1
|
Lustenhouwer N, Chaubet TMR, Melen MK, van der Putten WH, Parker IM. Plant-soil interactions during the native and exotic range expansion of an annual plant. J Evol Biol 2024; 37:653-664. [PMID: 38536056 DOI: 10.1093/jeb/voae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 06/30/2024]
Abstract
Range expansions, whether they are biological invasions or climate change-mediated range shifts, may have profound ecological and evolutionary consequences for plant-soil interactions. Range-expanding plants encounter soil biota with which they have a limited coevolutionary history, especially when introduced to a new continent. Past studies have found mixed results on whether plants experience positive or negative soil feedback interactions in their novel range, and these effects often change over time. One important theoretical explanation is that plants locally adapt to the soil pathogens and mutualists in their novel range. We tested this hypothesis in Dittrichia graveolens, an annual plant that is both expanding its European native range, initially coinciding with climate warming, and rapidly invading California after human introduction. In parallel greenhouse experiments on both continents, we used plant genotypes and soils from 5 locations at the core and edge of each range to compare plant growth in soil inhabited by D. graveolens and nearby control microsites as a measure of plant-soil feedback. Plant-soil interactions were highly idiosyncratic across each range. On average, plant-soil feedbacks were more positive in the native range than in the exotic range. In line with the strongly heterogeneous pattern of soil responses along our biogeographic gradients, we found no evidence for evolutionary differentiation between plant genotypes from the core to the edge of either range. Our results suggest that the evolution of plant-soil interactions during range expansion may be more strongly driven by local evolutionary dynamics varying across the range than by large-scale biogeographic shifts.
Collapse
Affiliation(s)
- Nicky Lustenhouwer
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Tom M R Chaubet
- Centre d'Ecologie Fonctionnelle et Evolutive, Centre National de la Recherche Scientifique, Montpellier, France
| | - Miranda K Melen
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| | - Wim H van der Putten
- Department of Terrestrial Ecology, NIOO-KNAW, Wageningen, The Netherlands
- Department of Nematology, Wageningen University & Research, Wageningen, The Netherlands
| | - Ingrid M Parker
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, United States
| |
Collapse
|
2
|
Douce P, Simon L, Colas F, Mermillod-Blondin F, Renault D, Sulmon C, Eymar-Dauphin P, Dubreucque R, Bittebiere AK. Warming drives feedback between plant phenotypes and ecosystem functioning in sub-Antarctic ponds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169504. [PMID: 38145689 DOI: 10.1016/j.scitotenv.2023.169504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/14/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Ample evidence indicates that warming affects individuals in plant communities, ultimately threatening biodiversity. Individual plants in communities are also exposed to plant-plant interaction that may affect their performance. However, trait responses to these two constraints have usually been studied separately, while they may influence processes at the ecosystem level. In turn, these ecological modifications may impact the phenotypes of plants through nutrient availability and uptake. We developed an experimental approach based on the macrophyte communities in the ponds of the sub-Antarctic Iles Kerguelen. Individuals of the species Limosella australis were grown under different temperature × plant-plant interaction treatments to assess their trait responses and create litters with different characteristics. The litters were then decomposed in the presence of individual plants at different temperatures to examine effects on ecosystem functioning and potential feedback affecting plant trait values. Leaf resource-acquisition- and -conservation-related traits were altered in the context of temperature × plant-plant interaction. At 13 °C, SLA and leaf C:N were higher under interspecific and intraspecific interactions than without interaction, whereas at 23 °C, these traits increased under intraspecific interaction only. These effects only slightly improved the individual performance, suggesting that plant-plant interaction is an additional selective pressure on individuals in the context of climate warming. The decay rate of litter increased with the Leaf Carbon Content at 13 °C and 18 °C, but decreased at 23 °C. The highest decay rate was recorded at 18 °C. Besides, we observed evidence of positive feedback of the decay rate alone, and in interaction with the temperature, respectively on the leaf C:N and Leaf Dry Matter Content, suggesting that variations in ecological processes affect plant phenotypes. Our findings demonstrate that warming can directly and indirectly affect the evolutionary and ecological processes occurring in aquatic ecosystems through plants.
Collapse
Affiliation(s)
- Pauline Douce
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Laurent Simon
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Fanny Colas
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Florian Mermillod-Blondin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - David Renault
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, F 35000 Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231 Paris cedex 05, France.
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, biodiversité, évolution)], UMR 6553, F 35000 Rennes, France.
| | - Pauline Eymar-Dauphin
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Roman Dubreucque
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| | - Anne-Kristel Bittebiere
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69622 Villeurbanne, France.
| |
Collapse
|
3
|
Zhang K, Zentella R, Burkey KO, Liao HL, Tisdale RH. Long-term tropospheric ozone pollution disrupts plant-microbe-soil interactions in the agroecosystem. GLOBAL CHANGE BIOLOGY 2024; 30:e17215. [PMID: 38429894 DOI: 10.1111/gcb.17215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/03/2024]
Abstract
Tropospheric ozone (O3 ) threatens agroecosystems, yet its long-term effects on intricate plant-microbe-soil interactions remain overlooked. This study employed two soybean genotypes of contrasting O3 -sensitivity grown in field plots exposed elevated O3 (eO3 ) and evaluated cause-effect relationships with their associated soil microbiomes and soil quality. Results revealed long-term eO3 effects on belowground soil microbiomes and soil health surpass damage visible on plants. Elevated O3 significantly disrupted belowground bacteria-fungi interactions, reduced fungal diversity, and altered fungal community assembly by impacting soybean physiological properties. Particularly, eO3 impacts on plant performance were significantly associated with arbuscular mycorrhizal fungi, undermining their contribution to plants, whereas eO3 increased fungal saprotroph proliferation, accelerating soil organic matter decomposition and soil carbon pool depletion. Free-living diazotrophs exhibited remarkable acclimation under eO3 , improving plant performance by enhancing nitrogen fixation. However, overarching detrimental consequences of eO3 negated this benefit. Overall, this study demonstrated long-term eO3 profoundly governed negative impacts on plant-soil-microbiota interactions, pointing to a potential crisis for agroecosystems. These findings highlight urgent needs to develop adaptive strategies to navigate future eO3 scenarios.
Collapse
Affiliation(s)
- Kaile Zhang
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Rodolfo Zentella
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Kent O Burkey
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | - Hui-Ling Liao
- North Florida Research and Education Center, University of Florida, Quincy, Florida, USA
- Department of Soil, Water, and Ecosystem Sciences, University of Florida, Gainesville, Florida, USA
| | - Ripley H Tisdale
- U.S. Department of Agriculture, Agricultural Research Service, Plant Science Research Unit, Raleigh, North Carolina, USA
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
4
|
Allsup CM, George I, Lankau RA. Shifting microbial communities can enhance tree tolerance to changing climates. Science 2023; 380:835-840. [PMID: 37228219 DOI: 10.1126/science.adf2027] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/04/2023] [Indexed: 05/27/2023]
Abstract
Climate change is pushing species outside of their evolved tolerances. Plant populations must acclimate, adapt, or migrate to avoid extinction. However, because plants associate with diverse microbial communities that shape their phenotypes, shifts in microbial associations may provide an alternative source of climate tolerance. Here, we show that tree seedlings inoculated with microbial communities sourced from drier, warmer, or colder sites displayed higher survival when faced with drought, heat, or cold stress, respectively. Microbially mediated drought tolerance was associated with increased diversity of arbuscular mycorrhizal fungi, whereas cold tolerance was associated with lower fungal richness, likely reflecting a reduced burden of nonadapted fungal taxa. Understanding microbially mediated climate tolerance may enhance our ability to predict and manage the adaptability of forest ecosystems to changing climates.
