1
|
Galindo AV, Raj M. Solvent-Dependent Chemoselectivity Switch to Arg-Lys Imidazole Cross-Links. Org Lett 2024; 26:8356-8360. [PMID: 39303223 PMCID: PMC11459505 DOI: 10.1021/acs.orglett.4c03101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Herein, we report a trifluoroethanol-mediated, chemoselective method for the formation of Arg-Lys imidazole cross-links with methylglyoxal and its application in the selective macrocyclization of peptides between Lys and Arg and the late-stage diversification of Lys-containing peptides with guanidine. Our findings highlight the critical role of solvent choice in controlling chemoselectivity, providing valuable insights into solvent-dependent peptide modification.
Collapse
Affiliation(s)
| | - Monika Raj
- Department of Chemistry, Emory
University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Arya A, Jain A, Kishore N. Thermodynamics of modulation of interaction of α-helix inducer 2, 2, 2-trifluoroethanol with lysozyme in presence of cationic, anionic and non-ionic surfactants. J Biomol Struct Dyn 2024; 42:7289-7303. [PMID: 37493410 DOI: 10.1080/07391102.2023.2239922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023]
Abstract
The interactions of anionic sodium dodecyl sulphate (SDS), cationic cetyltrimethylammonium bromide (CTAB) and nonionic triton X-100 (TX-100) surfactants with lysozyme at pH = 2.4 have been studied individually as well as in combination with 2,2,2-trifluoroetanol (TFE). Urea has also been used in combination with surfactants. By using these combinations, efforts have been made to obtain partially folded conformations of the protein in the presence of surfactants and effect of α-helix inducer 2,2,2-trifluoroethanol on these intermediate states. Thermodynamic analysis of all these interactions has been done employing a combination of UV-visible, fluorescence and circular dichroism spectroscopies. The results have been correlated with each other and characterized qualitatively as well as quantitatively. At lower concentration of surfactant, the thermodynamic parameters indicated the destabilizing effect of SDS, stabilizing effect of CTAB and unappreciable destabilizing impact of TX-100 on lysozyme. The enhancement in destabilization effect or reduction in stabilization effect of surfactants on lysozyme in the presence of TFE and urea has also been indicated.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Anju Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Anu Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai, India
| |
Collapse
|
3
|
Macchiagodena M, Fragai M, Gallo A, Pagliai M, Ravera E. The Role of Lysozyme in the Formation of Bioinspired Silicon Dioxide. Chemistry 2024; 30:e202401249. [PMID: 38722210 DOI: 10.1002/chem.202401249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 06/19/2024]
Abstract
Several organisms are able to polycondensate tetraoxosilicic(IV) acid to form silicon(IV) dioxide using polycationic molecules. According to an earlier mechanistic proposal, these molecules undergo a phase separation and recent experimental evidence appears to confirm this model. At the same time, polycationic proteins like lysozyme can also promote polycondensation of silicon(IV) dioxide, and they do so under conditions that are not compatible with liquid-liquid phase separation. In this manuscript we investigate this conundrum by molecular simulations.
Collapse
Affiliation(s)
- Marina Macchiagodena
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo-proteine (CIRMMP), via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Angelo Gallo
- Department of Chemistry, University of Turin, Via P. Giuria 7, 10125, Torino, Italy
| | - Marco Pagliai
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Enrico Ravera
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), University of Florence, via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Consorzio Interuniversitario Risonanze Magnetiche di Metallo-proteine (CIRMMP), via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
- Florence Data Science, University of Florence, Viale G.B. Morgagni 59, 50134, Florence, Italy
| |
Collapse
|
4
|
Nuruzzaman M, Colella BM, Uzoewulu CP, Meo AE, Gross EJ, Ishizawa S, Sana S, Zhang H, Hoff ME, Medlock BTW, Joyner EC, Sato S, Ison EA, Li Z, Ohata J. Hexafluoroisopropanol as a Bioconjugation Medium of Ultrafast, Tryptophan-Selective Catalysis. J Am Chem Soc 2024; 146:6773-6783. [PMID: 38421958 DOI: 10.1021/jacs.3c13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The past decade has seen a remarkable growth in the number of bioconjugation techniques in chemistry, biology, material science, and biomedical fields. A core design element in bioconjugation technology is a chemical reaction that can form a covalent bond between the protein of interest and the labeling reagent. Achieving chemoselective protein bioconjugation in aqueous media is challenging, especially for generally less reactive amino acid residues, such as tryptophan. We present here the development of tryptophan-selective bioconjugation methods through ultrafast Lewis acid-catalyzed reactions in hexafluoroisopropanol (HFIP). Structure-reactivity relationship studies have revealed a combination of thiophene and ethanol moieties to give a suitable labeling reagent for this bioconjugation process, which enables modification of peptides and proteins in an extremely rapid reaction unencumbered by noticeable side reactions. The capability of the labeling method also facilitated radiofluorination application as well as antibody functionalization. Enhancement of an α-helix by HFIP leads to its compatibility with a certain protein, and this report also demonstrates a further stabilization strategy achieved by the addition of an ionic liquid to the HFIP medium. The nonaqueous bioconjugation approaches allow access to numerous chemical reactions that are unavailable in traditional aqueous processes and will further advance the chemistry of proteins.
Collapse
Affiliation(s)
- Mohammad Nuruzzaman
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Brandon M Colella
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Chiamaka P Uzoewulu
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Alissa E Meo
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Elizabeth J Gross
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Seiya Ishizawa
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Sravani Sana
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - He Zhang
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Meredith E Hoff
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Bryce T W Medlock
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Emily C Joyner
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Elon A Ison
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Zibo Li
- Department of Radiology and Biomedical Research Imaging Center, and UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Raleigh, North Carolina 27599, United States
| | - Jun Ohata
- Department of Chemistry, North Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
5
|
Casoria M, Macchiagodena M, Rovero P, Andreini C, Papini AM, Cardini G, Pagliai M. Upgrading of the general AMBER force field 2 for fluorinated alcohol biosolvents: A validation for water solutions and melittin solvation. J Pept Sci 2024; 30:e3543. [PMID: 37734745 DOI: 10.1002/psc.3543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/16/2023] [Accepted: 08/22/2023] [Indexed: 09/23/2023]
Abstract
The standard GAFF2 force field parameterization has been refined for the fluorinated alcohols 2,2,2-trifluoroethanol (TFE), 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), and 1,1,1,3,3,3-hexafluoropropan-2-one (HFA), which are commonly used to study proteins and peptides in biomimetic media. The structural and dynamic properties of both proteins and peptides are significantly influenced by the biomimetic environment created by the presence of these cosolvents in aqueous solutions. Quantum mechanical calculations on stable conformers were used to parameterize the atomic charges. Different systems, such as pure liquids, aqueous solutions, and systems formed by melittin protein and cosolvent/water solutions, have been used to validate the new models. The calculated macroscopic and structural properties are in agreement with experimental findings, supporting the validity of the newly proposed models.
Collapse
Affiliation(s)
- Michele Casoria
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Marina Macchiagodena
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Paolo Rovero
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Department of NeuroFarBa, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Claudia Andreini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Magnetic Resonance Center (CERM), Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Anna Maria Papini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
- Interdepartmental Research Unit of Peptide and Protein Chemistry and Biology, Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Gianni Cardini
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
| | - Marco Pagliai
- Dipartimento di Chimica "Ugo Schiff", Università degli Studi di Firenze, Sesto Fiorentino, Italy
| |
Collapse
|
6
|
Biswas S, Kaur S, Myers CA, Chen AA, Welch JT. Aggregation in Aqueous Solutions of 2-(Tetrafluoro(trifluoromethyl)-λ 6-sulfanyl-ethan-1-ol (CF 3SF 4-ethanol)): A Comparison with Aqueous Trifluoroethanol and Hexafluoroisopropanol Using Molecular Dynamics Simulations and Dynamic Light Scattering Experiments. ACS OMEGA 2023; 8:30037-30047. [PMID: 37636933 PMCID: PMC10448670 DOI: 10.1021/acsomega.3c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/26/2023] [Indexed: 08/29/2023]
Abstract
2-Tetrafluoro(trifluoromethyl)-λ6-sulfanylethan-1-ol (CF3SF4-ethanol) combines the polar hydrophobicity of tetrafluoro(trifluoromethyl)-λ6-sulfanyl (CF3SF4) group with the polarity of simple alcohols. The properties of aqueous solutions of the well-known fluorinated alcohols 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) were compared with those of aqueous solutions of the novel CF3SF4-ethanol. Those properties were computed using all atom molecular dynamics simulations with OPLS-compatible parameters. DFT ab initio calculations were used to accurately describe the nonsymmetrical, hypervalent sulfur in CF3SF4-ethanol. Although the molecular and conformational characteristics of CF3SF4-ethanol are like those of both TFE and HFIP, the greater hydrophobicity and lower polarity of CF3SF4-ethanol resulted in solution phase aggregation at a much lower concentration. The properties computed for TFE and HFIP in this work were consistent with published computational and experimental studies. CF3SF4-ethanol is predicted to be environmentally benign and hence an excellent green solvent candidate while possessing many of the same properties as TFE or HFIP.
