1
|
Engdahl SM, Gonzalez MA, Lee C, Gates DH. Perspectives on the comparative benefits of body-powered and myoelectric upper limb prostheses. J Neuroeng Rehabil 2024; 21:138. [PMID: 39118106 PMCID: PMC11308580 DOI: 10.1186/s12984-024-01436-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Patient access to body-powered and myoelectric upper limb prostheses in the United States is often restricted by a healthcare system that prioritizes prosthesis prescription based on cost and perceived value. Although this system operates on an underlying assumption that design differences between these prostheses leads to relative advantages and disadvantages of each device, there is limited empirical evidence to support this view. MAIN TEXT This commentary article will review a series of studies conducted by our research team with the goal of differentiating how prosthesis design might impact user performance on a variety of interrelated domains. Our central hypothesis is that the design and actuation method of body-powered and myoelectric prostheses might affect users' ability to access sensory feedback and account for device properties when planning movements. Accordingly, other domains that depend on these abilities may also be affected. While our work demonstrated some differences in availability of sensory feedback based on prosthesis design, this did not result in consistent differences in prosthesis embodiment, movement accuracy, movement quality, and overall kinematic patterns. CONCLUSION Collectively, our findings suggest that performance may not necessarily depend on prosthesis design, allowing users to be successful with either device type depending on the circumstances. Prescription practices should rely more on individual needs and preferences than cost or prosthesis design. However, we acknowledge that there remains a dearth of evidence to inform decision-making and that an expanded research focus in this area will be beneficial.
Collapse
Affiliation(s)
- Susannah M Engdahl
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA.
| | | | - Christina Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deanna H Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Lee C, Gates DH. Comparison of inter-joint coordination strategies during activities of daily living with prosthetic and anatomical limbs. Hum Mov Sci 2024; 96:103228. [PMID: 38761512 DOI: 10.1016/j.humov.2024.103228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/09/2024] [Accepted: 05/09/2024] [Indexed: 05/20/2024]
Abstract
While healthy individuals have redundant degrees of freedom of the joints, they coordinate their multi-joint movements such that the redundancy is effectively reduced. Achieving high inter-joint coordination may be difficult for upper limb prosthesis users due to the lack of proprioceptive feedback and limited motion of the terminal device. This study compared inter-joint coordination between prosthesis users and individuals without limb loss during different upper limb activities of daily living (ADLs). Nine unilateral prosthesis users (five males) and nine age- and sex-matched controls without limb loss completed three unilateral and three bilateral ADLs. Principal component analysis was applied to the three-dimensional motion trajectories of the trunk and arms to identify coordinative patterns. For each ADL, we quantified the cumulative variance accounted for (VAF) of the first five principal components (pcs), which was the lowest number of pcs that could achieve 90% VAF in control limb movements across all ADLs (5 ≤ n ≤ 9). The VAF was lower for movements involving a prosthesis compared to those completed by controls across all ADLs (p < 0.001). The pc waveforms were similar between movements involving a prosthesis and movements completed by control participants for pc1 (r > 0.78, p < 0.001). The magnitude of the relationship for pc2 and pc3 differed between ADLs, with the strongest correlation for symmetric bilateral ADLs (0.67 ≤ r ≤ 0.97, p < 0.001). Collectively, this study demonstrates that activities of daily living were completed with distinct coordination strategies in prosthesis users compared to individuals without limb loss. Future work should explore how device features, such as the availability of sensory feedback or motorized wrist joints influence multi-joint coordination.
