1
|
Kalia M, Miotto M, Ness D, Opie-Martin S, Spargo TP, Di Rienzo L, Biagini T, Petrizzelli F, Al Khleifat A, Kabiljo R, Mazza T, Ruocco G, Milanetti E, Dobson RJB, Al-Chalabi A, Iacoangeli A. Molecular dynamics analysis of superoxide dismutase 1 mutations suggests decoupling between mechanisms underlying ALS onset and progression. Comput Struct Biotechnol J 2023; 21:5296-5308. [PMID: 37954145 PMCID: PMC10637862 DOI: 10.1016/j.csbj.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/15/2023] [Accepted: 09/15/2023] [Indexed: 11/14/2023] Open
Abstract
Mutations in the superoxide dismutase 1 (SOD1) gene are the second most common known cause of ALS. SOD1 variants express high phenotypic variability and over 200 have been reported in people with ALS. It was previously proposed that variants can be broadly classified in two groups, 'wild-type like' (WTL) and 'metal binding region' (MBR) variants, based on their structural location and biophysical properties. MBR variants, but not WTL variants, were associated with a reduction of SOD1 enzymatic activity. In this study we used molecular dynamics and large clinical datasets to characterise the differences in the structural and dynamic behaviour of WTL and MBR variants with respect to the wild-type SOD1, and how such differences influence the ALS clinical phenotype. Our study identified marked structural differences, some of which are observed in both variant groups, while others are group specific. Moreover, collecting clinical data of approximately 500 SOD1 ALS patients carrying variants, we showed that the survival time of patients carrying an MBR variant is generally longer (∼6 years median difference, p < 0.001) with respect to patients with a WTL variant. In conclusion, our study highlighted key differences in the dynamic behaviour between WTL and MBR SOD1 variants, and between variants and wild-type SOD1 at an atomic and molecular level, that could be further investigated to explain the associated phenotypic variability. Our results support the hypothesis of a decoupling between mechanisms of onset and progression of SOD1 ALS, and an involvement of loss-of-function of SOD1 with the disease progression.
Collapse
Affiliation(s)
- Munishikha Kalia
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Mattia Miotto
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Deborah Ness
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Sarah Opie-Martin
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Thomas P. Spargo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Lorenzo Di Rienzo
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
| | - Tommaso Biagini
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Francesco Petrizzelli
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Ahmad Al Khleifat
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | - Renata Kabiljo
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
| | | | | | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS Casa Sollievo della Sofferenza, S. Giovanni Rotondo, Italy
| | - Giancarlo Ruocco
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Edoardo Milanetti
- Center for Life Nano & Neuro Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161, Rome, Italy
- Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Richard JB Dobson
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Institute of Health Informatics, University College London, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- Clinical Neurosciences, King’s College Hospital, Denmark Hill, London, UK
| | - Alfredo Iacoangeli
- Department of Biostatistics and Health Informatics, King’s College London, London, UK
- Department of Basic and Clinical Neuroscience, King’s College London, Maurice Wohl Clinical Neuroscience Institute, London, UK
- National Institute for Health Research Biomedical Research Centre and Dementia Unit at South London and Maudsley NHS Foundation Trust King’s College London, London, United Kingdom
| |
Collapse
|
2
|
Bagyinszky E, Hulme J, An SSA. Studies of Genetic and Proteomic Risk Factors of Amyotrophic Lateral Sclerosis Inspire Biomarker Development and Gene Therapy. Cells 2023; 12:1948. [PMID: 37566027 PMCID: PMC10417729 DOI: 10.3390/cells12151948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease affecting the upper and lower motor neurons, leading to muscle weakness, motor impairments, disabilities and death. Approximately 5-10% of ALS cases are associated with positive family history (familial ALS or fALS), whilst the remainder are sporadic (sporadic ALS, sALS). At least 50 genes have been identified as causative or risk factors for ALS. Established pathogenic variants include superoxide dismutase type 1 (SOD1), chromosome 9 open reading frame 72 (c9orf72), TAR DNA Binding Protein (TARDBP), and Fused In Sarcoma (FUS); additional ALS-related genes including Charged Multivesicular Body Protein 2B (CHMP2B), Senataxin (SETX), Sequestosome 1 (SQSTM1), TANK Binding Kinase 1 (TBK1) and NIMA Related Kinase 1 (NEK1), have been identified. Mutations in these genes could impair different mechanisms, including vesicle transport, autophagy, and cytoskeletal or mitochondrial functions. So far, there is no effective therapy against ALS. Thus, early diagnosis and disease risk predictions remain one of the best options against ALS symptomologies. Proteomic biomarkers, microRNAs, and extracellular vehicles (EVs) serve as promising tools for disease diagnosis or progression assessment. These markers are relatively easy to obtain from blood or cerebrospinal fluids and can be used to identify potential genetic causative and risk factors even in the preclinical stage before symptoms appear. In addition, antisense oligonucleotides and RNA gene therapies have successfully been employed against other diseases, such as childhood-onset spinal muscular atrophy (SMA), which could also give hope to ALS patients. Therefore, an effective gene and biomarker panel should be generated for potentially "at risk" individuals to provide timely interventions and better treatment outcomes for ALS patients as soon as possible.
Collapse
Affiliation(s)
- Eva Bagyinszky
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - John Hulme
- Graduate School of Environment Department of Industrial and Environmental Engineering, Gachon University, Seongnam-si 13120, Republic of Korea;
| | - Seong Soo A. An
- Department of Bionano Technology, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
3
|
Mavadat E, Seyedalipour B, Hosseinkhani S, Colagar AH. Role of charged residues of the "electrostatic loop" of hSOD1 in promotion of aggregation: Implications for the mechanism of ALS-associated mutations under amyloidogenic conditions. Int J Biol Macromol 2023:125289. [PMID: 37307969 DOI: 10.1016/j.ijbiomac.2023.125289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 09/14/2022] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Protein misfolding and amyloid formation are hallmarks of numerous diseases, including amyotrophic lateral sclerosis (ALS), in which hSOD1 aggregation is involved in pathogenesis. We used two point mutations in the electrostatic loop, G138E and T137R, to analyze charge distribution under destabilizing circumstances to gain more about how ALS-linked mutations affect SOD1 protein stability or net repulsive charge. We show that protein charge is important in the ALS disease process using bioinformatics and experiments. The MD simulation findings demonstrate that the mutant protein differs significantly from WT SOD1, which is consistent with the experimental evidence. The specific activity of the wild type was 1.61 and 1.48 times higher than that of the G138E and T137R mutants, respectively. Under amyloid induction conditions, the intensity of intrinsic and ANS fluorescence in both mutants reduced. Increasing the content of β-sheet structures in mutants can be attributed to aggregation propensity, which was confirmed using CD polarimetry and FTIR spectroscopy. Our findings show that two ALS-related mutations promote the formation of amyloid-like aggregates at near physiological pH under destabilizing conditions, which were detected using spectroscopic probes such as Congo red and ThT fluorescence, and also further confirmation of amyloid-like species by TEM. Overall, our results provide evidence supporting the notion that negative charge changes combined with other destabilizing factors play an important role in increasing protein aggregation by reducing repulsive negative charges.
Collapse
Affiliation(s)
- Elaheh Mavadat
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran
| | - Bagher Seyedalipour
- Department of Molecular and Cell Biology, Faculty of Basic Science, University of Mazandaran, Babolsar, Iran.
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
4
|
McAlary L, Shephard VK, Wright GSA, Yerbury JJ. A copper chaperone-mimetic polytherapy for SOD1-associated amyotrophic lateral sclerosis. J Biol Chem 2022; 298:101612. [PMID: 35065969 PMCID: PMC8885447 DOI: 10.1016/j.jbc.2022.101612] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/20/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease in which motor neurons progressively and rapidly degenerate, eventually leading to death. The first protein found to contain ALS-associated mutations was copper/zinc superoxide dismutase 1 (SOD1), which is conformationally stable when it contains its metal ligands and has formed its native intramolecular disulfide. Mutations in SOD1 reduce protein folding stability via disruption of metal binding and/or disulfide formation, resulting in misfolding, aggregation, and ultimately cellular toxicity. A great deal of effort has focused on preventing the misfolding and aggregation of SOD1 as a potential therapy for ALS; however, the results have been mixed. Here, we utilize a small-molecule polytherapy of diacetylbis(N(4)-methylthiosemicarbazonato)copper(II) (CuATSM) and ebselen to mimic the metal delivery and disulfide bond promoting activity of the cellular chaperone of SOD1, the “copper chaperone for SOD1.” Using microscopy with automated image analysis, we find that polytherapy using CuATSM and ebselen is highly effective and acts in synergy to reduce inclusion formation in a cell model of SOD1 aggregation for multiple ALS-associated mutants. Polytherapy reduces mutant SOD1-associated cell death, as measured by live-cell microscopy. Measuring dismutase activity via zymography and immunoblotting for disulfide formation showed that polytherapy promoted more effective maturation of transfected SOD1 variants beyond either compound alone. Our data suggest that a polytherapy of CuATSM and ebselen may merit more study as an effective method of treating SOD1-associated ALS.