Collapse
Affiliation(s)
- Samadrita Biswas
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Simi Kaur
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Christopher A. Myers
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
- Department
of Physics, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - Alan A. Chen
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
- RNA
Institute, University at Albany, State University
of New York, 1400 Washington Ave, Albany, New York 12222, United States
| | - John T. Welch
- Department
of Chemistry, University at Albany, State
University of New York, 1400 Washington Ave, Albany, New York 12222, United States
| |
Collapse
|
7
|
Gerig JT. Examination of Solvent Interactions with Trp-Cage in 1,1,1,3,3,3-Hexafluoro-2-propanol-water at 298 K through MD Simulations and Intermolecular Nuclear Overhauser Effects. J Phys Chem B 2023; 127:5062-5071. [PMID: 37249321 PMCID: PMC10258800 DOI: 10.1021/acs.jpcb.3c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/08/2023] [Indexed: 05/31/2023]
Abstract
MD simulations of the peptide Trp-cage dissolved in 28% hexafluoroisopropanol (HFIP)-water have been carried out at 298 K with the goal of exploring peptide hydrogen-solvent fluorine nuclear spin cross-relaxation. The work was motivated by the observation that most experimental fluoroalcohol-peptide cross-relaxation terms at 298 K are small, both positive and negative, and not always well predicted from simulations. The cross-relaxation terms for hydrogens of the caged tryptophan residue of Trp-cage are substantially negative, a result consistent with simulations. It was concluded that hexafluoroisopropanol interactions near this part of the peptide are particularly long-lived. While both HFIP and water are present in all regions of the simulation box, the composition of the solvent mixture is not homogeneous throughout the system. HFIP generally accumulates near the peptide surface, while water molecules are preferentially found in regions that are more than 1.5 nm from the surface of the peptide. However, some water remains in higher-than-expected amounts in the solvent layer surrounding 6Trp, 9Asp, Ser13, and Ser14 residues in the helical region of Trp-cage. As observed in simulations of this system at 278 K, HFIP molecules aggregate into clusters that continually form and re-form. Translational diffusion of both HFIP and water appears to be slowed near the surface of the peptide with reduction in diffusion near the 6Trp residue 2- to 3-fold larger than calculated for solvent interactions with other regions of Trp-cage.
Collapse
Affiliation(s)
- J. T. Gerig
- Department of Chemistry &
Biochemistry, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
8
|
Park OS, Bang JK, Cheong C, Jeon YH. Structure of AQEE-30 of VGF Neuropeptide in Membrane-Mimicking Environments. Int J Mol Sci 2022; 23:ijms232213953. [PMID: 36430431 PMCID: PMC9696787 DOI: 10.3390/ijms232213953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
AQEE-30 is one of the VGF peptides, which are derived from the VGF polypeptide precursor, and related to various physiological phenomena including neuroprotective effects in Huntington's disease and amyotrophic lateral sclerosis (ALS). Although various functions of AQEE-30 have been reported so far, the structure of this peptide has not been reported yet. In this study, the structure of human AQEE-30 was investigated in hexafluoroisopropanol (HFIP) and dodecyl phosphocholine (DPC) micelle solutions, using circular dichroism (CD) and nuclear magnetic resonance (NMR) spectroscopy. CD results showed that AQEE-30 had a partial helical structure in aqueous buffer, and the helical structure was stabilized in the HFIP and DPC micelle solutions. The 3D structures determined by NMR spectroscopy showed that AQEE-30 adopted mainly α-helical structure in both the HFIP and DPC micelle solutions. The surface of AQEE-30 showed that it was predominantly negatively charged. The residues from 601 to 611 in both the HFIP and DPC micelle solutions showed amphiphilicity with four negatively charged residues, glutamate. The C-terminal consecutive arginine residues formed a partial positively charged surface. These results suggest an α-helical active structure of AQEE-30 in the cell-membrane environment.
Collapse
Affiliation(s)
- One-Sung Park
- College of Pharmacy, Korea University Sejong Campus, Sejong 30019, Korea
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Jeong-Kyu Bang
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Chaejoon Cheong
- Division of Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
- Department of Bioanalytical Sciences, University of Science and Technology, Cheongju 28119, Korea
- Correspondence: (C.C.); (Y.-H.J.)
| | - Young-Ho Jeon
- College of Pharmacy, Korea University Sejong Campus, Sejong 30019, Korea
- Correspondence: (C.C.); (Y.-H.J.)
| |
Collapse
|
9
|
Motiwala HF, Armaly AM, Cacioppo JG, Coombs TC, Koehn KRK, Norwood VM, Aubé J. HFIP in Organic Synthesis. Chem Rev 2022; 122:12544-12747. [PMID: 35848353 DOI: 10.1021/acs.chemrev.1c00749] [Citation(s) in RCA: 148] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
1,1,1,3,3,3-Hexafluoroisopropanol (HFIP) is a polar, strongly hydrogen bond-donating solvent that has found numerous uses in organic synthesis due to its ability to stabilize ionic species, transfer protons, and engage in a range of other intermolecular interactions. The use of this solvent has exponentially increased in the past decade and has become a solvent of choice in some areas, such as C-H functionalization chemistry. In this review, following a brief history of HFIP in organic synthesis and an overview of its physical properties, literature examples of organic reactions using HFIP as a solvent or an additive are presented, emphasizing the effect of solvent of each reaction.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Ahlam M Armaly
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jackson G Cacioppo
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Thomas C Coombs
- Department of Chemistry, University of North Carolina Wilmington, Wilmington, North Carolina 28403 United States
| | - Kimberly R K Koehn
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Verrill M Norwood
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| | - Jeffrey Aubé
- Divison of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 United States
| |
Collapse
|
10
|
Azizi M, Tasharofi S, Koolivand A, Oloumi A, Rion H, Khaledi MG. Improving identification of low abundance and hydrophobic proteins using fluoroalcohol mediated supramolecular biphasic systems with quaternary ammonium salts. J Chromatogr A 2021; 1655:462483. [PMID: 34492580 DOI: 10.1016/j.chroma.2021.462483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/29/2022]
Abstract
In this study, a newly discovered Supramolecular Biphasic System (S-BPS) was used in bottom-up proteomics of the Saccharomyces cerevisiae strain of yeast. We took advantage of S-BPS in bottom-up proteomics of this strain of yeast as the protein sample, while the results were compared to routinely used solubilizing reagents, such as urea, and sodium dodecyl sulfate (SDS). With the S-BPS, we identified 3043 proteins as compared to 2653 proteins that were identified in the control system. Interestingly, of the additional 390 proteins characterized by the S-BPS, 300 proteins were low abundance (less than 4000 molecules/cell). Remarkably, the identification of proteins at very low abundance (less than 2000 molecule/cell) was improved by 106%. This suggests that the S-BPS is particularly advantageous for detecting low abundance proteins. Gene Ontology (GO) analysis was conducted to find fractionation pattern of proteins in our two-phase system, and in nearly every gene ontology category, the S-BPS provided greater coverage than the control experiment, i.e., coverage for integral membrane proteins and mitochondrial ribosome proteins are improved by 18% and 58%, respectively. The improvements in proteins coverage for low abundance and membrane proteins can be attributed to the strong solubilizing power of the amphiphile-rich phase of this S-BPS and its capability for concomitant extraction, fractionation, and enrichment of the complex proteomics samples. Each phase has selectivity towards specific yeast protein groups, this selectivity is generally based on pI and hydrophobicity of proteins. Therefore, more hydrophobic proteins and acidic proteins exhibit greater affinities for the amphiphile-rich phase due to the hydrophobic effect and electrostatic interactions.
