1
|
Pei Y, Ji P, Miao J, Gu X, Wang H, Zhao Y, Song W, Guo Z, Zhou H, Shen D, Liu J, Si J, Yan J, Ren Y, Bao Y, Yin Z, Dou D. A receptor kinase senses sterol by coupling with elicitins in auxotrophic Phytophthora. Proc Natl Acad Sci U S A 2024; 121:e2408186121. [PMID: 39475635 PMCID: PMC11551405 DOI: 10.1073/pnas.2408186121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 10/01/2024] [Indexed: 11/13/2024] Open
Abstract
Sterols are vital nutrients and signals for eukaryotic organisms. Mammalian cells are known to sense and respond to sterol status changes to maintain them within strict limits, a process associated with various human diseases. However, this process is not understood in oomycete pathogens, most of which are sterol auxotrophic and must obtain sterols from host plants. Here, we report that Phytophthora sojae SSRK1 (sterol-sensing receptor kinase 1) detects host sterols by coupling with elicitins, thereby controlling signaling and sterol absorption. Sterols are recruited by extracellular soluble elicitins, and these complexes then bind to SSRK1 to form trimolecular complexes. These complexes subsequently trigger downstream calcium influx, activation of mitogen-activated protein kinase, and transcriptome reprogramming through the receptor's kinase activity. Our data demonstrate a unique sterol sensing pathway where elicitins and a transmembrane receptor kinase SSRK1 act as coreceptors for extracellular sterols. These findings also portray a sterol-based war between oomycetes and plants, providing a unique perspective on how a pathogen detects host signals during infection.
Collapse
Affiliation(s)
- Yong Pei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Peiyun Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Jinlu Miao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Xinyi Gu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Hui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Yaning Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Wen Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Zhenjie Guo
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Hao Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Jinding Liu
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Jianyu Yan
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Yingkai Ren
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Yazhou Bao
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| | - Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing210095, China
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing210095, China
| |
Collapse
|
2
|
Chen Z, Liu F, Zeng M, Wang L, Liu H, Sun Y, Wang L, Zhang Z, Chen Z, Xu Y, Zhang M, Xia Y, Ye W, Dong S, Govers F, Wang Y, Wang Y. Convergent evolution of immune receptors underpins distinct elicitin recognition in closely related Solanaceous plants. THE PLANT CELL 2023; 35:1186-1201. [PMID: 36625683 PMCID: PMC10052394 DOI: 10.1093/plcell/koad002] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Elicitins are a large family of secreted proteins in Phytophthora. Clade 1 elicitins were identified decades ago as potent elicitors of immune responses in Nicotiana species, but the mechanisms underlying elicitin recognition are largely unknown. Here we identified an elicitin receptor in Nicotiana benthamiana that we named REL for Responsive to ELicitins. REL is a receptor-like protein (RLP) with an extracellular leucine-rich repeat (LRR) domain that mediates Phytophthora resistance by binding elicitins. Silencing or knocking out REL in N. benthamiana abolished elicitin-triggered cell death and immune responses. Domain deletion and site-directed mutagenesis revealed that the island domain (ID) located within the LRR domain of REL is crucial for elicitin recognition. In addition, sequence polymorphism in the ID underpins the genetic diversity of REL homologs in various Nicotiana species in elicitin recognition and binding. Remarkably, REL is phylogenetically distant from the elicitin response (ELR) protein, an LRR-RLP that was previously identified in the wild potato species Solanum microdontum and REL and ELR differ in the way they bind and recognize elicitins. Our findings provide insights into the molecular basis of plant innate immunity and highlight a convergent evolution of immune receptors towards perceiving the same elicitor.
Collapse
Affiliation(s)
- Zhaodan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Fan Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengzhu Zeng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanmei Liu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yujing Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Lan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhichao Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Chen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanpeng Xu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Mingmei Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yeqiang Xia
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Francine Govers
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University and Research, Droevendaalsesteeg 1, Wageningen NL-6708 PB, The Netherlands
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Biological Interaction and Crop Health, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Gao H, Ma K, Ji G, Pan L, Zhou Q. Lipid transfer proteins involved in plant-pathogen interactions and their molecular mechanisms. MOLECULAR PLANT PATHOLOGY 2022; 23:1815-1829. [PMID: 36052490 PMCID: PMC9644281 DOI: 10.1111/mpp.13264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 08/05/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nonspecific lipid transfer proteins (LTPs) are small, cysteine-rich proteins that play numerous functional roles in plant growth and development, including cutin wax formation, pollen tube adhesion, cell expansion, seed development, germination, and adaptation to changing environmental conditions. LTPs contain eight conserved cysteine residues and a hydrophobic cavity that provides a wide variety of lipid-binding specificities. As members of the pathogenesis-related protein 14 family (PR14), many LTPs inhibit fungal or bacterial growth, and act as positive regulators in plant disease resistance. Over the past decade, these essential immunity-related roles of LTPs in plant immune processes have been documented in a growing body of literature. In this review, we summarize the roles of LTPs in plant-pathogen interactions, emphasizing the underlying molecular mechanisms in plant immune responses and specific LTP functions.
Collapse
Affiliation(s)
- Hang Gao
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Kang Ma
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Guojie Ji
- Experimental Teaching Center of Biology and Basic MedicineSanquan College of Xinxiang Medical UniversityXinxiangHenanChina
| | - Liying Pan
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| | - Qingfeng Zhou
- College of Biology and FoodShangqiu Normal UniversityShangqiuHenanChina
| |
Collapse
|
4
|
Kotsaridis K, Tsakiri D, Sarris PF. Understanding enemy's weapons to an effective prevention: common virulence effects across microbial phytopathogens kingdoms. Crit Rev Microbiol 2022:1-15. [PMID: 35709325 DOI: 10.1080/1040841x.2022.2083939] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plant-pathogens interaction is an ongoing confrontation leading to the emergence of new diseases. The majority of the invading microorganisms inject effector proteins into the host cell, to bypass the sophisticated defense system of the host. However, the effectors could also have other specialized functions, which can disrupt various biological pathways of the host cell. Pathogens can enrich their effectors arsenal to increase infection success or expand their host range. This usually is accomplished by the horizontal gene transfer. Nowadays, the development of specialized software that can predict proteins structure, has changed the experimental designing in effectors' function research. Different effectors of distinct plant pathogens tend to fold alike and have the same function and focussed structural studies on microbial effectors can help to uncover their catalytic/functional activities, while the structural similarity can enable cataloguing the great number of pathogens' effectors. In this review, we collectively present phytopathogens' effectors with known enzymatic functions and proteins structure, originated from all the kingdoms of microbial plant pathogens. Presentation of their common domains and motifs is also included. We believe that the in-depth understanding of the enemy's weapons will help the development of new strategies to prevent newly emerging or re-emerging plant pathogens.
Collapse
Affiliation(s)
| | | | - Panagiotis F Sarris
- Department of Biology, University of Crete, Crete, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Crete, Greece.,Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
5
|
Pythium oligandrum in plant protection and growth promotion: Secretion of hydrolytic enzymes, elicitors and tryptamine as auxin precursor. Microbiol Res 2022; 258:126976. [DOI: 10.1016/j.micres.2022.126976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/25/2022]
|
6
|
Li W, Li P, Zhou X, Situ J, Lin Y, Qiu J, Yuan Y, Xi P, Jiang Z, Kong G. A Cytochrome B 5-Like Heme/Steroid Binding Domain Protein, PlCB5L1, Regulates Mycelial Growth, Pathogenicity and Oxidative Stress Tolerance in Peronophythora litchii. FRONTIERS IN PLANT SCIENCE 2021; 12:783438. [PMID: 34899811 PMCID: PMC8655872 DOI: 10.3389/fpls.2021.783438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
As an electron transport component, cytochrome b5 is an essential component of the Class II cytochrome P450 monooxygenation system and widely present in animals, plants, and fungi. However, the roles of Cyt-b5 domain proteins in pathogenic oomycetes remain unknown. Peronophythora litchii is an oomycete pathogen that causes litchi downy blight, the most destructive disease of litchi. In this study, we identified a gene, designated PlCB5L1, that encodes a Cyt-b5 domain protein in P. litchii, and characterized its function. PlCB5L1 is highly expressed in the zoospores, cysts, germinated cysts, and during early stages of infection. PlCB5L1 knockout mutants showed reduced growth rate and β-sitosterol utilization. Importantly, we also found that PlCB5L1 is required for the full pathogenicity of P. litchii. Compared with the wild-type strain, the PlCB5L1 mutants exhibited significantly higher tolerance to SDS and sorbitol, but impaired tolerance to cell wall stress, osmotic stress, and oxidative stress. Further, the expression of genes involved in oxidative stress tolerance, including peroxidase, cytochrome P450, and laccase genes, were down-regulated in PlCB5L1 mutants under oxidative stress. This is the first report that a Cyt-b5 domain protein contributes to the development, stress response, and pathogenicity in plant pathogenic oomycetes.
Collapse
Affiliation(s)
- Wen Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Peng Li
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
- Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yiming Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Jiahui Qiu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Yuling Yuan
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Zide Jiang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Department of Plant Pathology, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Antioxidant Properties of Ergosterol and Its Role in Yeast Resistance to Oxidation. Antioxidants (Basel) 2021; 10:antiox10071024. [PMID: 34202105 PMCID: PMC8300696 DOI: 10.3390/antiox10071024] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/14/2021] [Accepted: 06/22/2021] [Indexed: 01/13/2023] Open
Abstract
Although the functions and structural roles of sterols have been the subject of numerous studies, the reasons for the diversity of sterols in the different eukaryotic kingdoms remain unclear. It is thought that the specificity of sterols is linked to unidentified supplementary functions that could enable organisms to be better adapted to their environment. Ergosterol is accumulated by late branching fungi that encounter oxidative perturbations in their interfacial habitats. Here, we investigated the antioxidant properties of ergosterol using in vivo, in vitro, and in silico approaches. The results showed that ergosterol is involved in yeast resistance to tert-butyl hydroperoxide and protects lipids against oxidation in liposomes. A computational study based on quantum chemistry revealed that this protection could be related to its antioxidant properties operating through an electron transfer followed by a proton transfer mechanism. This study demonstrates the antioxidant role of ergosterol and proposes knowledge elements to explain the specific accumulation of this sterol in late branching fungi. Ergosterol, as a natural antioxidant molecule, could also play a role in the incompletely understood beneficial effects of some mushrooms on health.