Collapse
Affiliation(s)
- L McAlary
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.
| | - V K Shephard
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia
| | - G S A Wright
- Department of Biochemistry & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - J J Yerbury
- Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, NSW, Australia.
| |
Collapse
|
5
|
Computer analysis of the relation between hydrogen bond stability in SOD1 mutants and the survival time of amyotrophic lateral sclerosis patients. J Mol Graph Model 2021; 110:108026. [PMID: 34653813 DOI: 10.1016/j.jmgm.2021.108026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 08/06/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND OBJECTIVE Mutations in the SOD1 protein can lead to the death of motor neurons, which, in turn, causes an incurable disease called amyotrophic lateral sclerosis (ALS). At the same time, the mechanism of the onset and development of this disease is not fully understood and is often contradictory. METHODS Accelerated Molecular Dynamics as implemented in the OpenMM library, principal component analysis, regression analysis, random forest method. RESULTS The stability of hydrogen bonds in 72 mutants of the SOD1 protein was calculated. Principal component analysis was carried out. Based on ten principal components acting as predictors, a multiple linear regression model was constructed. An analysis of the correlation of these ten principal components with the initial values of the stability of hydrogen bonds made it possible to characterize the contribution of known structurally and functionally important sites in the SOD1 to the scatter of ALS patients' survival time. CONCLUSION Such an analysis made it possible to put forward hypotheses about the relationship between the stabilizing and destabilizing effects of mutations in different structurally and functionally important regions of SOD1 with the patients's survival time.
Collapse
|
6
|
Furukawa Y, Shintani A, Kokubo T. A dual role of cysteine residues in the maturation of prokaryotic Cu/Zn-superoxide dismutase. Metallomics 2021; 13:6353531. [PMID: 34402915 DOI: 10.1093/mtomcs/mfab050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/05/2021] [Indexed: 11/14/2022]
Abstract
Bacterial Cu/Zn-superoxide dismutase (SodC) is an enzyme catalyzing the disproportionation of superoxide radicals, to which the binding of copper and zinc ions and the formation of an intramolecular disulfide bond are essential. We previously showed that Escherichia coli SodC (SodC) was prone to spontaneous degradation in vivo in an immature form prior to the introduction of the disulfide bond. The post-translational maintenance involving the metal binding and the disulfide formation would thus control the stability as well as the enzymatic function of SodC; however, a mechanism of the SodC maturation remains obscure. Here, we show that the disulfide-reduced SodC can secure a copper ion as well as a zinc ion through the thiolate groups. Furthermore, the disulfide-reduced SodC was found to bind cuprous and cupric ions more tightly than SodC with the disulfide bond. The thiolate groups ligating the copper ion were then autooxidized to form the intramolecular disulfide bond, leading to the production of enzymatically active SodC. Based upon the experiments in vitro, therefore, we propose a mechanism for the activation of SodC, in which the conserved Cys residues play a dual role: the acquisition of a copper ion for the enzymatic activity and the formation of the disulfide bond for the structural stabilization.
Collapse
Affiliation(s)
- Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Atsuko Shintani
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Teppei Kokubo
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| |
Collapse
|
7
|
Pereira GRC, Vieira BDAA, De Mesquita JF. Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis. PLoS One 2021; 16:e0247841. [PMID: 33630959 PMCID: PMC7906464 DOI: 10.1371/journal.pone.0247841] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/15/2021] [Indexed: 12/29/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is the most frequent motor neuron disorder, with a significant social and economic burden. ALS remains incurable, and the only drugs approved for its treatments confers a survival benefit of a few months for the patients. Missense mutations in superoxide dismutase 1 (SOD1), a major cytoplasmic antioxidant enzyme, has been associated with ALS development, accounting for 23% of its familial cases and 7% of all sporadic cases. This work aims to characterize in silico the structural and functional effects of SOD1 protein variants. Missense mutations in SOD1 were compiled from the literature and databases. Twelve algorithms were used to predict the functional and stability effects of these mutations. ConSurf was used to estimate the evolutionary conservation of SOD1 amino-acids. GROMACS was used to perform molecular dynamics (MD) simulations of SOD1 wild-type and variants A4V, D90A, H46R, and I113T, which account for approximately half of all ALS-SOD1 cases in the United States, Europe, Japan, and United Kingdom, respectively. 233 missense mutations in SOD1 protein were compiled from the databases and literature consulted. The predictive analyses pointed to an elevated rate of deleterious and destabilizing predictions for the analyzed variants, indicating their harmful effects. The ConSurf analysis suggested that mutations in SOD1 mainly affect conserved and possibly functionally essential amino acids. The MD analyses pointed to flexibility and essential dynamics alterations at the electrostatic and metal-binding loops of variants A4V, D90A, H46R, and I113T that could lead to aberrant interactions triggering toxic protein aggregation. These alterations may have harmful implications for SOD1 and explain their association with ALS. Understanding the effects of SOD1 mutations on protein structure and function facilitates the design of further experiments and provides relevant information on the molecular mechanism of pathology, which may contribute to improvements in existing treatments for ALS.
Collapse
Affiliation(s)
- Gabriel Rodrigues Coutinho Pereira
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Joelma Freire De Mesquita
- Department of Genetics and Molecular Biology, Bioinformatics and Computational Biology Laboratory, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
8
|
Xia Y, Chen Z, Xu G, Borchelt DR, Ayers JI, Giasson BI. Novel SOD1 monoclonal antibodies against the electrostatic loop preferentially detect misfolded SOD1 aggregates. Neurosci Lett 2020; 742:135553. [PMID: 33346076 DOI: 10.1016/j.neulet.2020.135553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 12/13/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurological disease that leads to motor neuron degeneration and paralysis. Superoxide dismutase (SOD1) mutations are the second most common cause of familial ALS and are responsible for up to 20 % of familial ALS cases. In ALS patients, SOD1 can form toxic misfolded aggregates that deposit in the brain and spinal cord. To better detect SOD1 aggregates and expand the repertoire of conformational SOD1 antibodies, SOD1 monoclonal antibodies were generated by immunizing SOD1 knockout mice with an SOD1 fragment consisting of amino acids 129-146, which make up part of the electrostatic loop. A series of hybridomas secreting antibodies were screened and five different SOD1 monoclonal antibodies (2C10, 2F8, 4B11, 5H5, and 5A10) were found to preferentially detect denatured or aggregated SOD1 by enzyme-linked immunosorbent assay (ELISA), filter trap assay, and immunohistochemical analysis in SOD1 mouse models. The staining with these antibodies was compared to Campbell-Switzer argyrophilic reactivity of pathological inclusions. These new conformational selective SOD1 antibodies will be useful for clinical diagnosis of SOD1 ALS and potentially for passive immunotherapy.
Collapse
Affiliation(s)
- Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Zhijuan Chen
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - David R Borchelt
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jacob I Ayers
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA; Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL 32610, USA; Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL 32610, USA; McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
9
|
Abdelrahman S, Alghrably M, Lachowicz JI, Emwas AH, Hauser CAE, Jaremko M. "What Doesn't Kill You Makes You Stronger": Future Applications of Amyloid Aggregates in Biomedicine. Molecules 2020; 25:E5245. [PMID: 33187056 PMCID: PMC7696280 DOI: 10.3390/molecules25225245] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/24/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
Amyloid proteins are linked to the pathogenesis of several diseases including Alzheimer's disease, but at the same time a range of functional amyloids are physiologically important in humans. Although the disease pathogenies have been associated with protein aggregation, the mechanisms and factors that lead to protein aggregation are not completely understood. Paradoxically, unique characteristics of amyloids provide new opportunities for engineering innovative materials with biomedical applications. In this review, we discuss not only outstanding advances in biomedical applications of amyloid peptides, but also the mechanism of amyloid aggregation, factors affecting the process, and core sequences driving the aggregation. We aim with this review to provide a useful manual for those who engineer amyloids for innovative medicine solutions.
Collapse
Affiliation(s)
- Sherin Abdelrahman
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mawadda Alghrably
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Policlinico Universitario, I-09042 Monserrato, Italy
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Charlotte A. E. Hauser
- Laboratory for Nanomedicine, Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
10
|
Bonaccorsi M, Knight MJ, Le Marchand T, Dannatt HRW, Schubeis T, Salmon L, Felli IC, Emsley L, Pierattelli R, Pintacuda G. Multimodal Response to Copper Binding in Superoxide Dismutase Dynamics. J Am Chem Soc 2020; 142:19660-19667. [PMID: 33166153 DOI: 10.1021/jacs.0c09242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Copper/zinc superoxide dismutase (SOD) is a homodimeric metalloenzyme that has been extensively studied as a benchmark for structure-function relationships in proteins, in particular because of its implication in the familial form of the neurodegenerative disease amyotrophic lateral sclerosis. Here, we investigate microcrystalline preparations of two differently metalated forms of SOD, namely, the fully mature functional Cu,Zn state and the E,Zn-SOD state in which the Cu site is empty. By using solid-state NMR with fast magic-angle spinning (MAS) at high magnetic fields (1H Larmor frequency of 800-1000 MHz), we quantify motions spanning a dynamic range from ns to ms. We determine that metal ion uptake does not act as a rigidification element but as a switch redistributing motional processes on different time scales, with coupling of the dynamics of histidine side chains and those of remote key backbone elements of the protein.
