1
|
Lee J, Huh KY, Kang D, Lim J, Lee BC, Lee B. A low-complexity and high-frequency ASIC transceiver for an ultrasound imaging system. Biomed Eng Lett 2024; 14:1377-1384. [PMID: 39465100 PMCID: PMC11502664 DOI: 10.1007/s13534-024-00411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 10/29/2024] Open
Abstract
This article presents a high-frequency application-specific integrated circuit (ASIC) transceiver for an ultrasound imaging system designed with a focus on low complexity. To simplify the design, it employs a conventional Class-D power amplifier structure for the transmitter (TX) and a resistive feedback transimpedance amplifier (TIA), which consists of a common-source amplifier followed by a source follower for the receiver (RX). Through careful optimization, the RX achieves a measured transimpedance gain of 90 dBΩ and an input-referred noise of 5.6 pA/√Hz at 30 MHz while maintaining a wide bandwidth of up to 30 MHz for both the TX and RX. The power consumption of the TX and RX is measured to be 7.767 mW and 2.5 mW, respectively. Further acoustic performance, assessed using an annular capacitive micromachined ultrasonic transducer (CMUT), showed a 1.78 kPa peak pressure from a 20 V pulser and confirmed the full bandwidth compatibility of the CMUT's bandwidth. The ASIC transceiver has been fabricated using a 0.18 μm HV bipolar-CMOS-DMOS (BCD) process.
Collapse
Affiliation(s)
- Jaeho Lee
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Keun Young Huh
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
| | - Dongil Kang
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Jaemyung Lim
- Department of Electronic Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Byung Chul Lee
- Bionics Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792 South Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul, 02792 South Korea
- Department of Converging Science and Technology, Kyung Hee University, Seoul, 02447 South Korea
| | - Byunghun Lee
- Department of Biomedical Engineering and the Department of Electronic Engineering, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
2
|
Pakdaman Zangabad R, Lee H, Zhang X, Sait Kilinc M, Arvanitis CD, Levent Degertekin F. A High Sensitivity CMUT-Based Passive Cavitation Detector for Monitoring Microbubble Dynamics During Focused Ultrasound Interventions. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1087-1096. [PMID: 39088497 PMCID: PMC11558552 DOI: 10.1109/tuffc.2024.3436918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2024]
Abstract
Tracking and controlling microbubble (MB) dynamics in the human brain through acoustic emission (AE) monitoring during transcranial focused ultrasound (tFUS) therapy are critical for attaining safe and effective treatments. The low-amplitude MB emissions have harmonic and ultra-harmonic components, necessitating a broad bandwidth and low-noise system for monitoring transcranial MB activity. Capacitive micromachined ultrasonic transducers (CMUTs) offer high sensitivity and low noise over a broad bandwidth, especially when they are tightly integrated with electronics, making them a good candidate technology for monitoring the MB activity through human skull. In this study, we designed a 16-channel analog front-end (AFE) electronics with a low-noise transimpedance amplifier (TIA), a band-gap reference circuit, and an output buffer stage. To assess AFE performance and ability to detect MB AE, we combined it with a commercial CMUT array. The integrated system has 12.3 - [Formula: see text] receive sensitivity with 0.085 - [Formula: see text] minimum detectable pressure (MDP) up to 3 MHz for a single element CMUT with 3.78 [Formula: see text] area. Experiments with free MBs in a microfluidic channel demonstrate that our system is able to capture key spectral components of MBs' harmonics when sonicated at clinically relevant frequencies (0.5 MHz) and pressures (250 kPa). Together our results demonstrate that the proposed CMUT system can support the development of novel passive cavitation detectors (PCD) to track MB activity for attaining safe and effective focused ultrasound (FUS) treatments.
Collapse
|
3
|
La TA, Ülgen O, Shnaiderman R, Ntziachristos V. Bragg grating etalon-based optical fiber for ultrasound and optoacoustic detection. Nat Commun 2024; 15:7521. [PMID: 39214964 PMCID: PMC11364814 DOI: 10.1038/s41467-024-51497-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Fiber-based interferometers receive significant interest as they lead to miniaturization of optoacoustic and ultrasound detectors without the quadratic loss of sensitivity common to piezoelectric elements. Nevertheless, in contrast to piezoelectric crystals, current fiber-based ultrasound detectors operate with narrow ultrasound bandwidth which limits the application range and spatial resolution achieved in imaging implementations. We port the concept of silicon waveguide etalon detection to optical fibers using a sub-acoustic reflection terminator to a Bragg grating embedded etalon resonator (EER), uniquely implementing direct and forward-looking access to incoming ultrasound waves. Precise fabrication of the terminator is achieved by continuously recording the EER spectrum during polishing and fitting the spectra to a theoretically calculated spectrum for the selected thickness. Characterization of the EER inventive design reveals a small aperture (10.1 µm) and an ultra-wide bandwidth (160 MHz) that outperforms other fiber resonators and enables an active detection area and overall form factor that is smaller by more than an order of magnitude over designs based on piezoelectric transducers. We discuss how the EER paves the way for the most adept fiber-based miniaturized sound detection today, circumventing the limitations of currently available designs.
Collapse
Affiliation(s)
- Tai Anh La
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Okan Ülgen
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rami Shnaiderman
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany.
- Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich, Garching b. München, Germany.
| |
Collapse
|
4
|
Olomodosi A, Strassle Rojas S, Vu P, Lindsey BD. 2D array imaging system for mechanically-steered, forward-viewing ultrasound guidewire. ULTRASONICS 2024; 142:107398. [PMID: 39018696 PMCID: PMC11298298 DOI: 10.1016/j.ultras.2024.107398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/19/2024]
Abstract
Approximately 4 million people with peripheral artery disease (PAD) present with critical limb ischemia each year, requiring urgent revascularization to avoid loss of limb. Minimally-invasive (i.e. endovascular) revascularization is preferable due to increased recovery time and increased risk of complications associated with open surgery. However, 40% of people with PAD also have chronic total occlusions (CTOs), resulting in > 20% of revascularization procedures failing when CTOs are present. A steerable robotic guidewire with integrated forward-viewing imaging capabilities would allow the guidewire to navigate through tortuous vasculature and facilitate crossing CTOs in revascularization procedures that currently fail due to inability to route the guidewire. The robotic steering capabilities of the guidewire can be leveraged for 3D synthetic aperture imaging with a simplified, low element count, forward-viewing 2D array on the tip of the mechanically-steered guidewire. Images can then be formed using a hybrid beamforming approach, with focal delays calculated for each element on the tip of the guidewire and for each physical location to which the robotically-steered guidewire is steered. Unlike synthetic aperture imaging with a steerable guidewire having only a single element transducer, an array with even a small number of elements can allow estimation of blood flow and physiological motion in vivo. A miniature, low element count 2D array transducer with 9 total elements (3 × 3) having total dimensions of 1.5 mm × 1.5 mm was designed to operate at 17 MHz. A proof-of-concept 2D array transducer was fabricated and characterized acoustically. The developed array was then used to image a wire target, a peripheral stent, and an ex vivo porcine iliac artery. Images were formed using the described synthetic aperture beamforming strategy. Acoustic characterization showed a mean resonance frequency of 17.6 MHz and a -6 dB bandwidth of 35%. Lateral and axial resolution were 0.271 mm and 0.122 mm, respectively, and an increase in SNR of 4.8 dB was observed for the 2D array relative to the single element case. The first 2D array imaging system utilizing both mechanical and electronic steering for guidewire-based imaging was developed and demonstrated. A 2D array imaging system operating on the tip of the mechanically-steered guidewire provides improved frame rate and increases field of view relative to a single element transducer. Finally, 2D array and single element imaging were compared for introduced motion errors, with the 2D array providing a 46.1% increase in SNR, and 58.5% and 17.3% improvement in lateral and axial resolution, respectively, relative to single element guidewire imaging.
Collapse
Affiliation(s)
- Adeoye Olomodosi
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, United States
| | - Stephan Strassle Rojas
- Department of Electrical and Computer Engineering, Georgia Institute of Technology, United States
| | - Phuong Vu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, United States
| | - Brooks D Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, United States; Department of Electrical and Computer Engineering, Georgia Institute of Technology, United States.
| |
Collapse
|
5
|
Rojas SS, Samady A, Kim S, Lindsey BD. High-Frequency, 2-mm-Diameter Forward-Viewing 2-D Array for 3-D Intracoronary Blood Flow Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1051-1061. [PMID: 38913530 PMCID: PMC11381909 DOI: 10.1109/tuffc.2024.3418708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Coronary artery disease (CAD) is one of the leading causes of death globally. Currently, diagnosis and intervention in CAD are typically performed via minimally invasive cardiac catheterization procedures. Using current diagnostic technology, such as angiography and fractional flow reserve (FFR), interventional cardiologists must decide which patients require intervention and which can be deferred; 10% of patients with stable CAD are incorrectly deferred using current diagnostic best practices. By developing a forward-viewing intravascular ultrasound (FV-IVUS) 2-D array capable of simultaneously evaluating morphology, hemodynamics, and plaque composition, physicians would be better able to stratify risk of major adverse cardiac events in patients with intermediate stenosis. For this application, a forward-viewing, 16-MHz 2-D array transducer was designed and fabricated. A 2-mm-diameter aperture consisting of 140 elements, with element dimensions of 98×98×70 μ m ( w×h×t ) and a nominal interelement spacing of 120 μ m, was designed for this application based on simulations. The acoustic stack for this array was developed with a designed center frequency of 16 MHz. A novel via-less interconnect was developed to enable electrical connections to fan-out from a 140-element 2-D array with 120- μ m interelement spacing. The fabricated array transducer had 96/140 functioning elements operating at a center frequency of 16 MHz with a -6-dB fractional bandwidth of 62% ± 7 %. Single-element SNR was 23 ± 3 dB, and the measured electrical crosstalk was - 33 ± 3 dB. In imaging experiments, the measured lateral resolution was 0.231 mm and the measured axial resolution was 0.244 mm at a depth of 5 mm. Finally, the transducer was used to perform 3-D B-mode imaging of a 3-mm-diameter spring and 3-D B-mode and power Doppler imaging of a tissue-mimicking phantom.
