1
|
Joho Y, Vongsouthi V, Spence MA, Ton J, Gomez C, Tan LL, Kaczmarski JA, Caputo AT, Royan S, Jackson CJ, Ardevol A. Ancestral Sequence Reconstruction Identifies Structural Changes Underlying the Evolution of Ideonella sakaiensis PETase and Variants with Improved Stability and Activity. Biochemistry 2023; 62:437-450. [PMID: 35951410 DOI: 10.1021/acs.biochem.2c00323] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The improved production, recycling, and removal of plastic waste, such as polyethylene terephthalate (PET), are pressing environmental and economic issues for society. Biocatalytic (enzymatic) PET depolymerization is potentially a sustainable, low-energy solution to PET recycling, especially when compared with current disposal methods such as landfills, incineration, or gasification. IsPETase has been extensively studied for its use in PET depolymerization; however, its evolution from cutinases is not fully understood, and most engineering studies have neglected the majority of the available sequence space remote from the active site. In this study, ancestral protein reconstruction (ASR) has been used to trace the evolutionary trajectory from ancient serine hydrolases to IsPETase, while ASR and the related design approach, protein repair one-stop shop, were used to identify enzyme variants with improved activity and stability. Kinetic and structural characterization of these variants reveals new insights into the evolution of PETase activity and the role of second-shell mutations around the active site. Among the designed and reconstructed variants, we identified several with melting points 20 °C higher than that of IsPETase and two variants with significantly higher catalytic activity.
Collapse
Affiliation(s)
- Yvonne Joho
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia.,Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Vanessa Vongsouthi
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Matthew A Spence
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Jennifer Ton
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Chloe Gomez
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Li Lynn Tan
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Joe A Kaczmarski
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Alessandro T Caputo
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia
| | - Santana Royan
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia
| | - Colin J Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Peptide & Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.,ARC Centre of Excellence for Innovations in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Albert Ardevol
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, Victoria 3168, Australia.,CSIRO Synthetic Biology Future Science Platform, GPO Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Serum Albumin in Health and Disease: Esterase, Antioxidant, Transporting and Signaling Properties. Int J Mol Sci 2021; 22:ijms221910318. [PMID: 34638659 PMCID: PMC8508759 DOI: 10.3390/ijms221910318] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022] Open
Abstract
Being one of the main proteins in the human body and many animal species, albumin plays a decisive role in the transport of various ions-electrically neutral and charged molecules-and in maintaining the colloidal osmotic pressure of the blood. Albumin is able to bind to almost all known drugs, as well as many nutraceuticals and toxic substances, largely determining their pharmaco- and toxicokinetics. Albumin of humans and respective representatives in cattle and rodents have their own structural features that determine species differences in functional properties. However, albumin is not only passive, but also an active participant of pharmacokinetic and toxicokinetic processes, possessing a number of enzymatic activities. Numerous experiments have shown esterase or pseudoesterase activity of albumin towards a number of endogeneous and exogeneous esters. Due to the free thiol group of Cys34, albumin can serve as a trap for reactive oxygen and nitrogen species, thus participating in redox processes. Glycated albumin makes a significant contribution to the pathogenesis of diabetes and other diseases. The interaction of albumin with blood cells, blood vessels and tissue cells outside the vascular bed is of great importance. Interactions with endothelial glycocalyx and vascular endothelial cells largely determine the integrative role of albumin. This review considers the esterase, antioxidant, transporting and signaling properties of albumin, as well as its structural and functional modifications and their significance in the pathogenesis of certain diseases.
Collapse
|
3
|
Khan MS, Gargiulo S, Soumillion P. Promiscuous activity of 3-isopropylmalate dehydrogenase produced at physiological level affords Escherichia coli growth on d-malate. FEBS Lett 2020; 594:2421-2430. [PMID: 32412093 DOI: 10.1002/1873-3468.13814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 11/08/2022]
Abstract
Promiscuous activities of enzymes may serve as starting points for the evolution of new functions. However, most experimental examples of promiscuity affording an observable phenotype necessitate the artificial overexpression of the target enzyme. Here, we show that 3-isopropylmalate dehydrogenase (IPMDH), an enzyme involved in leucine biosynthesis, has a secondary activity on d-malate, which is sufficient for d-malate assimilation under physiological conditions where the enzyme is upregulated. In vitro, the turnover constant (kcat ) of IPMDH for d-malate is about 30-fold lower than the kcat for 3-isopropylmalate, yet sufficiently high to support the growth on d-malate. From an evolutionary perspective, our results highlight the possibility of phenotype emergence triggered by arbitrary changes in environmental conditions and prior to any mutational event.