Collapse
Affiliation(s)
- Mohammadmehdi Azizi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Sajad Tasharofi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Amir Koolivand
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Armin Oloumi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Halie Rion
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Morteza G Khaledi
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA.
| |
Collapse
|
11
|
Yoshida K, Yamaguchi T, Bowron DT, Finney JL. The structure of aqueous solutions of hexafluoro-iso-propanol studied by neutron diffraction with hydrogen/deuterium isotope substitution and empirical potential structure refinement modeling. Phys Chem Chem Phys 2021; 23:13561-13573. [PMID: 34105545 DOI: 10.1039/d1cp00950h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Neutron diffraction measurements of H/D isotopic substitution are made at room temperature for seven H/D substituted hexafluoro-iso-propanol (HFIP; 1,1,1,3,3,3-hexafluoro-2-propanol)-water mixtures at 0.1, 0.2, and 0.4 HFIP mole fraction (xHFIP). The eight partial structure factors except for the H(CH)-H(CH) pair obtained are subjected to an empirical potential structure refinement (EPSR) method to derive all site-site pair correlation functions. It is found that with increasing HFIP concentration the ice-like network of water disappears between xHFIP = 0.1 and 0.2, followed by the formation of a chain-like water structure embedded in an intrinsic structure of HFIP evolved at xHFIP = 0.4. The hydroxyl group of HFIP forms hydrogen bonds with the surrounding water molecules at all HFIP mole fractions investigated. There is no evidence that the water structure is well defined around the CF3 groups of HFIP, but water molecules surround tangentially the CF3 groups of HFIP.
Collapse
Affiliation(s)
- K Yoshida
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan, Fukuoka 814-0180, Japan.
| | - T Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan, Fukuoka 814-0180, Japan.
| | - D T Bowron
- ISIS Facility, Rutherford Appleton Laboratory, Didcot, OX11 0QX, UK
| | - J L Finney
- Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
12
|
Hubrich BE, Wehland JD, Groth MC, Schirmacher A, Hubrich R, Steinem C, Diederichsen U. Membrane fusion mediated by peptidic SNARE protein analogues: Evaluation of FRET-based bulk leaflet mixing assays. J Pept Sci 2021; 27:e3327. [PMID: 33825251 DOI: 10.1002/psc.3327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 11/06/2022]
Abstract
Peptide-mediated membrane fusion is frequently studied with in vitro bulk leaflet mixing assays based on Förster resonance energy transfer (FRET). In these, customized liposomes with fusogenic peptides are equipped with lipids which are labeled with fluorophores that form a FRET pair. Since FRET is dependent on distance and membrane fusion comes along with lipid mixing, the assays allow for conclusions on the membrane fusion process. The experimental outcome of these assays, however, greatly depends on the applied parameters. In the present study, the influence of the peptides, the size of liposomes, their lipid composition and the liposome stoichiometry on the fusogenicity of liposomes are evaluated. As fusogenic peptides, soluble N-ethylmaleimide-sensitive-factor attachment receptor (SNARE) protein analogues featuring artificial recognition units attached to the native SNARE transmembrane domains are used. The work shows that it is important to control these parameters in order to be able to properly investigate the fusion process and to prevent undesired effects of aggregation.
Collapse
Affiliation(s)
- Barbara E Hubrich
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Jan-Dirk Wehland
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Mike C Groth
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Anastasiya Schirmacher
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Raphael Hubrich
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Claudia Steinem
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| | - Ulf Diederichsen
- Institute of Organic and Biomolecular Chemistry, Georg-August-University of Göttingen, Göttingen, Germany
| |
Collapse
|
13
|
Gerig JT. Examination of Interactions of Hexafluoro-2-propanol with Trp-Cage in Hexafluoro-2-propanol-Water by MD Simulations and Intermolecular Nuclear Overhauser Effects. J Phys Chem B 2020; 124:9793-9802. [PMID: 33095591 DOI: 10.1021/acs.jpcb.0c06476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
All-atom molecular dynamic simulations of the peptide Trp-cage in 30% hexafluoro-2-propanol- water (V/V) at 278 K have been carried out with the goal of exploring peptide hydrogen-solvent fluorine nuclear spin cross relaxation. Force field parameters for HFIP reported by Fioroni et al. along with the fluorine parameters of the TFE5 model reported by this lab were used. Water was represented by the TIP5P-Ew model. Peptide modeling used the AMBER99SB-ILDN force field. Translational diffusion coefficients of solution components at 278 K were predicted to within 35% of experimental values using these parameter sets. The simulations indicate that the solvent mixture is not homogeneous, with HFIP molecules clustered into aggregates as large as 53 fluoroalcohol molecules. The solvent environment of surface atoms of Trp-cage fluctuates between being HFIP-rich and more water-rich about every 10 ns. In accord with previous studies by other groups, the average concentration of HFIP near the surface of the peptide is significantly enhanced over the concentration of HFIP in the bulk solvent. In the simulations, ∼7% of the initial contacts between HFIP molecules and Trp-cage develop into peptide-fluoroalcohol interactions that persist for times as long as 8 ns. Most of the available experimental nuclear spin cross-relaxation rates (ΣHF) for hydrogens of the Trp-cage in 30% HFIP-water are reproduced from the MD trajectories to within uncertainties of the experimental data and the simulations. However, a few calculated ΣHF values for hydrogens of the Trp-cage do not agree with experiment. These tend to be situations where long-lived peptide-HFIP interactions are predicted. The disagreements between observed and calculated ΣHF in these instances signal defects in the modeling parameters and procedures that are presently unrecognized.
Collapse
Affiliation(s)
- J T Gerig
- Department of Chemistry & Biochemistry University of California, Santa Barbara Santa Barbara, California 93106, United States
| |
Collapse
|
14
|
Park O, Bang JK, Ryu K, Hwang E, Hong KS, Byun Y, Cheong C, Jeon YH. Structure of neuroendocrine regulatory peptide‐2 in membrane‐mimicking environments. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- One‐Sung Park
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Jeong Kyu Bang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kyoung‐Seok Ryu
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Eunha Hwang
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Kwan Soo Hong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Youngjoo Byun
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| | - Chaejoon Cheong
- Division of Bioconvergence Analysis Korea Basic Science Institute Cheongju South Korea
| | - Young Ho Jeon
- College of Pharmacy Korea University Sejong Campus Sejong South Korea
| |
Collapse
|
15
|
Kumar D, Mishra PM, Gadhave K, Giri R. Conformational dynamics of p53 N-terminal TAD2 region under different solvent conditions. Arch Biochem Biophys 2020; 689:108459. [DOI: 10.1016/j.abb.2020.108459] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/28/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023]
|
16
|
Zhao W, Lv Y, Li J, Feng Z, Ni Y, Hadjichristidis N. Fast and selective organocatalytic ring-opening polymerization by fluorinated alcohol without a cocatalyst. Nat Commun 2019; 10:3590. [PMID: 31399569 PMCID: PMC6689068 DOI: 10.1038/s41467-019-11524-y] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/17/2019] [Indexed: 11/12/2022] Open
Abstract
Organocatalysis is an important branch of catalysis for various organic transformations and materials preparation. Polymerizations promoted by organic catalysts can produce polymeric materials without any metallic residues, providing charming materials for high-value and sensitive domains such as biomedical applications, microelectronic devices and food packaging. Herein, we describe a fluorinated alcohol based catalytic system for polypeptide synthesis via catalytic ring-opening polymerization (ROP) of α-amino acid N-carboxyanhydride (NCA), fulfilling cocatalyst free, metal free, high rate and high selectivity. During polymerization, the fluorinated alcohol catalyst forms multiple dynamic hydrogen bonds with the initiator, monomer and propagating polymer chain. These cooperative hydrogen bonding interactions activate the NCA monomers and simultaneously protect the overactive initiator/propagating polymer chain-ends, which offers the whole polymerization with high activity and selectivity. Mechanistic studies indicate a monocomponent-multifunctional catalytic mode of fluorinated alcohol. This finding provides a metal free and fast approach to access well-defined polypeptides. Polymerizations promoted by organic catalysts can produce polymeric materials without any metallic residues contamination. Here the authors show a fluorinated alcohol based catalytic system for polypeptide synthesis from α-amino acid N-carboxyanhydride, fulfilling cocatalyst and metal free conditions with high rate and selectivity.
