and bacterial killing. Artificial channel digging in infectious biofilms involves magnetically propelling nanoparticles through a biofilm to dig additional channels to enhance antimicrobial penetration. This does not require precise targeting. However, it is not known whether interaction of magnetic nanoparticles with biofilm components impacts the efficacy of antibiotics after artificial channel digging. Here, we functionalized magnetic-iron-oxide-nanoparticles (MIONPs) with polydopamine (PDA) to modify their interaction with staphylococcal pathogens and extracellular-polymeric-substances (EPS) and relate the interaction with in vitro biofilm eradication by gentamicin after magnetic channel digging. PDA-modified MIONPs had less negative zeta potentials than unmodified MIONPs due to the presence of amino groups and accordingly more interaction with negatively charged staphylococcal cell surfaces than unmodified MIONPs. Neither unmodified nor PDA-modified MIONPs interacted with EPS. Concurrently, use of non-interacting unmodified MIONPs for artificial channel digging in in vitro grown staphylococcal biofilms enhanced the efficacy of gentamicin more than the use of interacting, PDA-modified MIONPs. In vivo experiments in mice using a sub-cutaneous infection model confirmed that non-interacting, unmodified MIONPs enhanced eradication by gentamicin of Staphylococcus aureus Xen36 biofilms about 10 fold. Combined with the high biocompatibility of magnetic nanoparticles, these results form an important step in understanding the mechanism of artificial channel digging in infectious biofilms for enhancing antibiotic efficacy in hard-to-treat infectious biofilms in patients.
Collapse
Affiliation(s)
- Kecheng Quan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China. and University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Guimei Jiang
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands. and Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Jian Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Zexin Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China.
| | - Yijin Ren
- University of Groningen and University Medical Center Groningen, Department of Orthodontics, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Henk J Busscher
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Henny C van der Mei
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| | - Brandon W Peterson
- University of Groningen and University Medical Center Groningen, Department of Biomedical Engineering, 9713 AV Groningen, The Netherlands.
| |
Collapse
|
33
|
Filipović N, Ušjak D, Milenković MT, Zheng K, Liverani L, Boccaccini AR, Stevanović MM. Comparative Study of the Antimicrobial Activity of Selenium Nanoparticles With Different Surface Chemistry and Structure. Front Bioeng Biotechnol 2021; 8:624621. [PMID: 33569376 PMCID: PMC7869925 DOI: 10.3389/fbioe.2020.624621] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/30/2020] [Indexed: 01/02/2023] Open
Abstract
Although selenium nanoparticles (SeNPs) have gained attention in the scientific community mostly through investigation of their anticancer activity, a great potential of this nanomaterial was recognized recently regarding its antimicrobial activity. The particle form, size, and surface chemistry have been recognized as crucial parameters determining the interaction of nanomaterials with biological entities. Furthermore, considering a narrow boundary between beneficial and toxic effects for selenium per se, it is clear that investigations of biomedical applications of SeNPs are very demanding and must be done with great precautions. The goal of this work is to evaluate the effects of SeNPs surface chemistry and structure on antimicrobial activity against several common bacterial strains, including Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Bacillus subtilis (ATCC 6633), and Kocuria rhizophila (ATCC 9341), as well as Escherichia coli (ATCC 8739), Salmonella Abony (NCTC 6017), Klebsiella pneumoniae (NCIMB 9111) and Pseudomonas aeruginosa (ATCC 9027), and the standard yeast strain Candida albicans (ATCC 10231). Three types of SeNPs were synthesized by chemical reduction approach using different stabilizers and reducing agents: (i) bovine serum albumin (BSA) + ascorbic acid, (ii) chitosan + ascorbic acid, and (iii) with glucose. A thorough physicochemical characterization of the obtained SeNPs was performed to determine the effects of varying synthesis parameters on their morphology, size, structure, and surface chemistry. All SeNPs were amorphous, with spherical morphology and size in the range 70–300 nm. However, the SeNPs obtained under different synthesis conditions, i.e. by using different stabilizers as well as reducing agents, exhibited different antimicrobial activity as well as cytotoxicity which are crucial for their applications. In this paper, the antimicrobial screening of the selected systems is presented, which was determined by the broth microdilution method, and inhibitory influence on the production of monomicrobial and dual-species biofilm was evaluated. The potential mechanism of action of different systems is proposed. Additionally, the cytotoxicity of SeNPs was examined on the MRC-5 cell line, in the same concentration interval as for antimicrobial testing. It was shown that formulation SeNPs-BSA expressed a significantly lower cytotoxic effect than the other two formulations.