Collapse
Affiliation(s)
- Marta Bonaccorsi
- Centre de RMN à Très Hauts Champs, FRE 2034 (CNRS/Université Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| | - Michael J Knight
- Centre de RMN à Très Hauts Champs, FRE 2034 (CNRS/Université Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| | - Tanguy Le Marchand
- Centre de RMN à Très Hauts Champs, FRE 2034 (CNRS/Université Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| | - Hugh R W Dannatt
- Centre de RMN à Très Hauts Champs, FRE 2034 (CNRS/Université Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| | - Tobias Schubeis
- Centre de RMN à Très Hauts Champs, FRE 2034 (CNRS/Université Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| | - Loïc Salmon
- Centre de RMN à Très Hauts Champs, FRE 2034 (CNRS/Université Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| | - Isabella C Felli
- Department of Chemistry "Ugo Schiff" and CERM, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Lyndon Emsley
- Laboratory of Magnetic Resonance, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Roberta Pierattelli
- Department of Chemistry "Ugo Schiff" and CERM, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, FRE 2034 (CNRS/Université Claude Bernard Lyon 1/Ecole Normale Supérieure de Lyon), University of Lyon, 69100 Villeurbanne, France
| |
Collapse
|
11
|
Tompa DR, Muthusamy S, Srikanth S, Kadhirvel S. Molecular dynamics of far positioned surface mutations of Cu/Zn SOD1 promotes altered structural stability and metal-binding site: Structural clues to the pathogenesis of amyotrophic lateral sclerosis. J Mol Graph Model 2020; 100:107678. [PMID: 32768728 DOI: 10.1016/j.jmgm.2020.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/18/2020] [Accepted: 06/26/2020] [Indexed: 10/23/2022]
Abstract
Cu/Zn superoxide dismutase (SOD1) mutations are associated to the motor neuron disorder, amyotrophic lateral sclerosis (ALS), which is characterized by aggregates of the misfolded proteins. The distribution of mutations all over the three-dimensional structure of SOD1 makes it complex to determine the exact molecular mechanism underlying SOD1 destabilization and the associated ALS pathology. In this study, we have examined structure and dynamics of SOD1 protein upon two ALS associated point mutations at the surface residue Glu100 (E100G and E100K), which is located far from the Cu and Zn sites and dimer interface. The molecular dynamics simulations were performed for these mutants for 50ns using GROMACS package. Our results indicate that the mutations result in structural destabilization by affecting the gate keeping role of Glu100 and loss of electrostatic interactions on the protein surface which stabilizes the β-barrel structure of the native form. Further, these mutations could increase the fluctuations in the zinc-binding loop (loop IV), primarily due to loss of hydrogen bond between Asp101 and Arg79. The relaxed conformation of Arg79 further affects the native conformation of His80 and Asp83, that results in altered zinc site geometry and the structure of the substrate channel. Our results clearly suggest that, similar to the mutations located at metal sites/dimer interface/disulfide regions, the mutations at the far positioned site (Glu100) also induce significant conformational changes that could affect the metallation and structure of SOD1 molecule, resulting in formation of toxic intermediate species that cause ALS.
Collapse
Affiliation(s)
- Dharma Rao Tompa
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Sureshan Muthusamy
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Srimari Srikanth
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India
| | - Saraboji Kadhirvel
- Biomolecular Crystallography Laboratory, Department of Bioinformatics, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613401, Tamil Nadu, India.
| |
Collapse
|
12
|
McAlary L, Harrison JA, Aquilina JA, Fitzgerald SP, Kelso C, Benesch JL, Yerbury JJ. Trajectory Taken by Dimeric Cu/Zn Superoxide Dismutase through the Protein Unfolding and Dissociation Landscape Is Modulated by Salt Bridge Formation. Anal Chem 2019; 92:1702-1711. [DOI: 10.1021/acs.analchem.9b01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Luke McAlary
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Julian A. Harrison
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - J. Andrew Aquilina
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | | | - Celine Kelso
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Justin L.P. Benesch
- Department of Chemistry, Physical and Theoretical Chemistry Department, University of Oxford, Oxford OX1 3QZ, U.K
| | - Justin J. Yerbury
- Illawarra Health and Medical Research Institute, Wollongong, New South Wales 2522, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales 2522, Australia
| |
Collapse
|
13
|
Agnew HD, Coppock MB, Idso MN, Lai BT, Liang J, McCarthy-Torrens AM, Warren CM, Heath JR. Protein-Catalyzed Capture Agents. Chem Rev 2019; 119:9950-9970. [PMID: 30838853 DOI: 10.1021/acs.chemrev.8b00660] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Protein-catalyzed capture agents (PCCs) are synthetic and modular peptide-based affinity agents that are developed through the use of single-generation in situ click chemistry screens against large peptide libraries. In such screens, the target protein, or a synthetic epitope fragment of that protein, provides a template for selectively promoting the noncopper catalyzed azide-alkyne dipolar cycloaddition click reaction between either a library peptide and a known ligand or a library peptide and the synthetic epitope. The development of epitope-targeted PCCs was motivated by the desire to fully generalize pioneering work from the Sharpless and Finn groups in which in situ click screens were used to develop potent, divalent enzymatic inhibitors. In fact, a large degree of generality has now been achieved. Various PCCs have demonstrated utility for selective protein detection, as allosteric or direct inhibitors, as modulators of protein folding, and as tools for in vivo tumor imaging. We provide a historical context for PCCs and place them within the broader scope of biological and synthetic aptamers. The development of PCCs is presented as (i) Generation I PCCs, which are branched ligands engineered through an iterative, nonepitope-targeted process, and (ii) Generation II PCCs, which are typically developed from macrocyclic peptide libraries and are precisely epitope-targeted. We provide statistical comparisons of Generation II PCCs relative to monoclonal antibodies in which the protein target is the same. Finally, we discuss current challenges and future opportunities of PCCs.
Collapse
Affiliation(s)
- Heather D Agnew
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - Matthew B Coppock
- Sensors and Electron Devices Directorate , U.S. Army Research Laboratory , Adelphi , Maryland 20783 , United States
| | - Matthew N Idso
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Bert T Lai
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - JingXin Liang
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Amy M McCarthy-Torrens
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| | - Carmen M Warren
- Indi Molecular, Inc. , 6162 Bristol Parkway , Culver City , California 90230 , United States
| | - James R Heath
- Institute for Systems Biology , 401 Terry Avenue North , Seattle , Washington 98109-5234 , United States
| |
Collapse
|
14
|
Srinivasan E, Rajasekaran R. Molecular binding response of naringin and naringenin to H46R mutant SOD1 protein in combating protein aggregation using density functional theory and discrete molecular dynamics. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 145:40-51. [PMID: 30543828 DOI: 10.1016/j.pbiomolbio.2018.12.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/24/2018] [Accepted: 12/06/2018] [Indexed: 10/27/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a calamitous neurodegenerative disorder characterized by denervation of upper and lower motor neurons. Numerous hypotheses suggest that toxic protein misfolding and aggregation cause ALS, similar to that of other neurodegenerative diseases, such as Alzheimers and Parkinsons. Protruding causes of familial ALS are mutations in the gene encoding Cu/Zn superoxide dismutase-1 (SOD1), which decrease protein stability and endorse protein aggregation. Thus, the interference concerning aggregate formation and destabilization in SOD1 is considered to be an impending therapeutic strategy. In this work, we utilized computational chemistry methods to initially study the effect of substitution mutation, His46Arg on SOD1 protein. Further, we described the interaction of two naturally occurring polyphenol compounds, naringin and naringenin with mutant SOD1 that is regarded to hinder the protein aggregation. Subsequently, the use of quantum chemical and molecular mechanics calculations speculated that naringin had a strong binding affinity with mutant SOD1 and impeded the formation of toxic aggregates than that of naringenin. Ultimately, we could conjecture that ingesting of polyphenol-rich foods in ALS patients may be regarded to improvise their living. Moreover, the findings from our study could pave a way in the field of structure-based drug design in developing potential anti-aggregation inhibitors against incurable ALS, affecting the human population.
Collapse
Affiliation(s)
- E Srinivasan
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to be University), Vellore, 632014, Tamil Nadu, India
| | - R Rajasekaran
- Bioinformatics Lab, Department of Biotechnology, School of Bio Sciences and Technology, VIT (Deemed to be University), Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
15
|
Alemasov NA, Ivanisenko NV, Taneja B, Taneja V, Ramachandran S, Ivanisenko VA. Improved regression model to predict an impact of SOD1 mutations on ALS patients survival time based on analysis of hydrogen bond stability. J Mol Graph Model 2018; 86:247-255. [PMID: 30414557 DOI: 10.1016/j.jmgm.2018.10.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/16/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterised by the inevitable degeneration of central and peripheral motor neurons. Aggregation of mutant SOD1 is one of the molecular mechanisms underlying the onset of the disease. There are a number of regression models designed to predict the survival of patients based on an analysis of experimental data on thermostability, heterodimerisation energy, and changes in the hydrophobicity of SOD1 mutants. Previously, we proposed regression models linking the change in the stability of hydrogen bonds in mutant SOD1 calculated using molecular dynamics and elastic networks with patients survival time. In this study, these models were improved in terms of accuracy of survival time prediction by taking into account the variance of survival time values relative to the mean, the number of patients carrying each specific mutation, and the use of random forest regression as a regression method. The accuracy of the previous models was roughly 5.2 years while the accuracy of the new ones are up to 4 years. The model is also superior to those published by other authors. It was found that the hydrogen bonds important for prediction of survival time are formed by residues at positions located in the regions of the protein responsible for aggregation as well as in structural and functionally important sites.