Collapse
|
8
|
Rujirawat T, Patumcharoenpol P, Lohnoo T, Yingyong W, Kumsang Y, Payattikul P, Tangphatsornruang S, Suriyaphol P, Reamtong O, Garg G, Kittichotirat W, Krajaejun T. Probing the Phylogenomics and Putative Pathogenicity Genes of Pythium insidiosum by Oomycete Genome Analyses. Sci Rep 2018. [PMID: 29515152 PMCID: PMC5841299 DOI: 10.1038/s41598-018-22540-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Pythium insidiosum is a human-pathogenic oomycete. Many patients infected with it lose organs or die. Toward the goal of developing improved treatment options, we want to understand how Py. insidiosum has evolved to become a successful human pathogen. Our approach here involved the use of comparative genomic and other analyses to identify genes with possible functions in the pathogenicity of Py. insidiosum. We generated an Oomycete Gene Table and used it to explore the genome contents and phylogenomic relationships of Py. insidiosum and 19 other oomycetes. Initial sequence analyses showed that Py. insidiosum is closely related to Pythium species that are not pathogenic to humans. Our analyses also indicated that the organism harbours secreted and adhesin-like proteins, which are absent from related species. Putative virulence proteins were identified by comparison to a set of known virulence genes. Among them is the urease Ure1, which is absent from humans and thus a potential diagnostic and therapeutic target. We used mass spectrometric data to successfully validate the expression of 30% of 14,962 predicted proteins and identify 15 body temperature (37 °C)-dependent proteins of Py. insidiosum. This work begins to unravel the determinants of pathogenicity of Py. insidiosum.
Collapse
Affiliation(s)
- Thidarat Rujirawat
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.,Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Preecha Patumcharoenpol
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.,Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Tassanee Lohnoo
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Wanta Yingyong
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yothin Kumsang
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Penpan Payattikul
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sithichoke Tangphatsornruang
- Genomic Research Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathumthani, Thailand
| | - Prapat Suriyaphol
- Bioinformatics and Data Management for Research, Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Gagan Garg
- CSIRO Agriculture and Food, Centre for Environment and Life Sciences, Floreat, WA, Australia
| | - Weerayuth Kittichotirat
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
9
|
Koike R, Amemiya T, Horii T, Ota M. Structural changes of homodimers in the PDB. J Struct Biol 2017; 202:42-50. [PMID: 29233747 DOI: 10.1016/j.jsb.2017.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/30/2017] [Accepted: 12/08/2017] [Indexed: 01/25/2023]
Abstract
Protein complexes are involved in various biological phenomena. These complexes are intrinsically flexible, and structural changes are essential to their functions. To perform a large-scale automated analysis of the structural changes of complexes, we combined two original methods. An application, SCPC, compares two structures of protein complexes and decides the match of binding mode. Another application, Motion Tree, identifies rigid-body motions in various sizes and magnitude from the two structural complexes with the same binding mode. This approach was applied to all available homodimers in the Protein Data Bank (PDB). We defined two complex-specific motions: interface motion and subunit-spanning motion. In the former, each subunit of a complex constitutes a rigid body, and the relative movement between subunits occurs at the interface. In the latter, structural parts from distinct subunits constitute a rigid body, providing the relative movement spanning subunits. All structural changes were classified and examined. It was revealed that the complex-specific motions were common in the homodimers, detected in around 40% of families. The dimeric interfaces were likely to be small and flat for interface motion, while large and rugged for subunit-spanning motion. Interface motion was accompanied by a drastic change in contacts at the interface, while the change in the subunit-spanning motion was moderate. These results indicate that the interface properties of homodimers correlated with the type of complex-specific motion. The study demonstrates that the pipeline of SCPC and Motion Tree is useful for the massive analysis of structural change of protein complexes.
Collapse
Affiliation(s)
- Ryotaro Koike
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Takayuki Amemiya
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tatsuya Horii
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Motonori Ota
- Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
10
|
Bukiya AN, Dopico AM. Common structural features of cholesterol binding sites in crystallized soluble proteins. J Lipid Res 2017; 58:1044-1054. [PMID: 28420706 DOI: 10.1194/jlr.r073452] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/12/2017] [Indexed: 01/24/2023] Open
Abstract
Cholesterol-protein interactions are essential for the architectural organization of cell membranes and for lipid metabolism. While cholesterol-sensing motifs in transmembrane proteins have been identified, little is known about cholesterol recognition by soluble proteins. We reviewed the structural characteristics of binding sites for cholesterol and cholesterol sulfate from crystallographic structures available in the Protein Data Bank. This analysis unveiled key features of cholesterol-binding sites that are present in either all or the majority of sites: i) the cholesterol molecule is generally positioned between protein domains that have an organized secondary structure; ii) the cholesterol hydroxyl/sulfo group is often partnered by Asn, Gln, and/or Tyr, while the hydrophobic part of cholesterol interacts with Leu, Ile, Val, and/or Phe; iii) cholesterol hydrogen-bonding partners are often found on α-helices, while amino acids that interact with cholesterol's hydrophobic core have a slight preference for β-strands and secondary structure-lacking protein areas; iv) the steroid's C21 and C26 constitute the "hot spots" most often seen for steroid-protein hydrophobic interactions; v) common "cold spots" are C8-C10, C13, and C17, at which contacts with the proteins were not detected. Several common features we identified for soluble protein-steroid interaction appear evolutionarily conserved.
Collapse
Affiliation(s)
- Anna N Bukiya
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103
| | - Alejandro M Dopico
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38103
| |
Collapse
|
11
|
Sandor R, Der C, Grosjean K, Anca I, Noirot E, Leborgne-Castel N, Lochman J, Simon-Plas F, Gerbeau-Pissot P. Plasma membrane order and fluidity are diversely triggered by elicitors of plant defence. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5173-85. [PMID: 27604805 PMCID: PMC5014163 DOI: 10.1093/jxb/erw284] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Although plants are exposed to a great number of pathogens, they usually defend themselves by triggering mechanisms able to limit disease development. Alongside signalling events common to most such incompatible interactions, modifications of plasma membrane (PM) physical properties could be new players in the cell transduction cascade. Different pairs of elicitors (cryptogein, oligogalacturonides, and flagellin) and plant cells (tobacco and Arabidopsis) were used to address the issue of possible modifications of plant PM biophysical properties induced by elicitors and their links to other events of the defence signalling cascade. We observed an increase of PM order whatever the elicitor/plant cell pair used, provided that a signalling cascade was induced. Such membrane modification is dependent on the NADPH oxidase-mediated reactive oxygen species production. Moreover, cryptogein, which is the sole elicitor able to trap sterols, is also the only one able to trigger an increase in PM fluidity. The use of cryptogein variants with altered sterol-binding properties confirms the strong correlation between sterol removal from the PM and PM fluidity enhancement. These results propose PM dynamics as a player in early signalling processes triggered by elicitors of plant defence.
Collapse
Affiliation(s)
- Roman Sandor
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Christophe Der
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Kevin Grosjean
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Iulia Anca
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Elodie Noirot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Nathalie Leborgne-Castel
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Françoise Simon-Plas
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Patricia Gerbeau-Pissot
- Agroécologie, AgroSup Dijon, CNRS, INRA, Université Bourgogne Franche-Comté, F-21000 Dijon, France
| |
Collapse
|
12
|
Uhlíková H, Obořil M, Klempová J, Šedo O, Zdráhal Z, Kašparovský T, Skládal P, Lochman J. Elicitin-Induced Distal Systemic Resistance in Plants is Mediated Through the Protein-Protein Interactions Influenced by Selected Lysine Residues. FRONTIERS IN PLANT SCIENCE 2016; 7:59. [PMID: 26904041 PMCID: PMC4742723 DOI: 10.3389/fpls.2016.00059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 01/14/2016] [Indexed: 05/09/2023]
Abstract
Elicitins are a family of small proteins with sterol-binding activity that are secreted by Phytophthora and Pythium sp. classified as oomycete PAMPs. Although α- and β-elicitins bind with the same affinity to one high affinity binding site on the plasma membrane, β-elicitins (possessing 6-7 lysine residues) are generally 50- to 100-fold more active at inducing distal HR and systemic resistance than the α-isoforms (with only 1-3 lysine residues). To examine the role of lysine residues in elicitin biological activity, we employed site-directed mutagenesis to prepare a series of β-elicitin cryptogein variants with mutations on specific lysine residues. In contrast to direct infiltration of protein into leaves, application to the stem revealed a rough correlation between protein's charge and biological activity, resulting in protection against Phytophthora parasitica. A detailed analysis of proteins' movement in plants showed no substantial differences in distribution through phloem indicating differences in consequent apoplastic or symplastic transport. In this process, an important role of homodimer formation together with the ability to form a heterodimer with potential partner represented by endogenous plants LTPs is suggested. Our work demonstrates a key role of selected lysine residues in these interactions and stresses the importance of processes preceding elicitin recognition responsible for induction of distal systemic resistance.