Collapse
Affiliation(s)
- Cassandra M Allsup
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Isabelle George
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Lankau
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
5
|
Li W, Lu Q, Alharbi SA, Soromotin AV, Kuzyakov Y, Lei Y. Plant-soil-microbial interactions mediate vegetation succession in retreating glacial forefields. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162393. [PMID: 36841408 DOI: 10.1016/j.scitotenv.2023.162393] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/11/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
Global warming is accelerating glacial retreat and leaving open areas for vegetation succession on young developing soils. Soil microbial communities interact with plants affecting vegetation succession, but the specific microbial groups controlling these interactions are unclear. We tested whether plant-soil-microbial interactions explain plant primary succession in the Gongga Mountain glacial retreat chronosequence. The direction and intensity of plant-soil-microbial interactions were quantified by comparing the biomass of one early-, two mid- and two late-succession plant species under sterilized vs. live, and inter- vs. intra-specific competition. The performance of most plant species was negatively affected by soil biota from early habitats (5-10 yr), but positively by soil biota from mid- (30-40) and late-succession (80-100) habitats. Two species of Salicaceae from middle habitats, which are strong competitors, developed well on the soils of all successional stages and limited the establishment of later serial plant species. The strongest microbial drivers of plant-microbial interactions changed from i) saprophytic fungal specialists during the early stage, to ii) generalists bacteria and arbuscular mycorrhizal fungi in the middle stage, and finally to iii) ectomycorrhizal fungal specialists in the late stage. Microbial turnover intensified plant-soil-microbial interactions and accelerated primary succession in the young soils of the glacial retreat area.
Collapse
Affiliation(s)
- Weitao Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China
| | - Qi Lu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Sulaiman Almwarai Alharbi
- Department of Botany & Microbiology, College of Science, King Saud University, P.O Box 2455, Riyadh 11451, Saudi Arabia
| | - Andrey V Soromotin
- Research Institute of Ecology and Natural Resources Management, Tyumen State University, 6 Volodarskogo Street, 625003 Tyumen, Russia
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, Göttingen 37077, Germany; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia; Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Yanbao Lei
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province & China-Croatia "Belt and Road" Joint Laboratory on Biodiversity and Ecosystem Services, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
6
|
Lau JA, Hammond MD, Schmidt JE, Weese DJ, Yang WH, Heath KD. Contemporary evolution rivals the effects of rhizobium presence on community and ecosystem properties in experimental mesocosms. Oecologia 2022; 200:133-143. [PMID: 36125524 DOI: 10.1007/s00442-022-05253-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Abstract
Because genotypes within a species commonly differ in traits that influence other species, whole communities, or even ecosystem functions, evolutionary change within one key species may affect the community and ecosystem processes. Here we use experimental mesocosms to test how the evolution of reduced cooperation in rhizobium mutualists in response to 20 years of nitrogen fertilization compares to the effects of rhizobium presence on soil nitrogen availability and plant community composition and diversity. The evolution of reduced rhizobium cooperation caused reductions in soil nitrogen, biological nitrogen fixation, and leaf nitrogen concentrations that were as strong as, or even stronger than, experimental rhizobium inoculation (presence/absence) treatments. Effects of both rhizobium evolution and rhizobium inoculation on legume dominance, plant community composition, and plant species diversity were often smaller in magnitude, but suggest that rhizobium evolution can alter the relative abundance of plant functional groups. Our findings indicate that the consequences of rapid microbial evolution for ecosystems and communities can rival the effects resulting from the presence or abundance of keystone mutualists.
Collapse
Affiliation(s)
- Jennifer A Lau
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA.
- Department of Biology & the Environmental Resilience Institute, Indiana University, 1001 E 3rd St., Bloomington, IN, 47401, USA.
| | - Mark D Hammond
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Jennifer E Schmidt
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA, 95616, USA
| | - Dylan J Weese
- Kellogg Biological Station & Department of Plant Biology, Michigan State University, 3700 E. Gull Lake Dr., Hickory Corners, MI, 49060, USA
| | - Wendy H Yang
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
- Department of Geology, University of Illinois, 1301 West Green St, Urbana, IL, 61801, USA
| | - Katy D Heath
- Department of Plant Biology, University of Illinois, 505 South Goodwin Ave, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois, 1206 W. Gregory Dr., Urbana, IL, 61801, USA
| |
Collapse
|
7
|
Angulo V, Beriot N, Garcia-Hernandez E, Li E, Masteling R, Lau JA. Plant-microbe eco-evolutionary dynamics in a changing world. THE NEW PHYTOLOGIST 2022; 234:1919-1928. [PMID: 35114015 DOI: 10.1111/nph.18015] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Both plants and their associated microbiomes can respond strongly to anthropogenic environmental changes. These responses can be both ecological (e.g. a global change affecting plant demography or microbial community composition) and evolutionary (e.g. a global change altering natural selection on plant or microbial populations). As a result, global changes can catalyse eco-evolutionary feedbacks. Here, we take a plant-focused perspective to discuss how microbes mediate plant ecological responses to global change and how these ecological effects can influence plant evolutionary response to global change. We argue that the strong and functionally important relationships between plants and their associated microbes are particularly likely to result in eco-evolutionary feedbacks when perturbed by global changes and discuss how improved understanding of plant-microbe eco-evolutionary dynamics could inform conservation or even agriculture.
Collapse
Affiliation(s)
- Violeta Angulo
- Ecology and Biodiversity Group, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
| | - Nicolas Beriot
- Soil Physics and Land Management Group, Wageningen University & Research, PO Box 47, Wageningen, 6700AA, the Netherlands
- Sustainable Use, Management and Reclamation of Soil and Water Research Group, Universidad Politécnica de Cartagena, Paseo Alfonso XIII, 48, Cartagena, 30203, Spain
| | - Edisa Garcia-Hernandez
- Microbial Community Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9700 CC, the Netherlands
| | - Erqin Li
- Plant-Microbe Interactions Group, Institute of Environmental Biology, Utrecht University, Padualaan 8, Utrecht, 3584 CH, the Netherlands
- Institut für Biologie, Freie Universität Berlin, Berlin, 14195, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, 14195, Germany
| | - Raul Masteling
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, Wageningen, 6708 PB, the Netherlands
- Institute of Biology, Leiden University, Leiden, 2333 BE, the Netherlands
| | - Jennifer A Lau
- Biology Department and the Environmental Resilience Institute, Indiana University, 1001 East 3rd St., Bloomington, IN, 47405, USA
| |
Collapse
|
8
|
Dietrich P, Schumacher J, Eisenhauer N, Roscher C. Eco-evolutionary dynamics modulate plant responses to global change depending on plant diversity and species identity. eLife 2022; 11:74054. [PMID: 35353037 PMCID: PMC9110027 DOI: 10.7554/elife.74054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Global change has dramatic impacts on grassland diversity. However, little is known about how fast species can adapt to diversity loss and how this affects their responses to global change. Here, we performed a common garden experiment testing whether plant responses to global change are influenced by their selection history and the conditioning history of soil at different plant diversity levels. Using seeds of four grass species and soil samples from a 14-year-old biodiversity experiment, we grew the offspring of the plants either in their own soil or in soil of a different community, and exposed them either to drought, increased nitrogen input, or a combination of both. Under nitrogen addition, offspring of plants selected at high diversity produced more biomass than those selected at low diversity, while drought neutralized differences in biomass production. Moreover, under the influence of global change drivers, soil history, and to a lesser extent plant history, had species-specific effects on trait expression. Our results show that plant diversity modulates plant-soil interactions and growth strategies of plants, which in turn affects plant eco-evolutionary pathways. How this change affects species' response to global change and whether this can cause a feedback loop should be investigated in more detail in future studies. Over the last hundred years, human activities including burning of fossil fuels, clearing of forests, and fertilizer use have caused environmental changes that have resulted in many species of plants, animals and other forms of life becoming extinct. Loss of plant species can change the local environment by, for example, altering the availability of nutrients and local communities of microbes in the soil. This may, in turn, cause remaining plant species to develop differently: they may take up fewer resources or become more prone to pathogens, both of which may alter their physical appearance. However, little is known about whether this happens and, if so, how rapidly such changes occur. Since 2002, researchers in Germany have been running a long-term project known as the Jena Experiment to study how plants behave when they grow in communities with different numbers of other plant species. For the experiment, various species of grass and other plants commonly found in grasslands were grown together in different combinations. Some plots contained many species (referred to as “high diversity”) and others contained only a few (“low diversity”). Here, Dietrich et al. collected seeds from four grasses grown for 12 years in Jena Experiment plots with two or six plant species. The seeds were then transferred to pots and grown in a greenhouse using soil either from the plot where the seeds originated or from another plot with a different diversity level. To simulate human-made changes in the environment, the team added nitrogen fertilizer or decreased how much they watered some of the plants. The greenhouse experiment showed that after receiving nitrogen fertilizer, the seeds from the high diversity Jena Experiment plots grew into larger plants than the seeds from the low diversity plots. But there was no difference in size when the plants were watered less. Moreover, both fertilizer and watering treatment had different effects on the plants’ physical appearance (root and leaf architecture) depending on the soil in which they were growing in. The findings of Dietrich et al. suggest that plants may respond differently to changes in their environment based on their origins and the soil they are growing in. This study provides the first indication that species loss could accelerate a further loss of species due to changes in how the plants develop and the communities of organisms living in the soil.