Collapse
Affiliation(s)
- Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Dušan Ušjak
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Marina T Milenković
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Kai Zheng
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Liliana Liverani
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Aldo R Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Magdalena M Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Belgrade, Serbia
| |
Collapse
|
34
|
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021; 19:23-36. [PMID: 32814862 PMCID: PMC8559572 DOI: 10.1038/s41579-020-0420-1] [Citation(s) in RCA: 563] [Impact Index Per Article: 140.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics. Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance. In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections. In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms. We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency. Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics.
Collapse
Affiliation(s)
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzannah Schmidt-Malan
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
35
|
Wang M, Zhu H, Shen J. Synthesis and molecular dynamics simulation of CuS@GO–CS hydrogel for enhanced photothermal antibacterial effect. NEW J CHEM 2021. [DOI: 10.1039/d0nj05891b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
CuS@GO–CS hydrogels were prepared by a simple method and possessed an enhanced photothermal antibacterial effect against E. coli and S. aureus.
Collapse
Affiliation(s)
- Mingqian Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-Functional Materials
- Department of Materials Science and Engineering
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Haomiao Zhu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-Functional Materials
- Department of Materials Science and Engineering
- School of Chemistry and Materials Science
- Nanjing Normal University
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- Jiangsu Key Laboratory of Bio-Functional Materials
- Department of Materials Science and Engineering
- School of Chemistry and Materials Science
- Nanjing Normal University
| |
Collapse
|
36
|
Bianchera A, Buttini F, Bettini R. Micro/nanosystems and biomaterials for controlled delivery of antimicrobial and anti-biofilm agents. Expert Opin Ther Pat 2020; 30:983-1000. [PMID: 33078643 DOI: 10.1080/13543776.2020.1839415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Microbial resistance is a severe problem for clinical practice due to misuse of antibiotics that promotes the development of surviving strategies by bacteria and fungi. Microbial cells surrounded by a self-produced polymer matrix, defined as biofilms, are inherently more difficult to eradicate. Biofilms endow bacteria with a unique resistance against antibiotics and other anti-microbial agents and play a crucial role in chronic infection. AREAS COVERED Biofilm-associated antimicrobial resistance in the lung and wounds. Existing inhaled therapies for treatment of biofilm-associated lung infections. Role of pharmaceutical nanotechnologies to fight resistant microbes and biofilms. EXPERT OPINION The effectiveness of antibiotics has gradually decreased due to the onset of resistance phenomena. The formation of biofilms represents one of the most important steps in the development of resistance to antimicrobial treatment. The most obvious solution for overcoming this criticality would be the discovery of new antibiotics. However, the number of new molecules with antimicrobial activity brought into clinical development has considerably decreased. In the last decades