Collapse
Affiliation(s)
- Mohammad Shahneawz Khan
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,University of Dhaka, Bangladesh
| | - Serena Gargiulo
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrice Soumillion
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
4
|
Szeler K, Williams NH, Hengge AC, Kamerlin SCL. Modeling the Alkaline Hydrolysis of Diaryl Sulfate Diesters: A Mechanistic Study. J Org Chem 2020; 85:6489-6497. [PMID: 32309943 PMCID: PMC7304899 DOI: 10.1021/acs.joc.0c00441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Indexed: 12/11/2022]
Abstract
Phosphate and sulfate esters have important roles in regulating cellular processes. However, while there has been substantial experimental and computational investigation of the mechanisms and the transition states involved in phosphate ester hydrolysis, there is far less work on sulfate ester hydrolysis. Here, we report a detailed computational study of the alkaline hydrolysis of diaryl sulfate diesters, using different DFT functionals as well as mixed implicit/explicit solvation with varying numbers of explicit water molecules. We consider the impact of the computational model on computed linear free-energy relationships (LFER) and the nature of the transition states (TS) involved. We obtain good qualitative agreement with experimental LFER data when using a pure implicit solvent model and excellent agreement with experimental kinetic isotope effects for all models used. Our calculations suggest that sulfate diester hydrolysis proceeds through loose transition states, with minimal bond formation to the nucleophile and bond cleavage to the leaving group already initiated. Comparison to prior work indicates that these TS are similar in nature to those for the alkaline hydrolysis of neutral arylsulfonate monoesters or charged phosphate diesters and fluorophosphates. Obtaining more detailed insights into the transition states involved assists in understanding the selectivity of enzymes that hydrolyze these reactions.
Collapse
Affiliation(s)
- Klaudia Szeler
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | | | - Alvan C. Hengge
- Department
of Chemistry and Biochemistry, Utah State
University, Logan, Utah 84322-0300, United States
| | - Shina C. L. Kamerlin
- Department
of Chemistry − BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| |
Collapse
|
5
|
Janzen E, Blanco C, Peng H, Kenchel J, Chen IA. Promiscuous Ribozymes and Their Proposed Role in Prebiotic Evolution. Chem Rev 2020; 120:4879-4897. [PMID: 32011135 PMCID: PMC7291351 DOI: 10.1021/acs.chemrev.9b00620] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
The ability of enzymes,
including ribozymes, to catalyze side reactions
is believed to be essential to the evolution of novel biochemical
activities. It has been speculated that the earliest ribozymes, whose
emergence marked the origin of life, were low in activity but high
in promiscuity, and that these early ribozymes gave rise to specialized
descendants with higher activity and specificity. Here, we review
the concepts related to promiscuity and examine several cases of highly
promiscuous ribozymes. We consider the evidence bearing on the question
of whether de novo ribozymes would be quantitatively
more promiscuous than later evolved ribozymes or protein enzymes.
We suggest that while de novo ribozymes appear to
be promiscuous in general, they are not obviously more promiscuous
than more highly evolved or active sequences. Promiscuity is a trait
whose value would depend on selective pressures, even during prebiotic
evolution.
Collapse
Affiliation(s)
- Evan Janzen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Celia Blanco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Huan Peng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Josh Kenchel
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States
| | - Irene A Chen
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Biomolecular Sciences and Engineering Program, University of California, Santa Barbara, Santa Barbara, California 93109, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
6
|
Savinova OS, Moiseenko KV, Vavilova EA, Chulkin AM, Fedorova TV, Tyazhelova TV, Vasina DV. Evolutionary Relationships Between the Laccase Genes of Polyporales: Orthology-Based Classification of Laccase Isozymes and Functional Insight From Trametes hirsuta. Front Microbiol 2019; 10:152. [PMID: 30792703 PMCID: PMC6374638 DOI: 10.3389/fmicb.2019.00152] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 01/06/2023] Open
Abstract
Laccase is one of the oldest known and intensively studied fungal enzymes capable of oxidizing recalcitrant lignin-resembling phenolic compounds. It is currently well established that fungal genomes almost always contain several non-allelic copies of laccase genes (laccase multigene families); nevertheless, many aspects of laccase multigenicity, for example, their precise biological functions or evolutionary relationships, are mostly unknown. Here, we present a detailed evolutionary analysis of the sensu stricto laccase genes (CAZy - AA1_1) from fungi of the Polyporales order. The conducted analysis provides a better understanding of the Polyporales laccase multigenicity and allows for the systemization of the individual features of different laccase isozymes. In addition, we provide a comparison of the biochemical and catalytic properties of the four laccase isozymes from Trametes hirsuta and suggest their functional diversification within the multigene family.