Collapse
Affiliation(s)
- Hana Uhlíková
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Michal Obořil
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jitka Klempová
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Ondrej Šedo
- Research Group Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Zbyněk Zdráhal
- Research Group Proteomics, Central European Institute of Technology, Masaryk UniversityBrno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk UniversityBrno, Czech Republic
- *Correspondence: Jan Lochman,
| |
Collapse
|
13
|
Ptáčková N, Klempová J, Obořil M, Nedělová S, Lochman J, Kašparovský T. The effect of cryptogein with changed abilities to transfer sterols and altered charge distribution on extracellular alkalinization, ROS and NO generation, lipid peroxidation and LOX gene transcription in Nicotiana tabacum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 97:82-95. [PMID: 26433637 DOI: 10.1016/j.plaphy.2015.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/15/2015] [Accepted: 09/15/2015] [Indexed: 06/05/2023]
Abstract
Cryptogein, a protein from oomycete Phytophthora cryptogea, induces a hypersensitive cell death in Nicotiana tabacum. We prepared a new series of cryptogein mutant proteins with altered abilities to bind sterols and with altered charge distribution in the proteins. The effect of the mutations on the cryptogein ability to induce plant defence mechanisms associated with hypersensitive cell death were examined. Our results with new mutants support the previous findings that the sterol binding does not influence synthesis of ROS, cytosol acidification and development of leaf necrosis as these events seem to be more likely affected by the charge distribution and the overall protein structure. This hypothesis was also applicable on other mechanisms involved in the execution of plant cell death such as the NO generation, the stimulation of lipid peroxidation (determination of malondialdehyde and hydroxy fatty acids levels) and LOX gene transcription. In addition, the ability to bind sterols was found to serve not only for pathogen utilisation in its own metabolism but also to have an important function for the destabilization of plant membrane facilitating the pathogen spread inside the plant tissue as well as intensively contributing to the development of plant cell death. Considering the insertion of charged amino acid residues in the protein structure, the change localized in the protein surface affected its biological activity more effectively than that change inside the protein cavity. Moreover, the insertion of negative charged amino acids influenced mainly the events involved in the early phase of defence reaction, while the positive residues affected especially the necrotic activity of cryptogein.
Collapse
Affiliation(s)
- Nikola Ptáčková
- Masaryk University, Faculty of Science, Department of Biochemistry, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Jitka Klempová
- Masaryk University, Faculty of Science, Department of Biochemistry, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Michal Obořil
- Masaryk University, Faculty of Science, Department of Biochemistry, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Sylvie Nedělová
- Masaryk University, Faculty of Science, Department of Biochemistry, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Jan Lochman
- Masaryk University, Faculty of Science, Department of Biochemistry, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Tomáš Kašparovský
- Masaryk University, Faculty of Science, Department of Biochemistry, Kotlářská 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
14
|
Lerksuthirat T, Lohnoo T, Rujirawat T, Yingyong W, Jongruja N, Krajaejun T. Geographic variation in the elicitin-like glycoprotein, ELI025, of Pythium insidiosum isolated from human and animal subjects. INFECTION GENETICS AND EVOLUTION 2015; 35:127-33. [DOI: 10.1016/j.meegid.2015.08.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Revised: 07/09/2015] [Accepted: 08/03/2015] [Indexed: 11/29/2022]
|
15
|
Lerksuthirat T, Lohnoo T, Inkomlue R, Rujirawat T, Yingyong W, Khositnithikul R, Phaonakrop N, Roytrakul S, Sullivan TD, Krajaejun T. The elicitin-like glycoprotein, ELI025, is secreted by the pathogenic oomycete Pythium insidiosum and evades host antibody responses. PLoS One 2015; 10:e0118547. [PMID: 25793767 PMCID: PMC4368664 DOI: 10.1371/journal.pone.0118547] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/20/2015] [Indexed: 12/31/2022] Open
Abstract
Pythium insidiosum is a unique oomycete that can infect humans and animals. Patients with a P. insidiosum infection (pythiosis) have high rates of morbidity and mortality. The pathogen resists conventional antifungal drugs. Information on the biology and pathogenesis of P. insidiosum is limited. Many pathogens secrete proteins, known as effectors, which can affect the host response and promote the infection process. Elicitins are secretory proteins and are found only in the oomycetes, primarily in Phytophthora and Pythium species. In plant-pathogenic oomycetes, elicitins function as pathogen-associated molecular pattern molecules, sterol carriers, and plant defense stimulators. Recently, we reported a number of elicitin-encoding genes from the P. insidiosum transcriptome. The function of elicitins during human infections is unknown. One of the P. insidiosum elicitin-encoding genes, ELI025, is highly expressed and up-regulated at body temperature. This study aims to characterize the biochemical, immunological, and genetic properties of the elicitin protein, ELI025. A 12.4-kDa recombinant ELI025 protein (rELI025) was expressed in Escherichia coli. Rabbit anti-rELI025 antibodies reacted strongly with the native ELI025 in P. insidiosum’s culture medium. The detected ELI025 had two isoforms: glycosylated and non-glycosylated. ELI025 was not immunoreactive with sera from pythiosis patients. The region near the transcriptional start site of ELI025 contained conserved oomycete core promoter elements. In conclusion, ELI025 is a small, abundant, secreted glycoprotein that evades host antibody responses. ELI025 is a promising candidate for development of diagnostic and therapeutic targets for pythiosis.
Collapse
Affiliation(s)
- Tassanee Lerksuthirat
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tassanee Lohnoo
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Ruchuros Inkomlue
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thidarat Rujirawat
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Molecular Medicine Program, Multidisciplinary Unit, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Wanta Yingyong
- Research Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Rommanee Khositnithikul
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Narumon Phaonakrop
- Proteomics Research Laboratory, Genome Institute, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sittiruk Roytrakul
- Proteomics Research Laboratory, Genome Institute, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thomas D. Sullivan
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Theerapong Krajaejun
- Department of Pathology, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
16
|
Chang YH, Yan HZ, Liou RF. A novel elicitor protein from Phytophthora parasitica induces plant basal immunity and systemic acquired resistance. MOLECULAR PLANT PATHOLOGY 2015; 16:123-36. [PMID: 24965864 PMCID: PMC6638464 DOI: 10.1111/mpp.12166] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The interaction between Phytophthora pathogens and host plants involves the exchange of complex molecular signals from both sides. Recent studies of Phytophthora have led to the identification of various apoplastic elicitors known to trigger plant immunity. Here, we provide evidence that the protein encoded by OPEL of Phytophthora parasitica is a novel elicitor. Homologues of OPEL were identified only in oomycetes, but not in fungi and other organisms. Quantitative reverse transcription-polymerase chain reaction (RT-PCR) revealed that OPEL is expressed throughout the development of P. parasitica and is especially highly induced after plant infection. Infiltration of OPEL recombinant protein from Escherichia coli into leaves of Nicotiana tabacum (cv. Samsun NN) resulted in cell death, callose deposition, the production of reactive oxygen species and induced expression of pathogen-associated molecular pattern (PAMP)-triggered immunity markers and salicylic acid-responsive defence genes. Moreover, the infiltration conferred systemic resistance against a broad spectrum of pathogens, including Tobacco mosaic virus, the bacteria wilt pathogen Ralstonia solanacearum and P. parasitica. In addition to the signal peptide, OPEL contains three conserved domains: a thaumatin-like domain, a glycine-rich protein domain and a glycosyl hydrolase (GH) domain. Intriguingly, mutation of a putative laminarinase active site motif in the predicted GH domain abolished its elicitor activity, which suggests enzymatic activity of OPEL in triggering the defence response.
Collapse
Affiliation(s)
- Yi-Hsuan Chang
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, 106, Taiwan
| | | | | |
Collapse
|
17
|
Misner I, Blouin N, Leonard G, Richards TA, Lane CE. The secreted proteins of Achlya hypogyna and Thraustotheca clavata identify the ancestral oomycete secretome and reveal gene acquisitions by horizontal gene transfer. Genome Biol Evol 2014; 7:120-35. [PMID: 25527045 PMCID: PMC4316629 DOI: 10.1093/gbe/evu276] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2014] [Indexed: 12/27/2022] Open
Abstract
Saprotrophic and parasitic microorganisms secrete proteins into the environment to breakdown macromolecules and obtain nutrients. The molecules secreted are collectively termed the "secretome" and the composition and function of this set of proteins varies depending on the ecology, life cycle, and environment of an organism. Beyond the function of nutrient acquisition, parasitic lineages must also secrete molecules to manipulate their host. Here, we use a combination of de novo genome and transcriptome sequencing and bioinformatic identification of signal peptides to identify the putative secreted proteome of two oomycetes, the facultative parasite Achlya hypogyna and free-living Thraustotheca clavata. By comparing the secretomes of these saprolegnialean oomycetes with that of eight other oomycetes, we were able to characterize the evolution of this protein set across the oomycete clade. These species span the last common ancestor of the two major oomycete families allowing us to identify the ancestral secretome. This putative ancestral secretome consists of at least 84 gene families. Only 11 of these gene families are conserved across all 10 secretomes analyzed and the two major branches in the oomycete radiation. Notably, we have identified expressed elicitin-like effector genes in the saprotrophic decomposer, T. clavata. Phylogenetic analyses show six novel horizontal gene transfers to the oomycete secretome from bacterial and fungal donor lineages, four of which are specific to the Saprolegnialeans. Comparisons between free-living and pathogenic taxa highlight the functional changes of oomycete secretomes associated with shifts in lifestyle.