Collapse
|
6
|
Kilinc MS, Pakdaman Zangabad R, Arvanitis C, Levent Degertekin F. CMUT as a Transmitter for Microbubble-Assisted Blood-Brain Barrier Opening. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:1042-1050. [PMID: 38905098 PMCID: PMC11403385 DOI: 10.1109/tuffc.2024.3417818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Focused ultrasound (FUS) combined with microbubbles (MBs) has emerged as a promising strategy for transiently opening the blood-brain barrier (BBB) to enhance drug permeability in the brain. Current FUS systems for BBB opening use piezoelectric transducers as transmitters and receivers. While capacitive micromachined ultrasonic transducers (CMUTs) have been suggested as an FUS receiver alternative due to their broad bandwidth, their capabilities as transmitters have not been investigated. This is mainly due to the intrinsic nonlinear behavior of CMUTs, which complicates the detection of MB generated harmonic signals and their low-pressure output at FUS frequencies. Various methods have been proposed to mitigate CMUT nonlinearity; however, these approaches have primarily targeted contrast enhanced ultrasound imaging. In this study, we propose the use of polyphase modulation (PM) technique to isolate MB emissions when CMUTs are employed as transmitters for BBB opening. Our calculations for a human scale FUS system with multiple CMUT transmitters show that 10-kPa peak negative pressure (PNP) at 150-mm focal distance will be sufficient for MB excitation for BBB opening. Experimental findings indicate that this pressure level can be easily generated at 400-800 kHz using a readily available CMUT. Furthermore, more than 50-dB suppression of the fundamental harmonic signal is obtained in free field and transcranial hydrophone measurements by processing receive signals in response to phase-modulated transmit waveforms. In vitro validation of PM is also conducted using Definity MB flowing through a tube phantom. MB-filled tube phantoms show adequate nonlinear signal isolation and SNR for MB harmonic detection. Together our findings indicate that PM can effectively mitigate CMUT harmonic generation, thereby creating new opportunities for wideband transmission and receive operation for BBB opening in clinical and preclinical applications.
Collapse
|
7
|
Choi H. Design of Preamplifier for Ultrasound Transducers. SENSORS (BASEL, SWITZERLAND) 2024; 24:786. [PMID: 38339502 PMCID: PMC10856992 DOI: 10.3390/s24030786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 01/12/2024] [Indexed: 02/12/2024]
Abstract
In diagnostic ultrasound imaging applications, preamplifiers are used as first-stage analog front-end amplifiers for ultrasound transducers because they can amplify weak acoustic signals generated directly by ultrasound transducers. For emerging diagnostic ultrasound imaging applications, different types of preamplifiers with specific design parameters and circuit topologies have been developed, depending on the types of the ultrasound transducer. In particular, the design parameters of the preamplifier, such as the gain, bandwidth, input- or output-referred noise components, and power consumption, have a tradeoff relationship. Guidelines on the detailed design concept, design parameters, and specific circuit design techniques of the preamplifier used for ultrasound transducers are outlined in this paper, aiming to help circuit designers and academic researchers optimize the performance of ultrasound transducers used in the diagnostic ultrasound imaging applications for research directions.
Collapse
Affiliation(s)
- Hojong Choi
- Department of Electronic Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam 13120, Republic of Korea
| |
Collapse
|
8
|
Li Y, Li Y, Zhang R, Li S, Liu Z, Zhang J, Fu Y. Progress in wearable acoustical sensors for diagnostic applications. Biosens Bioelectron 2023; 237:115509. [PMID: 37423066 DOI: 10.1016/j.bios.2023.115509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/11/2023]
Abstract
With extensive and widespread uses of miniaturized and intelligent wearable devices, continuously monitoring subtle spatial and temporal changes in human physiological states becomes crucial for daily healthcare and professional medical diagnosis. Wearable acoustical sensors and related monitoring systems can be comfortably applied onto human body with a distinctive function of non-invasive detection. This paper reviews recent advances in wearable acoustical sensors for medical applications. Structural designs and characteristics of the structural components of wearable electronics, including piezoelectric and capacitive micromachined ultrasonic transducer (i.e., pMUT and cMUT), surface acoustic wave sensors (SAW) and triboelectric nanogenerators (TENGs) are discussed, along with their fabrication techniques and manufacturing processes. Diagnostic applications of these wearable sensors for detection of biomarkers or bioreceptors and diagnostic imaging have further been discussed. Finally, main challenges and future research directions in these fields are highlighted.
Collapse
Affiliation(s)
- Yuyang Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| | - Yuan Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| | - Rui Zhang
- Functional Materials and Acousto-optic Instruments Institute, School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin, 150080, China
| | - Songlin Li
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China
| | - Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| | - Jia Zhang
- Key Laboratory of Microsystems and Microstructures Manufacturing, Ministry of Education, Harbin Institute of Technology, Harbin, 150080, China.
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle Upon Tyne, NE1 8ST, United Kingdom.
| |
Collapse
|
9
|
Rahaman A, Tang Y, Gao S, Ma X, Sorokin I, Zhang HK. Needle Aligned Ultrasound Image-Guided Access Through Dual-Segment Array. IEEE Trans Biomed Eng 2023; 70:2645-2654. [PMID: 37030673 PMCID: PMC10590177 DOI: 10.1109/tbme.2023.3260735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Ultrasound (US) guided access for percutaneous nephrolithotomy (PCNL) is gaining popularity in the urology community as it reduces radiation risk. The most popular technique involves manual image-needle alignment. A misaligned needle however needs to be retracted and reinserted, resulting in a lengthened operation time and complications such as bleeding. These limitations can be mitigated through the co-registration between the US array and needle. The through-hole array concept provides the primary solution, including a hole at the center of the array. Because of the central opening, the image-needle alignment is achieved inherently. Previous literature has described applications that are limited to superficial and intravascular procedures, suggesting that developing a through-hole array for deeper target applications would be a new breakthrough. OBJECTIVE Here, we present a dual-segment array with a central opening. As the prototype development, two segments of 32-element arrays are combined with an open space of 10 mm in length in between them. METHOD We conducted phantom and ex-vivo studies considering the target depth of the 80-100 mm range. The image quality and needle visibility are evaluated by comparing the signal-to-noise ratio (SNR), full width at half maximum (FWHM), and contrast-to-noise ratio (CNR) results measured with a no-hole linear array under equivalent conditions. An ex-vivo study is performed using porcine kidneys with ceramic balls embedded to evaluate the needle access accuracy. RESULTS AND CONCLUSION The mean needle access error of 20 trials is found to be 2.94 ±1.09 mm, suggesting its potential impact on realizing a simple and intuitive deep US image-guided access.
Collapse
|
10
|
Collins GC, Rojas SS, Bercu ZL, Desai JP, Lindsey BD. Supervised segmentation for guiding peripheral revascularization with forward-viewing, robotically steered ultrasound guidewire. Med Phys 2023; 50:3459-3474. [PMID: 36906877 PMCID: PMC10272103 DOI: 10.1002/mp.16350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 01/19/2023] [Accepted: 02/26/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Approximately 500 000 patients present with critical limb ischemia (CLI) each year in the U.S., requiring revascularization to avoid amputation. While peripheral arteries can be revascularized via minimally invasive procedures, 25% of cases with chronic total occlusions are unsuccessful due to inability to route the guidewire beyond the proximal occlusion. Improvements to guidewire navigation would lead to limb salvage in a greater number of patients. PURPOSE Integrating ultrasound imaging into the guidewire could enable direct visualization of routes for guidewire advancement. In order to navigate a robotically-steerable guidewire with integrated imaging beyond a chronic occlusion proximal to the symptomatic lesion for revascularization, acquired ultrasound images must be segmented to visualize the path for guidewire advancement. METHODS The first approach for automated segmentation of viable paths through occlusions in peripheral arteries is demonstrated in simulations and experimentally-acquired data with a forward-viewing, robotically-steered guidewire imaging system. B-mode ultrasound images formed via synthetic aperture focusing (SAF) were segmented using a supervised approach (U-net architecture). A total of 2500 simulated images were used to train the classifier to distinguish the vessel wall and occlusion from viable paths for guidewire advancement. First, the size of the synthetic aperture resulting in the highest classification performance was determined in simulations (90 test images) and compared with traditional classifiers (global thresholding, local adaptive thresholding, and hierarchical classification). Next, classification performance as a function of the diameter of the remaining lumen (0.5 to 1.5 mm) in the partially-occluded artery was tested using both simulated (60 test images at each of 7 diameters) and experimental data sets. Experimental test data sets were acquired in four 3D-printed phantoms from human anatomy and six ex vivo porcine arteries. Accuracy of classifying the path through the artery was evaluated using microcomputed tomography of phantoms and ex vivo arteries as a ground truth for comparison. RESULTS An aperture size of 3.8 mm resulted in the best-performing classification based on sensitivity and Jaccard index, with a significant increase in Jaccard index (p < 0.05) as aperture diameter increased. In comparing the performance of the supervised classifier and traditional classification strategies with simulated test data, sensitivity and F1 score for U-net were 0.95 ± 0.02 and 0.96 ± 0.01, respectively, compared to 0.83 ± 0.03 and 0.41 ± 0.13 for the best-performing conventional approach, hierarchical classification. In simulated test images, sensitivity (p < 0.05) and Jaccard index both increased with increasing artery diameter (p < 0.05). Classification of images acquired in artery phantoms with remaining lumen diameters ≥ 0.75 mm resulted in accuracies > 90%, while mean accuracy decreased to 82% when artery diameter decreased to 0.5 mm. For testing in ex vivo arteries, average binary accuracy, F1 score, Jaccard index, and sensitivity each exceeded 0.9. CONCLUSIONS Segmentation of ultrasound images of partially-occluded peripheral arteries acquired with a forward-viewing, robotically-steered guidewire system was demonstrated for the first-time using representation learning. This could represent a fast, accurate approach for guiding peripheral revascularization.