the development of innovative drug delivery systems, in particular those based on nanotechnological platforms, has represented the most effective and economically affordable approach to optimize the use of available antibiotics, improving their effectiveness profile. Abbreviations AZT: Aztreonam; BAT: Biofilm antibiotic tolerance; CF: Cystic Fibrosis; CIP: Ciprofloxacin; CRS: Chronic Rhinosinusitis; DPPG: 1,2-dipalmytoyl-sn-glycero-3-phosphoglycerol; DSPC: 1,2-distearoyl-sn-glycero-phosphocholine sodium salt; EPS: extracellular polymeric substance; FEV1: Forced Expiratory Volume in the first second; GSNO: S-nitroso-glutathione; LAE: lauroyl arginate ethyl; MIC: Minimum inhibitory Concentration; NCFB: Non-Cystic Fibrosis Bronchiectasis; NTM: Non-Tuberculous Mycobacteria; NTM-LD: Non-tuberculous mycobacteria Lung Disease PA: Pseudomonas aeruginosa; pDMAEMA: poly(dimethylaminoethyl methacrylate);pDMAEMA-co-PAA-co-BMA: poly(dimethylaminoethyl methacrylate)-co-propylacrylic acid-co-butyl methacrylate; PEG: polyethylene glycol; PEGDMA: polyethylene glycol dimethacrylate;PCL: Poly-ε-caprolactone; PLA: poly-lactic acid; PLGA: poly-lactic-co-glycolic acid; PVA: poli-vinyl alcohol; SA: Staphylococcus aureus; TIP: Tobramycin Inhalation Powder; TIS: Tobramycin Inhalation Solution; TPP: Tripolyphosphate.
Collapse
Affiliation(s)
| | | | - Ruggero Bettini
- Food and Drug Department, University of Parma , Parma, Italy
| |
Collapse
|
37
|
Xiu W, Shan J, Yang K, Xiao H, Yuwen L, Wang L. Recent development of nanomedicine for the treatment of bacterial biofilm infections. VIEW 2020. [DOI: 10.1002/viw.20200065] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing China
| | - Jingyang Shan
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing China
| | - Kaili Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing China
| | - Hang Xiao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing China
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors Institute of Advanced Materials (IAM) Nanjing University of Posts and Telecommunications Nanjing China
| |
Collapse
|
38
|
Inhibition of Biofilm Formation of Staphylococcus aureus Strains Through ZnO/Zeolite Nanocomposite and Its Cytotoxicity Evaluation. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
39
|
Naskar A, Kim KS. Recent Advances in Nanomaterial-Based Wound-Healing Therapeutics. Pharmaceutics 2020; 12:E499. [PMID: 32486142 PMCID: PMC7356512 DOI: 10.3390/pharmaceutics12060499] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Nanomaterial-based wound healing has tremendous potential for treating and preventing wound infections with its multiple benefits compared with traditional treatment approaches. In this regard, the physiochemical properties of nanomaterials enable researchers to conduct extensive studies on wound-healing applications. Nonetheless, issues concerning the use of nanomaterials in accelerating the efficacy of existing medical treatments remain unresolved. The present review highlights novel approaches focusing on the recent innovative strategies for wound healing and infection controls based on nanomaterials, including nanoparticles, nanocomposites, and scaffolds, which are elucidated in detail. In addition, the efficacy of nanomaterials as carriers for therapeutic agents associated with wound-healing applications has been addressed. Finally, nanomaterial-based scaffolds and their premise for future studies have been described. We believe that the in-depth analytical review, future insights, and potential challenges described herein will provide researchers an up-to-date reference on the use of nanomedicine and its innovative approaches that can enhance wound-healing applications.