Collapse
Affiliation(s)
- Nikolay A Alemasov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia.
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia
| | - Bhupesh Taneja
- CSIR-Institute of Genomics and Integrative Biology, 110025, New Delhi, Mathura Road, India
| | - Vibha Taneja
- Sir Ganga Ram Hospital, 110060, New Delhi, India
| | | | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Prospekt Lavrentyeva 10, Novosibirsk, Russia
| |
Collapse
|
16
|
Bunck DN, Atsavapranee B, Museth AK, VanderVelde D, Heath JR. Modulating the Folding Landscape of Superoxide Dismutase 1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802269] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- David N. Bunck
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - Beatriz Atsavapranee
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - Anna K. Museth
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - David VanderVelde
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| | - James R. Heath
- Division of Chemistry and Chemical Engineering California Institute of Technology 1200 East California Boulevard MC 172-27 USA
| |
Collapse
|
17
|
Bunck DN, Atsavapranee B, Museth AK, VanderVelde D, Heath JR. Modulating the Folding Landscape of Superoxide Dismutase 1 with Targeted Molecular Binders. Angew Chem Int Ed Engl 2018; 57:6212-6215. [PMID: 29645329 DOI: 10.1002/anie.201802269] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Indexed: 01/20/2023]
Abstract
Amyotrophic lateral sclerosis, or Lou Gehrig's disease, is characterized by motor neuron death, with average survival times of two to five years. One cause of this disease is the misfolding of superoxide dismutase 1 (SOD1), a phenomenon influenced by point mutations spanning the protein. Herein, we used an epitope-specific high-throughput screen to identify a peptide ligand that stabilizes the SOD1 native conformation and accelerates its folding by a factor of 2.5. This strategy may be useful for fundamental studies of protein energy landscapes as well as designing new classes of therapeutics.
Collapse
Affiliation(s)
- David N Bunck
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - Beatriz Atsavapranee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - Anna K Museth
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - David VanderVelde
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, MC, 172-27, USA
| |
Collapse
|
18
|
Tokuda E, Nomura T, Ohara S, Watanabe S, Yamanaka K, Morisaki Y, Misawa H, Furukawa Y. A copper-deficient form of mutant Cu/Zn-superoxide dismutase as an early pathological species in amyotrophic lateral sclerosis. Biochim Biophys Acta Mol Basis Dis 2018; 1864:2119-2130. [PMID: 29551730 DOI: 10.1016/j.bbadis.2018.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 02/27/2018] [Accepted: 03/14/2018] [Indexed: 12/13/2022]
Abstract
Dominant mutations in the gene encoding copper and zinc-binding superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis (ALS). Abnormal accumulation of misfolded SOD1 proteins in spinal motoneurons is a major pathological hallmark in SOD1-related ALS. Dissociation of copper and/or zinc ions from SOD1 has been shown to trigger the protein aggregation/oligomerization in vitro, but the pathological contribution of such metal dissociation to the SOD1 misfolding still remains obscure. Here, we tested the relevance of the metal-deficient SOD1 in the misfolding in vivo by developing a novel antibody (anti-apoSOD), which exclusively recognized mutant SOD1 deficient in metal ions at its copper-binding site. Notably, anti-apoSOD-reactive species were detected specifically in the spinal cords of the ALS model mice only at their early pre-symptomatic stages but not at the end stage of the disease. The cerebrospinal fluid as well as the spinal cord homogenate of one SOD1-ALS patient also contained the anti-apoSOD-reactive species. Our results thus suggest that metal-deficiency in mutant SOD1 at its copper-binding site is one of the earliest pathological features in SOD1-ALS.
Collapse
Affiliation(s)
- Eiichi Tokuda
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Takao Nomura
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan.
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Matsumoto 399-0021, Japan.
| | - Seiji Watanabe
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan.
| | - Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan.
| | - Yoshiaki Furukawa
- Laboratory for Mechanistic Chemistry of Biomolecules, Department of Chemistry, Keio University, Yokohama 223-8522, Japan.
| |
Collapse
|
19
|
Alemasov NA, Ivanisenko NV, Ramachandran S, Ivanisenko VA. Molecular mechanisms underlying the impact of mutations in SOD1 on its conformational properties associated with amyotrophic lateral sclerosis as revealed with molecular modelling. BMC STRUCTURAL BIOLOGY 2018; 18:1. [PMID: 29431095 PMCID: PMC5808480 DOI: 10.1186/s12900-018-0080-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background So far, little is known about the molecular mechanisms of amyotrophic lateral sclerosis onset and progression caused by SOD1 mutations. One of the hypotheses is based on SOD1 misfolding resulting from mutations and subsequent deposition of its cytotoxic aggregates. This hypothesis is complicated by the fact that known SOD1 mutations of similar clinical effect could be distributed over the whole protein structure. Results In this work, a measure of hydrogen bond stability in conformational states was studied with elastic network analysis of 35 SOD1 mutants. Twenty-eight hydrogen bonds were detected in nine of 35 mutants with their stability being significantly different from that with the wild-type. These hydrogen bonds were formed by the amino acid residues known from the literature to be located in contact between SOD1 aggregates. Additionally, residues disposed between copper binding sites of both protein subunits were found from the models to form a stiff core, which can be involved in mechanical impulse transduction between these active centres. Conclusions The modelling highlights that both stability of the copper binding site and stability of the dimer can play an important role in ALS progression. Electronic supplementary material The online version of this article (10.1186/s12900-018-0080-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nikolay A Alemasov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.
| | - Nikita V Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia.,Novosibirsk State University, 630090, Novosibirsk, Russia
| | - Srinivasan Ramachandran
- Functional Genomics Unit, Council of Scientific and Industrial Research-Institute of Genomics and Integrative Biology (CSIR-IGIB), South Campus, New Delhi, 110025, India.,Academy of Scientific and Innovative Research, CSIR-IGIB, South Campus, New Delhi, 110025, India
| | - Vladimir A Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 630090, Novosibirsk, Russia
| |
Collapse
|
20
|
Alemasov NA, Ivanisenko NV, Ivanisenko VA. Regression model for predicting pathogenic properties of SOD1 mutants based on the analysis of conformational stability and conservation of hydrogen bonds. J Mol Graph Model 2017; 77:378-385. [DOI: 10.1016/j.jmgm.2017.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/07/2017] [Accepted: 09/15/2017] [Indexed: 10/18/2022]
|
21
|
Probing the free energy landscapes of ALS disease mutants of SOD1 by NMR spectroscopy. Proc Natl Acad Sci U S A 2016; 113:E6939-E6945. [PMID: 27791136 DOI: 10.1073/pnas.1611418113] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that, in some cases, has been linked with mutations to the antioxidant metalloenzyme superoxide dismutase (SOD1). Although the mature form of this enzyme is highly stable and resistant to aggregation, the most immature form, lacking metal and a stabilizing intrasubunit disulfide bond, apoSOD12SH, is dynamic and hypothesized to be a major cause of toxicity in vivo. Previous solution NMR studies of wild-type apoSOD12SH have shown that the ground state interconverts with a series of sparsely populated and transiently formed conformers, some of which have aberrant nonnative structures. Here, we study seven disease mutants of apoSOD12SH and characterize their free energy landscapes as a first step in understanding the initial stages of disease progression and, more generally, to evaluate the plasticity of low-lying protein conformational states. The mutations lead to little change in the structures and dynamics of the ground states of the mutant proteins. By contrast, the numbers of low-lying excited states that are accessible to each of the disease mutants can vary significantly, with additional conformers accessed in some cases. Our study suggests that the diversity of these structures can provide alternate interaction motifs for different mutants, establishing additional pathways for new and often aberrant intra- and intermolecular contacts. Further, it emphasizes the potential importance of conformationally excited states in directing both folding and misfolding processes.
Collapse
|
22
|
An in silico study of the effect of SOD1 electrostatic loop dynamics on amyloid‑like filament formation. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2016; 45:853-859. [PMID: 27496206 DOI: 10.1007/s00249-016-1163-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/14/2016] [Accepted: 07/25/2016] [Indexed: 12/29/2022]
Abstract
Superoxide dismutase [Cu-Zn], or SOD1, is a homo-dimeric protein that functions as an antioxidant by scavenging for superoxides. A wide range of SOD1 variants are linked to inherited, or familial, amyotrophic lateral sclerosis, a progressive and fatal neurodegenerative disease. Aberrant SOD1 oligomerization has been strongly implicated in disease causation, even for sporadic ALS, or SALS, which accounts for ~90 % of ALS cases. Small heat shock proteins (sHSP) have been shown to protect against amyloid fibril formation in vitro, and the sHSP αB-crystallin suppresses in vitro aggregation of SOD1. We are seeking to elucidate the structural features of both SOD1 amyloid formation and αB-crystallin amyloid suppression. Specifically, we have used a flexible docking protocol to refine our model of a SOD1 non-obligate tetramer, postulated to function as a transient desolvating complex. Homology modeling and molecular dynamics (MD) are used to supply the missing structural elements of a previously characterized SOD1 amyloid filament, thereby providing a structural analysis for the observed gain of interaction. This completed filament is then further modified using MD to provide a structural model for protofibril capping of SOD1 filaments by αB-crystallin.