Collapse
Affiliation(s)
- Peter Dietrich
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Jens Schumacher
- Institute of Mathematics, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Eisenhauer
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig,, Leipzig, Germany
| | - Christiane Roscher
- Department of Physiological Diversity, Helmholtz Centre for Environmental Research, Leipzig, Germany
| |
Collapse
|
9
|
Allen WJ, Sapsford SJ, Dickie IA. Soil sample pooling generates no consistent inference bias: a meta-analysis of 71 plant-soil feedback experiments. THE NEW PHYTOLOGIST 2021; 231:1308-1315. [PMID: 33982798 DOI: 10.1111/nph.17455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
There is current debate on how soil sample pooling affects the measurement of plant-soil feedbacks. Several studies have suggested that pooling soil samples among experimental units reduces variance and can bias estimates of plant-soil feedbacks. However, it is unclear whether pooling has resulted in systematic mismeasurement of plant-soil feedbacks in the literature. Using data from 71 experiments, we tested whether pairwise plant-soil feedback direction, magnitude and variance differed among soil pooling treatments. We also tested whether pooling has altered our understanding of abiotic and biotic drivers that influence pairwise plant-soil feedbacks. Pooling of soil samples among experimental units was used in 42% of examined experiments. Contrary to predictions, pooling did not affect mean pairwise plant-soil feedback effect size or within-experiment variance. Accounting for soil sample pooling also did not significantly alter our understanding of the drivers of pairwise plant-soil feedbacks. We conclude that there is no evidence that soil sample pooling systematically biases estimates of plant-soil feedback direction, magnitude, variance or drivers across many studies. Given the debate of whether to pool soil samples, researchers should be aware of potential criticisms and carefully consider how experimental design and soil pooling methods influence interpretation of experiments.
Collapse
Affiliation(s)
- Warwick J Allen
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Sarah J Sapsford
- School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| | - Ian A Dickie
- Bio-Protection Research Centre, School of Biological Sciences, University of Canterbury, Christchurch, 8140, New Zealand
| |
Collapse
|
10
|
Eco-evolutionary interaction between microbiome presence and rapid biofilm evolution determines plant host fitness. Nat Ecol Evol 2021; 5:670-676. [PMID: 33707690 DOI: 10.1038/s41559-021-01406-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023]
Abstract
Microbiomes are important to the survival and reproduction of their hosts. Although ecological and evolutionary processes can happen simultaneously in microbiomes, little is known about how microbiome eco-evolutionary dynamics determine host fitness. Here we show, using experimental evolution, that fitness of the aquatic plant Lemna minor is modified by interactions between the microbiome and the evolution of one member, Pseudomonas fluorescens. Microbiome presence promotes P. fluorescens' rapid evolution to form biofilm, which reciprocally alters the microbiome's species composition. These eco-evolutionary dynamics modify the host's multigenerational fitness. The microbiome and non-evolving P. fluorescens together promote host fitness, whereas the microbiome with P. fluorescens that evolves biofilm reduces the beneficial impact on host fitness. Additional experiments suggest that the microbial effect on host fitness may occur through changes in microbiome production of auxin, a plant growth hormone. Our study, therefore, experimentally demonstrates the importance of the eco-evolutionary dynamics in microbiomes for host-microbiome interactions.
Collapse
|
11
|
Smith AH, O'Connor MP, Deal B, Kotzer C, Lee A, Wagner B, Joffe J, Woloszynek S, Oliver KM, Russell JA. Does getting defensive get you anywhere?-Seasonal balancing selection, temperature, and parasitoids shape real-world, protective endosymbiont dynamics in the pea aphid. Mol Ecol 2021; 30:2449-2472. [PMID: 33876478 DOI: 10.1111/mec.15906] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/16/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022]
Abstract
Facultative, heritable endosymbionts are found at intermediate prevalence within most insect species, playing frequent roles in their hosts' defence against environmental pressures. Focusing on Hamiltonella defensa, a common bacterial endosymbiont of aphids, we tested the hypothesis that such pressures impose seasonal balancing selection, shaping a widespread infection polymorphism. In our studied pea aphid (Acyrthosiphon pisum) population, Hamiltonella frequencies ranged from 23.2% to 68.1% across a six-month longitudinal survey. Rapid spikes and declines were often consistent across fields, and we estimated that selection coefficients for Hamiltonella-infected aphids changed sign within this field season. Prior laboratory research suggested antiparasitoid defence as the major Hamiltonella benefit, and costs under parasitoid absence. While a prior field study suggested these forces can sometimes act as counter-weights in a regime of seasonal balancing selection, our present survey showed no significant relationship between parasitoid wasps and Hamiltonella prevalence. Field cage experiments provided some explanation: parasitoids drove modest ~10% boosts to Hamiltonella frequencies that would be hard to detect under less controlled conditions. They also showed that Hamiltonella was not always costly under parasitoid exclusion, contradicting another prediction. Instead, our longitudinal survey - and two overwintering studies - showed temperature to be the strongest predictor of Hamiltonella prevalence. Matching some prior lab discoveries, this suggested that thermally sensitive costs and benefits, unrelated to parasitism, can shape Hamiltonella dynamics. These results add to a growing body of evidence for rapid, seasonal adaptation in multivoltine organisms, suggesting that such adaptation can be mediated through the diverse impacts of heritable bacterial endosymbionts.
Collapse
Affiliation(s)
- Andrew H Smith
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Michael P O'Connor
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Brooke Deal
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Coleman Kotzer
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Amanda Lee
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Barrett Wagner
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | - Jonah Joffe
- Department of Biology, Drexel University, Philadelphia, PA, USA
| | | | - Kerry M Oliver
- Department of Entomology, University of Georgia, Athens, GA, USA
| | - Jacob A Russell
- Department of Biology, Drexel University, Philadelphia, PA, USA
| |
Collapse
|
12
|
Thakur MP, van der Putten WH, Wilschut RA, Veen GFC, Kardol P, van Ruijven J, Allan E, Roscher C, van Kleunen M, Bezemer TM. Plant-Soil Feedbacks and Temporal Dynamics of Plant Diversity-Productivity Relationships. Trends Ecol Evol 2021; 36:651-661. [PMID: 33888322 DOI: 10.1016/j.tree.2021.03.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 10/21/2022]
Abstract
Plant-soil feedback (PSF) and diversity-productivity relationships are important research fields to study drivers and consequences of changes in plant biodiversity. While studies suggest that positive plant diversity-productivity relationships can be explained by variation in PSF in diverse plant communities, key questions on their temporal relationships remain. Here, we discuss three processes that change PSF over time in diverse plant communities, and their effects on temporal dynamics of diversity-productivity relationships: spatial redistribution and changes in dominance of plant species; phenotypic shifts in plant traits; and dilution of soil pathogens and increase in soil mutualists. Disentangling these processes in plant diversity experiments will yield new insights into how plant diversity-productivity relationships change over time.
Collapse
Affiliation(s)
- Madhav P Thakur
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland.