Collapse
Affiliation(s)
- Olga S Savinova
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Konstantin V Moiseenko
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Vavilova
- Laboratory of Gene Expression Optimization, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey M Chulkin
- Laboratory of Gene Expression Optimization, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Fedorova
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana V Tyazhelova
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V Vasina
- Laboratory of Molecular Aspects of Biotransformations, A. N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Wons E, Mruk I, Kaczorowski T. Isospecific adenine DNA methyltransferases show distinct preferences towards DNA substrates. Sci Rep 2018; 8:8243. [PMID: 29844340 PMCID: PMC5974420 DOI: 10.1038/s41598-018-26434-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/09/2018] [Indexed: 11/09/2022] Open
Abstract
Here, we report results on systematic analysis of DNA substrate preferences of three N6-adenine β-class DNA methyltransferases that are part of the type II restriction-modification systems. The studied enzymes were: M.EcoVIII, M.HindIII and M.LlaCI, which although found in phylogenetically distant bacteria (γ-proteobacteria and low-GC Gram-positive bacteria), recognize the same palindromic specific sequence 5′-AAGCTT-3′ and catalyze formation of N6-methyladenine at the first A-residue. As expected overall the enzymes share the most analyzed features, but they show also some distinct differences in substrate recognition. Therefore DNA methylation reactions were carried out not only under standard, but also under relaxed conditions using DMSO or glycerol. We found that all of these enzymes preferred DNA containing a hemimethylated target site, but differ in modification of ssDNA, especially more pronounced for M.EcoVIII under relaxed conditions. In these conditions they also have shown varied preferences toward secondary sites, which differ by one nucleotide from specific sequence. They preferred sequences with substitutions at the 1st (A1 → G/C) and at the 2nd position (A2 → C), while sites with substitutions at the 3rd position (G3 → A/C) were modified less efficiently. Kinetic parameters of the methylation reaction carried out by M.EcoVIII were determined. Methylation efficiency (kcat/Km) of secondary sites was 4.5–10 times lower when compared to the unmethylated specific sequences, whilst efficiency observed for the hemimethylated substrate was almost 4.5 times greater. We also observed a distinct effect of analyzed enzymes on unspecific interaction with DNA phosphate backbone. We concluded that for all three enzymes the most critical is the phosphodiester bond between G3-C4 nucleotides at the center of the target site.
Collapse
Affiliation(s)
- Ewa Wons
- Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Iwona Mruk
- Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland
| | - Tadeusz Kaczorowski
- Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland. .,Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, Gdansk, 80-308, Poland.
| |
Collapse
|
8
|
Świderek K, Tuñón I, Moliner V, Bertran J. Computational strategies for the design of new enzymatic functions. Arch Biochem Biophys 2015; 582:68-79. [PMID: 25797438 PMCID: PMC4554825 DOI: 10.1016/j.abb.2015.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 03/09/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
In this contribution, recent developments in the design of biocatalysts are reviewed with particular emphasis in the de novo strategy. Studies based on three different reactions, Kemp elimination, Diels-Alder and Retro-Aldolase, are used to illustrate different success achieved during the last years. Finally, a section is devoted to the particular case of designed metalloenzymes. As a general conclusion, the interplay between new and more sophisticated engineering protocols and computational methods, based on molecular dynamics simulations with Quantum Mechanics/Molecular Mechanics potentials and fully flexible models, seems to constitute the bed rock for present and future successful design strategies.
Collapse
Affiliation(s)
- K Świderek
- Departament de Química Física, Universitat de València, 46100 Burjasot, Spain; Institute of Applied Radiation Chemistry, Lodz University of Technology, 90-924 Lodz, Poland
| | - I Tuñón
- Departament de Química Física, Universitat de València, 46100 Burjasot, Spain
| | - V Moliner
- Departament de Química Física i Analítica, Universitat Jaume I, 12071 Castellón, Spain
| | - J Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
9
|
Dunn IS. Are molecular alphabets universal enabling factors for the evolution of complex life? ORIGINS LIFE EVOL B 2013; 43:445-64. [PMID: 24510462 DOI: 10.1007/s11084-014-9354-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 01/22/2014] [Indexed: 10/25/2022]
Abstract
Terrestrial biosystems depend on macromolecules, and this feature is often considered as a likely universal aspect of life. While opinions differ regarding the importance of small-molecule systems in abiogenesis, escalating biological functional demands are linked with increasing complexity in key molecules participating in biosystem operations, and many such requirements cannot be efficiently mediated by relatively small compounds. It has long been recognized that known life is associated with the evolution of two distinct molecular alphabets (nucleic acid and protein), specific sequence combinations of which serve as informational and functional polymers. In contrast, much less detailed focus has been directed towards the potential universal need for molecular alphabets in constituting complex chemically-based life, and the implications of such a requirement. To analyze this, emphasis here is placed on the generalizable replicative and functional characteristics of molecular alphabets and their concatenates. A primary replicative alphabet based on the simplest possible molecular complementarity can potentially enable evolutionary processes to occur, including the encoding of secondarily functional alphabets. Very large uniquely specified ('non-alphabetic') molecules cannot feasibly underlie systems capable of the replicative and evolutionary properties which characterize complex biosystems. Transitions in the molecular evolution of alphabets can be related to progressive bridging of barriers which enable higher levels of biosystem organization. It is thus highly probable that molecular alphabets are an obligatory requirement for complex chemically-based life anywhere in the universe. In turn, reference to molecular alphabets should be usefully applied in current definitions of life.