Collapse
Affiliation(s)
- Wei Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, 710021, Xi'an, People's Republic of China.
| | - Yanfeng Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, 710021, Xi'an, People's Republic of China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, 710021, Xi'an, People's Republic of China
| | - Zihao Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, 710021, Xi'an, People's Republic of China
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Nikos Hadjichristidis
- KAUST Catalysis Center, Polymer Synthesis Laboratory, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| |
Collapse
|
17
|
Roy P, Ghosh B, Chatterjee P, Sengupta N. Cosolvent Impurities in SWCNT Nanochannel Confinement: Length Dependence of Water Dynamics Investigated with Atomistic Simulations. J Chem Inf Model 2019; 59:2026-2034. [PMID: 30908024 DOI: 10.1021/acs.jcim.8b00889] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The advent of nanotechnology has seen a growing interest in the nature of fluid flow and transport under nanoconfinement. The present study leverages fully atomistic molecular dynamics (MD) simulations to study the effect of nanochannel length and intrusion of molecules of the organic solvent, hexafluoro-2-propanol (HFIP), on the dynamical characteristics of water within it. Favorable interactions of HFIP with the nanochannels comprised of single-walled carbon nanotubes traps them over time scales greater than 100 ns, and confinement confers small but distinguishable spatial redistribution between neighboring HFIP pairs. Water molecules within the nanochannels show clear signatures of dynamical slowdown relative to bulk water even for pure systems. The presence of HFIP causes further rotational and translational slowdown in waters when the nanochannel dimension falls below a critical length of 30 Å. The enhanced slowdown in the presence of HFIP is quantified from characteristic relaxation parameters and diffusion coefficients in the absence and presence of HFIP. It is finally seen that the net flow of water between the ends of the nanochannel shows a decreasing dependence with nanochannel length only when the number of HFIP molecules is small. These results lend insights into devising ways of modulating solvent properties within nanochannels with cosolvent impurities.
Collapse
Affiliation(s)
- Priti Roy
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246 , India
| | - Brataraj Ghosh
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246 , India
| | - Prathit Chatterjee
- Advanced Polymer Lab in association with Polymer Research Centre , IISER Kolkata, ADO ADDITIVES MFG PVT. LTD. , 201/A, Nadibhag 2nd Lane , Madhyamgram, Kolkata 700 128 , India
| | - Neelanjana Sengupta
- Department of Biological Sciences , Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246 , India.,Centre for Advanced Functional Materials (CAFM) , Indian Institute of Science Education and Research Kolkata , Mohanpur 741 246 , India
| |
Collapse
|
18
|
Mitropoulos AN, Burpo FJ, Nguyen CK, Nagelli EA, Ryu MY, Wang J, Sims RK, Woronowicz K, Wickiser JK. Noble Metal Composite Porous Silk Fibroin Aerogel Fibers. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E894. [PMID: 30889793 PMCID: PMC6470705 DOI: 10.3390/ma12060894] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/05/2019] [Accepted: 03/11/2019] [Indexed: 12/12/2022]
Abstract
Nobel metal composite aerogel fibers made from flexible and porous biopolymers offer a wide range of applications, such as in catalysis and sensing, by functionalizing the nanostructure. However, producing these composite aerogels in a defined shape is challenging for many protein-based biopolymers, especially ones that are not fibrous proteins. Here, we present the synthesis of silk fibroin composite aerogel fibers up to 2 cm in length and a diameter of ~300 μm decorated with noble metal nanoparticles. Lyophilized silk fibroin dissolved in hexafluoro-2-propanol (HFIP) was cast in silicon tubes and physically crosslinked with ethanol to produce porous silk gels. Composite silk aerogel fibers with noble metals were created by equilibrating the gels in noble metal salt solutions reduced with sodium borohydride, followed by supercritical drying. These porous aerogel fibers provide a platform for incorporating noble metals into silk fibroin materials, while also providing a new method to produce porous silk fibers. Noble metal silk aerogel fibers can be used for biological sensing and energy storage applications.
Collapse
Affiliation(s)
- Alexander N Mitropoulos
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
- Department of Mathematical Sciences, United States Military Academy, West Point, NY 10996, USA.
| | - F John Burpo
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Chi K Nguyen
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Enoch A Nagelli
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Madeline Y Ryu
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - Jenny Wang
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - R Kenneth Sims
- Department of Civil and Mechanical Engineering, United States Military Academy, West Point, NY 10996, USA.
| | - Kamil Woronowicz
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| | - J Kenneth Wickiser
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA.
| |
Collapse
|
19
|
Burra G, Thakur AK. Insights into the molecular mechanism behind solubilization of amyloidogenic polyglutamine‐containing peptides. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Gunasekhar Burra
- Department of Biological Sciences and BioengineeringIndian Institute of Technology Kanpur Kanpur‐208016 India
| | - Ashwani Kumar Thakur
- Department of Biological Sciences and BioengineeringIndian Institute of Technology Kanpur Kanpur‐208016 India
| |
Collapse
|
20
|
Affiliation(s)
- Ferenc Zsila
- Biomolecular Self-Assembly Group; Institute of Materials and Environmental Chemistry; Research Centre for Natural Sciences; Hungarian Academy of Sciences; 1117 Budapest Hungary
| |
Collapse
|
21
|
Yoshioka T, Hata T, Kojima K, Nakazawa Y, Kameda T. Fabrication Scheme for Obtaining Transparent, Flexible, and Water-Insoluble Silk Films from Apparently Dissolved Silk-Gland Fibroin of Bombyx mori Silkworm. ACS Biomater Sci Eng 2017; 3:3207-3214. [DOI: 10.1021/acsbiomaterials.7b00602] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Taiyo Yoshioka
- Silk
Materials Research Unit, National Agriculture and Food Research Organization (NARO), 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Tamako Hata
- Silk
Materials Research Unit, National Agriculture and Food Research Organization (NARO), 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Katsura Kojima
- Silk
Materials Research Unit, National Agriculture and Food Research Organization (NARO), 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yasumoto Nakazawa
- Division
of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tsunenori Kameda
- Silk
Materials Research Unit, National Agriculture and Food Research Organization (NARO), 1-2 Ohwashi, Tsukuba, Ibaraki 305-8634, Japan
| |
Collapse
|
22
|
Shukla E, Agrawal SB, Gaikwad SM. Conformational and functional transitions and in silico analysis of a serine protease from Conidiobolus brefeldianus (MTCC 5185). Int J Biol Macromol 2017; 98:387-397. [PMID: 28153464 DOI: 10.1016/j.ijbiomac.2017.01.124] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/06/2017] [Accepted: 01/27/2017] [Indexed: 11/25/2022]
Abstract
This work describes functional and structural transitions of a novel protease isolated from Conidiobolus brefeldianus MTCC 5185 (Cprot), in detail using biophysical and bioinformatics tools. The commercial importance of Cprot in silk and leather industries made it an interesting candidate for structural investigations. Cprot possesses 8.2% α-helix, 31.1% β-sheet and 23.8% turns. The enzyme was found to be active over a wide pH range and up to 55°C. The protease was also stable in organic solvents up to 50% (v/v) concentration of alcohols and DMSO for >24h and in 2M guanidine hydrochloride for >12h. Cprot was also resistant to trypsin, chymotrypsin, proteinase K and fluorinated alcohols (5-10%). The melting temperatures observed for the native Cprot and for the enzyme treated under various stress conditions correlated well with the corresponding structural and functional transitions obtained. The structural information was supported by the homology model of its closest homologue from C. coronatus; revealing its similarity to PA clan of proteases (Proteases of mixed nucleophile, superfamily A), with His-64, Asp-113 and Ser-208 as putative catalytic triad. Three tryptophan residues in Cprot are surrounded by positively charged residues, as evident from solute quenching studies and homology model.