Collapse
Affiliation(s)
| | - Kwang-sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
40
|
Paladini F, Pollini M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. MATERIALS 2019; 12:ma12162540. [PMID: 31404974 PMCID: PMC6719912 DOI: 10.3390/ma12162540] [Citation(s) in RCA: 207] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 01/28/2023]
Abstract
Recent data have reported that the burden of infections related to antibiotic-resistant bacteria in the European Union and European Economic Area (EEA) can be estimated as the cumulative burden of tuberculosis, influenza, and human immunodeficiency virus (HIV). In wound management, the control of infections represents a crucial issue and a multi-billion dollar industry worldwide. For diabetic wounds ulcers, in particular, infections are related to the majority of amputations in diabetic patients, which today represent an increasing number of the elderly. The greatest barrier to healing is represented by the biofilm, an organized consortium of bacteria encapsulated in a self-produced extracellular polymeric substance with high resistance to conventional antimicrobial therapies. There is an urgent need for novel anti-biofilm strategies and novel antimicrobial agents and, in this scenario, silver nanotechnology has received tremendous attention in recent years in therapeutically enhanced healthcare. Due to its intrinsic therapeutic properties and the broad-spectrum antimicrobial efficacy, silver nanoparticles have opened new horizons towards novel approaches in the control of infections in wound healing. This review aims at providing the reader with an overview of the most recent progress in silver nanotechnology, with a special focus on the role of silver in the wound healing process.
Collapse
Affiliation(s)
- Federica Paladini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| | - Mauro Pollini
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
41
|
Partoazar A, Talaei N, Bahador A, Pourhajibagher M, Dehpour S, Sadati M, Bakhtiarian A. Antibiofilm activity of natural zeolite supported NanoZnO: inhibition of Esp gene expression of Enterococcus faecalis. Nanomedicine (Lond) 2019; 14:675-687. [PMID: 30702017 DOI: 10.2217/nnm-2018-0173] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate the antibiofilm effect and esp gene downregulation of Enterococcus faecalis through nanozinc oxide fabricated on natural zeolite (NanoZnO/Ze). Materials & methods:Zeolite and NanoZnO/Ze materials were characterized by x-ray diffraction, x-ray fluorescence and field emission scanning electron microscopy coupled with energy dispersive x-ray. Atomic absorption spectroscopy was used to evaluate zinc release. E. faecalis biofilm formation and its esp gene expression were assessed under nanocomposite treatment. RESULTS Spherical-shaped ZnO nanoparticles with an average size of 30 nm were dispersed on the zeolites surface. The leakage of cationic zinc from NanoZnO/Ze displayed a long lasting and considerable release content (p < 0.0001) compared with ZnO/Ze. NanoZnO/Ze effectively inhibited (p < 0.0001) biofilm formation and affected esp gene downregulation of E. faecalis. CONCLUSION Our results show that NanoZnO/Zeolite can potentiate against biofilm infections due to E. faecalis and possibly other pathogens.
Collapse
Affiliation(s)
- Alireza Partoazar
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Narjes Talaei
- Department of Microbiology, North Tehran Branch, Islamic Azad University, Tehran, Iran.,Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Oral Microbiology Laboratory, Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saman Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Marjan Sadati
- Science & Research Branch, Islamic Azad University, Tehran, Iran
| | - Azam Bakhtiarian
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
42
|
Wang M, Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J Orthop Translat 2018; 17:42-54. [PMID: 31194031 PMCID: PMC6551355 DOI: 10.1016/j.jot.2018.09.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/13/2018] [Accepted: 09/04/2018] [Indexed: 02/08/2023] Open
Abstract
Orthopaedic implants are recognised as important therapeutic devices in the successful clinical management of a wide range of orthopaedic conditions. However, implant-related infections remain a challenging and not uncommon issue in patients with implanted instrumentation or medical devices. Bacterial adhesion and formation of biofilm on the surface of the implant represent important processes towards progression of infection. Given the intimate association between infection and the implant surface, adequate treatment of the implant surface may help mitigate the risk of infection. This review summarises the current surface treatment technologies and their role in prevention of implant-related infection from the beginning. Translational potential of this article Despite great technological advancements, the prevalence of implant-related infections remains high. Four main challenges can be identified. (i) Insufficient mechanical stability can cause detachment of the implant surface coating, altering the antimicrobial ability of functionalized surfaces. (ii) Regarding drug-loaded coatings, a stable drug release profile is of vital importance for achieving effective bactericidal effect locally; however, burst release of the loaded antibacterial agents remains common. (iii) Although many coatings and modified surfaces provide superior antibacterial action, such functionalisation of surfaces sometimes has a detrimental effect on tissue biocompatibility, impairing the integration of the implants into the surrounding tissue. (iv) Biofilm eradication at the implant surface remains particularly challenging. This review summarised the recent progress made to address the aforementioned problems. By providing a perspective on state-of-the-art surface treatment strategies for medical implants, we hope to support the timely adoption of modern materials and techniques into clinical practice.