Collapse
Affiliation(s)
- Ian S Dunn
- CytoCure LLC, Suite 430C, 100 Cummings Center, Beverly, MA, 01915, USA,
| |
Collapse
|
10
|
Honaker MT, Acchione M, Sumida JP, Atkins WM. Ensemble perspective for catalytic promiscuity: calorimetric analysis of the active site conformational landscape of a detoxification enzyme. J Biol Chem 2011; 286:42770-42776. [PMID: 22002059 DOI: 10.1074/jbc.m111.304386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Enzymological paradigms have shifted recently to acknowledge the biological importance of catalytic promiscuity. However, catalytic promiscuity is a poorly understood property, and no thermodynamic treatment has described the conformational landscape of promiscuous versus substrate-specific enzymes. Here, two structurally similar glutathione transferase (GST, glutathione S-transferase) isoforms with high specificity or high promiscuity are compared. Differential scanning calorimetry (DSC) indicates a reversible low temperature transition for the promiscuous GSTA1-1 that is not observed with substrate-specific GSTA4-4. This transition is assigned to rearrangement of the C terminus at the active site of GSTA1-1 based on the effects of ligands and mutations. Near-UV and far-UV circular dichroism indicate that this transition is due to repacking of tertiary contacts with the remainder of the subunit, rather than "unfolding" of the C terminus per se. Analysis of the DSC data using a modified Landau theory indicates that the local conformational landscape of the active site of GSTA1-1 is smooth, with barrierless transitions between states. The partition function of the C-terminal states is a broad unimodal distribution at all temperatures within this DSC transition. In contrast, the remainder of the GSTA1-1 subunit and the GSTA4-4 protein exhibit folded and unfolded macrostates with a significant energy barrier separating them. Their partition function includes a sharp unimodal distribution of states only at temperatures that yield either folded or unfolded macrostates. At intermediate temperatures the partition function includes a bimodal distribution. The barrierless rearrangement of the GSTA1-1 active site within a local smooth energy landscape suggests a thermodynamic basis for catalytic promiscuity.
Collapse
Affiliation(s)
- Matthew T Honaker
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - Mauro Acchione
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - John P Sumida
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610
| | - William M Atkins
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98177-7610.
| |
Collapse
|
11
|
Abstract
Metabolomics can map the large metabolic diversity in species, organs, or cell types. In addition to gains in enzyme specificity, many enzymes have retained substrate and reaction promiscuity. Enzyme promiscuity and the large number of enzymes with unknown enzyme function may explain the presence of a plethora of unidentified compounds in metabolomic studies. Cataloguing the identity and differential abundance of all detectable metabolites in metabolomic repositories may detail which compounds and pathways contribute to vital biological functions. The current status in metabolic databases is reviewed concomitant with tools to map and visualize the metabolome.
Collapse
Affiliation(s)
- Oliver Fiehn
- University of California Davis Genome Center, Davis, California 95616, USA.