Collapse
Affiliation(s)
- Christina Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Deanna H Gates
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; School of Kinesiology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Gonzalez MA, Nwokeabia C, Vaskov AK, Vu PP, Lu CW, Patil PG, Cederna PS, Chestek CA, Gates DH. Electrical Stimulation of Regenerative Peripheral Nerve Interfaces (RPNIs) Induces Referred Sensations in People With Upper Limb Loss. IEEE Trans Neural Syst Rehabil Eng 2024; 32:339-349. [PMID: 38145529 PMCID: PMC10938368 DOI: 10.1109/tnsre.2023.3345164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Individuals with upper limb loss lack sensation of the missing hand, which can negatively impact their daily function. Several groups have attempted to restore this sensation through electrical stimulation of residual nerves. The purpose of this study was to explore the utility of regenerative peripheral nerve interfaces (RPNIs) in eliciting referred sensation. In four participants with upper limb loss, we characterized the quality and location of sensation elicited through electrical stimulation of RPNIs over time. We also measured functional stimulation ranges (sensory perception and discomfort thresholds), sensitivity to changes in stimulation amplitude, and ability to differentiate objects of different stiffness and sizes. Over a period of up to 54 months, stimulation of RPNIs elicited sensations that were consistent in quality (e.g. tingling, kinesthesia) and were perceived in the missing hand and forearm. The location of elicited sensation was partially-stable to stable in 13 of 14 RPNIs. For 5 of 7 RPNIs tested, participants demonstrated a sensitivity to changes in stimulation amplitude, with an average just noticeable difference of 45 nC. In a case study, one participant was provided RPNI stimulation proportional to prosthetic grip force. She identified four objects of different sizes and stiffness with 56% accuracy with stimulation alone and 100% accuracy when stimulation was combined with visual feedback of hand position. Collectively, these experiments suggest that RPNIs have the potential to be used in future bi-directional prosthetic systems.
Collapse
|
4
|
Tchimino J, Dideriksen JL, Dosen S. EMG feedback improves grasping of compliant objects using a myoelectric prosthesis. J Neuroeng Rehabil 2023; 20:119. [PMID: 37705008 PMCID: PMC10500847 DOI: 10.1186/s12984-023-01237-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/24/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND Closing the control loop in myoelectric prostheses by providing artificial somatosensory feedback is recognized as an important goal. However, designing a feedback interface that is effective in realistic conditions is still a challenge. Namely, in some situations, feedback can be redundant, as the information it provides can be readily obtained through hearing or vision (e.g., grasping force estimated from the deformation of a compliant object). EMG feedback is a non-invasive method wherein the tactile stimulation conveys to the user the level of their own myoelectric signal, hence a measurement intrinsic to the interface, which cannot be accessed incidentally. METHODS The present study investigated the efficacy of EMG feedback in prosthesis force control when 10 able-bodied participants and a person with transradial amputation used a myoelectric prosthesis to grasp compliant objects of different stiffness values. The performance with feedback was compared to that achieved when the participants relied solely on incidental cues. RESULTS The main outcome measures were the task success rate and completion time. EMG feedback resulted in significantly higher success rates regardless of pin stiffness, indicating that the feedback enhanced the accuracy of force application despite the abundance of incidental cues. Contrary to expectations, there was no difference in the completion time between the two feedback conditions. Additionally, the data revealed that the participants could produce smoother control signals when they received EMG feedback as well as more consistent commands across trials, signifying better control of the system by the participants. CONCLUSIONS The results presented in this study further support the efficacy of EMG feedback when closing the prosthesis control loop by demonstrating its benefits in particularly challenging conditions which maximized the utility of intrinsic feedback sources.