Collapse
Affiliation(s)
- Minqi Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Tang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Yuwen L, Sun Y, Tan G, Xiu W, Zhang Y, Weng L, Teng Z, Wang L. MoS 2@polydopamine-Ag nanosheets with enhanced antibacterial activity for effective treatment of Staphylococcus aureus biofilms and wound infection. NANOSCALE 2018; 10:16711-16720. [PMID: 30156245 DOI: 10.1039/c8nr04111c] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Developing novel antibacterial agents to combat bacterial infection has been an everlasting task for scientists, due to the drug resistance evolved by bacteria during antibiotic treatment. In this work, we used polydopamine (PDA) to modify MoS2 nanosheets (MoS2 NSs) and then grew silver nanoparticles (AgNPs) on their surface to form MoS2@PDA-Ag nanosheets (MPA NSs) as multimodal antibacterial nanoagents to treat Staphylococcus aureus (S. aureus) biofilms and S. aureus infected wounds. In vitro results show that treatment with MPA NSs under near-infrared (NIR) laser irradiation can efficiently eradicate the established S. aureus biofilms with 99.99% of the bacteria inside biofilms killed, which shows significantly enhanced therapeutic efficacy compared with the MPA only group or the NIR laser irradiation only group. Remarkably, MPA NSs were also successfully used to treat S. aureus infected wounds in mice under NIR laser irradiation. In vivo experiments demonstrate that about 99% of bacteria in wounds were killed and the healing of the infected wounds was promoted. Overall, this work demonstrates that MPA NSs with enhanced antibacterial activity are promising nanoagents to treat S. aureus biofilms and S. aureus infected wounds.
Collapse
Affiliation(s)
- Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abenojar EC, Wickramasinghe S, Ju M, Uppaluri S, Klika A, George J, Barsoum W, Frangiamore SJ, Higuera-Rueda CA, Samia ACS. Magnetic Glycol Chitin-Based Hydrogel Nanocomposite for Combined Thermal and d-Amino-Acid-Assisted Biofilm Disruption. ACS Infect Dis 2018; 4:1246-1256. [PMID: 29775283 DOI: 10.1021/acsinfecdis.8b00076] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Bacterial biofilms are highly antibiotic resistant microbial cell associations that lead to chronic infections. Unlike free-floating planktonic bacterial cells, the biofilms are encapsulated in a hardly penetrable extracellular polymeric matrix and, thus, demand innovative approaches for treatment. Recent advancements on the development of gel-nanocomposite systems with tailored therapeutic properties provide promising routes to develop novel antimicrobial agents that can be designed to disrupt and completely eradicate preformed biofilms. In our study, we developed a unique thermoresponsive magnetic glycol chitin-based nanocomposite containing d-amino acids and iron oxide nanoparticles, which can be delivered and undergoes transformation from a solution to a gel state at physiological temperature for sustained release of d-amino acids and magnetic field actuated thermal treatment of targeted infection sites. The d-amino acids in the hydrogel nanocomposite have been previously reported to inhibit biofilm formation and also disrupt existing biofilms. In addition, loading the hydrogel nanocomposite with magnetic nanoparticles allows for combination thermal treatment following magnetic field (magnetic hyperthermia) stimulation. Using this novel two-step approach to utilize an externally actuated gel-nanocomposite system for thermal treatment, following initial disruption with d-amino acids, we were able to demonstrate in vitro the total eradication of Staphylococcus aureus biofilms, which were resistant to conventional antibiotics and were not completely eradicated by separate d-amino acid or magnetic hyperthermia treatments.