| | | | | |
Collapse
|
12
|
Bhattacharjee N, Biswas P. Statistical analysis and molecular dynamics simulations of ambivalent α-helices. BMC Bioinformatics 2010; 11:519. [PMID: 20955581 PMCID: PMC2973962 DOI: 10.1186/1471-2105-11-519] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2010] [Accepted: 10/18/2010] [Indexed: 11/17/2022] Open
Abstract
Background Analysis of known protein structures reveals that identical sequence fragments in proteins can adopt different secondary structure conformations. The extent of this conformational diversity is influenced by various factors like the intrinsic sequence propensity, sequence context and other environmental factors such as pH, site directed mutations or alteration of the binding ligands. Understanding the mechanism by which the environment affects the structural ambivalence of these peptides has potential implications for protein design and reliable local structure prediction algorithms. Identification of the structurally ambivalent sequence fragments and determining the rules which dictate their conformational preferences play an important role in understanding the conformational changes observed in misfolding diseases. However, a systematic classification of their intrinsic sequence patterns or a statistical analysis of their properties and sequence context in relation to the origin of their structural diversity have largely remained unexplored. Results In this work, the conformational variability of α-helices is studied by mapping sequences from the non-redundant database to identical sequences across all classes of the SCOP (Structural Classification of Proteins) database. Some helices retain their conformations when mapped in the SCOP database while others exhibit a complete/partial switch to non-helical conformations. The results clearly depict the differences in the propensities of amino acids for the variable and conserved helices. Sequences flanking these ambivalent sequence fragments have anisotropic propensities at the N- and C-termini. This structural variability is depicted by molecular dynamics simulations in explicit solvent, which show that the short conserved helices retain their conformations while their longer counterparts fray into two or more shorter helices. Variable helices in the non-redundant database exhibit a trend of retaining helical conformations while their corresponding non-helical conformations in SCOP database show large deviations from their respective initial structures by adopting partial or full helical conformations. Partially ambivalent helices are also found to retain their respective conformations. Conclusions All sequence fragments which show structural diversity in different proteins of the non-redundant database are investigated. The final conformation of these ambivalent sequences are dictated by a fine tuning of their intrinsic sequence propensity and the anisotropic amino acid propensity of the flanking sequences. This analysis may unravel the connection between diverse secondary structures, which conserve the overall structural fold of the protein thus determining its function.
Collapse
|
13
|
Abstract
The divergence of new genes and proteins occurs through mutations that modulate protein function. However, mutations are pleiotropic and can have different effects on organismal fitness depending on the environment, as well as opposite effects on protein function and dosage. We review the pleiotropic effects of mutations. We discuss how they affect the evolution of gene and protein function, and how these complex mutational effects dictate the likelihood and mechanism of gene duplication and divergence. We propose several factors that can affect the divergence of new protein functions, including mutational trade-offs and hidden, or apparently neutral, variation.
Collapse
|
14
|
Abstract
Many, if not most, enzymes can promiscuously catalyze reactions, or act on substrates, other than those for which they evolved. Here, we discuss the structural, mechanistic, and evolutionary implications of this manifestation of infidelity of molecular recognition. We define promiscuity and related phenomena and also address their generality and physiological implications. We discuss the mechanistic enzymology of promiscuity--how enzymes, which generally exert exquisite specificity, catalyze other, and sometimes barely related, reactions. Finally, we address the hypothesis that promiscuous enzymatic activities serve as evolutionary starting points and highlight the unique evolutionary features of promiscuous enzyme functions.
Collapse
Affiliation(s)
- Olga Khersonsky
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
15
|
Carroll SM, Bridgham JT, Thornton JW. Evolution of hormone signaling in elasmobranchs by exploitation of promiscuous receptors. Mol Biol Evol 2008; 25:2643-52. [PMID: 18799714 DOI: 10.1093/molbev/msn204] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Specific interactions among proteins, nucleic acids, and metabolites drive virtually all cellular functions and underlie phenotypic complexity and diversity. Despite the fundamental importance of interactions, the mechanisms and dynamics by which they evolve are poorly understood. Here we describe novel interactions between a lineage-specific hormone and its receptors in elasmobranchs, a subclass of cartilaginous fishes, and infer how these associations evolved using phylogenetic and protein structural analyses. The hormone 1alpha-hydroxycorticosterone (1alpha-B) is a physiologically important steroid synthesized only in elasmobranchs. We show that 1alpha-B modulates gene expression in vitro by activating two paralogous intracellular transcription factors, the mineralocorticoid receptor (MR) and glucocorticoid receptor (GR), in the little skate Leucoraja erinacea; MR serves as a high-sensitivity and GR as a low-sensitivity receptor. Using functional analysis of extant and resurrected ancestral proteins, we show that receptor sensitivity to 1alpha-B evolved millions of years before the hormone itself evolved. The 1alpha-B differs from more ancient corticosteroids only by the addition of a hydroxyl group; the three-dimensional structure of the ancestral receptor shows that the ligand pocket contained ample unoccupied space to accommodate this moiety. Our findings indicate that the interactions between 1alpha-B and elasmobranch GR and MR proteins evolved by molecular exploitation: a novel hormone recruited into new functional partnerships two ancient receptors that had previously interacted with other ligands. The ancestral receptor's promiscuous capacity to fortuitously bind compounds that are slight structural variants of its original ligands set the stage for the evolution of this new interaction.