Collapse
Affiliation(s)
- Graham C. Collins
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA, 30309
| | - Stephan Strassle Rojas
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30309
| | - Zachary L. Bercu
- Interventional Radiology, Emory University School of Medicine, Atlanta, GA, USA, 30308
| | - Jaydev P. Desai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA, 30309
| | - Brooks D. Lindsey
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA, 30309
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA, 30309
| |
Collapse
|
11
|
Tsumura R, Gao S, Tang Y, Zhang HK. Concentric-ring arrays for forward-viewing ultrasound imaging. J Med Imaging (Bellingham) 2022; 9:065002. [PMID: 36444284 PMCID: PMC9683378 DOI: 10.1117/1.jmi.9.6.065002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2023] Open
Abstract
Purpose Current ultrasound (US)-image-guided needle insertions often require an expertized technique for clinicians because the performance of tasks in a three-dimensional space using two-dimensional images requires operators to cognitively maintain the spatial relationships between the US probe, the needle, and the lesion. This work presents forward-viewing US imaging with a ring array configuration to enable needle interventions without requiring the registration between tools and targets. Approach The center-open ring array configuration allows the needle to be inserted from the center of the visualized US image, providing simple and intuitive guidance. To establish the feasibility of the ring array configuration, the design parameters causing the image quality, including the radius of the center hole and the number of ring layers and transducer elements, were investigated. Results Experimental results showed successful visualization, even with a hole in the transducer elements, and the target visibility was improved by increasing the number of ring layers and the number of transducer elements in each ring layer. Reducing the hole radius improved the region's image quality at a shallow depth. Conclusions Forward-viewing US imaging with a ring array configuration has the potential to be a viable alternative to conventional US image-guided needle insertion methods.
Collapse
Affiliation(s)
- Ryosuke Tsumura
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, Massachusetts, United States
- National Institute of Advanced Industrial Science and Technology, Health and Medical Research Institute, Tsukuba, Japan
| | - Shang Gao
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| | - Yichuan Tang
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| | - Haichong K. Zhang
- Worcester Polytechnic Institute, Department of Biomedical Engineering, Worcester, Massachusetts, United States
- Worcester Polytechnic Institute, Department of Robotics Engineering, Worcester, Massachusetts, United States
| |
Collapse
|
12
|
Soozande M, Ossenkoppele BW, Hopf Y, Pertijs MAP, Verweij MD, de Jong N, Vos HJ, Bosch JG. Imaging Scheme for 3-D High-Frame-Rate Intracardiac Echography: A Simulation Study. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2022; 69:2862-2874. [PMID: 35759589 DOI: 10.1109/tuffc.2022.3186487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia and is normally treated by RF ablation. Intracardiac echography (ICE) is widely employed during RF ablation procedures to guide the electrophysiologist in navigating the ablation catheter, although only 2-D probes are currently clinically used. A 3-D ICE catheter would not only improve visualization of the atrium and ablation catheter, but it might also provide the 3-D mapping of the electromechanical wave (EW) propagation pattern, which represents the mechanical response of cardiac tissue to electrical activity. The detection of this EW needs 3-D high-frame-rate imaging, which is generally only realizable in tradeoff with channel count and image quality. In this simulation-based study, we propose a high volume rate imaging scheme for a 3-D ICE probe design that employs 1-D micro-beamforming in the elevation direction. Such a probe can achieve a high frame rate while reducing the channel count sufficiently for realization in a 10-Fr catheter. To suppress the grating-lobe (GL) artifacts associated with micro-beamforming in the elevation direction, a limited number of fan-shaped beams with a wide azimuthal and narrow elevational opening angle are sequentially steered to insonify slices of the region of interest. An angular weighted averaging of reconstructed subvolumes further reduces the GL artifacts. We optimize the transmit beam divergence and central frequency based on the required image quality for EW imaging (EWI). Numerical simulation results show that a set of seven fan-shaped transmission beams can provide a frame rate of 1000 Hz and a sufficient spatial resolution to visualize the EW propagation on a large 3-D surface.
Collapse
|
13
|
Rezvanitabar A, Kilinc MS, Tekes C, Arkan EF, Ghovanloo M, Degertekin FL. An Adaptive Element-Level Impedance-Matched ASIC With Improved Acoustic Reflectivity for Medical Ultrasound Imaging. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:492-501. [PMID: 35687616 PMCID: PMC9712518 DOI: 10.1109/tbcas.2022.3181157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents an active impedance matching scheme that tries to optimize electrical power transfer and acoustic reflectivity in ultrasound transducers. Leveraging negative capacitance-based impedance matching would potentially improve the bandwidth and electrical power transfer while minimizing acoustic reflection of transducer elements and improve uniformity while reducing acoustic crosstalk of transducer arrays. A 16-element transceiver front-end is designed which employs an element-level active capacitive impedance cancellation scheme using an element-level negative impedance converter. The ASIC fabricated in 180-nm HVBCD technology provides high-voltage pulses up to 60 V consuming 3.6 mW and occupying 2.5 mm2. The front-end ASIC is used with a 1-D capacitive micromachined ultrasonic transducer (CMUT) array and its acoustical reflectivity reduction and imaging capabilities have successfully been demonstrated through pulse-echo measurements and acoustic imaging experiments.
Collapse
|
14
|
Dependence of Temperature Rise on the Position of Catheters and Implants Power Sources Due to the Heat Transfer into the Blood Flow. ELECTRONICS 2022. [DOI: 10.3390/electronics11121878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This work provides a numerical analysis of heat transfer from medical devices such as catheters and implants to the blood flow by considering the relative position of such power sources to the vessel wall. We have used COMSOL Multiphysics® software to simulate the heat transfer in the blood flow, using the finite element method and Carreau-–Yasuda fluid model (a non-Newtonian model for blood flow). The location of the power source is changed (from the center to near the wall) in the blood vessel with small steps, while the blood flow takes different velocities. The numerical simulations show that when the catheter/implant approaches the vessel wall, the temperature increases linearly for ~90% of the radial displacement from the centerline position to the vessel wall, while for the last 10% of the radial displacement, the temperature increases exponentially. As a result, the temperature is increased significantly, when changing the position of the catheter/implant from the centerline to the area adjacent to the vessel wall.
Collapse
|
15
|
Lim J. Circuits on miniaturized ultrasound imaging system-on-a-chip: a review. Biomed Eng Lett 2022; 12:219-228. [PMID: 35892032 PMCID: PMC9308847 DOI: 10.1007/s13534-022-00228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/18/2022] [Accepted: 04/21/2022] [Indexed: 11/25/2022] Open
Abstract
Trends of medical system move from a traditional in-person visit to virtual healthcare increases demands on point-of-care devices. Because ultrasound (US) is non-invasive, the demands highlight US imaging among other imaging modalities. Thanks to the development of US transducer technology, miniaturized US with application-specific integrated circuits (ASIC) have been researched. For example, applications that require small aperture sizes such as intravascular US (IVUS) and intra-cardiac echocardiography (ICE) require integration of system-on-a-chip (SoC) on the transducer. This paper reviews circuit techniques on the transmitter (TX) and receiver (RX) of the US imaging system. As TX circuits, pulser, T/RX switch, TX beamformer, and power management circuits are discussed. State-of-the-art transducer modeling, pre-amplifier, time-gain compensation, RX beamformer, quadrature sampler, and output driver are introduced as RX circuits.
Collapse
Affiliation(s)
- Jaemyung Lim
- Department of Electrical Engineering in Hanyang University, Seoul, South Korea
| |
Collapse
|
16
|
Chen D, Cui X, Zhang Q, Li D, Cheng W, Fei C, Yang Y. A Survey on Analog-to-Digital Converter Integrated Circuits for Miniaturized High Resolution Ultrasonic Imaging System. MICROMACHINES 2022; 13:mi13010114. [PMID: 35056279 PMCID: PMC8779678 DOI: 10.3390/mi13010114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023]
Abstract
As traditional ultrasonic imaging systems (UIS) are expensive, bulky, and power-consuming, miniaturized and portable UIS have been developed and widely utilized in the biomedical field. The performance of integrated circuits (ICs) in portable UIS obviously affects the effectiveness and quality of ultrasonic imaging. In the ICs for UIS, the analog-to-digital converter (ADC) is used to complete the conversion of the analog echo signal received by the analog front end into digital for further processing by a digital signal processing (DSP) or microcontroller unit (MCU). The accuracy and speed of the ADC determine the precision and efficiency of UIS. Therefore, it is necessary to systematically review and summarize the characteristics of different types of ADCs for UIS, which can provide valuable guidance to design and fabricate high-performance ADC for miniaturized high resolution UIS. In this paper, the architecture and performance of ADC for UIS, including successive approximation register (SAR) ADC, sigma-delta (Σ-∆) ADC, pipelined ADC, and hybrid ADC, have been systematically introduced. In addition, comparisons and discussions of different types of ADCs are presented. Finally, this paper is summarized, and presents the challenges and prospects of ADC ICs for miniaturized high resolution UIS.
Collapse
Affiliation(s)
| | | | | | - Di Li
- Correspondence: (D.L.); (W.C.); Tel.: +86-137-0925-0163 (D.L.); +86-152-3193-6291 (W.C.)
| | - Wenyang Cheng
- Correspondence: (D.L.); (W.C.); Tel.: +86-137-0925-0163 (D.L.); +86-152-3193-6291 (W.C.)
| | | | | |
Collapse
|
17
|
Wang Z, He C, Zhang W, Li Y, Gao P, Meng Y, Zhang G, Yang Y, Wang R, Cui J, Wang H, Zhang B, Ren Y, Zhen G, Jiao X, Zhang S. Fabrication of 2-D Capacitive Micromachined Ultrasonic Transducer (CMUT) Array through Silicon Wafer Bonding. MICROMACHINES 2022; 13:mi13010099. [PMID: 35056263 PMCID: PMC8780229 DOI: 10.3390/mi13010099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 11/29/2022]
Abstract
Capacitive micromachined ultrasound transducers (CMUTs) have broad application prospects in medical imaging, flow monitoring, and nondestructive testing. CMUT arrays are limited by their fabrication process, which seriously restricts their further development and application. In this paper, a vacuum-sealed device for medical applications is introduced, which has the advantages of simple manufacturing process, no static friction, repeatability, and high reliability. The CMUT array suitable for medical imaging frequency band was fabricated by a silicon wafer bonding technology, and the adjacent array devices were isolated by an isolation slot, which was cut through the silicon film. The CMUT device fabricated following this process is a 4 × 16 array with a single element size of 1 mm × 1 mm. Device performance tests were conducted, where the center frequency of the transducer was 3.8 MHz, and the 6 dB fractional bandwidth was 110%. The static capacitance (29.4 pF) and center frequency (3.78 MHz) of each element of the array were tested, and the results revealed that the array has good consistency. Moreover, the transmitting and receiving performance of the transducer was evaluated by acoustic tests, and the receiving sensitivity was −211 dB @ 3 MHz, −213 dB @ 4 MHz. Finally, reflection imaging was performed using the array, which provides certain technical support for the research of two-dimensional CMUT arrays in the field of 3D ultrasound imaging.