Collapse
Affiliation(s)
- Eric C. Abenojar
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sameera Wickramasinghe
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Minseon Ju
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Sarika Uppaluri
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| | - Alison Klika
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Jaiben George
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Wael Barsoum
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Salvatore J. Frangiamore
- Summa Health Orthopaedics and Sports Medicine, 1 Park West Boulevard, Akron, Ohio 44320, United States
| | - Carlos A. Higuera-Rueda
- Department of Orthopaedic Surgery, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
| | - Anna Cristina S. Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
45
|
Treatment of Biofilm Communities: An Update on New Tools from the Nanosized World. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8060845] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Xu C, He Y, Li Z, Ahmad Nor Y, Ye Q. Nanoengineered hollow mesoporous silica nanoparticles for the delivery of antimicrobial proteins into biofilms. J Mater Chem B 2018; 6:1899-1902. [PMID: 32254355 DOI: 10.1039/c7tb03201c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The delivery of bactericidal proteins into biofilms is challenging. Hollow mesoporous silica nanoparticles with large cone-shaped pores were synthesized to deliver antimicrobial proteins into biofilms and showed enhanced antimicrobial activities.
Collapse
Affiliation(s)
- Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | |
Collapse
|
47
|
Andreeva SV, Bakhareva L, Nokhrin D, Titova M, Khaidarshina N, Burmistrova A. Susceptibility to antiseptic preparations in biofilm-forming Staphylococcus aureus and Pseudomonas aeruginosa isolated from burn wounds. CLINICAL MICROBIOLOGY AND ANTIMICROBIAL CHEMOTHERAPY 2018. [DOI: 10.36488/cmac.2018.3.249-256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The article presents data on susceptibility to antiseptic preparations in antibiotic-resistant S. aureus and P. aeruginosa strains isolated from burn wounds, which were tested in single-species and double-species biofilms with varying degrees (24-hour and 48-hour) of maturity. The studies demonstrated susceptibility of S. aureus and P. aeruginosa in single- and double-species biofilms to “Prontosan”, “Betadine” and “Chlorophyllipt” and resistance to “Miramistin” and “Chlorhexidine”. The bactericidal effect was achieved at concentrations 1.64 times higher than bacteriostatic concentrations for all the antiseptics tested. A double increase in antiseptic resistance level was observed over biofilm maturation process.
Collapse
Affiliation(s)
| | - L.I. Bakhareva
- Chelyabinsk State University; City Clinical Hospital (Chelyabinsk, Russia)
| | | | - M.V. Titova
- Chelyabinsk State University (Chelyabinsk, Russia)
| | | | | |
Collapse
|
48
|
Antibiofilm activity of nanoemulsions of Cymbopogon flexuosus against rapidly growing mycobacteria. Microb Pathog 2017; 113:335-341. [DOI: 10.1016/j.micpath.2017.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 10/31/2017] [Accepted: 11/02/2017] [Indexed: 11/23/2022]
|
49
|
Revathy T, Jacob JJ, Jayasri MA, Suthindhiran K. Microbial biofilm prevention on wound dressing by nanobiocoating using magnetosomes‐coupled lemon grass extract. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2016.0236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Theerthagiri Revathy
- Marine Biotechnology and Bioproducts LabSchool of Biosciences and TechnologyVIT UniversityVellore632014TamilnaduIndia
| | - Jobin John Jacob
- Marine Biotechnology and Bioproducts LabSchool of Biosciences and TechnologyVIT UniversityVellore632014TamilnaduIndia
| | | | - Krishnamurthy Suthindhiran
- Marine Biotechnology and Bioproducts LabSchool of Biosciences and TechnologyVIT UniversityVellore632014TamilnaduIndia
| |
Collapse
|