Collapse
|
16
|
TRIM21 is an IgG receptor that is structurally, thermodynamically, and kinetically conserved. Proc Natl Acad Sci U S A 2008; 105:6045-50. [PMID: 18420815 DOI: 10.1073/pnas.0800159105] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The newly identified tripartite motif (TRIM) family of proteins mediate innate immunity and other critical cellular functions. Here we show that TRIM21, which mediates the autoimmune diseases rheumatoid arthritis, systemic lupus erythematosus, and Sjögren's syndrome, is a previously undescribed IgG receptor with a binding mechanism unlike known mammalian Fcgamma receptors. TRIM21 simultaneously targets conserved hot-spot residues on both Ig domains of the Fc fragment using a PRYSPRY domain with a preformed multisite interface. The binding sites on both TRIM21 and Fc are highly conserved to the extent that the proteins are functionally interchangeable through murine, canine, primate, and human species. Pre-steady-state analysis exposes mechanistic conservation at the level of individual residues, which make the same energetic and kinetic contributions to binding despite varying in sequence. Together, our results reveal that TRIM21 is a previously undescribed type of IgG receptor based on a non-Ig scaffold whose interaction at the fundamental level-structural, thermodynamic, and kinetic-is evolutionarily conserved.
Collapse
|
17
|
Saito H, Kashida S, Inoue T, Shiba K. The role of peptide motifs in the evolution of a protein network. Nucleic Acids Res 2007; 35:6357-66. [PMID: 17881369 PMCID: PMC2095796 DOI: 10.1093/nar/gkm692] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Naturally occurring proteins in cellular networks often share peptide motifs. These motifs have been known to play a pivotal role in protein interactions among the components of a network. However, it remains unknown how these motifs have contributed to the evolution of the protein network. Here we addressed this issue by a synthetic biology approach. Through the motif programming method, we have constructed an artificial protein library by mixing four peptide motifs shared among the Bcl-2 family proteins that positively or negatively regulate the apoptosis networks. We found one strong pro-apoptotic protein, d29, and two proteins having moderate, but unambiguous anti-apoptotic functions, a10 and d16, from the 28 tested clones. Thus both the pro- and anti-apoptotic modulators were present in the library, demonstrating that functional proteins with opposing effects can emerge from a single pool prepared from common motifs. Motif programming studies have exhibited that the annotated function of the motifs were significantly influenced by the context that the motifs embedded. The results further revealed that reshuffling of a set of motifs realized the promiscuous state of protein, from which disparate functions could emerge. Our finding suggests that motifs contributed to the plastic evolvability of the protein network.
Collapse
Affiliation(s)
- Hirohide Saito
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, CREST, Japan Science and Technology Corporation (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 and ICORP, JST, Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- *To whom correspondence should be addressed. +81 3 3570 0489+81 3 3570 0461 Correspondence may also be addressed to Hirohide Saito. +81 75 753 3997+81 75 753 3996
| | - Shunnichi Kashida
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, CREST, Japan Science and Technology Corporation (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 and ICORP, JST, Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Tan Inoue
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, CREST, Japan Science and Technology Corporation (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 and ICORP, JST, Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
| | - Kiyotaka Shiba
- Department of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, CREST, Japan Science and Technology Corporation (JST), Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Laboratory of Gene Biodynamics, Graduate School of Biostudies, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502 and ICORP, JST, Kawaguchi Center Building 4-1-8, Honcho, Kawaguchi-shi, Saitama 332-0012, Japan
- *To whom correspondence should be addressed. +81 3 3570 0489+81 3 3570 0461 Correspondence may also be addressed to Hirohide Saito. +81 75 753 3997+81 75 753 3996
| |
Collapse
|
18
|
Wroe R, Chan HS, Bornberg-Bauer E. A structural model of latent evolutionary potentials underlying neutral networks in proteins. HFSP JOURNAL 2007. [PMID: 19404462 DOI: 10.2976/1.2739116] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A central question in molecular evolution concerns the nature of phenotypic transitions, in particular, if neutral mutations hamper or somehow facilitate adaptability of proteins to new requirements. Proteins have been found to fluctuate between different structures, with frequencies of structures being proportional to their stability. Therefore, functional promiscuity may correspond to different structures with energies close to the ground state which then represent multiple selectable traits. We here postulate that these near-ground-state structures facilitate smooth transitions between phenotypes. Using a biophysical heteropolymer model with exhaustive mappings of sequences onto structures, we demonstrate that this is indeed possible because of a smooth gradient of stability along which any structural phenotype can be optimized and also because of mutational proximity of similar phenotypes in genotype space. Our model provides a biophysical rationalization of the intriguing, and otherwise puzzling experimental observation that adaptation to new requirements, e.g., latent function of a promiscuous enzyme, can proceed while the "old," phenotypically dominant function is maintained along a series of seemingly neutral mutations (see accompanying article). Thus pleiotropy may facilitate adaptation of latent traits before gene duplications and increase the effective adaptability of proteins.