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Laboratory of Nematology, Wageningen University, Wageningen, The Netherlands
| | - Rutger A Wilschut
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany
| | - G F Ciska Veen
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands
| | - Paul Kardol
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Jasper van Ruijven
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Christiane Roscher
- Helmholtz Centre for Environmental Research, Physiological Diversity - UFZ, Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103 Leipzig, Germany
| | - Mark van Kleunen
- Ecology, Department of Biology, University of Konstanz, 78464, Konstanz, Germany; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou 318000, China
| | - T Martijn Bezemer
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO- KNAW), Wageningen, The Netherlands; Institute of Biology, Section Plant Ecology and Phytochemistry, Leiden University, 2300, RA, Leiden, The Netherlands
| |
Collapse
|
13
|
de Araújo GF, Moioli RC, de Souza SJ. The Shared Use of Extended Phenotypes Increases the Fitness of Simulated Populations. Front Genet 2021; 12:617915. [PMID: 33613639 PMCID: PMC7886806 DOI: 10.3389/fgene.2021.617915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 02/05/2023] Open
Abstract
Extended phenotypes are manifestations of genes that occur outside of the organism that possess those genes. In spite of their widespread occurrence, the role of extended phenotypes in evolutionary biology is still a matter of debate. Here, we explore the indirect effects of extended phenotypes, especially their shared use, in the fitness of simulated individuals and populations. A computer simulation platform was developed in which different populations were compared regarding their ability to produce, use, and share extended phenotypes. Our results show that populations that produce and share extended phenotypes outrun populations that only produce them. A specific parameter in the simulations, a bonus for sharing extended phenotypes among conspecifics, has a more significant impact in defining which population will prevail. All these findings strongly support the view, postulated by the extended fitness hypothesis (EFH) that extended phenotypes play a significant role at the population level and their shared use increases population fitness. Our simulation platform is available at https://github.com/guilherme-araujo/gsop-dist.
Collapse
Affiliation(s)
- Guilherme F de Araújo
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Renan C Moioli
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Sandro J de Souza
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Institutes for Systems Genetics, West China Hospital, University of Sichuan, Chengdu, China
| |
Collapse
|
14
|
Barbe L, Mony C, Jung V, Uroy L, Prinzing A. Associational decomposition: After‐life traits and interactions among decomposing litters control during‐life aggregation of plant species. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lou Barbe
- UMR CNRS 6553 ECOBIO Université de Rennes 1—OSUR Rennes Cedex France
| | - Cendrine Mony
- UMR CNRS 6553 ECOBIO Université de Rennes 1—OSUR Rennes Cedex France
| | - Vincent Jung
- UMR CNRS 6553 ECOBIO Université de Rennes 1—OSUR Rennes Cedex France
| | - Léa Uroy
- UMR CNRS 6553 ECOBIO Université de Rennes 1—OSUR Rennes Cedex France
| | - Andreas Prinzing
- UMR CNRS 6553 ECOBIO Université de Rennes 1—OSUR Rennes Cedex France
| |
Collapse
|
15
|
Alberti M, Palkovacs E, Roches S, Meester L, Brans K, Govaert L, Grimm NB, Harris NC, Hendry AP, Schell CJ, Szulkin M, Munshi-South J, Urban MC, Verrelli BC. The Complexity of Urban Eco-evolutionary Dynamics. Bioscience 2020. [DOI: 10.1093/biosci/biaa079] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Abstract
Urbanization is changing Earth's ecosystems by altering the interactions and feedbacks between the fundamental ecological and evolutionary processes that maintain life. Humans in cities alter the eco-evolutionary play by simultaneously changing both the actors and the stage on which the eco-evolutionary play takes place. Urbanization modifies land surfaces, microclimates, habitat connectivity, ecological networks, food webs, species diversity, and species composition. These environmental changes can lead to changes in phenotypic, genetic, and cultural makeup of wild populations that have important consequences for ecosystem function and the essential services that nature provides to human society, such as nutrient cycling, pollination, seed dispersal, food production, and water and air purification. Understanding and monitoring urbanization-induced evolutionary changes is important to inform strategies to achieve sustainability. In the present article, we propose that understanding these dynamics requires rigorous characterization of urbanizing regions as rapidly evolving, tightly coupled human–natural systems. We explore how the emergent properties of urbanization affect eco-evolutionary dynamics across space and time. We identify five key urban drivers of change—habitat modification, connectivity, heterogeneity, novel disturbances, and biotic interactions—and highlight the direct consequences of urbanization-driven eco-evolutionary change for nature's contributions to people. Then, we explore five emerging complexities—landscape complexity, urban discontinuities, socio-ecological heterogeneity, cross-scale interactions, legacies and time lags—that need to be tackled in future research. We propose that the evolving metacommunity concept provides a powerful framework to study urban eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Marina Alberti
- Department of Urban Design and Planning, University of Washington, Seattle, Washington
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology,University of California, Santa Cruz, California
| | | | - Luc De Meester
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
- Leibniz Institut für Gewässerökologie und Binnenfischerei, Berlin, Germany, and with the Institute of Biology at Freie Universität Berlin, also in Berlin, Germany
| | - Kristien I Brans
- Laboratory of Aquatic Ecology Evolution, and Conservation, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Lynn Govaert
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland; with the Department of Aquatic Ecology, in the Swiss Federal Institute of Aquatic Science and Technology, in Dübendorf, Switzerland; and with the University Research Priority Programme on Global Change and Biodiversity at the University of Zurich, in Zurich, Switzerland
| | | | - Nyeema C Harris
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan
| | - Andrew P Hendry
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | - Christopher J Schell
- Department of Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington
| | | | - Jason Munshi-South
- Louis Calder Center Biological Field Station, Fordham University, Armonk, New York
| | - Mark C Urban
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut
| | - Brian C Verrelli
- Center for Life Sciences Education, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
16
|
Crawford KM, Hawkes CV. Soil precipitation legacies influence intraspecific plant-soil feedback. Ecology 2020; 101:e03142. [PMID: 32813278 DOI: 10.1002/ecy.3142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 01/04/2023]
Abstract
Feedbacks between plants and soil microbial communities can play an important role in structuring plant communities. However, little is known about how soil legacies caused by environmental disturbances such as drought and extreme precipitation events may affect plant-soil feedback or whether plant-soil feedback operates within species as it does between species. If soil legacies alter plant-soil feedback among genotypes within a plant species, then soil legacies may alter the diversity within plant populations. We conducted a fully factorial pairwise plant-soil feedback experiment to test how precipitation legacies influenced intraspecific plant-soil feedbacks among three genotypes of a dominant grass species, Panicum virgatum. Panicum virgatum experienced negative intraspecific plant-soil feedback, i.e., genotypes generally performed worse on soil from the same genotype than different genotypes. Soil precipitation legacies reversed the rank order of the strength of negative feedback among the genotypes. Feedback is often positively correlated with plant relative abundance. Therefore, our results suggest that soil precipitation legacies may alter the genotypic composition of P. virgatum populations, favoring genotypes that develop less negative feedback. Changes in intraspecific diversity will likely further affect community structure and ecosystem functioning, and may constrain the ability of populations to respond to future changes in climate.
Collapse
Affiliation(s)
- Kerri M Crawford
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, 77204, USA
| | - Christine V Hawkes
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
17
|
Soil as an extended composite phenotype of the microbial metagenome. Sci Rep 2020; 10:10649. [PMID: 32606383 PMCID: PMC7327058 DOI: 10.1038/s41598-020-67631-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 06/05/2020] [Indexed: 12/21/2022] Open
Abstract
We use a unique set of terrestrial experiments to demonstrate how soil management practises result in emergence of distinct associations between physical structure and biological functions. These associations have a significant effect on the flux, resilience and efficiency of nutrient delivery to plants (including water). Physical structure, determining the air–water balance in soil as well as transport rates, is influenced by nutrient and physical interventions. Contrasting emergent soil structures exert selective pressures upon the microbiome metagenome. These selective pressures are associated with the quality of organic carbon inputs, the prevalence of anaerobic microsites and delivery of nutrients to microorganisms attached to soil surfaces. This variety results in distinctive gene assemblages characterising each state. The nature of the interactions provide evidence that soil behaves as an extended composite phenotype of the resident microbiome, responsive to the input and turnover of plant-derived organic carbon. We provide new evidence supporting the theory that soil-microbe systems are self-organising states with organic carbon acting as a critical determining parameter. This perspective leads us to propose carbon flux, rather than soil organic carbon content as the critical factor in soil systems, and we present evidence to support this view.