Collapse
Affiliation(s)
- Ekta Shukla
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sanskruthi B Agrawal
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India
| | - Sushama M Gaikwad
- Academy of Scientific and Innovative Research (AcSIR), Division of Biochemical Sciences, CSIR-National Chemical laboratory, Pune 411008, India.
| |
Collapse
|
23
|
Signorelli S, Santini S, Yamada T, Bizzarri AR, Beattie CW, Cannistraro S. Binding of Amphipathic Cell Penetrating Peptide p28 to Wild Type and Mutated p53 as studied by Raman, Atomic Force and Surface Plasmon Resonance spectroscopies. Biochim Biophys Acta Gen Subj 2017; 1861:910-921. [PMID: 28126403 DOI: 10.1016/j.bbagen.2017.01.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 12/21/2016] [Accepted: 01/20/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Mutations within the DNA binding domain (DBD) of the tumor suppressor p53 are found in >50% of human cancers and may significantly modify p53 secondary structure impairing its function. p28, an amphipathic cell-penetrating peptide, binds to the DBD through hydrophobic interaction and induces a posttranslational increase in wildtype and mutant p53 restoring functionality. We use mutation analyses to explore which elements of secondary structure may be critical to p28 binding. METHODS Molecular modeling, Raman spectroscopy, Atomic Force Spectroscopy (AFS) and Surface Plasmon Resonance (SPR) were used to identify which secondary structure of site-directed and naturally occurring mutant DBDs are potentially altered by discrete changes in hydrophobicity and the molecular interaction with p28. RESULTS We show that specific point mutations that alter hydrophobicity within non-mutable and mutable regions of the p53 DBD alter specific secondary structures. The affinity of p28 was positively correlated with the β-sheet content of a mutant DBD, and reduced by an increase in unstructured or random coil that resulted from a loss in hydrophobicity and redistribution of surface charge. CONCLUSIONS These results help refine our knowledge of how mutations within p53-DBD alter secondary structure and provide insight on how potential structural alterations in p28 or similar molecules improve their ability to restore p53 function. GENERAL SIGNIFICANCE Raman spectroscopy, AFS, SPR and computational modeling are useful approaches to characterize how mutations within the p53DBD potentially affect secondary structure and identify those structural elements prone to influence the binding affinity of agents designed to increase the functionality of p53.
Collapse
Affiliation(s)
- Sara Signorelli
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy; Department of Science, University Roma Tre, Rome, Italy
| | - Simona Santini
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy
| | - Tohru Yamada
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Anna Rita Bizzarri
- Biophysics and Nanoscience Centre, DEB, Università della Tuscia, Viterbo, Italy.
| | - Craig W Beattie
- Department of Surgery, Division of Surgical Oncology, University of Illinois College of Medicine, Chicago, IL, USA
| | | |
Collapse
|
24
|
Ivnitski D, Amit M, Silberbush O, Atsmon-Raz Y, Nanda J, Cohen-Luria R, Miller Y, Ashkenasy G, Ashkenasy N. The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angew Chem Int Ed Engl 2016; 55:9988-92. [DOI: 10.1002/anie.201604833] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Denis Ivnitski
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Moran Amit
- Department of Materials Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Ohad Silberbush
- Department of Materials Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Yoav Atsmon-Raz
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- Department of Biological Science; University of Calgary, Center of Molecular Simulation; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Jayanta Nanda
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Rivka Cohen-Luria
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Yifat Miller
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Gonen Ashkenasy
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| |
Collapse
|
25
|
Ivnitski D, Amit M, Silberbush O, Atsmon-Raz Y, Nanda J, Cohen-Luria R, Miller Y, Ashkenasy G, Ashkenasy N. The Strong Influence of Structure Polymorphism on the Conductivity of Peptide Fibrils. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201604833] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Denis Ivnitski
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Moran Amit
- Department of Materials Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Ohad Silberbush
- Department of Materials Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Yoav Atsmon-Raz
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- Department of Biological Science; University of Calgary, Center of Molecular Simulation; 2500 University Drive NW Calgary Alberta T2N 1N4 Canada
| | - Jayanta Nanda
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Rivka Cohen-Luria
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Yifat Miller
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Gonen Ashkenasy
- Department of Chemistry; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| | - Nurit Ashkenasy
- Department of Materials Engineering; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
- The Ilse Katz Institute for Nanoscale Science and Technology; Ben-Gurion University of the Negev; Beer-Sheva 84105 Israel
| |
Collapse
|
26
|
Yoshioka T, Tashiro K, Ohta N. Molecular Orientation Enhancement of Silk by the Hot-Stretching-Induced Transition from α-Helix-HFIP Complex to β-Sheet. Biomacromolecules 2016; 17:1437-48. [PMID: 26974170 DOI: 10.1021/acs.biomac.6b00043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enhancing the molecular orientation of the regenerated silk fibroin (RF) up to a level comparable to the native silk is highly challenging. Our novel and promising strategy for the poststretching process is (1) creating at first an α-helix-HFIP complex with a hexagonal packing as an intermediate state and then (2) stretching it at a high temperature to induce the helix-to-sheet structural phase transition. Here we show for the first time the significantly high stretching efficiency of the proposed technique compared with the conventional wet-stretching techniques and the successful achievement of higher crystalline orientation and higher Young's modulus compared even with the native silk. The detailed structural analysis based on the time-resolved simultaneous measurement of stress-strain curve, synchrotron X-ray scatterings, and FTIR has revealed the structural transition mechanism from the hexagonally packed α-helix-HFIP complex to the highly oriented β-sheet crystalline state as well as the critical level of crystal orientation needed for the helix-to-sheet transition.
Collapse
Affiliation(s)
- Taiyo Yoshioka
- Department of Future Industry-oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute , Tempaku, Nagoya 468-8511, Japan
| | - Kohji Tashiro
- Department of Future Industry-oriented Basic Science and Materials, Graduate School of Engineering, Toyota Technological Institute , Tempaku, Nagoya 468-8511, Japan
| | - Noboru Ohta
- Japan Synchrotron Radiation Research Institute , 1-1 Koto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198, Japan
| |
Collapse
|
27
|
Porzoor A, Caine JM, Macreadie IG. Pretreatment of chemically-synthesized Aβ42 affects its biological activity in yeast. Prion 2015; 8:404-10. [PMID: 25495906 DOI: 10.4161/19336896.2014.992275] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The tendency of amyloid β (Aβ42) peptide to misfold and aggregate into insoluble amyloid fibrils in Alzheimer's disease (AD) has been well documented. Accumulation of Aβ42 fibrils has been correlated with abnormal apoptosis and unscheduled cell division which can also trigger the death of neuronal cells, while oligomers can also exhibit similar activities. While investigations using chemically-synthesized Aβ42 peptide have become common practice, there appear to be differences in outcomes from different preparations. In order to resolve this inconsistency, we report 2 separate methods of preparing chemically-synthesized Aβ42 and we examined their effects in yeast. Hexafluoroisopropanol pretreatment caused toxicity while, ammonium hydroxide treated Aβ42 induced cell proliferation in both C. glabrata and S. cerevisiae. The hexafluoroisopropanol prepared Aβ42 had greater tendency to form amyloid on yeast cells as determined by thioflavin T staining followed by flow cytometry and microscopy. Both quiescent and non-quiescent cells were analyzed by these methods of peptide preparation. Non-quiescent cells were susceptible to the toxicity of Aβ42 compared with quiescent cells (p < 0.005). These data explain the discrepancy in the previous publications about the effects of chemically-synthesized Aβ42 on yeast cells. The effect of Aβ42 on yeast cells was independent of the size of the peptide aggregates. However, the Aβ42 pretreatment determined whether the molecular conformation of peptide resulted in proliferation or toxicity in yeast based assays.
Collapse
Affiliation(s)
- Afsaneh Porzoor
- a School of Applied Sciences; Biosciences ; RMIT University ; Bundoora , Victoria , Australia
| | | | | |
Collapse
|
28
|
Roccatano D. Structure, dynamics, and function of the monooxygenase P450 BM-3: insights from computer simulations studies. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:273102. [PMID: 26061496 DOI: 10.1088/0953-8984/27/27/273102] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The monooxygenase P450 BM-3 is a NADPH-dependent fatty acid hydroxylase enzyme isolated from soil bacterium Bacillus megaterium. As a pivotal member of cytochrome P450 superfamily, it has been intensely studied for the comprehension of structure-dynamics-function relationships in this class of enzymes. In addition, due to its peculiar properties, it is also a promising enzyme for biochemical and biomedical applications. However, despite the efforts, the full understanding of the enzyme structure and dynamics is not yet achieved. Computational studies, particularly molecular dynamics (MD) simulations, have importantly contributed to this endeavor by providing new insights at an atomic level regarding the correlations between structure, dynamics, and function of the protein. This topical review summarizes computational studies based on MD simulations of the cytochrome P450 BM-3 and gives an outlook on future directions.