Collapse
Affiliation(s)
- Jack Tchimino
- Neurorehabilitation Systems, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Jakob Lund Dideriksen
- Neurorehabilitation Systems, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Strahinja Dosen
- Neurorehabilitation Systems, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
5
|
McPherson AIW, Abbott ME, White W, Gloumakov Y, Stuart HS. A Wearable Testbed for Studying Variable Transmission in Body-Powered Prosthetic Gripping. IEEE Int Conf Rehabil Robot 2023; 2023:1-6. [PMID: 37941256 DOI: 10.1109/icorr58425.2023.10304687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
For those with upper limb absence, body-powered prostheses continue to be popular for many activities despite being an old technology; these devices can provide both inherent haptic feedback and mechanical robustness. Yet, they can also result in strain and fatigue. Body-powered prosthetic graspers typically consist of a simple lever providing a relatively constant transmission ratio between the input forces from the user's shoulder harness and the grip force of their prosthetic prehensor. In the field of robotic hand design, new continuously varying transmissions demonstrate particular promise in generating a wide range of grasping speeds without sacrificing grip strength. These benefits, if applied to shoulder-driven prosthetic grippers, have the potential to both reduce shoulder exertion and fatigue. This work presents the integration of a continuously variable transmission into a body-powered, voluntary close prosthetic testbed. We introduce the design and validate its performance in a benchtop experiment. We compare constant transmission conditions with a force-dependent, continually varying condition. The device is mounted on a prosthetic emulator for a preliminary wearable demonstration.
Collapse
|
6
|
Tchimino J, Dideriksen JL, Dosen S. EMG feedback outperforms force feedback in the presence of prosthesis control disturbance. Front Neurosci 2022; 16:952288. [PMID: 36203816 PMCID: PMC9530657 DOI: 10.3389/fnins.2022.952288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Closing the prosthesis control loop by providing artificial somatosensory feedback can improve utility and user experience. Additionally, closed-loop control should be more robust with respect to disturbance, but this might depend on the type of feedback provided. Thus, the present study investigates and compares the performance of EMG and force feedback in the presence of control disturbances. Twenty able-bodied subjects and one transradial amputee performed delicate and power grasps with a prosthesis in a functional task, while the control signal gain was temporarily increased (high-gain disturbance) or decreased (low-gain disturbance) without their knowledge. Three outcome measures were considered: the percentage of trials successful in the first attempt (reaction to disturbance), the average number of attempts in trials where the wrong force was initially applied (adaptation to disturbance), and the average completion time of the last attempt in every trial. EMG feedback was shown to offer significantly better performance compared to force feedback during power grasping in terms of reaction to disturbance and completion time. During power grasping with high-gain disturbance, the median first-attempt success rate was significantly higher with EMG feedback (73.3%) compared to that achieved with force feedback (60%). Moreover, the median completion time for power grasps with low-gain disturbance was significantly longer with force feedback than with EMG feedback (3.64 against 2.48 s, an increase of 32%). Contrary to our expectations, there was no significant difference between feedback types with regards to adaptation to disturbances and the two feedback types performed similarly in delicate grasps. The results indicated that EMG feedback displayed better performance than force feedback in the presence of control disturbances, further demonstrating the potential of this approach to provide a reliable prosthesis-user interaction.
Collapse
|
7
|
Gonzalez M, Bismuth A, Lee C, Chestek CA, Gates DH. Artificial referred sensation in upper and lower limb prosthesis users: a systematic review. J Neural Eng 2022; 19:10.1088/1741-2552/ac8c38. [PMID: 36001115 PMCID: PMC9514130 DOI: 10.1088/1741-2552/ac8c38] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 11/12/2022]
Abstract
Objective.Electrical stimulation can induce sensation in the phantom limb of individuals with amputation. It is difficult to generalize existing findings as there are many approaches to delivering stimulation and to assessing the characteristics and benefits of sensation. Therefore, the goal of this systematic review was to explore the stimulation parameters that effectively elicited referred sensation, the qualities of elicited sensation, and how the utility of referred sensation was assessed.Approach.We searched PubMed, Web of Science, and Engineering Village through January of 2022 to identify relevant papers. We included papers which electrically induced referred sensation in individuals with limb loss and excluded papers that did not contain stimulation parameters or outcome measures pertaining to stimulation. We extracted information on participant demographics, stimulation approaches, and participant outcomes.Main results.After applying exclusion criteria, 49 papers were included covering nine stimulation methods. Amplitude was the most commonly adjusted parameter (n= 25), followed by frequency (n= 22), and pulse width (n= 15). Of the 63 reports of sensation quality, most reported feelings of pressure (n= 52), paresthesia (n= 48), or vibration (n= 40) while less than half (n= 29) reported a sense of position or movement. Most papers evaluated the functional benefits of sensation (n= 33) using force matching or object identification tasks, while fewer papers quantified subjective measures (n= 16) such as pain or embodiment. Only 15 studies (36%) observed percept intensity, quality, or location over multiple sessions.Significance.Most studies that measured functional performance demonstrated some benefit to providing participants with sensory feedback. However, few studies could experimentally manipulate sensation location or quality. Direct comparisons between studies were limited by variability in methodologies and outcome measures. As such, we offer recommendations to aid in more standardized reporting for future research.