Collapse
|
18
|
Chen W, Fleischman A, Majerus SJA. A 100-V Withstanding Analog-Front-End for High-Resolution Intravascular Ultrasound Imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3251-3254. [PMID: 34891934 DOI: 10.1109/embc46164.2021.9630929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intravascular Ultrasound ultrasonic imaging (IVUS) can microscopically image blood vessels and reveal tissue layers from within the blood vessel lumen. It has high tissue penetration ability for lesion classification and can image through blood. Compared to optical techniques, however, IVUS has lower resolution arising from low acoustic bandwidths which cannot resolve sharp edges. The presented 100-V withstanding Analog-Front-End (AFE) was developed to enable a high resolution, low cost IVUS system using a high-bandwidth focused polymer transducer with 40-MHz center frequency. The fabricated AFE interfaced with the transducer with minimal insertion loss, could withstand and duplex 100-V high voltage pulses and echo signal, and had a total signal chain gain of 9.8 dB. The AFE achieved a signal-to-noise ratio (SNR) of 20.1 dB including the insertion loss of the high-impedance transducer. AFE SNR was limited by input impedance required for high-voltage pulse clamping circuitry, but was sufficient for IVUS echo reception.Clinical Relevance- This work has the potential to enable much higher resolution, and potentially cheaper, IVUS imaging in blood vessels by integrating low-cost acoustic transducers with interface amplifiers directly on the catheter.
Collapse
|
19
|
Hybrid Cell Structure for Wideband CMUT: Design Method and Characteristic Analysis. MICROMACHINES 2021; 12:mi12101180. [PMID: 34683231 PMCID: PMC8540624 DOI: 10.3390/mi12101180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022]
Abstract
Capacitive micromachined ultrasonic transducer (CMUT) is an ultrasonic transducer based on the microelectromechanical system (MEMS). Wideband CMUT has good application prospects in ultrasonic imaging, ultrasonic identification, flow measurement, and nondestructive testing due to its excellent characteristics. This paper studies the method of increasing the bandwidth of the CMUT, proposes the structure of the wideband CMUT with a hybrid cell structure, and analyzes the design principles and characteristics of the wideband CMUT structure. By changing the cell spacing and the number of cells of different sizes composing the CMUT, we analyze the simulation of the effect of the spacing and number on the CMUT bandwidth, thereby optimizing the bandwidth characteristics of the CMUT. Next, the selection principle of the main structural parameters of the wideband CMUT is analyzed. According to the proposed principle, the CMUT in the air and water are designed and simulated. The results prove that both the air and water CMUT meet the design requirements. The design rules obtained in this paper can provide theoretical guidance for the selection of the main structural parameters of the wideband CMUT.
Collapse
|
20
|
Rezvanitabar A, Arkan EF, Degertekin FL. Analysis of Negative Capacitance-Based Broadband Impedance Matching for CMUTs. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:3042-3052. [PMID: 33983883 PMCID: PMC8403164 DOI: 10.1109/tuffc.2021.3079720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Tight integration of capacitive micromachined ultrasonic transducer (CMUT) arrays with integrated circuits can make active impedance matching feasible for practical imaging devices. In this article, negative capacitance-based impedance matching for CMUTs is investigated. Simple equivalent circuit model-based calculations show the potential of negative capacitance matching for improving the bandwidth along with electrical power transfer and acoustic reflectivity, but the model has limitations especially for acoustic reflectivity evaluation. For more realistic results, an experimentally validated CMUT array model is applied to a small 1-D CMUT array operating in the 5-15 MHz range. The results highlight the difference between electrical power transfer and acoustic reflectivity as well as the tradeoffs in signal-to-noise ratio (SNR). According to the results, ideal negative capacitance termination matched to the CMUT capacitance provides the broadest bandwidth and highest SNR if acoustic or electrical reflections are of no concern. On the other hand, negative capacitance and resistance matching to minimize acoustic reflectivity provides both lower reflection and closer to ideal SNR as compared with electrical power matching. It is observed that acoustic matching also reduces acoustic crosstalk and improves array uniformity. While several challenges for integrated circuit implementation are present, negative capacitance-based impedance matching can be a viable broadband active impedance matching method for CMUTs operating in conventional and collapsed mode as well as other ultrasound transducers with mainly capacitive impedance.
Collapse
|
21
|
Abstract
Photoacoustic imaging is a new type of noninvasive, nonradiation imaging modality that combines the deep penetration of ultrasonic imaging and high specificity of optical imaging. Photoacoustic imaging systems employing conventional ultrasonic sensors impose certain constraints such as obstructions in the optical path, bulky sensor size, complex system configurations, difficult optical and acoustic alignment, and degradation of signal-to-noise ratio. To overcome these drawbacks, an ultrasonic sensor in the optically transparent form has been introduced, as it enables direct delivery of excitation light through the sensors. In recent years, various types of optically transparent ultrasonic sensors have been developed for photoacoustic imaging applications, including optics-based ultrasonic sensors, piezoelectric-based ultrasonic sensors, and microelectromechanical system-based capacitive micromachined ultrasonic transducers. In this paper, the authors review representative transparent sensors for photoacoustic imaging applications. In addition, the potential challenges and future directions of the development of transparent sensors are discussed.
Collapse
|
22
|
Collins GC, Sarma A, Bercu ZL, Desai JP, Lindsey BD. A Robotically Steerable Guidewire With Forward-Viewing Ultrasound: Development of Technology for Minimally-Invasive Imaging. IEEE Trans Biomed Eng 2021; 68:2222-2232. [PMID: 33264091 PMCID: PMC8279262 DOI: 10.1109/tbme.2020.3042115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The current standard of care for peripheral chronic total occlusions involves the manual routing of a guidewire under fluoroscopy. Despite significant improvements in recent decades, navigation remains clinically challenging with high rates of procedural failure and iatrogenic injury. To address this challenge, we present a proof-of-concept robotic guidewire system with forward-viewing ultrasound imaging to allow visualization and maneuverability through complex vasculature. METHODS A 0.035" guidewire-specific ultrasound transducer with matching layer and acoustic backing was designed, fabricated, and characterized. The effect of guidewire motion on signal decorrelation was assessed with simulations and experimentally, driving the development of a synthetic aperture beamforming approach to form images as the transducer is steered on the robotic guidewire. System performance was evaluated by imaging wire targets in water. Finally, proof-of-concept was demonstrated by imaging an ex vivo artery. RESULTS The designed custom transducer was fabricated with a center frequency of 15.7 MHz, 45.4% fractional bandwidth, and 31 dB SNR. In imaging 20 μm wire targets at a depth of 6 mm, the lateral -6 dB target width was 0.25 ± 0.03 mm. The 3D artery reconstruction allowed visualization of vessel wall structure and lumen. CONCLUSION Initial proof-of-concept for an ultrasound transducer-tipped steerable guidewire including 3D image formation without an additional sensor to determine guidewire position was demonstrated for a sub-mm system with an integrated ultrasound transducer and a robotically-steered guidewire. SIGNIFICANCE The developed forward-viewing, robotically-steered guidewire may enable navigation through occluded vascular regions that cannot be crossed with current methods.
Collapse
|
23
|
Sung JH, Chang JH. Mechanically Rotating Intravascular Ultrasound (IVUS) Transducer: A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:3907. [PMID: 34198822 PMCID: PMC8201242 DOI: 10.3390/s21113907] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Intravascular ultrasound (IVUS) is a valuable imaging modality for the diagnosis of atherosclerosis. It provides useful clinical information, such as lumen size, vessel wall thickness, and plaque composition, by providing a cross-sectional vascular image. For several decades, IVUS has made remarkable progress in improving the accuracy of diagnosing cardiovascular disease that remains the leading cause of death globally. As the quality of IVUS images mainly depends on the performance of the IVUS transducer, various IVUS transducers have been developed. Therefore, in this review, recently developed mechanically rotating IVUS transducers, especially ones exploiting piezoelectric ceramics or single crystals, are discussed. In addition, this review addresses the history and technical challenges in the development of IVUS transducers and the prospects of next-generation IVUS transducers.
Collapse
Affiliation(s)
| | - Jin-Ho Chang
- Department of Information and Communication Engineering, Deagu Gyeongbuk Institute of Science and Technology, Daegu 42988, Korea;
| |
Collapse
|
24
|
Zangabad RP, Bosch JG, Mastik F, Beurskens RHSH, Henneken VA, Weekamp JW, van der Steen AFW, van Soest G. Real-Time Coded Excitation Imaging Using a CMUT-Based Side Looking Array for Intravascular Ultrasound. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:2048-2058. [PMID: 33502975 DOI: 10.1109/tuffc.2021.3054971] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intravascular ultrasound (IVUS) is a well-established diagnostic method that provides images of the vessel wall and atherosclerotic plaques. We investigate the potential for phased-array IVUS utilizing coded excitation (CE) for improving the penetration depth and image signal-to-noise ratio (SNR). It is realized on a new experimental broadband capacitive micromachined ultrasound transducer (CMUT) array, operated in collapse mode, with 96 elements placed at the circumference of a catheter tip with a 1.2- mm diameter. We characterized the array performance for CE imaging and showed that the -6-dB device bandwidth at a 30-V dc biasing is 25 MHz with a 20-MHz center frequency, with a transmit sensitivity of 37 kPa/V at that frequency. We designed a linear frequency modulation code to improve penetration depth by compensating for high-frequency attenuation while preserving resolution by a mismatched filter reconstruction. We imaged a wire phantom and a human coronary artery plaque. By assessing the image quality of the reconstructed wire phantom image, we achieved 60- and 70- μm axial resolutions using the short pulse and coded signal, respectively, and gained 8 dB in SNR for CE. Our developed system shows 20-frames/s, pixel-based beam-formed, real-time IVUS images.