Collapse
|
23
|
Alemasov NA, Ivanisenko NV, Medvedev SP, Zakian SM, Kolchanov NA, Ivanisenko VA. Dynamic properties of SOD1 mutants can predict survival time of patients carrying familial amyotrophic lateral sclerosis. J Biomol Struct Dyn 2016; 35:645-656. [DOI: 10.1080/07391102.2016.1158666] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nikolay A. Alemasov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikita V. Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Laboratory of Molecular Epidemiology and Bioinformatics, Novosibirsk State University, Novosibirsk, Russia
| | - Sergey P. Medvedev
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Suren M. Zakian
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Vladimir A. Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
24
|
Broom HR, Vassall KA, Rumfeldt JAO, Doyle CM, Tong MS, Bonner JM, Meiering EM. Combined Isothermal Titration and Differential Scanning Calorimetry Define Three-State Thermodynamics of fALS-Associated Mutant Apo SOD1 Dimers and an Increased Population of Folded Monomer. Biochemistry 2016; 55:519-33. [PMID: 26710831 DOI: 10.1021/acs.biochem.5b01187] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many proteins are naturally homooligomers, homodimers most frequently. The overall stability of oligomeric proteins may be described in terms of the stability of the constituent monomers and the stability of their association; together, these stabilities determine the populations of different monomer and associated species, which generally have different roles in the function or dysfunction of the protein. Here we show how a new combined calorimetry approach, using isothermal titration calorimetry to define monomer association energetics together with differential scanning calorimetry to measure total energetics of oligomer unfolding, can be used to analyze homodimeric unmetalated (apo) superoxide dismutase (SOD1) and determine the effects on the stability of structurally diverse mutations associated with amyotrophic lateral sclerosis (ALS). Despite being located throughout the protein, all mutations studied weaken the dimer interface, while concomitantly either decreasing or increasing the marginal stability of the monomer. Analysis of the populations of dimer, monomer, and unfolded monomer under physiological conditions of temperature, pH, and protein concentration shows that all mutations promote the formation of folded monomers. These findings may help rationalize the key roles proposed for monomer forms of SOD1 in neurotoxic aggregation in ALS, as well as roles for other forms of SOD1. Thus, the results obtained here provide a valuable approach for the quantitative analysis of homooligomeric protein stabilities, which can be used to elucidate the natural and aberrant roles of different forms of these proteins and to improve methods for predicting protein stabilities.
Collapse
Affiliation(s)
- Helen R Broom
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Kenrick A Vassall
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Jessica A O Rumfeldt
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Colleen M Doyle
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Ming Sze Tong
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Julia M Bonner
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | - Elizabeth M Meiering
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
25
|
Hennig J, Andrésen C, Museth AK, Lundström P, Tibell LAE, Jonsson BH. Local Destabilization of the Metal-Binding Region in Human Copper–Zinc Superoxide Dismutase by Remote Mutations Is a Possible Determinant for Progression of ALS. Biochemistry 2015; 54:323-33. [DOI: 10.1021/bi500606j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Janosch Hennig
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Institute
of Structural Biology, Helmholtz Zentrum München GmbH, DE-85764 Neuherberg, Germany
- Chair
of Biomolecular NMR Spectroscopy, Department of Chemistry, Technische Universität München, DE-85748 Garching, Germany
| | - Cecilia Andrésen
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - A. Katrine Museth
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
- Division
of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Patrik Lundström
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| | - Lena A. E. Tibell
- Department
of Science and Technology, Linköping University, SE-601 74, Norrköping, Sweden
| | - Bengt-Harald Jonsson
- Division
of Molecular Biotechnology, Department of Physics, Chemistry and Biology, Linköping University, SE-581 83, Linköping, Sweden
| |
Collapse
|
26
|
Keerthana SP, Kolandaivel P. Structural investigation on the electrostatic loop of native and mutated SOD1 and their interaction with therapeutic compounds. RSC Adv 2015. [DOI: 10.1039/c5ra00286a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The electrostatic loop of the native and mutated SOD1 protein with single point mutation in the loop is subjected to MD simulation. The structure and electrostatic properties of the native and mutated loops before/after interacting with small compounds are compared.
Collapse
Affiliation(s)
- S. P. Keerthana
- Department of Physics
- Bharathiar University
- Coimbatore
- India-641 046
| | - P. Kolandaivel
- Department of Physics
- Bharathiar University
- Coimbatore
- India-641 046
| |
Collapse
|
27
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 605] [Impact Index Per Article: 60.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
28
|
Keerthana S, Kolandaivel P. Study of mutation and misfolding of Cu-Zn SOD1 protein. J Biomol Struct Dyn 2013; 33:167-83. [DOI: 10.1080/07391102.2013.865104] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
29
|
Lin PY, Simon SM, Koh WK, Folorunso O, Umbaugh CS, Pierce A. Heat shock factor 1 over-expression protects against exposure of hydrophobic residues on mutant SOD1 and early mortality in a mouse model of amyotrophic lateral sclerosis. Mol Neurodegener 2013; 8:43. [PMID: 24256636 PMCID: PMC3907013 DOI: 10.1186/1750-1326-8-43] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 11/11/2013] [Indexed: 12/13/2022] Open
Abstract
Background Mutations in the Cu/Zn superoxide dismutase gene (SOD1) are responsible for 20% of familial forms of amyotrophic lateral sclerosis (ALS), and mutant SOD1 has been shown to have increased surface hydrophobicity in vitro. Mutant SOD1 may adopt a complex array of conformations with varying toxicity in vivo. We have used a novel florescence-based proteomic assay using 4,4’-bis-1-anilinonaphthalene-8-sulfonate (bisANS) to assess the surface hydrophobicity, and thereby distinguish between different conformations, of SOD1and other proteins in situ. Results Covalent bisANS labeling of spinal cord extracts revealed that alterations in surface hydrophobicity of H46R/H48Q mutations in SOD1 provoke formation of high molecular weight SOD1 species with lowered solubility, likely due to increased exposure of hydrophobic surfaces. BisANS was docked on the H46R/H48Q SOD1 structure at the disordered copper binding and electrostatic loops of mutant SOD1, but not non-mutant WT SOD1. 16 non-SOD1 proteins were also identified that exhibited altered surface hydrophobicity in the H46R/H48Q mutant mouse model of ALS, including proteins involved in energy metabolism, cytoskeleton, signaling, and protein quality control. Heat shock proteins (HSPs) were also enriched in the detergent-insoluble fractions with SOD1. Given that chaperones recognize proteins with exposed hydrophobic surfaces as substrates and the importance of protein homeostasis in ALS, we crossed SOD1 H46R/H48Q mutant mice with mice over-expressing the heat shock factor 1 (HSF1) transcription factor. Here we showed that HSF1 over-expression in H46R/H48Q ALS mice enhanced proteostasis as evidenced by increased expression of HSPs in motor neurons and astrocytes and increased solubility of mutant SOD1. HSF1 over-expression significantly reduced body weight loss, delayed ALS disease onset, decreases cases of early disease, and increased survival for the 25th percentile in an H46R/H48Q SOD1 background. HSF1 overexpression did not affect macroautophagy in the ALS background, but was associated with maintenance of carboxyl terminus of Hsp70 interacting protein (CHIP) expression which declined in H46R/H48Q mice. Conclusion Our results uncover the potential importance of changes in protein surface hydrophobicity of SOD1 and other non-SOD1 proteins in ALS, and how strategies that activate HSF1 are valid therapies for ALS and other age-associated proteinopathies.
Collapse
Affiliation(s)
- Pei-Yi Lin
- Department of Biochemistry & Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | | | | | | | |
Collapse
|
30
|
Mulligan VK, Chakrabartty A. Protein misfolding in the late-onset neurodegenerative diseases: Common themes and the unique case of amyotrophic lateral sclerosis. Proteins 2013; 81:1285-303. [DOI: 10.1002/prot.24285] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/27/2013] [Accepted: 02/28/2013] [Indexed: 12/12/2022]
Affiliation(s)
| | - Avijit Chakrabartty
- Department of Biochemistry; Toronto Ontario M5G 1L7 Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario M5G 1L7 Canada
- Campbell Family Institute for Cancer Research, Ontario Cancer Institute/University Health Network; Toronto Ontario M5G 1L7 Canada
| |
Collapse
|
31
|
Structural switching of Cu,Zn-superoxide dismutases at loop VI: insights from the crystal structure of 2-mercaptoethanol-modified enzyme. Biosci Rep 2013; 32:539-48. [PMID: 22804629 PMCID: PMC3497728 DOI: 10.1042/bsr20120029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cu,Zn SOD1 (superoxide dismutase 1) is implicated in FALS (familial amyotrophic lateral sclerosis) through the accumulation of misfolded proteins that are toxic to neuronal cells. Loop VI (residues 102-115) of the protein is at the dimer interface and could play a critical role in stability. The free cysteine residue, Cys111 in the loop, is readily oxidized and alkylated. We have found that modification of this Cys111 with 2-ME (2-mercaptoethanol; 2-ME-SOD1) stabilizes the protein and the mechanism may provide insights into destabilization and the formation of aggregated proteins. Here, we determined the crystal structure of 2-ME-SOD1 and find that the 2-ME moieties in both subunits interact asymmetrically at the dimer interface and that there is an asymmetric configuration of segment Gly108 to Cys111 in loop VI. One loop VI of the dimer forms a 310-helix (Gly108 to His110) within a unique β-bridge stabilized by a hydrogen bond between Ser105-NH and His110-CO, while the other forms a β-turn without the H-bond. The H-bond (H-type) and H-bond free (F-type) configurations are also seen in some wild-type and mutant human SOD1s in the Protein Data Bank suggesting that they are interconvertible and an intrinsic property of SOD1s. The two structures serve as a basis for classification of these proteins and hopefully a guide to their stability and role in pathophysiology.