Collapse
Affiliation(s)
- Michael Gonzalez
- Department of Robotics, University of Michigan, Ann Arbor, MI, United States of America
| | - Alex Bismuth
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Christina Lee
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Cynthia A Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States of America
| | - Deanna H Gates
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
8
|
Gonzalez MA, Vu PP, Vaskov AK, Cederna PS, Chestek CA, Gates DH. Characterizing sensory thresholds and intensity sensitivity of Regenerative Peripheral Nerve Interfaces: A Case Study . IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176116 DOI: 10.1109/icorr55369.2022.9896481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Current prosthetic limbs offer little to no sensory feedback. Developments in peripheral nerve interfaces provide opportunities to restore some level of tactile feedback that is referred to the prosthetic limb. One such method is a Regenerative Peripheral Nerve Interface (RPNI), composed of a muscle graft wrapped around a free nerve ending. Here, we characterize perception and discomfort thresholds, as well as sensitivity to stimulation through two-alternative forced choice discrimination tasks. One person with transradial amputation who had one RPNI constructed from the median nerve and two constructed from the ulnar nerve participated. Average perception thresholds across all RPNIs were between 950 and 1120 nC with variance of less than 350 nC over a 36-month period. Discomfort thresholds were from 3880 nC to 9770 nC across all RPNIs. The just noticeable difference for the Median RPNI was 520 nC, larger than either the Ulnar-1 or Ulnar-2 RPNIs (210 nC, 470 nC, respectively). We also calculated Weber fractions to compare sensitivity between different RPNIs and relate our results to previous studies. Weber fractions for each of the Median, Ulnar-1, and Ulnar-2 RPNIs were 0.134, 0.088, 0.087, respectively. This work is the first to quantify the functional stimulation range and sensitivity of RPNIs in a human participant. Future work will focus on characterizing RPNI sensation in additional individuals to determine if these findings are generalizable to the amputee population.
Collapse
|
9
|
Abbott ME, McPherson AIW, Torres WO, Adachi K, Stuart HS. Effect of variable transmission on body-powered prosthetic grasping. IEEE Int Conf Rehabil Robot 2022; 2022:1-6. [PMID: 36176122 DOI: 10.1109/icorr55369.2022.9896542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Body-powered upper-limb prostheses remain a popular option for those with limb absence due to their passive nature. These devices typically feature a constant transmission ratio between the forces input by the user and the grasp forces output by the prosthetic gripper. Work incorporating continuously variable transmissions into robotic hands has demonstrated a number of benefits in terms of their motion and forces. In this work, we use a custom prosthesis emulator to evaluate the viability of applying variable transmissions to a body-powered prosthetic context. With this haptics test bed, we measured user performance during a grasping and lift task under a variety of transmission ratio conditions and with three different test objects. Results indicate that use of a variable transmission leads to the successful manipulation of a wider variety of objects than the constant transmission ratio systems, while requiring less shoulder motion. Analysis also shows a potential tendency for users to apply higher grasp forces than necessary, when compared to constant transmission conditions. These findings suggest a multifaceted effect on grasp performance with both benefits and drawbacks when considering a variable approach that supports the continued study of variable transmissions in assisted grasping.
Collapse
|