Collapse
|
19
|
Poelarends GJ, Almrud JJ, Serrano H, Darty JE, Johnson WH, Hackert ML, Whitman CP. Evolution of enzymatic activity in the tautomerase superfamily: mechanistic and structural consequences of the L8R mutation in 4-oxalocrotonate tautomerase. Biochemistry 2006; 45:7700-8. [PMID: 16784221 PMCID: PMC2596063 DOI: 10.1021/bi0600603] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
4-Oxalocrotonate tautomerase (4-OT) and trans-3-chloroacrylic acid dehalogenase (CaaD) are members of the tautomerase superfamily, a group of structurally homologous proteins that share a beta-alpha-beta fold and a catalytic amino-terminal proline. 4-OT, from Pseudomonas putida mt-2, catalyzes the conversion of 2-oxo-4-hexenedioate to 2-oxo-3-hexenedioate through the dienol intermediate 2-hydroxymuconate in a catabolic pathway for aromatic hydrocarbons. CaaD, from Pseudomonas pavonaceae 170, catalyzes the hydrolytic dehalogenation of trans-3-chloroacrylate in the trans-1,3-dichloropropene degradation pathway. Both reactions may involve an arginine-stabilized enediolate intermediate, a capability that may partially account for the low-level CaaD activity of 4-OT. Two active-site residues in 4-OT, Leu-8 and Ile-52, have now been mutated to the positionally conserved and catalytic ones in CaaD, alphaArg-8, and alphaGlu-52. The L8R and L8R/I52E mutants show improved CaaD activity (50- and 32-fold increases in k(cat)/K(m), respectively) and diminished 4-OT activity (5- and 1700-fold decreases in k(cat)/K(m), respectively). The increased efficiency of L8R-4-OT for the CaaD reaction stems primarily from an 8.8-fold increase in k(cat), whereas that of the L8R/I52E mutant is due largely to a 23-fold decrease in K(m). The presence of the additional arginine residue in the active site of L8R-4-OT does not alter the pK(a) of the Pro-1 amino group from that measured for the wild type (6.5 +/- 0.1 versus 6.4 +/- 0.2). Moreover, the crystal structure of L8R-4-OT is comparable to that of the wild type. Hence, the enhanced CaaD activity of L8R-4-OT is likely due to the additional arginine residue that can participate in substrate binding and/or stabilization of the putative enediolate intermediate. The results also suggest that the evolution of new functions within the tautomerase superfamily could be quite facile, requiring only a few strategically placed active-site mutations.
Collapse
Affiliation(s)
- Gerrit J Poelarends
- Division of Medicinal Chemistry, College of Pharmacy, and Department of Chemistry and Biochemistry, The University of Texas, Austin, Texas 78712-1074, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Wombacher R, Keiper S, Suhm S, Serganov A, Patel DJ, Jäschke A. Control of stereoselectivity in an enzymatic reaction by backdoor access. Angew Chem Int Ed Engl 2006; 45:2469-72. [PMID: 16528762 PMCID: PMC4693636 DOI: 10.1002/anie.200503280] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Richard Wombacher
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Sonja Keiper
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Sandra Suhm
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| | - Alexander Serganov
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (USA)
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10021 (USA)
| | - Andres Jäschke
- Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg (Germany)
| |
Collapse
|
21
|
James LC, Tawfik DS. The specificity of cross-reactivity: promiscuous antibody binding involves specific hydrogen bonds rather than nonspecific hydrophobic stickiness. Protein Sci 2003; 12:2183-93. [PMID: 14500876 PMCID: PMC2366915 DOI: 10.1110/ps.03172703] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Revised: 06/20/2003] [Accepted: 06/25/2003] [Indexed: 10/27/2022]
Abstract
Proteins are renowned for their specificity of function. There is, however, accumulating evidence that many proteins, from enzymes to antibodies, are functionally promiscuous. Promiscuity is of considerable physiological importance. In the immune system, cross-reactive or multispecific antibodies are implicated in autoimmune and allergy conditions. In most cases, however, the mechanism behind promiscuity and the relationship between specific and promiscuous activities are unknown. Are the two contradictory? Or can a protein exhibit several unrelated activities each of which is highly specific? To address these questions, we studied a multispecific IgE antibody (SPE7) elicited against a 2,4-dinitrophenyl hapten (DNP). SPE7 is able to distinguish between closely related derivatives such as NP (nitrophenol) and DNP, yet it can also bind a number of unrelated ligands. We find that, like DNP, the cross-reactants are themselves bound specifically-close derivatives of these cross-reactants show very low or no binding to SPE7. It has been suggested that cross-reactivity is simply due to "hydrophobic stickiness", nonspecific interactions between hydrophobic ligands and binding sites. However, partitioning experiments reveal that affinity for SPE7 is unrelated to ligand hydrophobicity. These data, combined with crystal structures of SPE7 in complex with four different ligands, demonstrate that each cross-reactant is bound specifically, forming different hydrogen bonds dependant upon its particular chemistry and the availability of complementary antibody residues. SPE7 is highly homologous to the germline antinitrophenol (NP) antibody B1-8. By comparing the sequences and binding patterns of SPE7 and B1-8, we address the relationship between affinity maturation, specificity, and cross-reactivity.