Collapse
Affiliation(s)
- Ian Misner
- Department of Biological Sciences, The University of Rhode Island Department of Biological Sciences, The University of Maryland, College Park
| | - Nic Blouin
- Department of Biological Sciences, The University of Rhode Island
| | - Guy Leonard
- Biosciences, University of Exeter, United Kingdom
| | - Thomas A Richards
- Biosciences, University of Exeter, United Kingdom Integrated Microbial Biodiversity Program, Canadian Institute for Advanced Research, Toronto, Ontario, Canada
| | | |
Collapse
|
18
|
Campos VA, Perina FJ, Alves E, Sartorelli J, Moura AM, Oliveira DF. Anadenanthera colubrina (Vell.) Brenan produces steroidal substances that are active against Alternaria alternata (Fr.) Keissler and that may bind to oxysterol-binding proteins. PEST MANAGEMENT SCIENCE 2014; 70:1815-1822. [PMID: 24408227 DOI: 10.1002/ps.3722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 12/18/2013] [Accepted: 12/26/2013] [Indexed: 06/03/2023]
Abstract
BACKGROUND In previous studies, the extract from Anadenanthera colubrina was active against Alternaria alternata in vitro and reduced the disease caused by this fungus on Murcott tangor fruits to levels that have been obtained using commercial fungicides. Therefore, the goal of the present work was to isolate and identify the active substances in this extract and identify in silico their protein target in the fungus. RESULTS The bioguided fractionation of the methanol extract from the fruits of A. colubrina resulted in the isolation of β-sitosterol and β-sitosteryl linoleate, which had minimal inhibitory concentrations (MICs) of 250 and 500 µg mL(-1) , respectively, against A. alternata. Under the same conditions, the MICs for two commercial fungicides were 1250 and 19 µg mL(-1) . In silico studies showed that these steroidal substances bind well to oxysterol-binding proteins from Saccharomyces cerevisiae. CONCLUSION β-Sitosterol and β-sitosteryl linoleate, produced by A. colubrina, are active against A. alternata. In silico studies suggest that these substances may act by binding to oxysterol-binding proteins. Therefore, both substances and these proteins have potential use in the development of new steroidal structures and analogues to control the disease caused by A. alternata.
Collapse
Affiliation(s)
- Viviane Ac Campos
- Departamento de Química, Universidade Federal de Lavras, Lavras, MG, Brasil
| | | | | | | | | | | |
Collapse
|
19
|
Krajaejun T, Lerksuthirat T, Garg G, Lowhnoo T, Yingyong W, Khositnithikul R, Tangphatsornruang S, Suriyaphol P, Ranganathan S, Sullivan TD. Transcriptome analysis reveals pathogenicity and evolutionary history of the pathogenic oomycete Pythium insidiosum. Fungal Biol 2014; 118:640-53. [DOI: 10.1016/j.funbio.2014.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 12/03/2013] [Accepted: 01/24/2014] [Indexed: 12/14/2022]
|
20
|
Structure and dynamics studies of sterol 24-C-methyltransferase with mechanism based inactivators for the disruption of ergosterol biosynthesis. Mol Biol Rep 2014; 41:4279-93. [DOI: 10.1007/s11033-014-3299-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 02/13/2014] [Indexed: 11/25/2022]
|
21
|
Hofzumahaus S, Schallmey A. Escherichia coli-based expression system for the heterologous expression and purification of the elicitin β-cinnamomin from Phytophthora cinnamomi. Protein Expr Purif 2013; 90:117-23. [PMID: 23747816 DOI: 10.1016/j.pep.2013.05.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/17/2013] [Accepted: 05/18/2013] [Indexed: 10/26/2022]
Abstract
Elicitins are sterol carrier proteins from the Oomycete genera Phytophthora and Phytium and elicit a hypersensitive response in many economically important plants, in some cases causing a systemic acquired resistance. Their recombinant expression in bacteria is complicated by the presence of three disulfide bonds in the elicitin structure. In consequence, elicitins have so far only been produced in soluble form by isolation from native Phytophthora or Phytium strains or by recombinant expression in the yeast Pichia pastoris. Here, for the first time, we report the soluble expression of the elicitin β-cinnamomin from Phytophthora cinnamomi in Escherichia coli by secretion of the protein into the periplasm. β-Cinnamomin yields have been significantly improved after careful selection of the optimum secretion signal sequence. In total, 17.6 mg β-cinnamomin per liter cell culture have been obtained in shake flasks with the secretion signal sequence of the maltose-binding protein MalE from E. coli. Furthermore, by making use of a C-terminal His-tag, β-cinnamomin purification has been significantly simplified with only one step of immobilized metal ion affinity chromatography yielding protein of high purity (>90%). The established protocol has further been successfully applied to the soluble expression of another elicitin.
Collapse
|
22
|
Muller R, Walker S, Brauer J, Junquera M. Does Beer Contain Compounds That Might Interfere with Cholesterol Metabolism? JOURNAL OF THE INSTITUTE OF BREWING 2012. [DOI: 10.1002/j.2050-0416.2007.tb00263.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Dokládal L, Obořil M, Stejskal K, Zdráhal Z, Ptáčková N, Chaloupková R, Damborský J, Kašparovský T, Jeandroz S, Žd'árská M, Lochman J. Physiological and proteomic approaches to evaluate the role of sterol binding in elicitin-induced resistance. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2203-15. [PMID: 22223811 PMCID: PMC3295402 DOI: 10.1093/jxb/err427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 11/28/2011] [Accepted: 11/30/2011] [Indexed: 05/22/2023]
Abstract
Cryptogein is a proteinaceous elicitor secreted by Phytophthora cryptogea that can induce resistance to P. parasitica in tobacco plants. On the basis of previous computer modelling experiments, by site-directed mutagenesis a series of cryptogein variants was prepared with altered abilities to bind sterols, phospholipids or both. The sterol binding and phospholipid transfer activities corresponded well with the previously reported structural data. Induction of the synthesis of reactive oxygen species (ROS) in tobacco cells in suspension and proteomic analysis of intercellular fluid changes in tobacco leaves triggered by these mutant proteins were not proportional to their ability to bind or transfer sterols and phospholipids. However, changes in the intercellular proteome corresponded to transcription levels of defence genes and resistance to P. parasitica and structure-prediction of mutants did not reveal any significant changes in protein structure. These results suggest, contrary to previous proposals, that the sterol-binding ability of cryptogein and its mutants, and the associated conformational change in the ω-loop, might not be principal factors in either ROS production or resistance induction. Nevertheless, the results support the importance of the ω-loop for the interaction of the protein with the high affinity binding site on the plasma membrane.
Collapse
Affiliation(s)
- Ladislav Dokládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Michal Obořil
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Karel Stejskal
- Core Facility–Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Zbyněk Zdráhal
- Core Facility–Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Nikola Ptáčková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Radka Chaloupková
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Substances in the Environment, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Jiří Damborský
- Loschmidt Laboratories, Department of Experimental Biology and Research Centre for Toxic Substances in the Environment, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| | - Sylvain Jeandroz
- UMR AgroSup Dijon/CNRS/INRA/Université Bourgogne “Agroécologie”, 17 rue Sully, BP 86510, F-21065 Dijon cedex, France
| | - Markéta Žd'árská
- Core Facility–Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic
| |
Collapse
|
24
|
Expressed sequence tags reveal genetic diversity and putative virulence factors of the pathogenic oomycete Pythium insidiosum. Fungal Biol 2011; 115:683-96. [PMID: 21724174 DOI: 10.1016/j.funbio.2011.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 01/06/2023]
Abstract
Oomycetes are unique eukaryotic microorganisms that share a mycelial morphology with fungi. Many oomycetes are pathogenic to plants, and a more limited number are pathogenic to animals. Pythium insidiosum is the only oomycete that is capable of infecting both humans and animals, and causes a life-threatening infectious disease, called "pythiosis". In the majority of pythiosis patients life-long handicaps result from the inevitable radical excision of infected organs, and many die from advanced infection. Better understanding P. insidiosum pathogenesis at molecular levels could lead to new forms of treatment. Genetic and genomic information is lacking for P. insidiosum, so we have undertaken an expressed sequence tag (EST) study, and report on the first dataset of 486 ESTs, assembled into 217 unigenes. Of these, 144 had significant sequence similarity with known genes, including 47 with ribosomal protein homology. Potential virulence factors included genes involved in antioxidation, thermal adaptation, immunomodulation, and iron and sterol binding. Effectors resembling pathogenicity factors of plant-pathogenic oomycetes were also discovered, such as, a CBEL-like protein (possible involvement in host cell adhesion and hemagglutination), a putative RXLR effector (possibly involved in host cell modulation) and elicitin-like (ELL) proteins. Phylogenetic analysis mapped P. insidiosum ELLs to several novel clades of oomycete elicitins (ELIs), and homology modeling predicted that P. insidiosum ELLs should bind sterols. Most of the P. insidiosum ESTs showed homology to sequences in the genome or EST databases of other oomycetes, but one putative gene, with unknown function, was found to be unique to P. insidiosum. The EST dataset reported here represents the first steps in identifying genes of P. insidiosum and beginning transcriptome analysis. This genetic information will facilitate understanding of pathogenic mechanisms of this devastating pathogen.