Collapse
|
32
|
Mera-Adasme R, Mendizábal F, Gonzalez M, Miranda-Rojas S, Olea-Azar C, Sundholm D. Computational studies of the metal-binding site of the wild-type and the H46R mutant of the copper, zinc superoxide dismutase. Inorg Chem 2012; 51:5561-8. [PMID: 22545761 DOI: 10.1021/ic202416d] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Impairment of the Zn(II)-binding site of the copper, zinc superoxide dismutase (CuZnSOD) protein is involved in a number of hypotheses and explanations for the still unknown toxic gain of function mutant varieties of CuZnSOD that are associated with familial forms of amyotrophic lateral sclerosis (ALS). In this work, computational chemistry methods have been used for studying models of the metal-binding site of the ALS-linked H46R mutant of CuZnSOD and of the wild-type variety of the enzyme. By comparing the energy and electronic structure of these models, a plausible explanation for the effect of the H46R mutation on the zinc site is obtained. The computational study clarifies the role of the D124 and D125 residues for keeping the structural integrity of the Zn(II)-binding site, which was known to exist but its mechanism has not been explained. Earlier results suggest that the explanation for the impairment of the Zn(II)-site proposed in this work may be useful for understanding the mechanism of action of the ALS-linked mutations in CuZnSOD in general.
Collapse
Affiliation(s)
- Raúl Mera-Adasme
- Department of Chemistry, Faculty of Sciences, Universidad de Chile, Santiago, Chile.
| | | | | | | | | | | |
Collapse
|
33
|
Karch CM, Borchelt DR. Aggregation modulating elements in mutant human superoxide dismutase 1. Arch Biochem Biophys 2010; 503:175-82. [PMID: 20682279 PMCID: PMC2997613 DOI: 10.1016/j.abb.2010.07.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 07/26/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022]
Abstract
Mutations in superoxide dismutase 1 (SOD1) cause some forms of familial amyotrophic lateral sclerosis (fALS). Affected tissues of patients and transgenic mouse models of the disease accumulate misfolded and aggregated forms of the mutant protein. In the present study we have identified specific sequences in human SOD1 that modulate the aggregation of fALS mutant proteins. From our study of a panel of mutant proteins, we identify two sequence elements in human SOD1 (residues 42-50 and 109-123) that are critical in modulating the aggregation of the protein. These sequences are components of the 4th and 7th β-strands of the protein, and in the native structure are normally juxtaposed as elements of the core β-barrel. Our data suggest that some type of intermolecular interaction between these elements may occur in promoting mutant SOD1 aggregation.
Collapse
Affiliation(s)
- Celeste M Karch
- Department of Neuroscience, University of Florida, McKnight Brain Institute, Gainesville, 32610, USA.
| | | |
Collapse
|
34
|
Seetharaman SV, Winkler DD, Taylor AB, Cao X, Whitson LJ, Doucette PA, Valentine JS, Schirf V, Demeler B, Carroll MC, Culotta VC, Hart PJ. Disrupted zinc-binding sites in structures of pathogenic SOD1 variants D124V and H80R. Biochemistry 2010; 49:5714-25. [PMID: 20515040 PMCID: PMC3037816 DOI: 10.1021/bi100314n] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Here, we present structures of the pathogenic SOD1 variants D124V and H80R, both of which demonstrate compromised zinc-binding sites. The disruption of the zinc-binding sites in H80R SOD1 leads to conformational changes in loop elements, permitting non-native SOD1-SOD1 interactions that mediate the assembly of these proteins into higher-order filamentous arrays. Analytical ultracentrifugation sedimentation velocity experiments indicate that these SOD1 variants are more prone to monomerization than the wild-type enzyme. Although D124V and H80R SOD1 proteins appear to have fully functional copper-binding sites, inductively coupled plasma mass spectrometery (ICP-MS) and anomalous scattering X-ray diffraction analyses reveal that zinc (not copper) occupies the copper-binding sites in these variants. The absence of copper in these proteins, together with the results of covalent thiol modification experiments in yeast strains with and without the gene encoding the copper chaperone for SOD1 (CCS), suggests that CCS may not fully act on newly translated forms of these polypeptides. Overall, these findings lend support to the hypothesis that immature mutant SOD1 species contribute to toxicity in SOD1-linked ALS.
Collapse
Affiliation(s)
- Sai V. Seetharaman
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Duane D. Winkler
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Alexander B. Taylor
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Xiaohang Cao
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Lisa J. Whitson
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Peter A. Doucette
- Department of Chemistry and Biochemistry, The University of California, Los Angeles, CA 90095
| | - Joan S. Valentine
- Department of Chemistry and Biochemistry, The University of California, Los Angeles, CA 90095
| | - Virgil Schirf
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Borries Demeler
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229
| | - Mark C. Carroll
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205
| | - P. John Hart
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, TX 78229,X-ray Crystallography Core Laboratory, The University of Texas Health Science Center, San Antonio, TX 78229,Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, San Antonio TX, 78229 U.S.A.,Corresponding Author: Tel: 210-567-0751 Fax: 210-567-6595
| |
Collapse
|
35
|
Nowak RJ, Cuny GD, Choi S, Lansbury PT, Ray SS. Improving binding specificity of pharmacological chaperones that target mutant superoxide dismutase-1 linked to familial amyotrophic lateral sclerosis using computational methods. J Med Chem 2010; 53:2709-18. [PMID: 20232802 DOI: 10.1021/jm901062p] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We recently described a set of drug-like molecules obtained from an in silico screen that stabilize mutant superoxide dismutase-1 (SOD-1) linked to familial amyotrophic lateral sclerosis (ALS) against unfolding and aggregation but exhibited poor binding specificity toward SOD-1 in presence of blood plasma. A reasonable but not a conclusive model for the binding of these molecules was proposed on the basis of restricted docking calculations and site-directed mutagenesis of key residues at the dimer interface. A set of hydrogen bonding constraints obtained from these experiments were used to guide docking calculations with compound library around the dimer interface. A series of chemically unrelated hits were predicted, which were experimentally tested for their ability to block aggregation. At least six of the new molecules exhibited high specificity of binding toward SOD-1 in the presence of blood plasma. These molecules represent a new class of molecules for further development into clinical candidates.
Collapse
Affiliation(s)
- Richard J Nowak
- Harvard NeuroDiscovery Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | |
Collapse
|
36
|
Antonyuk S, Strange RW, Hasnain SS. Structural discovery of small molecule binding sites in Cu-Zn human superoxide dismutase familial amyotrophic lateral sclerosis mutants provides insights for lead optimization. J Med Chem 2010; 53:1402-6. [PMID: 20067275 DOI: 10.1021/jm9017948] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dominant inheritance of point mutations in CuZn superoxide dismutase (SOD1) is the best characterized subset of familial amyotrophic lateral sclerosis (FALS) and accounts for some 20% of the known familial cases. We report the discovery and visualization via cocrystallography of two ligand-binding pockets in human SOD1 and its pathogenic mutants that have opened up the real possibility of undertaking lead compound discovery using a fragment-based approach for therapeutic purposes for SOD1 associated motor neuron disease.
Collapse
Affiliation(s)
- Svetlana Antonyuk
- Molecular Biophysics Group, School of Biological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | |
Collapse
|
37
|
Zhang NN, He YX, Li WF, Teng YB, Yu J, Chen Y, Zhou CZ. Crystal structures of holo and Cu-deficient Cu/Zn-SOD from the silkworm Bombyx mori
and the implications in amyotrophic lateral sclerosis. Proteins 2010; 78:1999-2004. [DOI: 10.1002/prot.22709] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Perry J, Shin D, Getzoff E, Tainer J. The structural biochemistry of the superoxide dismutases. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:245-62. [PMID: 19914407 PMCID: PMC3098211 DOI: 10.1016/j.bbapap.2009.11.004] [Citation(s) in RCA: 336] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2009] [Revised: 11/04/2009] [Accepted: 11/05/2009] [Indexed: 01/11/2023]
Abstract
The discovery of superoxide dismutases (SODs), which convert superoxide radicals to molecular oxygen and hydrogen peroxide, has been termed the most important discovery of modern biology never to win a Nobel Prize. Here, we review the reasons this discovery has been underappreciated, as well as discuss the robust results supporting its premier biological importance and utility for current research. We highlight our understanding of SOD function gained through structural biology analyses, which reveal important hydrogen-bonding schemes and metal-binding motifs. These structural features create remarkable enzymes that promote catalysis at faster than diffusion-limited rates by using electrostatic guidance. These architectures additionally alter the redox potential of the active site metal center to a range suitable for the superoxide disproportionation reaction and protect against inhibition of catalysis by molecules such as phosphate. SOD structures may also control their enzymatic activity through product inhibition; manipulation of these product inhibition levels has the potential to generate therapeutic forms of SOD. Markedly, structural destabilization of the SOD architecture can lead to disease, as mutations in Cu,ZnSOD may result in familial amyotrophic lateral sclerosis, a relatively common, rapidly progressing and fatal neurodegenerative disorder. We describe our current understanding of how these Cu,ZnSOD mutations may lead to aggregation/fibril formation, as a detailed understanding of these mechanisms provides new avenues for the development of therapeutics against this so far untreatable neurodegenerative pathology.