Collapse
|
25
|
Peng C, Wu H, Kim S, Dai X, Jiang X. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging. SENSORS (BASEL, SWITZERLAND) 2021; 21:3540. [PMID: 34069613 PMCID: PMC8160965 DOI: 10.3390/s21103540] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/11/2021] [Accepted: 05/17/2021] [Indexed: 12/16/2022]
Abstract
As a well-known medical imaging methodology, intravascular ultrasound (IVUS) imaging plays a critical role in diagnosis, treatment guidance and post-treatment assessment of coronary artery diseases. By cannulating a miniature ultrasound transducer mounted catheter into an artery, the vessel lumen opening, vessel wall morphology and other associated blood and vessel properties can be precisely assessed in IVUS imaging. Ultrasound transducer, as the key component of an IVUS system, is critical in determining the IVUS imaging performance. In recent years, a wide range of achievements in ultrasound transducers have been reported for IVUS imaging applications. Herein, a comprehensive review is given on recent advances in ultrasound transducers for IVUS imaging. Firstly, a fundamental understanding of IVUS imaging principle, evaluation parameters and IVUS catheter are summarized. Secondly, three different types of ultrasound transducers (piezoelectric ultrasound transducer, piezoelectric micromachined ultrasound transducer and capacitive micromachined ultrasound transducer) for IVUS imaging are presented. Particularly, the recent advances in piezoelectric ultrasound transducer for IVUS imaging are extensively examined according to their different working mechanisms, configurations and materials adopted. Thirdly, IVUS-based multimodality intravascular imaging of atherosclerotic plaque is discussed. Finally, summary and perspectives on the future studies are highlighted for IVUS imaging applications.
Collapse
Affiliation(s)
- Chang Peng
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | - Huaiyu Wu
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| | | | - Xuming Dai
- Department of Cardiology, New York-Presbyterian Queens Hospital, Flushing, NY 11355, USA;
| | - Xiaoning Jiang
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695, USA; (C.P.); (H.W.)
| |
Collapse
|
26
|
He C, Zhang B, Xue C, Zhang W, Zhang S. Wafer-Bonding Fabricated CMUT Device with Parylene Coating. MICROMACHINES 2021; 12:mi12050516. [PMID: 34064449 PMCID: PMC8147958 DOI: 10.3390/mi12050516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 11/19/2022]
Abstract
The advantages of the capacitive micromachined ultrasound transducer (CMUT) technology have provided revolutionary advances in ultrasound imaging. Extensive research on CMUT devices for high-frequency medical imaging applications has been conducted because of strong demands and fabrication realization by using standard silicon IC fabrication technology. However, CMUT devices for low-frequency underwater imaging applications have been rarely researched because it is difficult to fabricate thick membrane structures through depositing processes using standard IC fabrication technology due to stress-related problems. To address this shortcoming, in this paper, a CMUT device with a 2.83-μm thick silicon membrane is proposed and fabricated. The CMUT device is fabricated using silicon fusion wafer-bonding technology. A 5-μm thick Parylene-C is conformally deposited on the device for immersion measurement. The results show that the fabricated CMUT can transmit an ultrasound wave, receive an ultrasound wave, and have pulse-echo measurement capability. The ability of the device to emit and receive ultrasonic waves increases with the bias voltage but does not depend on the voltage polarity. The results demonstrate the viability of the fabricated CMUT in low-frequency applications from the perspectives of the device structure, fabrication, and characterization. This study presents the potential of the CMUT for underwater ultrasound imaging applications.
Collapse
Affiliation(s)
- Changde He
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China;
- Institute of Microelectronics, Peking University, Beijing 100871, China
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (B.Z.); (C.X.); (W.Z.)
| | - Binzhen Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (B.Z.); (C.X.); (W.Z.)
| | - Chenyang Xue
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (B.Z.); (C.X.); (W.Z.)
| | - Wendong Zhang
- State Key Laboratory of Dynamic Testing Technology, North University of China, Taiyuan 030051, China; (B.Z.); (C.X.); (W.Z.)
| | - Shengdong Zhang
- School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China;
- Institute of Microelectronics, Peking University, Beijing 100871, China
- Correspondence: ; Tel.: +86-10-6276-6745
| |
Collapse
|
27
|
Latham K, Samson C, Woodacre J, Brown J. A 30-MHz, 3-D Imaging, Forward-Looking Miniature Endoscope Based on a 128-Element Relaxor Array. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1261-1271. [PMID: 32997625 DOI: 10.1109/tuffc.2020.3027907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This work describes the design, fabrication, and characterization of a 128-element crossed electrode array in a miniature endoscopic form factor for real-time 3-D imaging. Crossed electrode arrays address some of the key challenges surrounding probe fabrication for 3-D ultrasound imaging by reducing the number of elements required (2N compared with N2). However, there remain practical challenges in packaging a high-frequency crossed electrode array into an endoscopic form factor. A process has been developed that uses a thinly diced strip of flex circuit to bring the back-side connections to common bond surface, which allows the final size of the endoscope to measure only [Formula: see text] mm. An electrostrictive ceramic composite design was developed for the crossed electrode array. A laser dicing system was used to cut the 1-3 composite as well as etch the array electrode pattern. A single quarter wavelength Parylene matching layer made was vacuum deposited to finish the array. The electrical impedance magnitude of array elements on resonance was measured to be 49 Ω with a phase angle of -55.5°. The finished array elements produced pulses with -6-dB two-way bandwidth of 60% with a 34-MHz center frequency. The average measured electrical crosstalk on the nearest neighboring element and next to nearest neighboring element was -37 and -29 dB, respectively. One- and two-way pulse measurements were completed to confirm the pulse polarity and fast switching speed. Preliminary 3-D images were generated of a wire phantom using the previously described simultaneous azimuth and Fresnel elevation (SAFE) compounding imaging technique.
Collapse
|
28
|
Yaralioglu GG, Ergun AS, Bozkurt A. Vertical cavity capacitive transducer. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2021; 149:2137. [PMID: 33940872 DOI: 10.1121/10.0003931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The capacitive micromachined ultrasonic transducer (CMUT) has inherent advantages, such as larger bandwidth and monolithic integration capability with electronics, when compared to the piezoelectric transducer. The most significant shortcoming of the device is the trade-off between input and output sensitivities. Adequate receive sensitivity requires an electric field intensity on the order of 105 V/m, which can be achieved by sub-micron gap heights. However, a small gap limits the device stroke and, consequently, the maximum output pressure. This paper addresses this problem by proposing a CMUT with a vertical cavity. The membrane of the device has a piston part that is surrounded by the sidewalls of a vertical cylinder formed in the substrate. The fringing electric field pulls the piston in the vertical direction; hence, the gap height remains fixed, which alleviates the hard limit on device stroke. The performance of the proposed device is compared to that of the conventional CMUT by theoretical and analytical methods, and a micro-fabrication method is devised. Additionally, a millimeter-scale device has been manufactured and tested as a proof of concept.
Collapse
Affiliation(s)
| | - A Sanli Ergun
- Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
29
|
Thermal Analysis of Heat Transfer from Catheters and Implantable Devices to the Blood Flow. MICROMACHINES 2021; 12:mi12030230. [PMID: 33668825 PMCID: PMC7996209 DOI: 10.3390/mi12030230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/11/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022]
Abstract
Implantable devices, ultrasound imaging catheters, and ablation catheters (such as renal denervation catheters) are biomedical instruments that generate heat in the body. The generated heat can be harmful if the body temperature exceeds the limit of almost 315 K. This paper presents a heat-transfer model and analysis, to evaluate the temperature rise in human blood due to the power loss of medical catheters and implantable devices. The dynamic of the heat transfer is modeled for the blood vessel, at different blood flow velocities. The physics and governing equations of the heat transfer from the implanted energy source to the blood and temperature rise are expressed by developing a Non-Newtonian Carreau–Yasuda fluid model. We used a Finite Element method to solve the governing equations of the established model, considering the boundary conditions and average blood flow velocities of 0–1.4 m/s for the flow of the blood passing over the implanted power source. The results revealed a maximum allowable heat flux of 7500 and 15,000 W/m2 for the blood flow velocities of 0 and 1.4 m/s, respectively. The rise of temperature around the implant or tip of the catheter is slower and disappeared gradually with the blood flow, which allows a higher level of heat flux to be generated. The results of this analysis are concluded in the equation/correlation T=310+H3000(1+e−7V), to estimate and predict the temperature changes as a function of heat flux, H, and the blood flow velocity, V, at the implant/catheter location.
Collapse
|
30
|
Zhang J, Lu S, Liao X, Feng Z. Construction of an intravascular ultrasound catheter with a micropiezoelectric motor internally installed. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2021; 92:015005. [PMID: 33514220 DOI: 10.1063/5.0020260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Intravascular ultrasound (IVUS) has become a useful tool in the detection of coronary artery disease. However, non-uniform rotation distortion (NURD) reduces the image quality. In order to suppress the influence of NURD, a piezoelectric motor that can meet the requirements of IVUS catheters has been proposed. The motor has a diameter of 1 mm and a length of 10 mm using the new polarization direction proposed in the paper. A 45° mirror is fixed on the top of the motor to reflect the ultrasound transmitted from the transducer. The manufacture and drive of the piezoelectric motor is simple, and the maximum speed of the piezoelectric motor can reach 6450 rpm under the voltage of 20Vp-p. The minimum power required by the rotating motor is only 0.038 W, which can be directly driven by the signal generator without a power amplifier. The motor can operate at a low voltage and still has a high and stable speed. Meanwhile, the speed of the motor is controllable and has a satisfactory stability with a maximum angular error of 8°. The images detected by the cooperation of the motor and the ultrasonic transducer are also shown, which indicates that the motor has the rotational stability that meets the imaging requirements and the potential for application in the IVUS catheter to help improve the image quality of the coronary arteries and prevent and help treat potential diseases.