Collapse
|
25
|
Cabral A, Stassen JHM, Seidl MF, Bautor J, Parker JE, Van den Ackerveken G. Identification of Hyaloperonospora arabidopsidis transcript sequences expressed during infection reveals isolate-specific effectors. PLoS One 2011; 6:e19328. [PMID: 21573066 PMCID: PMC3090399 DOI: 10.1371/journal.pone.0019328] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/25/2011] [Indexed: 12/25/2022] Open
Abstract
Biotrophic plant pathogens secrete effector proteins that are important for infection of the host. The aim of this study was to identify effectors of the downy mildew pathogen Hyaloperonospora arabidopsidis (Hpa) that are expressed during infection of its natural host Arabidopsis thaliana. Infection-related transcripts were identified from Expressed Sequence Tags (ESTs) derived from leaves of the susceptible Arabidopsis Ws eds1-1 mutant inoculated with the highly virulent Hpa isolate Waco9. Assembly of 6364 ESTs yielded 3729 unigenes, of which 2164 were Hpa-derived. From the translated Hpa unigenes, 198 predicted secreted proteins were identified. Of these, 75 were found to be Hpa-specific and six isolate Waco9-specific. Among 42 putative effectors identified there were three Elicitin-like proteins, 16 Cysteine-rich proteins and 18 host-translocated RXLR effectors. Sequencing of alleles in different Hpa isolates revealed that five RXLR genes show signatures of diversifying selection. Thus, EST analysis of Hpa-infected Arabidopsis is proving to be a powerful method for identifying pathogen effector candidates expressed during infection. Delivery of the Waco9-specific protein RXLR29 in planta revealed that this effector can suppress PAMP-triggered immunity and enhance disease susceptibility. We propose that differences in host colonization can be conditioned by isolate-specific effectors.
Collapse
Affiliation(s)
- Adriana Cabral
- Department of Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Joost H. M. Stassen
- Department of Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - Michael F. Seidl
- Theoretical Biology and Bioinformatics, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Centre for BioSystems Genomics (CBSG), Wageningen, The Netherlands
| | - Jaqueline Bautor
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Guido Van den Ackerveken
- Department of Plant-Microbe Interactions, Department of Biology, Utrecht University, Utrecht, The Netherlands
- Centre for BioSystems Genomics (CBSG), Wageningen, The Netherlands
| |
Collapse
|
26
|
Plešková V, Kašparovský T, Obořil M, Ptáčková N, Chaloupková R, Ladislav D, Damborský J, Lochman J. Elicitin-membrane interaction is driven by a positive charge on the protein surface: role of Lys13 residue in lipids loading and resistance induction. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:321-8. [PMID: 21296584 DOI: 10.1016/j.plaphy.2011.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 12/18/2010] [Accepted: 01/02/2011] [Indexed: 05/24/2023]
Abstract
Elicitins are family of small proteins secreted by species of the pathogenic fungus Phytophthora inducing a defence reaction in plants. They contain a hydrophobic cavity capable of binding sterols and fatty acids, and on the basis of their pI they are classified as either α-elicitins or more necrotising β-elicitins. The residue Lys13 was previously identified as a key determinant of the necrotising activity of basic elicitins. In the present study we describe changes in the ability of cryptogein, a β-elicitin inducing a hypersensitive response in tobacco, to transfer sterols and fatty acids between micelles and liposomes upon Lys13Val mutation. We propose that the change in activity is influenced by the elimination of positive charge on the surface of cryptogein, which is significant for correct positioning of the protein during lipid loading, without adversely affecting the binding of sterol to the cavity of the protein. Compared to wild type cryptogein, mutation Lys13Val resulted in lowered expression of defence-related genes and compromised resistance to Phytophthora parasitica. Furthermore, resistance induced by Lys13Val mutant was similar to that induced by acidic elicitin capsicein containing at amino position 13 valine Determined results sustained a crucial role of positive lysine residues on the surface of basic elicitins and suggested their significant role in correct protein-membrane interaction and thus on their biological activity.
Collapse
Affiliation(s)
- Veronika Plešková
- Department of Biochemistry and National Center for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská 2, Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
27
|
NMR and X-ray structures of the putative sterol carrier protein 2 from Thermus thermophilus HB8 show conformational changes. ACTA ACUST UNITED AC 2010; 11:247-56. [DOI: 10.1007/s10969-010-9096-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 09/23/2010] [Indexed: 11/27/2022]
|
28
|
Escape of intracellular Shigella from autophagy requires binding to cholesterol through the type III effector, IcsB. Microbes Infect 2010; 12:956-66. [PMID: 20599519 DOI: 10.1016/j.micinf.2010.06.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 06/16/2010] [Accepted: 06/17/2010] [Indexed: 11/20/2022]
Abstract
Type III secretion systems are present in many pathogenic bacteria and mediate the translocation of bacterial effectors into host cells. Identification of host targets of these effectors is crucial for understanding bacterial virulence. IcsB, a type III secretion effector, helps Shigella to evade the host autophagy defense system by binding to the autophagy protein, Atg5. Here, we show that IcsB is able to interact specifically with cholesterol. The cholesterol binding domain (CBD) of IcsB is located between residues 288 and 351. Specific mutations of single tyrosine residues Y297 or Y340 of IcsB by phenylalanine (F) slightly reduced cholesterol binding, whereas deletion of the entire CBD or double mutation Y297F-Y340F strongly abolished interactions with cholesterol. To determine whether Shigella expressing IcsB variants could evade autophagy as effectively as the wild-type Shigella, we infected MDAMC cells stably expressing the autophagy marker LC3 fused to GFP and bacterial autophagosome formation was quantified using fluorescence microscopy. Mutation Y297F or Y340F slightly impaired IcsB function, whereas complete removal of CBD or mutation Y297F-Y340F significantly impaired autophagy evasion. Furthermore, we report that BopA, the counterpart of IcsB in Burkholderia pseudomallei with similar autophagy-evading properties, contains the CBD domain and is also able to bind cholesterol.
Collapse
|
29
|
Andreea Neculai M, Ivanov D, Bernards MA. Partial purification and characterization of three ginsenoside-metabolizing beta-glucosidases from Pythium irregulare. PHYTOCHEMISTRY 2009; 70:1948-1957. [PMID: 19818460 DOI: 10.1016/j.phytochem.2009.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 08/18/2009] [Accepted: 09/08/2009] [Indexed: 05/28/2023]
Abstract
The ginseng pathogen Pythium irregulare is able to selectively metabolize the 20(S) protopanaxadiol ginsenosides Rb1, Rb2, Rc, Rd, and gypenoside XVII via extracellular glycosidases, leading to the formation and partial assimilation of ginsenoside F2. Herein we have partially purified three ginsenoside-deglycosylating enzymes from P. irregulare culture filtrates, and provide preliminary characterization. A protocol involving acetone precipitation, chromatofocusing on PBE 94, gel filtration on Sephacryl S-200 HR and ion-exchange on Q Sepharose Fast Flow resulted in a 13-25-fold purification. The three enzymes were induced in cultures grown in the presence of ginsenosides, and found to be acidic proteins (pI of 4.5-5.0), consisting of an apparent high molecular weight (approximately 160 kDa) homodimer of 78 kDa subunits, with beta(1-->6) activity, and two monomeric enzymes of 61 and 57 kDa, with beta(1-->2) activity. Primary sequence analysis identified them as beta-glucosidases, with no homology to other saponin-deglycosylating enzymes. These are the first glycosidases purified from a Pythium species. We speculate that their role is likely to help Pythium find its host, and/or obtain nutrients/growth factors from its environment.
Collapse
Affiliation(s)
- M Andreea Neculai
- Department of Biology, University of Western Ontario, London, Ontario, Canada N6A 5B7
| | | | | |
Collapse
|
30
|
Zaman U, Abbasi A. Isolation, purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum. PHYTOCHEMISTRY 2009; 70:979-987. [PMID: 19473681 DOI: 10.1016/j.phytochem.2009.04.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 05/27/2023]
Abstract
Cuminum cyminum, an aromatic plant from the family Umbelliferae, is used as a flavoring and seasoning agent in foods. This communication reports the characterization of a nonspecific lipid transfer protein nsLTP1 from its seeds. Plant nsLTPs are small basic proteins involved in transport of lipids between membranes. These proteins are known to participate in plant defense; however, the exact mechanism of their antimicrobial action against fungi or bacteria is still unclear. The cumin nsLTP1 has been purified using a combination of chromatographic procedures and further characterized using mass spectrometry, circular dichroism spectroscopy and Edman degradation. Amino acid sequence has been used to predict homology model of cumin nsLTP1 in complex with myristic acid, and lyso-myristoyl phosphatidyl choline (LMPC). Cumin nsLTP1 is a monomeric protein with a molecular weight of 9.7 kDa as estimated by SDS-PAGE and ESIMS. The protein shows an isoelectric point of 7.8 on 6% PAGE. The primary structure consists of 92 amino acids with eight conserved cysteine residues. The global fold of cumin nsLTP1 includes four alpha-helices stabilized by four disulfide bonds and a C-terminal tail. The role of internal hydrophobic cavity of the protein in lipid transfer is discussed.
Collapse
Affiliation(s)
- Uzma Zaman
- International Center for Chemical and Biological Sciences, HEJ Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | | |
Collapse
|
31
|
Cloning of genes encoding nonhost hypersensitive response-inducing elicitors from Phytophthora boehmeriae. CHINESE SCIENCE BULLETIN-CHINESE 2007. [DOI: 10.1007/s11434-007-0030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Murcia M, Faráldo-Gómez JD, Maxfield FR, Roux B. Modeling the structure of the StART domains of MLN64 and StAR proteins in complex with cholesterol. J Lipid Res 2006; 47:2614-30. [PMID: 16990645 DOI: 10.1194/jlr.m600232-jlr200] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Steroidogenic acute regulatory protein-related lipid transfer (StART) domains are ubiquitously involved in intracellular lipid transport and metabolism and other cell-signaling events. In this work, we use a flexible docking algorithm, comparative modeling, and molecular dynamics (MD) simulations to generate plausible three-dimensional atomic models of the StART domains of human metastatic lymph node 64 (MLN64) and steroidogenic acute regulatory protein (StAR) proteins in complex with cholesterol. Our results show that cholesterol can adopt a similar conformation in the binding cavity in both cases and that the main contribution to the protein-ligand interaction energy derives from hydrophobic contacts. However, hydrogen-bonding and water-mediated interactions appear to be important in the fine-tuning of the binding affinity and the position of the ligand. To gain insights into the mechanism of binding, we carried out steered MD simulations in which cholesterol was gradually extracted from within the StAR model. These simulations indicate that a transient opening of loop Omega1 may be sufficient for uptake and release, and they also reveal a pathway of intermediate states involving residues known to be crucial for StAR activity. Based on these observations, we suggest specific mutagenesis targets for binding studies of cholesterol and its derivatives that could improve our understanding of the structural determinants for ligand binding by sterol carrier proteins.