Collapse
Affiliation(s)
- Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen, Campus Ring 1, 28759 Bremen, Germany
| |
Collapse
|
29
|
Sarukhanyan E, Milano G, Roccatano D. Cosolvent, ions, and temperature effects on the structural properties of cecropin A-Magainin 2 hybrid peptide in solutions. Biopolymers 2014; 103:1-14. [DOI: 10.1002/bip.22529] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/08/2014] [Accepted: 07/21/2014] [Indexed: 11/08/2022]
Affiliation(s)
- Edita Sarukhanyan
- School of Engineering and Science, Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
- Dipartimento di Chimica e Biologia and NANOMATES; Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno; I-84084 via Ponte don Melillo Fisciano (SA) Italy
| | - Giuseppe Milano
- Dipartimento di Chimica e Biologia and NANOMATES; Research Centre for NANOMAterials and nanoTEchnology at Università di Salerno; I-84084 via Ponte don Melillo Fisciano (SA) Italy
- IMAST Scarl-Technological District in Polymer and Composite Engineering; P.le Fermi 1 80055 Portici (NA) Italy
| | - Danilo Roccatano
- School of Engineering and Science, Jacobs University Bremen; Campus Ring 1 D-28759 Bremen Germany
| |
Collapse
|
30
|
López Deber MP, Hickman DT, Nand D, Baldus M, Pfeifer A, Muhs A. Engineering amyloid-like assemblies from unstructured peptides via site-specific lipid conjugation. PLoS One 2014; 9:e105641. [PMID: 25207975 PMCID: PMC4160191 DOI: 10.1371/journal.pone.0105641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/22/2014] [Indexed: 11/21/2022] Open
Abstract
Aggregation of amyloid beta (Aβ) into oligomers and fibrils is believed to play an important role in the development of Alzheimer’s disease (AD). To gain further insight into the principles of aggregation, we have investigated the induction of β-sheet secondary conformation from disordered native peptide sequences through lipidation, in 1–2% hexafluoroisopropanol (HFIP) in phosphate buffered saline (PBS). Several parameters, such as type and number of lipid chains, peptide sequence, peptide length and net charge, were explored keeping the ratio peptide/HFIP constant. The resulting lipoconjugates were characterized by several physico-chemical techniques: Circular Dichroism (CD), Attenuated Total Reflection InfraRed (ATR-IR), Thioflavin T (ThT) fluorescence, Dynamic Light Scattering (DLS), solid-state Nuclear Magnetic Resonance (ssNMR) spectroscopy and Electron Microscopy (EM). Our data demonstrate the generation of β-sheet aggregates from numerous unstructured peptides under physiological pH, independent of the amino acid sequence. The amphiphilicity pattern and hydrophobicity of the scaffold were found to be key factors for their assembly into amyloid-like structures.
Collapse
Affiliation(s)
| | | | - Deepak Nand
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Marc Baldus
- Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | | | | |
Collapse
|
31
|
Khan MV, Rabbani G, Ahmad E, Khan RH. Fluoroalcohols-induced modulation and amyloid formation in conalbumin. Int J Biol Macromol 2014; 70:606-14. [DOI: 10.1016/j.ijbiomac.2014.07.027] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 06/27/2014] [Accepted: 07/09/2014] [Indexed: 10/25/2022]
|
32
|
Absorption and folding of melittin onto lipid bilayer membranes via unbiased atomic detail microsecond molecular dynamics simulation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2243-9. [DOI: 10.1016/j.bbamem.2014.04.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 03/31/2014] [Accepted: 04/15/2014] [Indexed: 11/22/2022]
|
33
|
Walther FJ, Waring AJ, Hernández-Juviel JM, Ruchala P, Wang Z, Notter RH, Gordon LM. Surfactant protein C peptides with salt-bridges ("ion-locks") promote high surfactant activities by mimicking the α-helix and membrane topography of the native protein. PeerJ 2014; 2:e485. [PMID: 25083348 PMCID: PMC4106191 DOI: 10.7717/peerj.485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 06/23/2014] [Indexed: 11/20/2022] Open
Abstract
Background. Surfactant protein C (SP-C; 35 residues) in lungs has a cationic N-terminal domain with two cysteines covalently linked to palmitoyls and a C-terminal region enriched in Val, Leu and Ile. Native SP-C shows high surface activity, due to SP-C inserting in the bilayer with its cationic N-terminus binding to the polar headgroup and its hydrophobic C-terminus embedded as a tilted, transmembrane α-helix. The palmitoylcysteines in SP-C act as ‘helical adjuvants’ to maintain activity by overriding the β-sheet propensities of the native sequences. Objective. We studied SP-C peptides lacking palmitoyls, but containing glutamate and lysine at 4-residue intervals, to assess whether SP-C peptides with salt-bridges (“ion-locks”) promote surface activity by mimicking the α-helix and membrane topography of native SP-C. Methods. SP-C mimics were synthesized that reproduce native sequences, but without palmitoyls (i.e., SP-Css or SP-Cff, with serines or phenylalanines replacing the two cysteines). Ion-lock SP-C molecules were prepared by incorporating single or double Glu−–Lys+ into the parent SP-C’s. The secondary structures of SP-C mimics were studied with Fourier transform infrared (FTIR) spectroscopy and PASTA, an algorithm that predicts β-sheet propensities based on the energies of the various β-sheet pairings. The membrane topography of SP-C mimics was investigated with orientated and hydrogen/deuterium (H/D) exchange FTIR, and also Membrane Protein Explorer (MPEx) hydropathy analysis. In vitro surface activity was determined using adsorption surface pressure isotherms and captive bubble surfactometry, and in vivo surface activity from lung function measures in a rabbit model of surfactant deficiency. Results. PASTA calculations predicted that the SP-Css and SP-Cff peptides should each form parallel β-sheet aggregates, with FTIR spectroscopy confirming high parallel β-sheet with ‘amyloid-like’ properties. The enhanced β-sheet properties for SP-Css and SP-Cff are likely responsible for their low surfactant activities in the in vitro and in vivo assays. Although standard 12C-FTIR study showed that the α-helicity of these SP-C sequences in lipids was uniformly increased with Glu−–Lys+ insertions, elevated surfactant activity was only selectively observed. Additional results from oriented and H/D exchange FTIR experiments indicated that the high surfactant activities depend on the SP-C ion-locks recapitulating both the α-helicity and the membrane topography of native SP-C. SP-Css ion-lock 1, an SP-Css with a salt-bridge for a Glu−–Lys+ ion-pair predicted from MPEx hydropathy calculations, demonstrated enhanced surfactant activity and a transmembrane helix simulating those of native SP-C. Conclusion. Highly active SP-C mimics were developed that replace the palmitoyls of SP-C with intrapeptide salt-bridges and represent a new class of synthetic surfactants with therapeutic interest.
Collapse
Affiliation(s)
- Frans J Walther
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America ; Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America
| | - Alan J Waring
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America ; Department of Pediatrics, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America ; Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America ; Department of Physiology & Biophysics, School of Medicine, University of California , Irvine, CA , United States of America
| | - José M Hernández-Juviel
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America
| | - Piotr Ruchala
- Department of Medicine, David Geffen School of Medicine, University of California at Los Angeles , Los Angeles, CA , United States of America
| | - Zhengdong Wang
- Department of Pediatrics, University of Rochester , Rochester, NY , United States of America
| | - Robert H Notter
- Department of Pediatrics, University of Rochester , Rochester, NY , United States of America
| | - Larry M Gordon
- Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center , Torrance, CA , United States of America
| |
Collapse
|
34
|
Xia H, Hashimoto Y, Morita T, Hirai T. Formation of polyketone particle structure by hexafluoroisopropanol solvent evaporation and effects of plasticizer addition. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/polb.23501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hong Xia
- Smart Materials Engineering; Faculty of Textiles and Technology; Shinshu University; Ueda Nagano 386-8567 Japan
| | - Yoshio Hashimoto
- Department of Electrical and Electronic Engineering; Faculty of Engineering; Shinshu University; Nagano Nagano 380-8553 Japan
| | - Toru Morita
- R & D Laboratory for Fiber & Textiles Technology; Asahi Kasei Fibers Corporation; Nobeoka Miyazaki 882-0031 Japan
| | - Toshihiro Hirai
- Smart Materials Engineering; Faculty of Textiles and Technology; Shinshu University; Ueda Nagano 386-8567 Japan
| |
Collapse
|
35
|
Kia A, Darve E. The accuracy of the CHARMM22/CMAP and AMBER ff99SB force fields for modelling the antimicrobial peptide cecropin P1. MOLECULAR SIMULATION 2013. [DOI: 10.1080/08927022.2013.781599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
36
|
Equilibrium and folding simulations of NS4B H2 in pure water and water/2,2,2-trifluoroethanol mixed solvent: examination of solvation models. J Mol Model 2013; 19:3931-9. [DOI: 10.1007/s00894-013-1933-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/23/2013] [Indexed: 10/26/2022]
|
37
|
Motiwala HF, Fehl C, Li SW, Hirt E, Porubsky P, Aubé J. Overcoming product inhibition in catalysis of the intramolecular Schmidt reaction. J Am Chem Soc 2013; 135:9000-9. [PMID: 23687993 DOI: 10.1021/ja402848c] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A method for carrying out the intramolecular Schmidt reaction of alkyl azides and ketones using a substoichiometric amount of catalyst is reported. Following extensive screening, the use of the strong hydrogen-bond-donating solvent hexafluoro-2-propanol was found to be consistent with low catalyst loadings, which ranged from 2.5 mol % for favorable substrates to 25 mol % for more difficult cases. Reaction optimization, broad substrate scope, and preliminary mechanistic studies of this improved version of the reaction are described.