Collapse
Affiliation(s)
- Junjian Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, HeFei 230026, China
| | - Shaowei Lu
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, HeFei 230026, China
| | - Xinxin Liao
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, HeFei 230026, China
| | - Zhihua Feng
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, HeFei 230026, China
| |
Collapse
|
31
|
Wang J, Zheng Z, Chan J, Yeow JTW. Capacitive micromachined ultrasound transducers for intravascular ultrasound imaging. MICROSYSTEMS & NANOENGINEERING 2020; 6:73. [PMID: 34567683 PMCID: PMC8433336 DOI: 10.1038/s41378-020-0181-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/28/2020] [Accepted: 05/23/2020] [Indexed: 05/27/2023]
Abstract
Intravascular ultrasound (IVUS) is a burgeoning imaging technology that provides vital information for the diagnosis of coronary arterial diseases. A significant constituent that enables the IVUS system to attain high-resolution images is the ultrasound transducer, which acts as both a transmitter that sends acoustic waves and a detector that receives the returning signals. Being the most mature form of ultrasound transducer available in the market, piezoelectric transducers have dominated the field of biomedical imaging. However, there are some drawbacks associated with using the traditional piezoelectric ultrasound transducers such as difficulties in the fabrication of high-density arrays, which would aid in the acceleration of the imaging speed and alleviate motion artifact. The advent of microelectromechanical system (MEMS) technology has brought about the development of micromachined ultrasound transducers that would help to address this issue. Apart from the advantage of being able to be fabricated into arrays with lesser complications, the image quality of IVUS can be further enhanced with the easy integration of micromachined ultrasound transducers with complementary metal-oxide-semiconductor (CMOS). This would aid in the mitigation of parasitic capacitance, thereby improving the signal-to-noise. Currently, there are two commonly investigated micromachined ultrasound transducers, piezoelectric micromachined ultrasound transducers (PMUTs) and capacitive micromachined ultrasound transducers (CMUTs). Currently, PMUTs face a significant challenge where the fabricated PMUTs do not function as per their design. Thus, CMUTs with different array configurations have been developed for IVUS. In this paper, the different ultrasound transducers, including conventional-piezoelectric transducers, PMUTs and CMUTs, are reviewed, and a summary of the recent progress of CMUTs for IVUS is presented.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Zhou Zheng
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - Jasmine Chan
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| | - John T. W. Yeow
- Department of Systems Design Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON N2L 3G1 Canada
| |
Collapse
|
32
|
Lim J, Tekes C, Arkan EF, Rezvanitabar A, Degertekin FL, Ghovanloo M. Highly Integrated Guidewire Ultrasound Imaging System-on-a-Chip. IEEE JOURNAL OF SOLID-STATE CIRCUITS 2020; 55:1310-1323. [PMID: 32341598 PMCID: PMC7184934 DOI: 10.1109/jssc.2020.2967551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this article, we present a highly integrated guidewire ultrasound (US) imaging system-on-a-chip (GUISoC) for vascular imaging. The SoC consists of a 16-channel US transmitter (Tx) and receiver (Rx) electronics, on-chip power management IC (PMIC), and quadrature sampler. Using a synthetic aperture imaging algorithm, a Tx/Rx pair, connected to capacitive micromachined ultrasound transducers (CMUTs), can be activated at any time. The Tx generates acoustic waves by driving the CMUT, while the Rx picks up the echo signal and amplify it to be delivered through an interconnect that is driven by a buffer. On-chip logic controls the pulsers that generate the high-voltage (HV)-pulse for Tx. An on-chip PMIC provides 1.8-, 5-, 39-, and 44-V supplies and a clock signal from the two interconnects besides GND. A quadrature sampler down-converts the Rx echo signal to baseband, reducing its bandwidth requirement for the output interconnect. The system design, including transimpedance amplifier (TIA) optimization, based on the equivalent circuit of a specific CMUT is presented. The SoC was fabricated by a 0.18-μm HV CMOS process, occupying 1.5-mm2 active area and consuming 25.2 and 44 mW from 1.8 to 44 V supplies, respectively. The US Tx and Rx show bandwidths of 32-42 and 32.7-37.5 MHz, respectively. The input-referred noise of the system was measured as 9.66 nA in band with 2-m-long 52 American Wire Gauge (AWG) wire interconnects. The functionality of the GUISoC was verified in vitro by imaging wire targets.
Collapse
Affiliation(s)
- Jaemyung Lim
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Coskun Tekes
- School of Computer Engineering, Kennesaw State University, Marietta, GA 30060 USA
| | - Evren F Arkan
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - Ahmad Rezvanitabar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | - F Levent Degertekin
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| | | |
Collapse
|
33
|
Ilkhechi AK, Ceroici C, Li Z, Zemp R. Transparent capacitive micromachined ultrasonic transducer (CMUT) arrays for real-time photoacoustic applications. OPTICS EXPRESS 2020; 28:13750-13760. [PMID: 32403843 DOI: 10.1364/oe.390612] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/30/2020] [Indexed: 05/26/2023]
Abstract
Photoacoustic imaging has shown great potential for non-invasive high-resolution deep-tissue imaging. Minimizing the optical and acoustic paths for excitation and detection could significantly increase the signal-to-noise ratio. This could be accomplished by transparent transducers permitting through-transducer illumination. However, most ultrasound transducers are not optically transparent. Capacitive micromachined ultrasound transducer (CMUT) technology has compelling properties compared to piezoelectric transducers such as wide bandwidth and high receive sensitivity. Here, we introduce transparent CMUT linear arrays with high transparency in the visible and near-infrared range. To fabricate the devices, we used an adhesive wafer bonding technique using photosensitive benzocyclobutene (BCB) as both a structural and adhesive layer with a glass-indium-tin-oxide (ITO) substrate. Silicon nitride is used as the membrane material ensuring hermiticity and optical transparency. Our fabricated transducer arrays consist of 64 and 128 elements with immersion operation frequency of 8 MHz, enabling high-resolution imaging. ITO, along with thin metal strips, are used as a conductive layer for the top electrodes with minimal impact on device transparency. Fabricated devices have shown average transparency of 70% in the visible wavelength range that goes up to 90% in the near-infrared range. Arrays are wire-bonded to interfacing electronics and connected to a research ultrasound platform for phantom imaging. Arrays exhibited signal-to-noise (SNR) of 40 dB with 30V bias voltage and laser fluence of 13.5 mJ/cm2. Arrays with 128 channels provided lateral and axial resolutions of 234 µm and 220 µm, respectively.
Collapse
|
34
|
Tsumura R, Vang DP, Hata N, Zhang HK. Ring-arrayed Forward-viewing Ultrasound Imaging System: A Feasibility Study. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2020; 11319:113190K. [PMID: 32782420 PMCID: PMC7416557 DOI: 10.1117/12.2550042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Current standard workflows of ultrasound (US)-guided needle insertion require physicians to use their both hands: holding the US probe to locate interested areas with the non-dominant hand and the needle with the dominant hand. This is due to the separation of functionalities for localization and needle insertion. This requirement does not only make the procedure cumbersome, but also limits the reliability of guidance given that the positional relationship between the needle and US images is unknown and interpreted with their experience and assumption. Although the US-guided needle insertion may be assisted through navigation systems, recovery of the positional relationship between the needle and US images requires the usage of external tracking systems and image-based tracking algorisms that may involve the registration inaccuracy. Therefore, there is an unmet need for the solution that provides a simple and intuitive needle localization and insertion to improve the conventional US-guided procedure. In this work, we propose a new device concept solution based on the ring-arrayed forward-viewing (RAF) ultrasound imaging system. The proposed system is comprised with ring-arrayed transducers and an open whole inside the ring where the needle can be inserted. The ring array provides forward-viewing US images, where the needle path is always maintained at the center of the reconstructed image without requiring any registration. As the proof of concept, we designed single-circle ring-arrayed configurations with different radiuses and visualized point targets using the forward-viewing US imaging through simulations and phantom experiments. The results demonstrated the successful target visualization and indicates the ring-arrayed US imaging has a potential to improve the US-guided needle insertion procedure to be simpler and more intuitive.
Collapse
Affiliation(s)
- Ryosuke Tsumura
- Dept. of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Doua P. Vang
- Dept. of Electrical and Computer Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Nobuhiko Hata
- Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, USA
| | - Haichong K. Zhang
- Dept. of Biomedical Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
- Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, USA
| |
Collapse
|
35
|
Jung G, Pirouz A, Tekes C, Carpenter TM, Cowell D, Freear S, Ghovanloo M, Degertekin FL. Supply-Inverted Bipolar Pulser and Tx/Rx Switch for CMUTs Above the Process Limit for High Pressure Pulse Generation. IEEE SENSORS JOURNAL 2019; 19:12050-12058. [PMID: 34079429 PMCID: PMC8168891 DOI: 10.1109/jsen.2019.2938079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
A combined supply-inverted bipolar pulser and a Tx/Rx switch is proposed to drive capacitive micromachined ultrasonic transducers (CMUTs). The supply-inverted bipolar pulser adopts a bootstrap circuit combined with stacked transistors, which guarantees high voltage (HV) operation above the process limit without lowering device reliability. This circuit generates an output signal with a peak-to-peak voltage that is almost twice the supply level. It generates a bipolar pulse with only positive supply voltages. The Tx/Rx switch adopts a diode-bridge structure with the protection scheme dedicated to this proposed pulser. A proof- of-concept ASIC prototype has been implemented in 0.18-μm HV CMOS/DMOS technology with 60 V devices. Measurement results show that the proposed pulser can safely generate a bipolar pulse of -34.6 to 45 V, from a single 45 V supply voltage. The Tx/Rx switch blocks the HV bipolar pulse, resulting in less than 1.6 V at the input of the receiver. Acoustic measurements are performed connecting the pulser to CMUTs with 2 pF capacitance and 8 MHz center frequency. The variation of acoustic output pressures for different pulse shapes were simulated with the large signal CMUT model and compared with the experimental results for transmit pressure optimization. A potential implementation of the methods using MEMS fabrication methods is also described.