Collapse
Affiliation(s)
- Marta Murcia
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | | | |
Collapse
|
33
|
Viitanen L, Nylund M, Eklund DM, Alm C, Eriksson AK, Tuuf J, Salminen TA, Mattjus P, Edqvist J. Characterization of SCP-2 from Euphorbia lagascae reveals that a single Leu/Met exchange enhances sterol transfer activity. FEBS J 2006; 273:5641-55. [PMID: 17212780 DOI: 10.1111/j.1742-4658.2006.05553.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sterol carrier protein-2 (SCP-2) is a small intracellular basic protein domain implicated in peroxisomal beta-oxidation. We extend our knowledge of plant SCP-2 by characterizing SCP-2 from Euphorbia lagascae. This protein consists of 122 amino acids including a PTS1 peroxisomal targeting signal. It has a molecular mass of 13.6 kDa and a pI of 9.5. It shares 67% identity and 84% similarity with SCP-2 from Arabidopsis thaliana. Proteomic analysis revealed that E. lagascae SCP-2 accumulates in the endosperm during seed germination. It showed in vitro transfer activity of BODIPY-phosphatidylcholine (BODIPY-PC). The transfer of BODIPY-PC was almost completely inhibited after addition of phosphatidylinositol, palmitic acid, stearoyl-CoA and vernolic acid, whereas sterols only had a very marginal inhibitory effect. We used protein modelling and site-directed mutagenesis to investigate why the BODIPY-PC transfer mediated by E. lagascae SCP-2 is not sensitive to sterols, whereas the transfer mediated by A. thaliana SCP-2 shows sterol sensitivity. Protein modelling suggested that the ligand-binding cavity of A. thaliana SCP-2 has four methionines (Met12, 14, 15 and 100), which are replaced by leucines (Leu11, 13, 14 and 99) in E. lagascae SCP-2. Changing Leu99 to Met99 was sufficient to convert E. lagascae SCP-2 into a sterol-sensitive BODIPY-PC-transfer protein, and correspondingly, changing Met100 to Leu100 abolished the sterol sensitivity of A. thaliana SCP-2.
Collapse
Affiliation(s)
- Lenita Viitanen
- Department of Biochemistry and Pharmacy, Abo Akademi University, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Berthault P, Huber G, Ha PT, Dubois L, Desvaux H, Guittet E. Study of the hydrophobic cavity of beta-cryptogein through laser-polarized xenon NMR spectroscopy. Chembiochem 2006; 7:59-64. [PMID: 16292784 DOI: 10.1002/cbic.200500140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The interaction of xenon with beta-cryptogein, a basic 10 kDa protein belonging to the elicitin family, has been studied by using dissolved thermal and laser-polarized gas in liquid-state NMR. 13C and 1H chemical-shift-mapping experiments were unfruitful, the proton lines only experienced a slight narrowing but no significant frequency variation when the xenon concentration was increased. Nevertheless magnetization transfer from hyperpolarized xenon to protons of the protein demonstrates an undoubted interaction and enables localization of the noble-gas-binding site. Due to the proton-proton cross-relaxation efficiency, however, this experiment is subjected to important spin-diffusion. An automatic procedure that takes spin-diffusion into account when assigning the protons that interact with xenon is then used. The binding site, as defined by 30 Xe--H interactions, is situated in the inner core of the protein. The protons that interact with xenon border the channel by which sterols are known to enter into the cavity. These results support the idea that xenon is a good probe for hydrophobic protein regions.
Collapse
Affiliation(s)
- Patrick Berthault
- Laboratoire Structure et Dynamique par Résonance Magnétique, DSM/DRECAM/Service de Chimie Moléculaire, URA CEA/CNRS 331, CEA/Saclay, 91191 Gif sur Yvette, France.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
The oomycetes form a phylogenetically distinct group of eukaryotic microorganisms that includes some of the most notorious pathogens of plants. Oomycetes accomplish parasitic colonization of plants by modulating host cell defenses through an array of disease effector proteins. The biology of effectors is poorly understood but tremendous progress has been made in recent years. This review classifies and catalogues the effector secretome of oomycetes. Two classes of effectors target distinct sites in the host plant: Apoplastic effectors are secreted into the plant extracellular space, and cytoplasmic effectors are translocated inside the plant cell, where they target different subcellular compartments. Considering that five species are undergoing genome sequencing and annotation, we are rapidly moving toward genome-wide catalogues of oomycete effectors. Already, it is evident that the effector secretome of pathogenic oomycetes is more complex than expected, with perhaps several hundred proteins dedicated to manipulating host cell structure and function.
Collapse
Affiliation(s)
- Sophien Kamoun
- Department of Plant Pathology, Ohio State University, Ohio Agricultural Research and Development Center, Wooster, Ohio 44691, USA.
| |
Collapse
|
36
|
Rodrigues ML, Archer M, Martel P, Miranda S, Thomaz M, Enguita FJ, Baptista RP, Pinho e Melo E, Sousa N, Cravador A, Carrondo MA. Crystal structures of the free and sterol-bound forms of beta-cinnamomin. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1764:110-21. [PMID: 16249127 DOI: 10.1016/j.bbapap.2005.09.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 08/19/2005] [Accepted: 09/06/2005] [Indexed: 10/25/2022]
Abstract
The crystal structure of the elicitin beta-cinnamomin (beta-CIN) was determined in complex with ergosterol at 1.1 A resolution. beta-CIN/ergosterol complex crystallized in the monoclinic space group P2(1), with unit cell parameters of a = 31.0, b = 62.8, c = 50.0 A and beta = 93.4 degrees and two molecules in the asymmetric unit. Ligand extraction with chloroform followed by crystallographic analysis yielded a 1.35 A structure of beta-CIN (P4(3)2(1)2 space group) where the characteristic elicitin fold was kept. After incubation with cholesterol, a new complex structure was obtained, showing that the protein retains, after the extraction procedure, its ability to complex sterols. The necrotic effect of beta-CIN on tobacco was also shown to remain unchanged. Theoretical docking studies of the triterpene lupeol to beta-CIN provided an explanation for the apparent inability of beta-CIN to bind this ligand, as observed experimentally.
Collapse
Affiliation(s)
- Maria Luisa Rodrigues
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, ITQB-UNL, Av. República, Apt. 127, 2781-901 Oeiras, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bae H, Bowers JH, Tooley PW, Bailey BA. NEP1 orthologs encoding necrosis and ethylene inducing proteins exist as a multigene family in Phytophthora megakarya, causal agent of black pod disease on cacao. ACTA ACUST UNITED AC 2005; 109:1373-85. [PMID: 16353637 DOI: 10.1017/s0953756205003941] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Phvytophthora megakarya is a devastating oomycete pathogen that causes black pod disease in cacao. Phytophthora species produce a protein that has a similar sequence to the necrosis and ethylene inducing protein (Nep1) of Fusarium oxysporum. Multiple copies of NEP1 orthologs (PmegNEP) have been identified in P. megakarya and four other Phytophthora species (P. citrophthora, P. capsici, P. palmivora, and P. sojae). Genome database searches confirmed the existence of multiple copies of NEP1 orthologs in P. sojae and P. ramorum. In this study, nine different PmegNEP orthologs from P. megakarya strain Mk-1 were identified and analyzed. Of these nine orthologs, six were expressed in mycelium and in P. megakarya zoospore-infected cacao leaf tissue. The remaining two clones are either regulated differently, or are nonfunctional genes. Sequence analysis revealed that six PmegNEP orthologs were organized in two clusters of three orthologs each in the P. megakarya genome. Evidence is presented for the instability in the P. megakarya genome resulting from duplications, inversions, and fused genes resulting in multiple NEP1 orthologs. Traits characteristic of the Phytophthora genome, such as the clustering of NEP1 orthologs, the lack of CATT and TATA boxes, the lack of introns, and the short distance between ORFs were also observed.
Collapse
Affiliation(s)
- Hanhong Bae
- USDA/ARS, Plant Sciences Institute, Sustainable Perennial Crops Laboratory, Beltsville Agricultural Research Center-West, Beltsville, MD 20705, USA.
| | | | | | | |
Collapse
|
38
|
Dobes P, Kmunícek J, Mikes V, Damborský J. Binding of fatty acids to beta-cryptogein: quantitative structure-activity relationships and design of selective protein mutants. ACTA ACUST UNITED AC 2005; 44:2126-32. [PMID: 15554683 DOI: 10.1021/ci049832x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Binding of fatty acids to cryptogein, the proteinaceous elicitor from Phytophthora, was studied by using molecular docking and quantitative structure-activity relationships analysis. Fatty acids bind to the groove located inside the cavity of cryptogein. The structure-activity model was constructed for the set of 27 different saturated and unsaturated fatty acids explaining 87% (81% cross-validated) of the quantitative variance in their binding affinity. The difference in binding between saturated and unsaturated fatty acids was described in the model by three electronic descriptors: the energy of the lowest unoccupied molecular orbital, the energy of the highest occupied molecular orbital, and the heat of formation. The presence of double bonds in the ligand generally resulted in stronger binding. The difference in binding within the group of saturated fatty acids was explained by two steric descriptors, i.e., ellipsoidal volume and inertia moment of length, and one hydrophobicity descriptor, i.e., lipophility. The developed model predicted strong binding for two biologically important molecules, geranylgeranyol and farnesol playing an important role in plant signaling as lipid anchors of some membrane proteins. Elicitin mutants selectively binding only one type of ligand were designed for future experimental studies.