Collapse
Affiliation(s)
- J.J.P. Perry
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The School of Biotechnology, Amrita University, Kollam, Kerala 690525, India
| | - D.S. Shin
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - E.D. Getzoff
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - J.A. Tainer
- Skaggs Institute for Chemical Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Life Sciences Division, Department of Molecular Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
39
|
Shaw BF, Moustakas DT, Whitelegge JP, Faull KF. Taking Charge of Proteins. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2010; 79:127-64. [DOI: 10.1016/s1876-1623(10)79004-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Yong C, Glab J, Strange R, Smith W, Hasnain S, Grossmann J. Assessment of long-term molecular dynamics calculations with experimental information on protein shape from X-ray scattering – SOD1 as a case study. Chem Phys Lett 2009. [DOI: 10.1016/j.cplett.2009.09.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Molnar KS, Karabacak NM, Johnson JL, Wang Q, Tiwari A, Hayward LJ, Coales SJ, Hamuro Y, Agar JN. A common property of amyotrophic lateral sclerosis-associated variants: destabilization of the copper/zinc superoxide dismutase electrostatic loop. J Biol Chem 2009; 284:30965-73. [PMID: 19635794 DOI: 10.1074/jbc.m109.023945] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
At least 119 mutations in the gene encoding copper/zinc superoxide dismutase (SOD1) cause amyotrophic lateral sclerosis by an unidentified toxic gain of function. We compared the dynamic properties of 13 as-isolated, partially metallated, SOD1 variant enzymes using hydrogen-deuterium exchange. We identified a shared property of these familial amyotrophic lateral sclerosis-related SOD1 variants, namely structural and dynamic change affecting the electrostatic loop (loop VII) of SOD1. Furthermore, SOD1 variants that have severely compromised metal binding affinities demonstrated additional structural and dynamic changes to the zinc-binding loop (loop IV) of SOD1. Although the biological consequences of increased loop VII mobility are not fully understood, this common property is consistent with the hypotheses that SOD1 mutations exert toxicity via aggregation or aberrant association with other cellular constituents.
Collapse
Affiliation(s)
- Kathleen S Molnar
- Department of Chemistry, Volen Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ. Immature copper-zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med (Maywood) 2009; 234:1140-54. [PMID: 19596823 DOI: 10.3181/0903-mr-104] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in human copper-zinc superoxide dismutase (SOD1) cause an inherited form of amyotrophic lateral sclerosis (ALS, Lou Gehrig's disease, motor neuron disease). Insoluble forms of mutant SOD1 accumulate in neural tissues of human ALS patients and in spinal cords of transgenic mice expressing these polypeptides, suggesting that SOD1-linked ALS is a protein misfolding disorder. Understanding the molecular basis for how the pathogenic mutations give rise to SOD1 folding intermediates, which may themselves be toxic, is therefore of keen interest. A critical step on the SOD1 folding pathway occurs when the copper chaperone for SOD1 (CCS) modifies the nascent SOD1 polypeptide by inserting the catalytic copper cofactor and oxidizing its intrasubunit disulfide bond. Recent studies reveal that pathogenic SOD1 proteins coming from cultured cells and from the spinal cords of transgenic mice tend to be metal-deficient and/or lacking the disulfide bond, raising the possibility that the disease-causing mutations may enhance levels of SOD1-folding intermediates by preventing or hindering CCS-mediated SOD1 maturation. This mini-review explores this hypothesis by highlighting the structural and biophysical properties of the pathogenic SOD1 mutants in the context of what is currently known about CCS structure and action. Other hypotheses as to the nature of toxicity inherent in pathogenic SOD1 proteins are not covered.
Collapse
Affiliation(s)
- Sai V Seetharaman
- Department of Biochemistry and the X-ray Crystallography Core Laboratory, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
43
|
Chattopadhyay M, Valentine JS. Aggregation of copper-zinc superoxide dismutase in familial and sporadic ALS. Antioxid Redox Signal 2009; 11:1603-14. [PMID: 19271992 PMCID: PMC2842589 DOI: 10.1089/ars.2009.2536] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 03/07/2009] [Indexed: 01/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease characterized by the selective death of motor neurons. While the most common form of ALS is sporadic and has no known cause, a small subset of cases is familial because of underlying genetic mutations. The best-studies example of familial ALS is that caused by mutations in the protein copper-zinc superoxide dismutase. The formation of SOD1-rich inclusions in the spinal cord is an early and prominent feature of SOD1-linked familial ALS in human patients and animal models of this disease. These inclusions have been shown to consist of SOD1-rich fibrils, suggesting that the conversion of soluble SOD1 into amyloid fibrils may play an important role in the etiology of familial ALS. SOD1 is also present in inclusions found in spinal cords of sporadic ALS patients, allowing speculations to arise regarding a possible involvement of SOD1 in the sporadic form of this disease. We here review the recent research on the significance, causes, and mechanisms of SOD1 fibril formation from a biophysical perspective.
Collapse
Affiliation(s)
- Madhuri Chattopadhyay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California, USA
| | | |
Collapse
|
44
|
Winkler DD, Schuermann JP, Cao X, Holloway SP, Borchelt DR, Carroll MC, Proescher JB, Culotta VC, Hart PJ. Structural and biophysical properties of the pathogenic SOD1 variant H46R/H48Q. Biochemistry 2009; 48:3436-47. [PMID: 19227972 PMCID: PMC2757159 DOI: 10.1021/bi8021735] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over 100 mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause an inherited form of the fatal neurodegenerative disease amyotrophic lateral sclerosis (ALS). Two pathogenic SOD1 mutations, His46Arg (H46R) and His48Gln (H48Q), affect residues that act as copper ligands in the wild type enzyme. Transgenic mice expressing a human SOD1 variant containing both mutations develop paralytic disease akin to ALS. Here we show that H46R/H48Q SOD1 possesses multiple characteristics that distinguish it from the wild type. These properties include the following: (1) an ablated copper-binding site, (2) a substantially weakened affinity for zinc, (3) a binding site for a calcium ion, (4) the ability to form stable heterocomplexes with the copper chaperone for SOD1 (CCS), and (5) compromised CCS-mediated oxidation of the intrasubunit disulfide bond in vivo. The results presented here, together with data on pathogenic SOD1 proteins coming from cell culture and transgenic mice, suggest that incomplete posttranslational modification of nascent SOD1 polypeptides via CCS may be a characteristic shared by familial ALS SOD1 mutants, leading to a population of destabilized, off-pathway folding intermediates that are toxic to motor neurons.
Collapse
Affiliation(s)
- Duane D. Winkler
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900,X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Jonathan P. Schuermann
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900,X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Xiaohang Cao
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900,X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - Stephen P. Holloway
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900,X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900
| | - David R. Borchelt
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Mark C. Carroll
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21218
| | - Jody B. Proescher
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21218
| | - Valeria C. Culotta
- Department of Environmental Health Sciences, Bloomberg School of Public Health, The Johns Hopkins University, Baltimore, MD 21218
| | - P. John Hart
- Department of Biochemistry, the University of Texas Health Science Center, San Antonio, TX 78229-3900,X-ray Crystallography Core Laboratory, the University of Texas Health Science Center, San Antonio, TX 78229-3900,Geriatric Research, Education, and Clinical Center, Department of Veterans Affairs, South Texas Veterans Health Care System, Audie Murphy Division, San Antonio, TX 78229 U.S.A,Corresponding Author: Tel: 210-567-0751 Fax: 210-567-6595
| |
Collapse
|
45
|
Abstract
The conversion of proteins from their soluble states into well-organized fibrillar aggregates is associated with a wide range of pathological conditions, including neurodegenerative diseases and systemic amyloidoses. In this review, we discuss the mechanism of aggregation of globular proteins under conditions in which they are initially folded. Although a conformational change of the native state is generally necessary to initiate aggregation, we show that a transition across the major energy barrier for unfolding is not essential and that aggregation may well be initiated from locally unfolded states that become accessible, for example, via thermal fluctuations occurring under physiological conditions. We review recent evidence on this topic and discuss its significance for understanding the onset and potential inhibition of protein aggregation in the context of diseases.