Collapse
Affiliation(s)
- Gwangrok Jung
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA. He is now with Broadcom, San Jose, CA 95131 USA
| | - Amirabbas Pirouz
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA. He is now with Onscale Inc., Redwood City, CA 94063 USA
| | - Coskun Tekes
- Department of Computer Engineering, Kennesaw State University, Marietta, GA 30060 USA
| | - Thomas M Carpenter
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - David Cowell
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Steven Freear
- School of Electronic and Electrical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Maysam Ghovanloo
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA. He is now with Bionic Sciences Inc., Atlanta, GA 30316 USA
| | - F Levent Degertekin
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30308 USA, and also with the School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 USA
| |
Collapse
|
36
|
Park J, Lee C, Lee J, Ha JI, Choi H, Chang JH. Magnetically Actuated Forward-Looking Interventional Ultrasound Imaging: Feasibility Studies. IEEE Trans Biomed Eng 2019; 67:1797-1805. [PMID: 31634823 DOI: 10.1109/tbme.2019.2948391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE Interventional ultrasound imaging is a prerequisite for guiding implants and treatment within the hearts and blood vessels. Due to limitations on the catheter's diameter, interventional ultrasonic transducers have side-looking structures although forward-looking imaging may provide more intuitive and real time guidance in treating diseased sites ahead of catheters. To address the issue, a magnetically actuated forward-looking interventional ultrasound imaging device is implemented for the first time. METHODS A forward-looking catheter containing a 1 mm ring type focused 35 MHz ultrasound transducer and a micro magnet, was fabricated. For imaging, the transducer was placed at the center of four electromagnetic coils positioned on four sides of a squared acrylic housing. By modifying the magnetic field, the catheter tip could be remotely translated for sector scanning. RESULTS The scanning angle could reach up to 3° in 1 Hz with 15 mT, while wider angles of 5° could be achieved with a higher magnetic field of 25 mT for ex-vivo imaging. The position of the transducer could be detected by monitoring the motion with a CCD camera, mimicking clinical X-ray imaging. In the wire target and tissue mimicking phantom studies, the measured hole size, spatial resolution and distance between wires by the proposed system were comparable with the values from a linear scanner. Multi-frame real time data acquisition was demonstrated via ex-vivo imaging on a pig's coronary artery. CONCLUSION/SIGNIFICANCE The feasibility of magnetically actuated forward-looking interventional ultrasound imaging was demonstrated. The remote-controlled scanning method may allow to simplify the structures of forward-looking interventional ultrasound imaging catheters.
Collapse
|
37
|
Li M, Shao W, Jiang X, Feng Z. Deconvolution in Intravascular Ultrasound to Improve Lateral Resolution. ULTRASONIC IMAGING 2019; 41:191-205. [PMID: 30990118 DOI: 10.1177/0161734619838456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Intravascular ultrasound (IVUS) is an important diagnostic method for coronary disease. The lateral and axial resolutions of IVUS systems under study are typically ~120 and ~30 µm, respectively. The lateral resolution has a lower quality than the axial one and is restricted by the aperture size of transducers. In addition, this resolution is difficult to further improve physically. However, IVUS is inherently suitable for lateral deconvolution because of its circular imaging area. In this paper, magnitude-based deconvolution was demonstrated to be feasible in IVUS imaging to improve the lateral resolution. The deconvolution process was first simulated to determine the highest feasible resolution. Next, the method was applied to a real system to validate the feasibility. The lateral resolution was improved significantly, that is, 2°-separated targets could be discerned using a transducer with 4.2° -6 dB lateral resolution.
Collapse
Affiliation(s)
- Mingxia Li
- 1 Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Weiwei Shao
- 2 Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, China
| | - Xiaoning Jiang
- 3 Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, USA
| | - Zhihua Feng
- 1 Department of Precision Machinery & Precision Instrumentation, University of Science and Technology of China, Hefei, China
| |
Collapse
|
38
|
2017 Roadmap for Innovation-ACC Health Policy Statement on Healthcare Transformation in the Era of Digital Health, Big Data, and Precision Health: A Report of the American College of Cardiology Task Force on Health Policy Statements and Systems of Care. J Am Coll Cardiol 2019; 70:2696-2718. [PMID: 29169478 DOI: 10.1016/j.jacc.2017.10.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
39
|
Li M, Feng Z. An Optimum Imaging Scheme for IVUS Arrays: Eccentric Cylinder Wave Compounding. ULTRASONIC IMAGING 2019; 41:173-187. [PMID: 30898053 DOI: 10.1177/0161734619836659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the development of integrated circuit (IC) technologies, complex transmitting and receiving circuits can be integrated into miniature intravascular ultrasound (IVUS) catheters, making it possible to adopt better synthesizing schemes for better imaging. Eccentric cylinder wave compounding should be an optimum synthesizing scheme for the small size cylinder shaped catheter. Eccentric cylinder waves centered at different points are emitted, signals are collected after each emission, and images can be synthesized with easy post processing. Detailed analyses about resolution and grating lobes were made; the optimum eccentric distance was determined. Simulations were done to examine the resolution, signal-to-noise ratio, and resistance to crosstalk and nonuniformity of arrays. Dual apodization and magnitude-based deconvolution were applied to further improve the results.
Collapse
Affiliation(s)
- Mingxia Li
- 1 Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| | - Zhihua Feng
- 1 Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, China
| |
Collapse
|
40
|
Isla JA, Cegla FB. Simultaneous transmission and reception on all elements of an array: binary code excitation. Proc Math Phys Eng Sci 2019; 475:20180831. [PMID: 31236046 PMCID: PMC6545054 DOI: 10.1098/rspa.2018.0831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/10/2019] [Indexed: 12/27/2022] Open
Abstract
Pulse-echo arrays are used in radar, sonar, seismic, medical and non-destructive evaluation. There is a trend to produce arrays with an ever-increasing number of elements. This trend presents two major challenges: (i) often the size of the elements is reduced resulting in a lower signal-to-noise ratio (SNR) and (ii) the time required to record all of the signals that correspond to every transmit-receive path increases. Coded sequences with good autocorrelation properties can increase the SNR while orthogonal sets can be used to simultaneously acquire all of the signals that correspond to every transmit-receive path. However, a central problem of conventional coded sequences is that they cannot achieve good autocorrelation and orthogonality properties simultaneously due to their length being limited by the location of the closest reflectors. In this paper, a solution to this problem is presented by using coded sequences that have receive intervals. The proposed approach can be more than one order of magnitude faster than conventional methods. In addition, binary excitation and quantization can be employed, which reduces the data throughput by roughly an order of magnitude and allows for higher sampling rates. While this concept is generally applicable to any field, a 16-element system was built to experimentally demonstrate this principle for the first time using a conventional medical ultrasound probe.
Collapse
|
41
|
Brenner K, Ergun AS, Firouzi K, Rasmussen MF, Stedman Q, Khuri-Yakub BP. Advances in Capacitive Micromachined Ultrasonic Transducers. MICROMACHINES 2019; 10:E152. [PMID: 30813447 PMCID: PMC6412242 DOI: 10.3390/mi10020152] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 11/16/2022]
Abstract
Capacitive micromachined ultrasonic transducer (CMUT) technology has enjoyed rapid development in the last decade. Advancements both in fabrication and integration, coupled with improved modelling, has enabled CMUTs to make their way into mainstream ultrasound imaging systems and find commercial success. In this review paper, we touch upon recent advancements in CMUT technology at all levels of abstraction; modeling, fabrication, integration, and applications. Regarding applications, we discuss future trends for CMUTs and their impact within the broad field of biomedical imaging.
Collapse
Affiliation(s)
- Kevin Brenner
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
| | - Arif Sanli Ergun
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
- Faculty of Engineering, TOBB University of Economics and Technology, Ankara 06560, Turkey.
| | - Kamyar Firouzi
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
| | | | - Quintin Stedman
- E.L. Ginzton Lab., Stanford University, Stanford, CA 94305, USA.
| | | |
Collapse
|
42
|
Du Y, He C, Hao G, Zhang W, Xue C. Full-Differential Folded-Cascode Front-End Receiver Amplifier Integrated Circuit for Capacitive Micromachined Ultrasonic Transducers. MICROMACHINES 2019; 10:mi10020088. [PMID: 30691047 PMCID: PMC6412642 DOI: 10.3390/mi10020088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 11/16/2022]
Abstract
This paper describes the design of a front-end receiver amplifier for capacitive micromachined ultrasonic transducer (CMUT). The proposed operational amplifier (op amp) consists of a full differential folded-cascode amplifier stage followed by a class AB output stage. A feedback resistor is applied between the input and the output of the op amp to make a transimpedance amplifier. We analyzed the equivalent circuit model of the CMUT element operating in the receiving mode and obtained the static output impedance and center frequency characteristics of the CMUT. The op amp gain, bandwidth, noise, and power consumption trade-offs are discussed in detail. The amplifier was fabricated using GlobalFoundries 0.18-μm complementary metal-oxide-semiconductor (CMOS) technology. The open loop gain of the amplifier is approximately 65 dB, and its gain bandwidth product is approximately 29.5 MHz. The measured input reference noise current was 56 nA/√Hz@3 MHz. The amplifier chip area is 325 μm × 150 μm and the op amp is powered by ±3.3 V, the static power consumption is 11 mW. We verified the correct operation of our amplifier with CMUT and echo-pulse shown that the CMUT center frequency is 3 MHz with 92% fractional bandwidth.