Collapse
Affiliation(s)
- Petr Dobes
- National Centre for Biomolecular Research and Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | | | | | | |
Collapse
|
39
|
Abstract
SUMMARY Phytophthora cinnamomi Rands was first isolated from cinnamon trees in Sumatra in 1922. The pathogen is believed to have originated near Papua New Guinea but now has a worldwide distribution. P. cinnamomi is heterothallic with A1 and A2 mating types; however, even in areas in which both mating types are present, it appears that genetic diversity arises asexually rather than as a result of sexual recombination. P. cinnamomi can grow saprophytically in the soil for long periods, rapidly capitalizing on the advent of favourable conditions to sporulate and produce vast numbers of asexual, biflagellate zoospores. The motile zoospores are attracted to suitable infection sites, where they attach and invade the plant. Within a few days, hyphae ramify throughout the tissues of susceptible plants, forming sporangia on the plant surface and rapidly amplifying the disease inoculum. Over the last 10-15 years, molecular analyses have clarified details of the phylogeny of P. cinnamomi and other Oomycetes. Research on P. cinnamomi has given rise to a more comprehensive understanding of the structure and function of the motile zoospores. New methods have been developed for P. cinnamomi identification and diagnosis. Long-term studies of diseased sites, particular those in southern Australia, have produced a better understanding of the epidemiology of P. cinnamomi diseases. Research has also increased our knowledge of the mode of action and efficacy of inhibitors of P. cinnamomi diseases, especially the phosphonates. This review will present an overview of the advances these studies have made in our understanding of P. cinnamomi pathogenicity, epidemiology and control. TAXONOMY Phytophthora cinnamomi Rands; kingdom Chromista; phylum Oomycota; order Peronosporales; family Peronosporaceae; genus Phytophthora. HOST RANGE Likely to infect in excess of 3000 species of plants including over 2500 Australian native species, and crops such as avocado, pineapple, peach, chestnut and macadamia. Disease symptoms: A root pathogen which usually causes rotting of fine and fibrous roots but which can also cause stem cankers. Often causes dieback of young shoots and is thought to do so as a result of interference with transpiration from roots to shoots. USEFUL WEBSITES http://genome.jgi-psf.org/physo00.info.html; http://phytophthora.vbi.vt.edu.
Collapse
Affiliation(s)
- Adrienne R Hardham
- Plant Cell Biology Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
40
|
Jiang RHY, Tyler BM, Whisson SC, Hardham AR, Govers F. Ancient Origin of Elicitin Gene Clusters in Phytophthora Genomes. Mol Biol Evol 2005; 23:338-51. [PMID: 16237208 DOI: 10.1093/molbev/msj039] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The genus Phytophthora belongs to the oomycetes in the eukaryotic stramenopile lineage and is comprised of over 65 species that are all destructive plant pathogens on a wide range of dicotyledons. Phytophthora produces elicitins (ELIs), a group of extracellular elicitor proteins that cause a hypersensitive response in tobacco. Database mining revealed several new classes of elicitin-like (ELL) sequences with diverse elicitin domains in Phytophthora infestans, Phytophthora sojae, Phytophthora brassicae, and Phytophthora ramorum. ELIs and ELLs were shown to be unique to Phytophthora and Pythium species. They are ubiquitous among Phytophthora species and belong to one of the most highly conserved and complex protein families in the Phytophthora genus. Phylogeny construction with elicitin domains derived from 156 ELIs and ELLs showed that most of the diversified family members existed prior to divergence of Phytophthora species from a common ancestor. Analysis to discriminate diversifying and purifying selection showed that all 17 ELI and ELL clades are under purifying selection. Within highly similar ELI groups there was no evidence for positively selected amino acids suggesting that purifying selection contributes to the continued existence of this diverse protein family. Characteristic cysteine spacing patterns were found for each phylogenetic clade. Except for the canonical clade ELI-1, ELIs and ELLs possess C-terminal domains of variable length, many of which have a high threonine, serine, or proline content suggesting an association with the cell wall. In addition, some ELIs and ELLs have a predicted glycosylphosphatidylinositol site suggesting anchoring of the C-terminal domain to the cell membrane. The eli and ell genes belonging to different clades are clustered in the genomes. Overall, eli and ell genes are expressed at different levels and in different life cycle stages but those sharing the same phylogenetic clade appear to have similar expression patterns.
Collapse
Affiliation(s)
- Rays H Y Jiang
- Laboratory of Phytopathology, Wageningen University, Wageningen, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Huitema E, Vleeshouwers VGAA, Cakir C, Kamoun S, Govers F. Differences in intensity and specificity of hypersensitive response induction in Nicotiana spp. by INF1, INF2A, and INF2B of Phytophthora infestans. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:183-93. [PMID: 15782632 DOI: 10.1094/mpmi-18-0183] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Elicitins form a family of structurally related proteins that induce the hypersensitive response (HR) in plants, particularly Nicotiana spp. The elicitin family is composed of several classes. Most species of the plant-pathogenic oomycete genus Phytophthora produce the well-characterized 10-kDa canonical elicitins (class I), such as INF1 of the potato and tomato pathogen Phytophthora infestans. Two genes, inf2A and inf2B, encoding a distinct class (class III) of elicitin-like proteins, also occur in P. infestans. Unlike secreted class I elicitins, class III elicitins are thought to be cell-surface-anchored polypeptides. Molecular characterization of the inf2 genes indicated that they are widespread in Phytophthora spp. and occur as a small gene family. In addition, Southern blot and Northern blot hybridizations using gene-specific probes showed that inf2A and inf2B genes and transcripts can be detected in 17 different P. infestans isolates. Functional secreted expression in plant cells of the elicitin domain of the infl and inf2 genes was conducted using a binary Potato virus X (PVX) vector (agroinfection) and Agrobacterium tumefaciens transient transformation assays (agroinfiltration), and resulted in HR-like necrotic symptoms and induction of defense response genes in tobacco. However, comparative analyses of elicitor activity of INF1, INF2A, and INF2B revealed significant differences in intensity, specificity, and consistency of HR induction. Whereas INF1 induced the HR in Nicotiana benthamiana, INF2A induced weak symptoms and INF2B induced no symptoms on this plant. Nonetheless, similar to INF1, HR induction by INF2A in N. benthamiana required the ubiquitin ligase-associated protein SGT1. Overall, these results suggest that variation in the resistance of Nicotiana spp. to P. infestans is shadowed by variation in the response to INF elicitins. The ability of tobacco, but not N. benthamiana, to respond to INF2B could explain differences in resistance to P. infestans observed for these two species.
Collapse
Affiliation(s)
- Edgar Huitema
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, USA
| | | | | | | | | |
Collapse
|
42
|
Hirasawa KI, Amano T, Shioi Y. Lipid-binding form is a key conformation to induce a programmed cell death initiated in tobacco BY-2 cells by a proteinaceous elicitor of cryptogein. PHYSIOLOGIA PLANTARUM 2004; 121:196-203. [PMID: 15153186 DOI: 10.1111/j.0031-9317.2004.00317.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cryptogein, a proteinaceous elicitor secreted by Phytophthora cryptogea, induces a remarkable hypersensitive cell death in tobacco cells. Two cryptogein mutants were analysed to characterize the induction mechanism of cell death; one was a newly synthesized mutant N93A whose 93rd Asn residue was changed to Ala, the other was K13V whose Lys at position 13 was replaced with Val. The effect of these mutations was evaluated in terms of extracellular alkalization, production of active oxygen species (AOS) and progression to death. The mutation N93A resulted in a reduction in activity to 71.0, 74.6 and 24.5% for original rates of extracellular alkalization, AOS production and cell death progression, respectively. In the case of the K13V mutation, these rates changed to 114, 3.38 and 7.40%, respectively. The lipid-binding activities of the mutants were analysed using fluorogenic lipid of dehydroergosterol. The results for N93A and K13V were 38.3 and 3.40% compared with the wild type, respectively. These findings indicate that the lipid-binding form was the only conformation to induce the production of AOS and programmed cell death in plants.
Collapse
Affiliation(s)
- Ken-Ichi Hirasawa
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka 422-8529, Japan
| | | | | |
Collapse
|
43
|
del Carmen Ramírez-Medeles M, Aguilar MB, Miguel RN, Bolaños-García VM, García-Hernández E, Soriano-García M. Amino acid sequence, biochemical characterization, and comparative modeling of a nonspecific lipid transfer protein from Amaranthus hypochondriacus. Arch Biochem Biophys 2003; 415:24-33. [PMID: 12801509 DOI: 10.1016/s0003-9861(03)00201-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Plant nonspecific lipid transfer proteins (nsLTPs) are characterized by their ability to bind a broad range of hydrophobic ligands in vitro. Their biological function has not yet been elucidated, but they could play a major role in plant defense to physical and biological stress. An nsLTP was isolated from Amaranthus hypochondriacus seeds and purified by gel filtration and reversed-phase high-performance liquid chromatography techniques. The molecular mass of the protein as determined by mass spectrometry is 9747.29 Da. Data from amino acid sequence, circular dichroism and binding/displacement of a fluorescent lipid revealed that it belongs to the nsLTP1 family. The protein shows the alpha-helical secondary structure typical for plant nsLTPs 1 and shares 40 to 57% sequence identity with nsLTPs 1 from other plant species and 100% identity with an nsLTP1 from Amaranthus caudatus. A model structure of the protein in complex with stearate based on known structures of maize and rice nsLTPs 1 suggests a protein fold complexed with lipids closely related to that of maize nsLTP1.