Collapse
Affiliation(s)
- Hashim F Motiwala
- Department of Medicinal Chemistry, University of Kansas, Delbert M. Shankel Structural Biology Center, 2034 Becker Drive, West Campus, Lawrence, Kansas 66047, USA
| | | | | | | | | | | |
Collapse
|
38
|
Buchko GW, Jain A, Reback ML, Shaw WJ. Structural characterization of the model amphipathic peptide Ac-LKKLLKLLKKLLKL-NH2 in aqueous solution and with 2,2,2-trifluoroethanol and 1,1,1,3,3,3-hexafluoroisopropanol. CAN J CHEM 2013. [DOI: 10.1139/cjc-2012-0429] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Short-chain amphipathic peptides are promising components in the new generation of engineered biomaterials. The model 14-residue leucine–lysine peptide Ac-LKKLLKLLKKLLKL-NH2 (LKα) is one such amphipathic peptide. In dilute aqueous solution (<0.05 mmol/L), it was previously proposed, using CD spectroscopic data, that LKα existed in a cooperative monomeric (unstructured) – tetrameric (α-helical) equilibrium that shifted towards the tetramer at high NaCl and peptide concentrations. Here, at similar peptide concentrations, CD spectroscopy shows that LKα readily adopts α-helical structure in the presence of 2,2,2-trifluoroethanol (TFE) and 1,1,1,3,3,3-hexafluoroisopropanol (HFIP) with maximal helical character in 20% TFE and ∼10% HFIP (v/v). The helical character in fluorinated alcohols suggested by the CD data at low peptide concentrations (0.06 mmol/L) is corroborated at high peptide concentrations (1.5 mmol/L) by NMR NOE data that also show that 1.5 mmol/L LKα is helical in 100% water. Size exclusion chromatography and estimations of rotational correlation times (τc) showed that the self-assembled LKα complexes contained three to five peptides. Removing the N-terminal acetyl group prevents LKα from forming helices and self-associating at high NaCl and peptide concentrations. This more detailed characterization of the structural and physical properties of LKα over a greater range of peptide concentrations and in the presence of fluorinated alcohols will assist the design of biomaterials containing amphipathic peptides and guide the ability to control self-assembly.
Collapse
Affiliation(s)
- Garry W. Buchko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Avijita Jain
- Chemicals & Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Matthew L. Reback
- Chemicals & Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Wendy J. Shaw
- Chemicals & Materials Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
39
|
Zaroog MS, Tayyab S. Halogenol- versus alkanol-induced structural transitions of acid-denatured glucoamylase: Characterization of alcohol-induced states. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
40
|
González-Paz RJ, Lligadas G, Ronda JC, Galià M, Ferreira AM, Boccafoschi F, Ciardelli G, Cádiz V. Study on the interaction between gelatin and polyurethanes derived from fatty acids. J Biomed Mater Res A 2012; 101:1036-46. [DOI: 10.1002/jbm.a.34407] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/06/2022]
|
41
|
Li HL, Zhou SM, Park D, Jeong HO, Chung HY, Yang JM, Meng FG, Hu WJ. Deceleration of Arginine Kinase Refolding by Induced Helical Structures. Protein J 2012; 31:267-74. [DOI: 10.1007/s10930-012-9397-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
42
|
Potetinova Z, Tantry S, Cohen LS, Caroccia KE, Arshava B, Becker JM, Naider F. Large multiple transmembrane domain fragments of a G protein-coupled receptor: biosynthesis, purification, and biophysical studies. Biopolymers 2012; 98:485-500. [PMID: 23203693 PMCID: PMC3542537 DOI: 10.1002/bip.22122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/01/2012] [Accepted: 07/02/2012] [Indexed: 01/04/2023]
Abstract
To conduct biophysical analyses on large domains of GPCRs, multimilligram quantities of highly homogeneous proteins are necessary. This communication discusses the biosynthesis of four transmembrane and five transmembrane-containing fragments of Ste2p, a GPCR recognizing the Saccharomyces cerevisiae tridecapeptide pheromone α-factor. The target fragments contained the predicted four N-terminal Ste2p[G(31) -A(198) ] (4TMN), four C-terminal Ste2p[T(155) -L(340) ] (4TMC), or five C-terminal Ste2p[I(120) -L(340) ] (5TMC) transmembrane segments of Ste2p. 4TMN was expressed as a fusion protein using a modified pMMHa vector in L-arabinose-induced Escherichia coli BL21-AI, and cleaved with cyanogen bromide. 4TMC and 5TMC were obtained by direct expression using a pET21a vector in IPTG-induced E. coli BL21(DE3) cells. 4TMC and 5TMC were biosynthesized on a preparative scale, isolated in multimilligram amounts, characterized by MS and investigated by biophysical methods. CD spectroscopy indicated the expected highly α-helical content for 4TMC and 5TMC in membrane mimetic environments. Tryptophan fluorescence showed that 5TMC integrated into the nonpolar region of 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) micelles. HSQC-TROSY investigations revealed that [(15) N]-labeled 5TMC in 50% trifluoroethanol-d(2) /H(2) O/0.05%-trifluoroacetic acid was stable enough to conduct long multidimensional NMR measurements. The entire Ste2p GPCR was not readily reconstituted from the first two and last five or first three and last four transmembrane domains.
Collapse
Affiliation(s)
- Zhanna Potetinova
- Department of Chemistry, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Mehrnejad F, Ghahremanpour MM, Khadem-Maaref M, Doustdar F. Effects of osmolytes on the helical conformation of model peptide: Molecular dynamics simulation. J Chem Phys 2011; 134:035104. [DOI: 10.1063/1.3530072] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
44
|
Vuluga D, Legros J, Crousse B, Slawin AMZ, Laurence C, Nicolet P, Bonnet-Delpon D. Influence of the Structure of Polyfluorinated Alcohols on Brønsted Acidity/Hydrogen-Bond Donor Ability and Consequences on the Promoter Effect. J Org Chem 2011; 76:1126-33. [DOI: 10.1021/jo1023816] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Daniela Vuluga
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| | - Julien Legros
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| | - Benoit Crousse
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| | - Alexandra M. Z. Slawin
- Molecular Structure Laboratory, School of Chemistry, University of St. Andrews, St. Andrews, Fife KY16 9ST, United Kingdom
| | - Christian Laurence
- CEISAM CNRS UMR 6230, Faculté des Sciences et des Techniques, Univ. Nantes, 2 rue de la Houssinière, F-44322 Nantes, France
| | - Pierre Nicolet
- CEISAM CNRS UMR 6230, Faculté des Sciences et des Techniques, Univ. Nantes, 2 rue de la Houssinière, F-44322 Nantes, France
| | - Danièle Bonnet-Delpon
- Laboratoire BioCIS-CNRS, Faculté de Pharmacie, Univ. Paris Sud, 5 rue Jean-Baptiste Clément, F-92296 Châtenay-Malabry, France
| |
Collapse
|
45
|
Sekhar A, Udgaonkar JB. Fluoroalcohol-induced modulation of the pathway of amyloid protofibril formation by barstar. Biochemistry 2011; 50:805-19. [PMID: 21182336 DOI: 10.1021/bi101312h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To understand how the conformational heterogeneity of protofibrils formed by any protein, as well as the mechanisms of their formation, are modulated by a change in aggregation conditions, we studied the formation of amyloid protofibrils by barstar at low pH by multiple structural probes in the presence of hexafluoroisopropanol (HFIP). In the presence of 10% HFIP, aggregation proceeds with the transient formation of spherical oligomers and leads to the formation of both protofibrils and fibrils. Curly short protofibrils and fibrils are seen to form early during the aggregation reaction, and both are seen to grow gradually in length during the course of the reaction. Atomic force microscopy images reveal that the HFIP-induced protofibrils are long (∼300 nm in length), curly, and beaded and appear to be composed primarily of β-sheet bilayers, with heights of ∼2.4 nm. The protofibrils formed in the presence of HFIP differ in both their structures and their stabilities from the protofibrils formed either in the absence of alcohol or in the presence of a related alcohol, trifluoroethanol (TFE). Aggregation appears to proceed via an isodesmic polymerization mechanism. Internal structure in the growing aggregates changes in two stages during protofibril formation. In the first stage, an α-helix-rich oligomeric intermediate is formed. In the second stage, the level of β-sheet structure increases at the expense of some α-helical structure. The second stage itself appears to occur in two distinct steps. The creation of thioflavin T binding sites occurs concomitantly with aggregate elongation and is seen to precede the change in secondary structure. The long straight fibrils with characteristic heights of 8-10 nm, which form in the course of the HFIP-induced aggregation reaction, have not been observed to form either in the absence of alcohol or in the presence of TFE.