Collapse
|
18
|
Dodds WK, Zeglin LH, Ramos RJ, Platt TG, Pandey A, Michaels T, Masigol M, Klompen AML, Kelly MC, Jumpponen A, Hauser E, Hansen PM, Greer MJ, Fattahi N, Delavaux CS, Connell RK, Billings S, Bever JD, Barua N, Agusto FB. Connections and Feedback: Aquatic, Plant, and Soil Microbiomes in Heterogeneous and Changing Environments. Bioscience 2020. [DOI: 10.1093/biosci/biaa046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Plant, soil, and aquatic microbiomes interact, but scientists often study them independently. Integrating knowledge across these traditionally separate subdisciplines will generate better understanding of microbial ecological properties. Interactions among plant, soil, and aquatic microbiomes, as well as anthropogenic factors, influence important ecosystem processes, including greenhouse gas fluxes, crop production, nonnative species control, and nutrient flux from terrestrial to aquatic habitats. Terrestrial microbiomes influence nutrient retention and particle movement, thereby influencing the composition and functioning of aquatic microbiomes, which, themselves, govern water quality, and the potential for harmful algal blooms. Understanding how microbiomes drive links among terrestrial (plant and soil) and aquatic habitats will inform management decisions influencing ecosystem services. In the present article, we synthesize knowledge of microbiomes from traditionally disparate fields and how they mediate connections across physically separated systems. We identify knowledge gaps currently limiting our abilities to actualize microbiome management approaches for addressing environmental problems and optimize ecosystem services.
Collapse
Affiliation(s)
- Walter K Dodds
- Division of Biology, Kansas State University, Manhattan, Kansas
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Chaney L, Baucom RS. The soil microbial community alters patterns of selection on flowering time and fitness-related traits in Ipomoea purpurea. AMERICAN JOURNAL OF BOTANY 2020; 107:186-194. [PMID: 32052423 PMCID: PMC7065020 DOI: 10.1002/ajb2.1426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/21/2019] [Indexed: 05/22/2023]
Abstract
PREMISE Plant flowering time plays an important role in plant fitness and thus evolutionary processes. Soil microbial communities are diverse and have a large impact, both positive and negative, on the host plant. However, owing to few available studies, how the soil microbial community may influence the evolutionary response of plant populations is not well understood. Here we sought to uncover whether belowground microbial communities act as an agent of selection on flowering and growth traits in the common morning glory, Ipomoea purpurea. METHODS We performed a controlled greenhouse experiment in which genetic lines of I. purpurea were planted into either sterilized soils or in soils that were sterilized and inoculated with the microbial community from original field soil. We could thus directly test the influence of alterations to the microbial community on plant growth, flowering, and fitness and assess patterns of selection in both soil microbial environments. RESULTS A more complex soil microbial community resulted in larger plants that produced more flowers. Selection strongly favored earlier flowering when plants were grown in the complex microbial environment than compared to sterilized soil. We also uncovered a pattern of negative correlational selection on growth rate and flowering time, indicating that selection favored different combinations of growth and flowering traits in the simplified versus complex soil community. CONCLUSIONS Together, these results suggest the soil microbial community is a selective agent on flowering time and ultimately that soil microbial community influences important plant evolutionary processes.
Collapse
Affiliation(s)
| | - Regina S. Baucom
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMI48109USA
| |
Collapse
|
20
|
Hahl T, Moorsel SJ, Schmid MW, Zuppinger‐Dingley D, Schmid B, Wagg C. Plant responses to diversity‐driven selection and associated rhizosphere microbial communities. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Terhi Hahl
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
| | - Sofia J. Moorsel
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- Department of Biology McGill University Montreal QC Canada
| | - Marc W. Schmid
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- MWSchmid GmbH Zurich Switzerland
| | - Debra Zuppinger‐Dingley
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
| | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- Department of Geography University of Zürich Zurich Switzerland
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Cameron Wagg
- Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
- Fredericton Research and Development Centre Agriculture and Agri‐Food Canada Fredericton NB Canada
| |
Collapse
|
21
|
Kirchhoff L, Kirschbaum A, Joshi J, Bossdorf O, Scheepens JF, Heinze J. Plant-Soil Feedbacks of Plantago lanceolata in the Field Depend on Plant Origin and Herbivory. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
22
|
Lynn JS, Duarte DA, Rudgers JA. Soil microbes that may accompany climate warming increase alpine plant production. Oecologia 2019; 191:493-504. [PMID: 31571041 DOI: 10.1007/s00442-019-04518-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/21/2019] [Indexed: 12/20/2022]
Abstract
Climate change is causing species with non-overlapping ranges to come in contact, and a key challenge is to predict the consequences of such species re-shuffling. Experiments on plants have focused largely on novel competitive interactions; other species interactions, such as plant-microbe symbioses, while less studied, may also influence plant responses to climate change. In this greenhouse study, we evaluated interactions between soil microbes and alpine-restricted plant species, simulating a warming scenario in which low-elevation microbes migrate upslope into the distribution of alpine plants. We examined three alpine grasses from the Rocky Mountains, CO, USA (Poa alpina, Festuca brachyphylla, and Elymus scribneri). We used soil inocula from within (resident) or below (novel) the plants' current elevation range and examined responses in plant biomass, plant traits, and fungal colonization of roots. Resident soil inocula from the species' home range decreased biomass to a greater extent than novel soil inocula. The depressed growth in resident soils suggested that these soils harbor more carbon-demanding microbes, as plant biomass generally declined with greater fungal colonization of roots, especially in resident soil inocula. Although plant traits did not respond to the provenance of soil inocula, specific leaf area declined and root:shoot ratio increased when soil inocula were sterilized, indicating microbial mediation of plant trait expression. Contrary to current predictions, our findings suggest that if upwardly migrating microbes were to displace current soil microbes, alpine plants may benefit from this warming-induced microbial re-shuffling.
Collapse
Affiliation(s)
- Joshua S Lynn
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA. .,The Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA. .,Department of Biological Science, University of Bergen, 5006, Bergen, Norway.
| | - Danielle A Duarte
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.,The Rocky Mountain Biological Laboratory, Gothic, CO, 81224, USA
| |
Collapse
|
23
|
Lu-Irving P, Harenčár JG, Sounart H, Welles SR, Swope SM, Baltrus DA, Dlugosch KM. Native and Invading Yellow Starthistle (Centaurea solstitialis) Microbiomes Differ in Composition and Diversity of Bacteria. mSphere 2019; 4:e00088-19. [PMID: 30842267 PMCID: PMC6403453 DOI: 10.1128/msphere.00088-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 11/29/2022] Open
Abstract
Invasive species could benefit from being introduced to locations with more favorable species interactions, including the loss of enemies, the gain of mutualists, or the simplification of complex interaction networks. Microbiomes are an important source of species interactions with strong fitness effects on multicellular organisms, and these interactions are known to vary across regions. The highly invasive plant yellow starthistle (Centaurea solstitialis) has been shown to experience more favorable microbial interactions in its invasions of the Americas, but the microbiome that must contribute to this variation in interactions is unknown. We sequenced amplicons of 16S rRNA genes to characterize bacterial community compositions in the phyllosphere, ectorhizosphere, and endorhizosphere of yellow starthistle plants from seven invading populations in California, USA, and eight native populations in Europe. We tested for the differentiation of microbiomes by geography, plant compartment, and plant genotype. Bacterial communities differed significantly between native and invading plants within plant compartments, with consistently lower diversity in the microbiome of invading plants. The diversity of bacteria in roots was positively correlated with plant genotype diversity within both ranges, but this relationship did not explain microbiome differences between ranges. Our results reveal that these invading plants are experiencing either a simplified microbial environment or simplified microbial interactions as a result of the dominance of a few taxa within their microbiome. Our findings highlight several alternative hypotheses for the sources of variation that we observe in invader microbiomes and the potential for altered bacterial interactions to facilitate invasion success.IMPORTANCE Previous studies have found that introduced plants commonly experience more favorable microbial interactions in their non-native range, suggesting that changes to the microbiome could be an important contributor to invasion success. Little is known about microbiome variation across native and invading populations, however, and the potential sources of more favorable interactions are undescribed. Here, we report one of the first microbiome comparisons of plants from multiple native and invading populations, in the noxious weed yellow starthistle. We identify clear differences in composition and diversity of microbiome bacteria. Our findings raise new questions about the sources of these differences, and we outline the next generation of research that will be required to connect microbiome variation to its potential role in plant invasions.