Collapse
|
44
|
Qutob D, Huitema E, Gijzen M, Kamoun S. Variation in structure and activity among elicitins from Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2003; 4:119-124. [PMID: 20569371 DOI: 10.1046/j.1364-3703.2003.00158.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Transcripts encoding elicitin-like protein domains were identified from similarity searches of Phytophthora sojae expressed sequence tags and were characterized with regard to molecular structure and elicitor activity. The P. sojae elicitin family consists of at least nine genes with products similar to previously described elicitins (SOJA-2, SOJB, SOJ2, SOJ3, SOJ5, SOJ6 and SOJ7) or highly diverged from known sequences (SOJX and SOJY). The predicted structural features of seven (SOJA-2, SOJB, SOJ2, SOJ3, SOJ6, SOJX and SOJY) of the elicitin preproteins were compared. All of the predicted elicitins possess a leader signal sequence and a core elicitin domain. Five (SOJ2, SOJ3, SOJ6, SOJX and SOJY) of the characterized elicitins also contain a variable C-terminal region. In addition, SOJX and SOJY contain a C-terminal hydrophobic membrane-spanning domain. An analysis of expression patterns of the elicitin transcripts showed that SOJA-2, SOJB, SOJ2, SOJ3 and SOJ6 were expressed in axenically grown mycelia and during infection, but not in zoospores. In contrast, SOJX and SOJY were predominantly and specifically expressed in zoospores. Selected elicitin domains were also tested for the induction of the hypersensitive response (HR) in Nicotiana spp. All of the elicitin protein domains tested induced the HR, except for SOJX and SOJY. Overall, the results show that the P. sojae elicitin gene family is large and diverse, with varying patterns of expression and HR-inducing activity.
Collapse
Affiliation(s)
- Dinah Qutob
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, Ont., N5V 4T3, Canada
| | | | | | | |
Collapse
|
45
|
Blein JP, Coutos-Thévenot P, Marion D, Ponchet M. From elicitins to lipid-transfer proteins: a new insight in cell signalling involved in plant defence mechanisms. TRENDS IN PLANT SCIENCE 2002; 7:293-296. [PMID: 12119165 DOI: 10.1016/s1360-1385(02)02284-7] [Citation(s) in RCA: 159] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Elicitins and lipid-transfer proteins are small cysteine-rich lipid-binding proteins secreted by oomycetes and plant cells, respectively, that share some structural and functional properties. In spite of intensive work on their structure and diversity at the protein and genetic levels, the precise biological roles of lipid-transfer proteins remains unclear, although the most recent data suggest a role in somatic embryogenesis, in the formation of protective surface layers and in defence against pathogens. By contrast, elicitins are known elicitors of plant defence, and recent work demonstrating that elicitins and lipid-transfer proteins share the same biological receptors gives a new perspective to understand the role played by lipid binding proteins, mainly the early recognition of intruders in plants.
Collapse
Affiliation(s)
- Jean-Pierre Blein
- UMR 692 INRA/Université de Bourgogne, Laboratoire de Phytopharmacie et de Biochimie des Interactions Cellulaires, INRA, BP 86510, 21065 Dijon Cedex, France.
| | | | | | | |
Collapse
|
46
|
Tyler BM. Molecular basis of recognition between phytophthora pathogens and their hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:137-167. [PMID: 12147757 DOI: 10.1146/annurev.phyto.40.120601.125310] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
Collapse
Affiliation(s)
- Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA.
| |
Collapse
|
47
|
Buhot N, Douliez JP, Jacquemard A, Marion D, Tran V, Maume BF, Milat ML, Ponchet M, Mikès V, Kader JC, Blein JP. A lipid transfer protein binds to a receptor involved in the control of plant defence responses. FEBS Lett 2001; 509:27-30. [PMID: 11734200 DOI: 10.1016/s0014-5793(01)03116-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipid transfer proteins (LTPs) and elicitins are both able to load and transfer lipidic molecules and share some structural and functional properties. While elicitins are known as elicitors of plant defence mechanisms, the biological function of LTP is still an enigma. We show that a wheat LTP1 binds with high affinity sites. Binding and in vivo competition experiments point out that these binding sites are common to LTP1 and elicitins and confirm that they are the biological receptors of elicitins. A mathematical analysis suggests that these receptors could be represented by an allosteric model corresponding to an oligomeric structure with four identical subunits.
Collapse
Affiliation(s)
- N Buhot
- UMR 692 INRA/Université de Bourgogne, Laboratoire de Phytopharmacie et de Biochemie des Interactions Cellulaires, Dijon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Marshall JA, Dennis AL, Kumazawa T, Haynes AM, Nes WD. Soybean sterol composition and utilization by Phytophthora sojae. PHYTOCHEMISTRY 2001; 58:423-8. [PMID: 11557074 DOI: 10.1016/s0031-9422(01)00219-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The sterol fraction of Glycine max (soybean) was found to contain a mixture of 13 major sterols which differed dramatically in composition between seeds and shoots. Typical C4-desmethyl Delta(5)-sterols, including sitosterol, predominate the sterol mixture of shoots, whereas C4-methyl sterol intermediates, cycloartenol and 24(28)-methylene cycloartanol, accumulate in seeds. The significance of modified sterol profile of shoot compared to seed was relevant to the physiology of Phytophthora sojae, a phytopathogen of soybean shown to be auxotrophic for sterol. Sterols native to the host plant containing a C4-methyl group, such as cycloartenol, were not utilized by the fungus. Alternatively, all Delta(5)-sterols added to the culture media of P. sojae supported normal growth and promoted viable oospore production. The results demonstrate the importance of sterols in plant-fungal interactions and offer the possibility of bioengineering the phytosterol pathway for resistance to phytopathogens which scavenge specific sterols of the host plant to complete the life cycle.
Collapse
Affiliation(s)
- J A Marshall
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409-1061, USA
| | | | | | | | | |
Collapse
|
49
|
Osman H, Vauthrin S, Mikes V, Milat ML, Panabières F, Marais A, Brunie S, Maume B, Ponchet M, Blein JP. Mediation of elicitin activity on tobacco is assumed by elicitin-sterol complexes. Mol Biol Cell 2001; 12:2825-34. [PMID: 11553720 PMCID: PMC59716 DOI: 10.1091/mbc.12.9.2825] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2001] [Revised: 05/22/2001] [Accepted: 06/16/2001] [Indexed: 11/11/2022] Open
Abstract
Elicitins secreted by phytopathogenic Phytophthora spp. are proteinaceous elicitors of plant defense mechanisms and were demonstrated to load, carry, and transfer sterols between membranes. The link between elicitor and sterol-loading properties was assessed with the use of site-directed mutagenesis of the 47 and 87 cryptogein tyrosine residues, postulated to be involved in sterol binding. Mutated cryptogeins were tested for their ability to load sterols, bind to plasma membrane putative receptors, and trigger biological responses. For each mutated elicitin, the chemical characterization of the corresponding complexes with stigmasterol (1:1 stoichiometry) demonstrated their full functionality. However, these proteins were strongly altered in their sterol-loading efficiency, specific binding to high-affinity sites, and activities on tobacco cells. Ligand replacement experiments strongly suggest that the formation of a sterol-elicitin complex is a requisite step before elicitins fasten to specific binding sites. This was confirmed with the use of two sterol-preloaded elicitins. Both more rapidly displaced labeled cryptogein from its specific binding sites than the unloaded proteins. Moreover, the binding kinetics of elicitins are related to their biological effects, which constitutes the first evidence that binding sites could be the biological receptors. The first event involved in elicitin-mediated cell responses is proposed to be the protein loading with a sterol molecule.
Collapse
Affiliation(s)
- H Osman
- Unité Mixte de Recherche 692, Laboratoire de Phytopharmacie et de Biochimie des Interactions Cellulaires, Institut National de la Recherche Agronomique, 21065 Dijon-cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Briand L, Nespoulous C, Huet JC, Takahashi M, Pernollet JC. Ligand binding and physico-chemical properties of ASP2, a recombinant odorant-binding protein from honeybee (Apis mellifera L.). EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:752-60. [PMID: 11168415 DOI: 10.1046/j.1432-1327.2001.01927.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In insects, the transport of airborne, hydrophobic odorants and pheromones through the sensillum lymph is generally thought to be accomplished by odorant-binding proteins (OBPs). We report the structural and functional properties of a honeybee OBP called ASP2, heterologously expressed by the yeast Pichia pastoris. ASP2 disulfide bonds were assigned after classic trypsinolysis followed by ion-spray mass spectrometry combined with microsequencing. The pairing [Cys(I)-Cys(III), Cys(II)-Cys(V), Cys(IV)-Cys(VI)] was found to be identical to that of Bombyx mori OBP, suggesting that this pattern occurs commonly throughout the highly divergent insect OBPs. CD measurements revealed that ASP2 is mainly constituted of alpha helices, like other insect OBPs, but different from lipocalin-like vertebrate OBPs. Gel filtration analysis showed that ASP2 is homodimeric at neutral pH, but monomerizes upon acidification or addition of a chaotropic agent. A general volatile-odorant binding assay allowed us to examine the uptake of some odorants and pheromones by ASP2. Recombinant ASP2 bound all tested molecules, except beta-ionone, which could not interact with it at all. The affinity constants of ASP2 for these ligands, determined at neutral pH by isothermal titration calorimetry, are in the micromolar range, as observed for vertebrate OBP. These results suggest that odorants occupy three binding sites per dimer, probably one in the core of each monomer and another whose location and biological role are questionable. At acidic pH, no binding was observed, in correlation with monomerization and a local conformational change supported by CD experiments.
Collapse
Affiliation(s)
- L Briand
- Biochimie et Structure des Protéines, Unité de recherches INRA 477, Domaine de Vilvert, Jouy-en-Josas, France
| | | | | | | | | |
Collapse
|