Collapse
Affiliation(s)
- Leo C James
- MRC Laboratory of Molecular Biology, Cambridge CB2 2HQ, United Kingdom
| | | |
Collapse
|
22
|
Halperin I, Wolfson H, Nussinov R. SiteLight: binding-site prediction using phage display libraries. Protein Sci 2003; 12:1344-59. [PMID: 12824481 PMCID: PMC2323941 DOI: 10.1110/ps.0237103] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2002] [Revised: 04/03/2003] [Accepted: 04/17/2003] [Indexed: 10/27/2022]
Abstract
Phage display enables the presentation of a large number of peptides on the surface of phage particles. Such libraries can be tested for binding to target molecules of interest by means of affinity selection. Here we present SiteLight, a novel computational tool for binding site prediction using phage display libraries. SiteLight is an algorithm that maps the 1D peptide library onto a three-dimensional (3D) protein surface. It is applicable to complexes made up of a protein Template and any type of molecule termed Target. Given the three-dimensional structure of a Template and a collection of sequences derived from biopanning against the Target, the Template interaction site with the Target is predicted. We have created a large diverse data set for assessing the ability of SiteLight to correctly predict binding sites. SiteLight predictive mapping enables discrimination between the binding and nonbinding parts of the surface. This prediction can be used to effectively reduce the surface by 75% without excluding the binding site. In 63% of the cases we have tested, there is at least one binding site prediction that overlaps the interface by at least 50%. These results suggest the applicability of phage display libraries for automated binding site prediction on three-dimensional structures. For most effective binding site prediction we propose using a random phage display library twice, to scan both binding partners of a given complex. The derived peptides are mapped to the other binding partner (now used as a Template). Here, the surface of each partner is reduced by 75%, focusing their relative positions with respect to each other significantly. Such information can be utilized to improve docking algorithms and scoring functions.
Collapse
Affiliation(s)
- Inbal Halperin
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and
| | - Haim Wolfson
- School of Computer Science, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ruth Nussinov
- Sackler Institute of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine and
- Laboratory of Experimental and Computational Biology, Intramural Research Support Program, SAIC, Inc., NCI-Frederick, Frederick, Maryland 21702, USA
| |
Collapse
|
23
|
Cohen HM, Tawfik DS, Griffiths AD. Promiscuous methylation of non-canonical DNA sites by HaeIII methyltransferase. Nucleic Acids Res 2002; 30:3880-5. [PMID: 12202773 PMCID: PMC137429 DOI: 10.1093/nar/gkf507] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cytosine C5 methyltransferase M.HaeIII recognises and methylates the central cytosine of its canonical site GGCC. Here we report that M.HaeIII can also, with lower efficiency, methylate cytosines located in a wide range of non-canonical sequences. Using bisulphite sequencing we mapped the methyl- cytosine residues in DNA methylated in vitro and in vivo by M.HaeIII. Methyl-cytosine residues were observed in multiple sequence contexts, most commonly, but not exclusively, at star sites (sites differing by a single base from the canonical sequence). The most frequently used star sites had changes at positions 1 and 4, but there is little or no methylation at star sites changed at position 2. The rate of methylation of non-canonical sites can be quite significant: a DNA substrate lacking a canonical site was methylated by M.HaeIII in vitro at a rate only an order of magnitude slower than an otherwise identical substrate containing the canonical site. In vivo methylation of non-canonical sites may therefore be significant and may have provided the starting point for the evolution of restriction-modification systems with novel sequence specificities.
Collapse
Affiliation(s)
- Helen M Cohen
- MRC Centre for Protein Engineering and MRC Laboratory for Molecular Biology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK and. Department of Biological Chemistry, The Weizmann Institute of Science, Rehovot 76 100, Israel
| | | | | |
Collapse
|