Collapse
Affiliation(s)
- Patricia Lu-Irving
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Evolutionary Ecology, Royal Botanic Gardens Sydney, Sydney, New South Wales, Australia
| | - Julia G Harenčár
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, California, USA
| | - Hailey Sounart
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
- Department of Biology, Mills College, Oakland, California, USA
| | - Shana R Welles
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Sarah M Swope
- Department of Biology, Mills College, Oakland, California, USA
| | - David A Baltrus
- School of Plant Sciences, University of Arizona, Tucson, Arizona, USA
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Katrina M Dlugosch
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
24
|
Van Nuland ME, Ware IM, Bailey JK, Schweitzer JA. Ecosystem feedbacks contribute to geographic variation in plant–soil eco‐evolutionary dynamics across a fertility gradient. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13259] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Ian M. Ware
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| |
Collapse
|
25
|
Born J, Michalski SG. Trait expression and signatures of adaptation in response to nitrogen addition in the common wetland plant Juncus effusus. PLoS One 2019; 14:e0209886. [PMID: 30608976 PMCID: PMC6319709 DOI: 10.1371/journal.pone.0209886] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/13/2018] [Indexed: 01/16/2023] Open
Abstract
Wetland ecosystems are known to mitigate high nutrient loadings and thus can improve water quality and prevent potential biodiversity loss caused by eutrophication. Plant traits affect wetland processes directly through effects on accumulation or metabolization of substances, and indirectly by affecting microbial transformation processes in the soil. Understanding the causes and consequences of intraspecific variation in plant functional traits and associated ecosystem processes can aid applied ecological approaches such as wetland restoration and construction. Here we investigated molecular variation and phenotypic variation in response to three levels of nitrogen availability for a regional set of populations of the common wetland plant Juncus effusus. We asked whether trait expression reveals signatures of adaptive differentiation by comparing genetic differentiation in quantitative traits and neutral molecular markers (QST—FST comparisons) and relating trait variation to soil conditions of the plant’s origin. Molecular analyses showed that samples clustered into three very distinct genetic lineages with strong population differentiation within and among lineages. Differentiation for quantitative traits was substantial but did not exceed neutral expectations when compared across treatments or for each treatment and lineage separately. However, variation in trait expression could be explained by local soil environmental conditions of sample origin, e.g. for aboveground carbon-to-nitrogen (C:N) ratios, suggesting adaptive differentiation to contribute to trait expression even at regional level.
Collapse
Affiliation(s)
- Jennifer Born
- Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
- * E-mail:
| | - Stefan G. Michalski
- Department of Community Ecology (BZF), Helmholtz Centre for Environmental Research – UFZ, Halle, Germany
| |
Collapse
|
26
|
Govaert L, Fronhofer EA, Lion S, Eizaguirre C, Bonte D, Egas M, Hendry AP, De Brito Martins A, Melián CJ, Raeymaekers JAM, Ratikainen II, Saether B, Schweitzer JA, Matthews B. Eco‐evolutionary feedbacks—Theoretical models and perspectives. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13241] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lynn Govaert
- Laboratory of Aquatic Ecology, Evolution and Conservation KU Leuven Leuven Belgium
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
- Department of Evolutionary Biology and Environmental Studies University of Zurich Zürich Switzerland
| | | | - Sébastien Lion
- Centre d'Ecologie Fonctionnelle et Evolutive CNRS, IRD, EPHE Université de Montpellier Montpellier France
| | | | - Dries Bonte
- Department of Biology Ghent University Ghent Belgium
| | - Martijn Egas
- Institute for Biodiversity and Ecosystem Dynamics University of Amsterdam Amsterdam The Netherlands
| | - Andrew P. Hendry
- Redpath Museum and Department of Biology McGill University Montreal Quebec Canada
| | - Ayana De Brito Martins
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | - Carlos J. Melián
- Fish Ecology and Evolution DepartmentCenter for Ecology, Evolution and BiogeochemistryEawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| | | | - Irja I. Ratikainen
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Bernt‐Erik Saether
- Department of Biology Centre for Biodiversity Dynamics Norwegian University of Science and Technology Trondheim Norway
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee
| | - Blake Matthews
- Department of Aquatic Ecology Eawag: Swiss Federal Institute of Aquatic Science and Technology Dübendorf Switzerland
| |
Collapse
|
27
|
Bajić D, Vila JCC, Blount ZD, Sánchez A. On the deformability of an empirical fitness landscape by microbial evolution. Proc Natl Acad Sci U S A 2018; 115:11286-11291. [PMID: 30322921 PMCID: PMC6217403 DOI: 10.1073/pnas.1808485115] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A fitness landscape is a map between the genotype and its reproductive success in a given environment. The topography of fitness landscapes largely governs adaptive dynamics, constraining evolutionary trajectories and the predictability of evolution. Theory suggests that this topography can be deformed by mutations that produce substantial changes to the environment. Despite its importance, the deformability of fitness landscapes has not been systematically studied beyond abstract models, and little is known about its reach and consequences in empirical systems. Here we have systematically characterized the deformability of the genome-wide metabolic fitness landscape of the bacterium Escherichia coli Deformability is quantified by the noncommutativity of epistatic interactions, which we experimentally demonstrate in mutant strains on the path to an evolutionary innovation. Our analysis shows that the deformation of fitness landscapes by metabolic mutations rarely affects evolutionary trajectories in the short range. However, mutations with large environmental effects produce long-range landscape deformations in distant regions of the genotype space that affect the fitness of later descendants. Our results therefore suggest that, even in situations in which mutations have strong environmental effects, fitness landscapes may retain their power to forecast evolution over small mutational distances despite the potential attenuation of that power over longer evolutionary trajectories. Our methods and results provide an avenue for integrating adaptive and eco-evolutionary dynamics with complex genetics and genomics.
Collapse
Affiliation(s)
- Djordje Bajić
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Jean C C Vila
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| | - Zachary D Blount
- BEACON Center for the Study of Evolution in Action, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824
- Department of Biology, Kenyon College, Gambier OH 43022
| | - Alvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06511;
- Microbial Sciences Institute, Yale University West Campus, West Haven, CT 06516
| |
Collapse
|
28
|
Hunter P. The revival of the extended phenotype: After more than 30 years, Dawkins' Extended Phenotype hypothesis is enriching evolutionary biology and inspiring potential applications. EMBO Rep 2018; 19:embr.201846477. [PMID: 29871873 DOI: 10.15252/embr.201846477] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
29
|
Allen WJ, Meyerson LA, Flick AJ, Cronin JT. Intraspecific variation in indirect plant-soil feedbacks influences a wetland plant invasion. Ecology 2018; 99:1430-1440. [PMID: 29771449 DOI: 10.1002/ecy.2344] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/15/2018] [Accepted: 03/29/2018] [Indexed: 12/21/2022]
Abstract
Plant-soil feedbacks (PSFs) influence plant competition via direct interactions with pathogens and mutualists or indirectly via apparent competition/mutualisms (i.e., spillover to co-occurring plants) and soil legacy effects. It is currently unknown how intraspecific variation in PSFs interacts with the environment (e.g., nutrient availability) to influence competition between native and invasive plants. We conducted a fully crossed multi-factor greenhouse experiment to determine the effects of Phragmites australis rhizosphere soil biota, interspecific competition, and nutrient availability on biomass of replicate populations from one native and two invasive lineages of common reed (P. australis) and a single lineage of native smooth cordgrass (Spartina alterniflora). Harmful soil biota consistently dominated PSFs involving all three P. australis lineages, reducing biomass by 10%. Indirect PSFs (i.e., soil biota spillover) from the two invasive P. australis lineages reduced S. alterniflora biomass by 7%, whereas PSFs from the native P. australis lineage increased S. alterniflora biomass by 6%. Interestingly, interspecific competition and PSFs interacted to weaken their respective impacts on S. alterniflora, whereas they exerted synergistic negative effects on P. australis. Phragmites australis soil biota decreased S. alterniflora biomass when grown alone (i.e., a soil legacy), but increased S. alterniflora biomass when grown with P. australis, suggesting that P. australis recruits harmful generalist soil biota or facilitates S. alterniflora via spillover (i.e., apparent mutualism). Soil biota also reduced interspecific competition impacts on S. alterniflora, although it remained competitively inferior to P. australis across all treatments. Competitive interactions and responses to nutrients did not differ among P. australis lineages, indicating that interspecific competition and nutrient deposition may not be key drivers of P. australis invasion in North America. Although soil biota, interspecific competition, and nutrient availability appear to have no direct impact on the success of invasive P. australis lineages in North America, intraspecific lineage variation in indirect spillover and soil legacies from P. australis occur and may have important implications for co-occurring native species and restoration of invaded habitats. Our study integrates multiple factors linked to plant invasions, highlighting that indirect interactions are likely commonplace in influencing plant community dynamics and invasion success and impacts.