Collapse
Affiliation(s)
- Fabrizio Chiti
- Dipartimento di Scienze Biochimiche, Università degli Studi di Firenze, Viale Morgagni 50, I-50134 Firenze, Italy.
| | | |
Collapse
|
46
|
Rumfeldt JA, Lepock JR, Meiering EM. Unfolding and Folding Kinetics of Amyotrophic Lateral Sclerosis-Associated Mutant Cu,Zn Superoxide Dismutases. J Mol Biol 2009; 385:278-98. [DOI: 10.1016/j.jmb.2008.10.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 09/26/2008] [Accepted: 10/01/2008] [Indexed: 02/06/2023]
|
47
|
Gribkoff VK, Bozik ME. KNS-760704 [(6R)-4,5,6,7-tetrahydro-N6-propyl-2, 6-benzothiazole-diamine dihydrochloride monohydrate] for the treatment of amyotrophic lateral sclerosis. CNS Neurosci Ther 2008; 14:215-26. [PMID: 18801114 DOI: 10.1111/j.1755-5949.2008.00048.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Developing effective treatments for chronic neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS) has proven extremely difficult. ALS is universally fatal, characterized by progressive weakness due to the degeneration of upper and lower motor neurons, and leads eventually to respiratory failure which is the usual cause of death. Only a single treatment has been approved, the modestly effective nonspecific neuroprotectant Rilutek (riluzole; 2-amino-6-(trifluoromethoxy)benzothiazole). KNS-760704 [(6R)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine dihydrochloride, RPPX], a synthetic amino-benzothiazole with demonstrated activity in maintaining mitochondrial function, is being developed as a treatment for ALS. It has proven to be effective in multiple in vitro and in vivo assays of neuroprotection, including the G93A-SOD1 mutant mouse model; however, its specific mechanism of action remains unknown. The potential of KNS-760604 as a treatment for ALS was first suggested by studies showing that its optical enantiomer, Mirapex[(6S)-4,5,6,7-tetrahydro-N6-propyl-2,6-benzothiazole-diamine; pramipexole dihydrochloride; PPX], a high-affinity agonist at dopamine D2, D3, and D4 receptors, exhibits important neuroprotective properties independent of its dopamine receptor agonism. In cell-based assays, both RPPX and PPX reduce the production of reactive oxygen species (ROS), attenuate the activation of apoptotic pathways, and increase cell survival in response to a variety of neurotoxins. However, PPX has limited utility as a clinical neuroprotective agent because the drug concentrations required for neuroprotection would likely produce unacceptable dopaminergic side effects. RPPX, on the other hand, while possessing the same neuroprotective potential as PPX, is a much lower-affinity dopamine receptor agonist and may therefore be more useful in the treatment of ALS. This review will examine the data supporting the hypothesis that the RPPX may have therapeutic potential for the treatment of neurodegenerative disorders including ALS. In addition, we will briefly review recent preclinical data in support of RPPX, and discuss the current status of its clinical development.
Collapse
|
48
|
Cao X, Antonyuk SV, Seetharaman SV, Whitson LJ, Taylor AB, Holloway SP, Strange RW, Doucette PA, Valentine JS, Tiwari A, Hayward LJ, Padua S, Cohlberg JA, Hasnain SS, Hart PJ. Structures of the G85R variant of SOD1 in familial amyotrophic lateral sclerosis. J Biol Chem 2008; 283:16169-77. [PMID: 18378676 PMCID: PMC2414278 DOI: 10.1074/jbc.m801522200] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 12/11/2022] Open
Abstract
Mutations in the gene encoding human copper-zinc superoxide dismutase (SOD1) cause a dominant form of the progressive neurodegenerative disease amyotrophic lateral sclerosis. Transgenic mice expressing the human G85R SOD1 variant develop paralytic symptoms concomitant with the appearance of SOD1-enriched proteinaceous inclusions in their neural tissues. The process(es) through which misfolding or aggregation of G85R SOD1 induces motor neuron toxicity is not understood. Here we present structures of the human G85R SOD1 variant determined by single crystal x-ray diffraction. Alterations in structure of the metal-binding loop elements relative to the wild type enzyme suggest a molecular basis for the metal ion deficiency of the G85R SOD1 protein observed in the central nervous system of transgenic mice and in purified recombinant G85R SOD1. These findings support the notion that metal-deficient and/or disulfide-reduced mutant SOD1 species contribute to toxicity in SOD1-linked amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Xiaohang Cao
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Svetlana V. Antonyuk
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Sai V. Seetharaman
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lisa J. Whitson
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Alexander B. Taylor
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Stephen P. Holloway
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Richard W. Strange
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Peter A. Doucette
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Joan Selverstone Valentine
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Ashutosh Tiwari
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Lawrence J. Hayward
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Shelby Padua
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - Jeffrey A. Cohlberg
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - S. Samar Hasnain
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| | - P. John Hart
- Department of Biochemistry and
the X-ray Crystallography Core Laboratory and the
Geriatric Research,
Education, and Clinical Center, Department of Veterans Affairs, South Texas
Veterans Health Care System, The University of Texas Health Science Center,
San Antonio, Texas 78229, Molecular
Biophysics Group, Science and Technology Facilities Council, Daresbury
Laboratory, Warrington, Cheshire WA44AD, United Kingdom,
Department of Chemistry and
Biochemistry, University of California, Los Angeles, California 90095,
Department of Neurology, University of
Massachusetts Medical School, Worcester, Massachusetts 01655, and
Department of Chemistry and Biochemistry,
California State University, Long Beach, California 90840
| |
Collapse
|
49
|
Dong J, Canfield JM, Mehta AK, Shokes JE, Tian B, Childers WS, Simmons JA, Mao Z, Scott RA, Warncke K, Lynn DG. Engineering metal ion coordination to regulate amyloid fibril assembly and toxicity. Proc Natl Acad Sci U S A 2007; 104:13313-8. [PMID: 17686982 PMCID: PMC1948904 DOI: 10.1073/pnas.0702669104] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein and peptide assembly into amyloid has been implicated in functions that range from beneficial epigenetic controls to pathological etiologies. However, the exact structures of the assemblies that regulate biological activity remain poorly defined. We have previously used Zn(2+) to modulate the assembly kinetics and morphology of congeners of the amyloid beta peptide (Abeta) associated with Alzheimer's disease. We now reveal a correlation among Abeta-Cu(2+) coordination, peptide self-assembly, and neuronal viability. By using the central segment of Abeta, HHQKLVFFA or Abeta(13-21), which contains residues H13 and H14 implicated in Abeta-metal ion binding, we show that Cu(2+) forms complexes with Abeta(13-21) and its K16A mutant and that the complexes, which do not self-assemble into fibrils, have structures similar to those found for the human prion protein, PrP. N-terminal acetylation and H14A substitution, Ac-Abeta(13-21)H14A, alters metal coordination, allowing Cu(2+) to accelerate assembly into neurotoxic fibrils. These results establish that the N-terminal region of Abeta can access different metal-ion-coordination environments and that different complexes can lead to profound changes in Abeta self-assembly kinetics, morphology, and toxicity. Related metal-ion coordination may be critical to the etiology of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jijun Dong
- *Departments of Chemistry and Biology, Center for the Analysis of Supramolecular Self-Assemblies, and
| | | | - Anil K. Mehta
- *Departments of Chemistry and Biology, Center for the Analysis of Supramolecular Self-Assemblies, and
| | - Jacob E. Shokes
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602; and
| | - Bo Tian
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322
| | - W. Seth Childers
- *Departments of Chemistry and Biology, Center for the Analysis of Supramolecular Self-Assemblies, and
| | - James A. Simmons
- *Departments of Chemistry and Biology, Center for the Analysis of Supramolecular Self-Assemblies, and
| | - Zixu Mao
- Departments of Pharmacology and Neurology, Emory University School of Medicine, Atlanta, GA 30322
| | - Robert A. Scott
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, GA 30602; and
| | - Kurt Warncke
- *Departments of Chemistry and Biology, Center for the Analysis of Supramolecular Self-Assemblies, and
- Department of Physics, Emory University, Atlanta, GA 30322
| | - David G. Lynn
- *Departments of Chemistry and Biology, Center for the Analysis of Supramolecular Self-Assemblies, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
50
|
Strange RW, Yong CW, Smith W, Hasnain SS. Molecular dynamics using atomic-resolution structure reveal structural fluctuations that may lead to polymerization of human Cu-Zn superoxide dismutase. Proc Natl Acad Sci U S A 2007; 104:10040-4. [PMID: 17548825 PMCID: PMC1885824 DOI: 10.1073/pnas.0703857104] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mutations of the gene encoding Cu-Zn superoxide dismutase (SOD1) cause 20% of the familial cases of the progressive neurodegenerative disease ALS. A growing body of evidence suggests that in familial ALS (FALS) it is the molecular behavior of the metal-depleted SOD1 dimer that leads to a gain of toxic properties by misfolding, unfolding, and aggregation. Structural studies have so far provided static snapshots on the behavior of the wild-type enzyme and some of the FALS mutants. New approaches are required to map out the structural trajectories of the molecule. Here, using our 1.15-A resolution structure of fully metallated human SOD1 and highly parallelized molecular dynamics code on a high-performance capability computer, we have undertaken molecular dynamics calculations to 4,000 ps to reveal the first stages of misfolding caused by metal deletion. Large spatial and temporal fluctuations of the "electrostatic" and "Zn-binding" loops adjacent to the metal-binding sites are observed in the apo-enzyme relative to the fully metallated dimer. These early misfolding events expose the beta-barrels of the dimer to the external environment, allowing close interactions with adjacent molecules. Protection of the beta-edge of the protein can be partially restored by incorporating a single Zn molecule per dimer. These calculations reveal an essential step in the formation of the experimentally observed self-aggregations of metal-depleted FALS mutant SOD1. This result also has implications for the role of demetallated wild-type SOD1 in sporadic cases of ALS, for which the molecular cause still remains undiscovered.
Collapse
Affiliation(s)
| | - Chin W. Yong
- Department of Computational Science and Engineering, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - William Smith
- Department of Computational Science and Engineering, Science and Technology Facilities Council, Daresbury Laboratory, Warrington, Cheshire WA4 4AD, United Kingdom
| | - S. Samar Hasnain
- Molecular Biophysics Group and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|