Collapse
Affiliation(s)
- Yiheng Du
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Shanxi,Taiyuan 030051, China.
| | - Changde He
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Shanxi,Taiyuan 030051, China.
| | - Guowei Hao
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Shanxi,Taiyuan 030051, China.
| | - Wendong Zhang
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Shanxi,Taiyuan 030051, China.
| | - Chenyang Xue
- Key Laboratory of Instrumentation Science & Dynamic Measurement, North University of China, Shanxi,Taiyuan 030051, China.
| |
Collapse
|
43
|
Lim J, Rezvanitabar A, Degertekin FL, Ghovanloo M. An Impulse Radio PWM-Based Wireless Data Acquisition Sensor Interface. IEEE SENSORS JOURNAL 2019; 19:603-614. [PMID: 31572068 PMCID: PMC6767931 DOI: 10.1109/jsen.2018.2877889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A sensor interface circuit based on impulse radio pulse width modulation (IR-PWM) is presented for low power and high throughput wireless data acquisition systems (wDAQ) with extreme size and power constraints. Two triple-slope analog-to-time converters (ATC) convert two analog signals, each up to 5 MHz in bandwidth, into PWM signals, and an impulse radio (IR) transmitted (Tx) with an all-digital power amplifier (PA) combines them while preserving the timing information by transmitting impulses at the PWM rising and falling edges. On the receiver (Rx) side, an RF-LNA followed by an envelope detector recovers the incoming impulses, and a T-flipflop reverts the impulse sequence back to PWM to be digitized by a time-to-digital converter (TDC). Detailed analysis and design guideline on ATC was introduced, and a proof-of-concept prototype was fabricated for a capacitive micromachined ultrasound transducer (CMUT) imaging system in a 0.18-μm HV CMOS process, occupying 0.18 mm2 active area and consuming 3.94 mW from a 1.8 V supply. The proposed TDC in this prototype yielded 7-bit resolution, while the entire wDAQ achieved 5.8 effective number of bits (ENOB) at 2 × 10 MS/s.
Collapse
Affiliation(s)
- Jaemyung Lim
- GT-Bionics lab, School of Electrical and Computer Engineering, Atlanta, GA, USA
| | - Ahmad Rezvanitabar
- GT-Bionics lab, School of Electrical and Computer Engineering, Atlanta, GA, USA
| | | | - Maysam Ghovanloo
- GT-Bionics lab, School of Electrical and Computer Engineering, Atlanta, GA, USA
| |
Collapse
|
44
|
Wu X, Sanders JL, Zhang X, Yamaner FY, Oralkan O. An FPGA-Based Backend System for Intravascular Photoacoustic and Ultrasound Imaging. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2019; 66:45-56. [PMID: 30442605 PMCID: PMC6384193 DOI: 10.1109/tuffc.2018.2881409] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The integration of intravascular ultrasound (IVUS) and intravascular photoacoustic (IVPA) imaging produces an imaging modality with high sensitivity and specificity which is particularly needed in interventional cardiology. Conventional side-looking IVUS imaging with a single-element ultrasound (US) transducer lacks forward-viewing capability, which limits the application of this imaging mode in intravascular intervention guidance, Doppler-based flow measurement, and visualization of nearly, or totally blocked arteries. For both side-looking and forward-looking imaging, the necessity to mechanically scan the US transducer limits the imaging frame rate, and therefore, array-based solutions are desired. In this paper, we present a low-cost, compact, high-speed, and programmable imaging system based on a field-programmable gate array suitable for dual-mode forward-looking IVUS/IVPA imaging. The system has 16 US transmit and receive channels and functions in multiple modes including interleaved photoacoustic (PA) and US imaging, hardware-based high-frame-rate US imaging, software-driven US imaging, and velocity measurement. The system is implemented in the register-transfer level, and the central system controller is implemented as a finite-state machine. The system was tested with a capacitive micromachined ultrasonic transducer array. A 170-frames-per-second (FPS) US imaging frame rate is achieved in the hardware-based high-frame-rate US imaging mode while the interleaved PA and US imaging mode operates at a 60-FPS US and a laser-limited 20-FPS PA imaging frame rate. The performance of the system benefits from the flexibility and efficiency provided by the low-level implementation. The resulting system provides a convenient backend platform for research and clinical IVPA and IVUS imaging.
Collapse
|
45
|
Affiliation(s)
- Danny Meetoo
- Programme Leader, MSc Diabetes Care, University of Salford
| | - Rebecca Rylance
- Assistant Director, Health Directorate, School of Health and Society, University of Salford
| | | |
Collapse
|
46
|
Surappa S, Tao M, Degertekin FL. Analysis and Design of Capacitive Parametric Ultrasonic Transducers for Efficient Ultrasonic Power Transfer Based on a 1-D Lumped Model. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:2103-2112. [PMID: 30130183 DOI: 10.1109/tuffc.2018.2866058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
There is an increasing interest in wireless power transfer for medical implants, sensor networks, and consumer electronics. A passive capacitive parametric ultrasonic transducer (CPUT) can be suitable for these applications as it does not require a dc bias or a permanent charge. In this paper, we present a 1-D lumped parameter model of the CPUT to study its operation and investigate relevant design parameters for power transfer applications. The CPUT is modeled as an ultrasound-driven piston coupled to an RLC resonator resulting in a system of two coupled nonlinear ordinary differential equations. Simulink is used along with an analytical approximation of the system to obtain the voltage across the capacitor and displacement of the piston. Parametric resonance threshold and ultrasound-to-electrical conversion efficiency are evaluated, and the dependence of these performance metrics on the load resistance, input ultrasound intensity, forcing frequency, electrode coverage area, gap height, and the mechanical Q-factor are studied. Based on this analysis, design guidelines are proposed for highly efficient power transfer. Guided by these results, practical device designs are obtained through COMSOL simulations. Finally, the feasibility of using the CPUT in air is predicted to set the foundation for further research in ultrasonic wireless power transfer, energy harvesting, and sensing.
Collapse
|
47
|
Janjic J, Tan M, Daeichin V, Noothout E, Chen C, Chen Z, Chang ZY, Beurskens RHSH, van Soest G, van der Steen AFW, Verweij MD, Pertijs MAP, de Jong N. A 2-D Ultrasound Transducer With Front-End ASIC and Low Cable Count for 3-D Forward-Looking Intravascular Imaging: Performance and Characterization. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2018; 65:1832-1844. [PMID: 30047876 DOI: 10.1109/tuffc.2018.2859824] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Intravascular ultrasound (IVUS) is an imaging modality used to visualize atherosclerosis from within the inner lumen of human arteries. Complex lesions like chronic total occlusions require forward-looking IVUS (FL-IVUS), instead of the conventional side-looking geometry. Volumetric imaging can be achieved with 2-D array transducers, which present major challenges in reducing cable count and device integration. In this work, we present an 80-element lead zirconium titanate matrix ultrasound transducer for FL-IVUS imaging with a front-end application-specific integrated circuit (ASIC) requiring only four cables. After investigating optimal transducer designs, we fabricated the matrix transducer consisting of 16 transmit (TX) and 64 receive (RX) elements arranged on top of an ASIC having an outer diameter of 1.5 mm and a central hole of 0.5 mm for a guidewire. We modeled the transducer using finite-element analysis and compared the simulation results to the values obtained through acoustic measurements. The TX elements showed uniform behavior with a center frequency of 14 MHz, a -3-dB bandwidth of 44%, and a transmit sensitivity of 0.4 kPa/V at 6 mm. The RX elements showed center frequency and bandwidth similar to the TX elements, with an estimated receive sensitivity of /Pa. We successfully acquired a 3-D FL image of three spherical reflectors in water using delay-and-sum beamforming and the coherence factor method. Full synthetic-aperture acquisition can be achieved with frame rates on the order of 100 Hz. The acoustic characterization and the initial imaging results show the potential of the proposed transducer to achieve 3-D FL-IVUS imaging.
Collapse
|
48
|
Aldaoud A, Redoute JM, Ganesan K, Rind GS, John SE, Ronayne SM, Opie NL, Garrett DJ, Prawer S. Near-Field Wireless Power Transfer to Stent-Based Biomedical Implants. ACTA ACUST UNITED AC 2018. [DOI: 10.1109/jerm.2018.2833386] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
49
|
High-Efficiency Output Pressure Performance Using Capacitive Micromachined Ultrasonic Transducers with Substrate-Embedded Springs. SENSORS 2018; 18:s18082520. [PMID: 30072601 PMCID: PMC6111897 DOI: 10.3390/s18082520] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 11/17/2022]
Abstract
Capacitive micromachined ultrasonic transducers (CMUTs) with substrate-embedded springs offer highly efficient output pressure performance over conventional CMUTs, owing to their nonflexural parallel plate movement. The embedded silicon springs support thick Si piston plates, creating a large nonflexural average volume displacement efficiency in the operating frequency range from 1⁻3 MHz. Static and dynamic volume displacements of the nonflexural parallel plates were examined using white light interferometry and laser Doppler vibrometry. In addition, an output pressure measurement in immersion was performed using a hydrophone. The device showed a maximum transmission efficiency of 21 kPa/V, and an average volume displacement efficiency of 1.1 nm/V at 1.85 MHz with a low DC bias voltage of 55 V. The device element outperformed the lead zirconate titanate (PZT) ceramic HD3203, in the maximum transmission efficiency or the average volume displacement efficiency by 1.35 times. Furthermore, its average volume displacement efficiency reached almost 80% of the ideal state-of-the-art single-crystal relaxor ferroelectric materials PMN-0.33PT. Additionally, we confirmed that high-efficiency output pressure could be generated from the CMUT device, by quantitatively comparing the hydrophone measurement of a commercial PZT transducer.
Collapse
|
50
|
Pirouz A, Degertekin FL. Low Temperature CMUT Fabrication Process with Dielectric Lift-off Membrane Support for Improved Reliability. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2018; 28:085006. [PMID: 29785066 PMCID: PMC5958899 DOI: 10.1088/1361-6439/aabe0c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
This paper reports an improved CMOS compatible low temperature sacrificial layer fabrication process for Capacitive Micromachined Ultrasonic Transducers (CMUTs). The process adds the fabrication step of silicon oxide evaporation which is followed by a lift-off step to define the membrane support area without a need for an extra mask. This simple addition improves reliability by reducing the electric field between the top and bottom electrodes everywhere except the moving membrane without affecting the vacuum gap thickness. Furthermore, the parasitic capacitance which degrades the CMUT receive performance is reduced. A 1-D CMUT array suitable for Intracardiac Echocardiography (ICE) imaging with 9MHz center frequency is fabricated using this method. Detailed electrical and acoustic testing indicates adequate performance of the devices for ICE in agreement with simulations. Long term output pressure testing with more than 2×1011 pulsing cycles and environmental testing demonstrate the efficacy of the approach for improved reliability as compared to devices without the additional membrane support layer.
Collapse
Affiliation(s)
- Amirabbas Pirouz
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, USA
| | - F Levent Degertekin
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, USA
- G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta USA
| |
Collapse
|