Collapse
Affiliation(s)
- Warwick J Allen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA.,The Bio-Protection Research Centre, Lincoln University, PO Box 84, Lincoln, 7647, New Zealand
| | - Laura A Meyerson
- Natural Resources Science, University of Rhode Island, Kingston, Rhode Island, 02881, United States
| | - Andrew J Flick
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| | - James T Cronin
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, 70803, USA
| |
Collapse
|
30
|
Heterospecific plant-soil feedback and its relationship to plant traits, species relatedness, and co-occurrence in natural communities. Oecologia 2018; 187:679-688. [PMID: 29696389 DOI: 10.1007/s00442-018-4145-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/11/2018] [Indexed: 10/17/2022]
Abstract
Plant-soil feedback is one of the mechanisms affecting co-existence of species, ecological succession, and species invasiveness. However, in contrast to conspecific plant-soil feedback, general patterns in heterospecific feedback are mostly unknown. We used a meta-analysis to search for correlations between heterospecific feedback and species relatedness, functional traits, and field co-occurrence patterns. We searched published literature and compiled a data set of 618 PSF interactions. We gathered data on species traits reflecting plant size and growth rate (height, specific leaf area, and life span), co-occurrence in habitats and phylogenetic distance between species pairs. We found that species grew better in soil conditioned by (i) close relatives than in conspecific soil, whereas there was no relationship with phylogeny for distantly related species, (ii) species of greater plant height (but there was no relationship with species SLA or life span), and (iii) species more frequently co-occurring in the field. The results show that heterospecific plant-soil feedback can be explained by plant traits (height) and is reflected in co-occurrence patterns. Phylogeny was a significant predictor of feedbacks over short phylogenetic distance, suggesting fast evolution of traits related to feedback. The low variability explained by the models, however, indicates that other factors such as environmental conditions possibly alter plant-soil feedback responses.
Collapse
|
31
|
terHorst CP, Zee PC, Heath KD, Miller TE, Pastore AI, Patel S, Schreiber SJ, Wade MJ, Walsh MR. Evolution in a Community Context: Trait Responses to Multiple Species Interactions. Am Nat 2018. [DOI: 10.1086/695835] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Eco-evolutionary processes affecting plant–herbivore interactions during early community succession. Oecologia 2018; 187:547-559. [DOI: 10.1007/s00442-018-4088-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/06/2018] [Indexed: 12/16/2022]
|
33
|
Knelman JE, Graham EB, Prevéy JS, Robeson MS, Kelly P, Hood E, Schmidt SK. Interspecific Plant Interactions Reflected in Soil Bacterial Community Structure and Nitrogen Cycling in Primary Succession. Front Microbiol 2018; 9:128. [PMID: 29467741 PMCID: PMC5808232 DOI: 10.3389/fmicb.2018.00128] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/18/2018] [Indexed: 02/01/2023] Open
Abstract
Past research demonstrating the importance plant-microbe interactions as drivers of ecosystem succession has focused on how plants condition soil microbial communities, impacting subsequent plant performance and plant community assembly. These studies, however, largely treat microbial communities as a black box. In this study, we sought to examine how emblematic shifts from early successional Alnus viridus ssp. sinuata (Sitka alder) to late successional Picea sitchensis (Sitka spruce) in primary succession may be reflected in specific belowground changes in bacterial community structure and nitrogen cycling related to the interaction of these two plants. We examined early successional alder-conditioned soils in a glacial forefield to delineate how alders alter the soil microbial community with increasing dominance. Further, we assessed the impact of late-successional spruce plants on these early successional alder-conditioned microbiomes and related nitrogen cycling through a leachate addition microcosm experiment. We show how increasingly abundant alder select for particular bacterial taxa. Additionally, we found that spruce leachate significantly alters the composition of these microbial communities in large part by driving declines in taxa that are enriched by alder, including bacterial symbionts. We found these effects to be spruce specific, beyond a general leachate effect. Our work also demonstrates a unique influence of spruce on ammonium availability. Such insights bolster theory relating the importance of plant-microbe interactions with late-successional plants and interspecific plant interactions more generally.
Collapse
Affiliation(s)
- Joseph E. Knelman
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States
| | - Emily B. Graham
- Pacific Northwest National Laboratory (U.S. Department of Energy), Richland, WA, United States
| | - Janet S. Prevéy
- Pacific Northwest Research Station, The United States Forest Service, Olympia, WA, United States
| | - Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Patrick Kelly
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, CO, United States
| | - Eran Hood
- Department of Natural Sciences, University of Alaska Southeast, Juneau, AK, United States
| | - Steve K. Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
34
|
Matthews B, Best RJ, Feulner PGD, Narwani A, Limberger R. Evolution as an ecosystem process: insights from genomics. Genome 2017; 61:298-309. [PMID: 29241022 DOI: 10.1139/gen-2017-0044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Evolution is a fundamental ecosystem process. The study of genomic variation of organisms can not only improve our understanding of evolutionary processes, but also of contemporary and future ecosystem dynamics. We argue that integrative research between the fields of genomics and ecosystem ecology could generate new insights. Specifically, studies of biodiversity and ecosystem functioning, evolutionary rescue, and eco-evolutionary dynamics could all benefit from information about variation in genome structure and the genetic architecture of traits, whereas genomic studies could benefit from information about the ecological context of evolutionary dynamics. We propose new ways to help link research on functional genomic diversity with (reciprocal) interactions between phenotypic evolution and ecosystem change. Despite numerous challenges, we anticipate that the wealth of genomic data being collected on natural populations will improve our understanding of ecosystems.
Collapse
Affiliation(s)
- Blake Matthews
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Rebecca J Best
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,b School of Earth Sciences and Environmental Sustainability, Northern Arizona University, 525 S. Beaver Street, Flagstaff, AZ 86011, USA
| | - Philine G D Feulner
- c Eawag, Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,d University of Bern, Division of Aquatic Ecology and Evolution, Institute of Ecology and Evolution, Bern, Switzerland
| | - Anita Narwani
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland
| | - Romana Limberger
- a Eawag, Department of Aquatic Ecology, Center for Ecology, Evolution and Biogeochemistry, Kastanienbaum, Switzerland.,e Research Institute for Limnology, University of Innsbruck, Mondsee, Austria
| |
Collapse
|
35
|
Skene KR. Thermodynamics, ecology and evolutionary biology: A bridge over troubled water or common ground? ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2017. [DOI: 10.1016/j.actao.2017.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
36
|
Van Nuland ME, Bailey JK, Schweitzer JA. Divergent plant–soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat Ecol Evol 2017; 1:150. [DOI: 10.1038/s41559-017-0150] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/22/2017] [Indexed: 11/09/2022]
|
37
|
Becklin KM, Walker SM, Way DA, Ward JK. CO 2 studies remain key to understanding a future world. THE NEW PHYTOLOGIST 2017; 214:34-40. [PMID: 27891618 PMCID: PMC5329069 DOI: 10.1111/nph.14336] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/15/2016] [Indexed: 05/05/2023]
Abstract
Contents 34 I. 34 II. 36 III. 37 IV. 37 V. 38 38 References 38 SUMMARY: Characterizing plant responses to past, present and future changes in atmospheric carbon dioxide concentration ([CO2 ]) is critical for understanding and predicting the consequences of global change over evolutionary and ecological timescales. Previous CO2 studies have provided great insights into the effects of rising [CO2 ] on leaf-level gas exchange, carbohydrate dynamics and plant growth. However, scaling CO2 effects across biological levels, especially in field settings, has proved challenging. Moreover, many questions remain about the fundamental molecular mechanisms driving plant responses to [CO2 ] and other global change factors. Here we discuss three examples of topics in which significant questions in CO2 research remain unresolved: (1) mechanisms of CO2 effects on plant developmental transitions; (2) implications of rising [CO2 ] for integrated plant-water dynamics and drought tolerance; and (3) CO2 effects on symbiotic interactions and eco-evolutionary feedbacks. Addressing these and other key questions in CO2 research will require collaborations across scientific disciplines and new approaches that link molecular mechanisms to complex physiological and ecological interactions across spatiotemporal scales.