Collapse
Affiliation(s)
- Amrita Sekhar
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | | |
Collapse
|
46
|
Sarker M, Rose J, McDonald M, Morrow MR, Booth V. Modifications to surfactant protein B structure and lipid interactions under respiratory distress conditions: consequences of tryptophan oxidation. Biochemistry 2010; 50:25-36. [PMID: 21128671 DOI: 10.1021/bi101426s] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
These studies detail the altered structure-function relationships caused by oxidation of surfactant protein B (SP-B), a mode of damage thought to be important in acute respiratory distress syndrome (ARDS), a common and frequently fatal condition. An 18-residue fragment comprising the N-terminal helix of SP-B was investigated in oxidized and unmodified forms by solution and solid-state nuclear magnetic resonance (NMR), circular dichroism (CD), and molecular dynamics (MD) simulation. Taken together, the results indicate that tryptophan oxidation causes substantial disruptions in helical structure and lipid interactions. The structural modifications induced by tryptophan oxidation were severe, with a reduction in helical extent from approximately three helical turns to, at most, one turn, and were observed in a variety of solvent environments, including sodium dodecyl sulfate (SDS) micelles, dodecyl phosphocholine (DPC) micelles, and a 40% hexafluoro-2-propanol (HFIP) aqueous solution. The unmodified peptide takes on an orientation within lipid bilayers that is tilted approximately 30° away from an in-plane position. Tryptophan oxidation causes significant modifications to the peptide-lipid interactions, and the peptide likely shifts to a more in-plane orientation within the lipids. Interestingly, the character of the disruptions to peptide-lipid interactions caused by tryptophan oxidation was highly dependent on the charge of the lipid headgroup.
Collapse
Affiliation(s)
- Muzaddid Sarker
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL, Canada
| | | | | | | | | |
Collapse
|
47
|
Buchko GW, Niemann G, Baker ES, Belov ME, Smith RD, Heffron F, Adkins JN, McDermott JE. A multi-pronged search for a common structural motif in the secretion signal of Salmonella enterica serovar Typhimurium type III effector proteins. MOLECULAR BIOSYSTEMS 2010; 6:2448-58. [PMID: 20877914 PMCID: PMC3282560 DOI: 10.1039/c0mb00097c] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Many pathogenic Gram-negative bacteria use a type III secretion system (T3SS) to deliver effector proteins into the host cell where they reprogram host defenses and facilitate pathogenesis. The first 20-30 N-terminal residues usually contain the 'secretion signal' that targets effector proteins for translocation, however, a consensus sequence motif has never been discerned. Recent machine-learning approaches, such as support vector machine (SVM)-based Identification and Evaluation of Virulence Effectors (SIEVE), have improved the ability to identify effector proteins from genomics sequence information. While these methods all suggest that the T3SS secretion signal has a characteristic amino acid composition bias, it is still unclear if the amino acid pattern is important and if there are any unifying structural properties that direct recognition. To address these issues a peptide corresponding to the secretion signal for Salmonella enterica serovar Typhimurium effector SseJ was synthesized (residues 1-30, SseJ) along with scrambled peptides of the same amino acid composition that produced high (SseJ-H) and low (SseJ-L) SIEVE scores. The secretion properties of these three peptides were tested using a secretion signal-CyaA fusion assay and their structural properties probed using circular dichroism, nuclear magnetic resonance, and ion mobility spectrometry-mass spectrometry. The secretion predictions from SIEVE matched signal-CyaA fusion experimental results with J774 macrophages suggesting that the SseJ secretion signal has some sequence order dependence. The structural studies showed that the SseJ, SseJ-H, and SseJ-L peptides were intrinsically disordered in aqueous solution with a small predisposition to adopt nascent helical structure only in the presence of structure stabilizing agents such as 1,1,1,3,3,3-hexafluoroisopropanol. Intrinsic disorder may be a universal feature of effector secretion signals as similar conclusions were reached following structural characterization of peptides corresponding to the N-terminal regions of the S. Typhimurium effectors SptP, SopD-2, GtgE, and the Yersinia pestis effector YopH.
Collapse
Affiliation(s)
- Garry W. Buchko
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington, 99352, USA
| | - George Niemann
- Department of Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, 97201, USA
| | - Erin S. Baker
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington, 99352, USA
| | - Mikhail E. Belov
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington, 99352, USA
| | - Richard D. Smith
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington, 99352, USA
| | - Fred Heffron
- Department of Microbiology and Immunology, Oregon Health and Sciences University, Portland, Oregon, 97201, USA
| | - Joshua N. Adkins
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington, 99352, USA
| | - Jason E. McDermott
- Fundamental and Computational Sciences Directorate, Pacific Northwest National Laboratory, 902 Battelle Boulevard, P. O. Box 999, Richland, Washington, 99352, USA
| |
Collapse
|
48
|
Mehrnejad F, Khadem-Maaref M, Ghahremanpour MM, Doustdar F. Mechanisms of amphipathic helical peptide denaturation by guanidinium chloride and urea: a molecular dynamics simulation study. J Comput Aided Mol Des 2010; 24:829-41. [DOI: 10.1007/s10822-010-9377-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Accepted: 07/29/2010] [Indexed: 10/19/2022]
|
49
|
Xiong K, Asher SA. Circular dichroism and UV resonance raman study of the impact of alcohols on the Gibbs free energy landscape of an alpha-helical peptide. Biochemistry 2010; 49:3336-42. [PMID: 20225890 DOI: 10.1021/bi100176a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We used CD and UV resonance Raman spectroscopy to study the impact of alcohols on the conformational equilibria and relative Gibbs free energy landscapes along the Ramachandran Psi-coordinate of a mainly poly-Ala peptide, AP with an AAAAA(AAARA)(3)A sequence. 2,2,2-Trifluoroethanol (TFE) most stabilizes the alpha-helix-like conformations, followed by ethanol, methanol, and pure water. The pi-bulge conformation is stabilized more than the alpha-helix, while the 3(10)-helix is destabilized due to the alcohol-increased hydrophobicity. Turns are also stabilized by alcohols. We also found that while TFE induces more alpha-helices, it favors multiple, shorter helix segments.
Collapse
Affiliation(s)
- Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
50
|
Oxpholipin 11D: an anti-inflammatory peptide that binds cholesterol and oxidized phospholipids. PLoS One 2010; 5:e10181. [PMID: 20418958 PMCID: PMC2854715 DOI: 10.1371/journal.pone.0010181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 03/24/2010] [Indexed: 12/24/2022] Open
Abstract
Background Many Gram-positive bacteria produce pore-forming exotoxins that contain a highly conserved, 12-residue domain (ECTGLAWEWWRT) that binds cholesterol. This domain is usually flanked N-terminally by arginine and C-terminally by valine. We used this 14-residue sequence as a template to create a small library of peptides that bind cholesterol and other lipids. Methodology/Results Several of these peptides manifested anti-inflammatory properties in a predictive in vitro monocyte chemotactic assay, and some also diminished the pro-inflammatory effects of low-density lipoprotein in apoE-deficient mice. The most potent analog, Oxpholipin-11D (OxP-11D), contained D-amino acids exclusively and was identical to the 14-residue design template except that diphenylalanine replaced cysteine-3. In surface plasmon resonance binding studies, OxP-11D bound oxidized (phospho)lipids and sterols in much the same manner as D-4F, a widely studied cardioprotective apoA-I-mimetic peptide with anti-inflammatory properties. In contrast to D-4F, which adopts a stable α-helical structure in solution, the OxP-11D structure was flexible and contained multiple turn-like features. Conclusion Given the substantial evidence that oxidized phospholipids are pro-inflammatory in vivo, OxP-11D and other Oxpholipins may have therapeutic potential.
Collapse
|