Collapse
Affiliation(s)
- Katie M. Becklin
- Department of Ecology and Evolutionary Biology, Kansas University, Lawrence, KS 66045, USA
| | - S. Michael Walker
- Department of Ecology and Evolutionary Biology, Kansas University, Lawrence, KS 66045, USA
| | - Danielle A. Way
- Department of Biology, University of Western Ontario, London, ON N6A 3K7, Canada
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Joy K. Ward
- Department of Ecology and Evolutionary Biology, Kansas University, Lawrence, KS 66045, USA
| |
Collapse
|
38
|
|
39
|
Affiliation(s)
- Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN37996 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville TN37996 USA
| |
Collapse
|
40
|
Evans JA, Lankau RA, Davis AS, Raghu S, Landis DA. Soil-mediated eco-evolutionary feedbacks in the invasive plant Alliaria petiolata. Funct Ecol 2016; 30:1053-1061. [PMID: 31423041 PMCID: PMC6686332 DOI: 10.1111/1365-2435.12685] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/15/2016] [Indexed: 01/10/2023]
Abstract
Ecological and evolutionary processes historically have been assumed to operate on significantly different time-scales. We know now from theory and work in experimental and model systems that these processes can feed back on each other on mutually relevant time-scales.Here, we present evidence of a soil-mediated eco-evolutionary feedback on the population dynamics of an invasive biennial plant, Alliaria petiolata.As populations age, natural selection drives down production of A. petiolata's important antimycorrhizal allelochemical, sinigrin. This occurs due to density-dependent selection on sinigrin, which is favoured under interspecific, but disfavoured under intraspecific, competition.We show that population stochastic growth rates (λS) and plant densities are positively related to sinigrin concentration measured in seedling roots. This interaction is mediated by sinigrin's positive effect on seedling and summer survival, which are important drivers of λS.Together, these illustrate how the evolution of a trait shaped by natural selection can influence the ecology of a species over a period of just years to decades, altering its trajectory of population growth and interactions with the species in the soil and plant communities it invades.Our findings confirm the predictions that eco-evolutionary feedbacks occur in natural populations. Furthermore, they improve our conceptual framework for projecting future population growth by linking the variation in plant demography to a critical competitive trait (sinigrin) whose selective advantages decrease as populations age.
Collapse
Affiliation(s)
- Jeffrey A Evans
- USDA-ARS Global Change and Photosynthesis Research Unit University of Illinois Turner Hall 1102 S. Goodwin Ave. Urbana-Champaign IL 61801 USA
| | - Richard A Lankau
- Department of Plant Biology 2502 Miller Plant Sciences The University of Georgia Athens GA 30602 USA
- Present address: Department of Plant Pathology University of Wisconsin-Madison Russell Labs Building 1630 Linden Drive Madison WI 53706 USA
| | - Adam S Davis
- USDA-ARS Global Change and Photosynthesis Research Unit University of Illinois Turner Hall 1102 S. Goodwin Ave. Urbana-Champaign IL 61801 USA
| | - S Raghu
- CSIRO & USDA-ARS Australian Biological Control Laboratory GPO Box 2583 Brisbane Qld 4001 Australia
| | - Douglas A Landis
- Center for Integrated Plant Systems Lab 578 Wilson Road, Room 204 East Lansing MI 48824 USA
| |
Collapse
|
41
|
Van Nuland ME, Wooliver RC, Pfennigwerth AA, Read QD, Ware IM, Mueller L, Fordyce JA, Schweitzer JA, Bailey JK. Plant–soil feedbacks: connecting ecosystem ecology and evolution. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12690] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michael E. Van Nuland
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Rachel C. Wooliver
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Alix A. Pfennigwerth
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Quentin D. Read
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Ian M. Ware
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Liam Mueller
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - James A. Fordyce
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
42
|
Peña E, Baeten L, Steel H, Viaene N, De Sutter N, De Schrijver A, Verheyen K. Beyond plant–soil feedbacks: mechanisms driving plant community shifts due to land‐use legacies in post‐agricultural forests. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12672] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Eduardo Peña
- Institute for Subtropical and Mediterranean Horticulture (IHSM‐UMA‐CSIC) 29750 Malaga Spain
- Department of Forest and Water Management Faculty of Bioscience Engineering Forest & Nature Lab Geraardsbergsesteenweg 267 9090 Melle‐Gontrode Belgium
- Terrestrial Ecology Unit Department of Biology Faculty of Sciences K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Lander Baeten
- Department of Forest and Water Management Faculty of Bioscience Engineering Forest & Nature Lab Geraardsbergsesteenweg 267 9090 Melle‐Gontrode Belgium
- Terrestrial Ecology Unit Department of Biology Faculty of Sciences K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Hanne Steel
- Department of Biology Faculty of Sciences Laboratory of Nematology K.L. Ledeganckstraat 35 9000 Ghent Belgium
| | - Nicole Viaene
- Plant Unit Crop Protection Department Laboratory of Nematology Institute for Agriculture and Fisheries Research Burg. Van Gansberghelaan 96 9820 Merelbeke Belgium
| | - Nancy De Sutter
- Plant Unit Crop Protection Department Laboratory of Nematology Institute for Agriculture and Fisheries Research Burg. Van Gansberghelaan 96 9820 Merelbeke Belgium
| | - An De Schrijver
- Department of Forest and Water Management Faculty of Bioscience Engineering Forest & Nature Lab Geraardsbergsesteenweg 267 9090 Melle‐Gontrode Belgium
| | - Kris Verheyen
- Department of Forest and Water Management Faculty of Bioscience Engineering Forest & Nature Lab Geraardsbergsesteenweg 267 9090 Melle‐Gontrode Belgium
| |
Collapse
|
43
|
Putten WH, Bradford MA, Pernilla Brinkman E, Voorde TFJ, Veen GF. Where, when and how plant–soil feedback matters in a changing world. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12657] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wim H. Putten
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
- Laboratory of Nematology Wageningen University PO Box 8123 6700 ES Wageningen The Netherlands
| | - Mark A. Bradford
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
- School of Forestry and Environmental Studies Yale University New Haven CT 06511 USA
| | - E. Pernilla Brinkman
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
| | - Tess F. J. Voorde
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
| | - G. F. Veen
- Netherlands Institute of Ecology (NIOO‐KNAW) PO Box 50 6700 AB Wageningen The Netherlands
| |
Collapse
|
44
|
Wooliver R, Pfennigwerth AA, Bailey JK, Schweitzer JA. Plant functional constraints guide macroevolutionary trade‐offs in competitive and conservative growth responses to nitrogen. Funct Ecol 2016. [DOI: 10.1111/1365-2435.12648] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rachel Wooliver
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee37996 USA
| | - Alix A. Pfennigwerth
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee37996 USA
| | - Joseph K. Bailey
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee37996 USA
| | - Jennifer A. Schweitzer
- Department of Ecology and Evolutionary Biology University of Tennessee Knoxville Tennessee37996 USA
| |
Collapse
|