1
|
Verellen F, Palottini F, Estravis-Barcala MC, Farina WM. Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop. Sci Rep 2025; 15:1756. [PMID: 39800782 PMCID: PMC11725577 DOI: 10.1038/s41598-025-85494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees. Additionally, these NSCs presented in combination with scented food improve pollination activity in nectar crops. Here, we evaluated the effect of kiwifruit mimic-scented sugar solution (KM) on colonies located in this crop by supplementing them either with these NSCs individually (KM + CAF, KM + ARG), or combined (KM + MIX). Our results show an increase in colonies' activity after feeding for all treatments. However, the colonies supplemented with the combined mixture (KM + MIX) collected heavier kiwifruit pollen loads and showed an increasing pollen stored area in their hives compared to the KM-treated control colonies. Unexpectedly, the caffeine-treated colonies showed a decrease in the pollen foraging related responses. These results show a combined effect of NSCs that improves honey bee pollen foraging in a nectarless crop, however this activity is impaired when caffeine is used alone for a nectarless crop.
Collapse
Affiliation(s)
- Facundo Verellen
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
| | - Florencia Palottini
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET-UBA, Buenos Aires, Argentina
| | - M Cecilia Estravis-Barcala
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina
- División Entomología, Museo de La Plata, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter M Farina
- Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
- Instituto de Fisiología, Biología Molecular y Neurociencias, CONICET-UBA, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Vignale FA, Hernandez Garcia A, Modenutti CP, Sosa EJ, Defelipe LA, Oliveira R, Nunes GL, Acevedo RM, Burguener GF, Rossi SM, Zapata PD, Marti DA, Sansberro P, Oliveira G, Catania EM, Smith MN, Dubs NM, Nair S, Barkman TJ, Turjanski AG. Yerba mate ( Ilex paraguariensis) genome provides new insights into convergent evolution of caffeine biosynthesis. eLife 2025; 14:e104759. [PMID: 39773819 PMCID: PMC11709435 DOI: 10.7554/elife.104759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/01/2024] [Indexed: 01/11/2025] Open
Abstract
Yerba mate (YM, Ilex paraguariensis) is an economically important crop marketed for the elaboration of mate, the third-most widely consumed caffeine-containing infusion worldwide. Here, we report the first genome assembly of this species, which has a total length of 1.06 Gb and contains 53,390 protein-coding genes. Comparative analyses revealed that the large YM genome size is partly due to a whole-genome duplication (Ip-α) during the early evolutionary history of Ilex, in addition to the hexaploidization event (γ) shared by core eudicots. Characterization of the genome allowed us to clone the genes encoding methyltransferase enzymes that catalyse multiple reactions required for caffeine production. To our surprise, this species has converged upon a different biochemical pathway compared to that of coffee and tea. In order to gain insight into the structural basis for the convergent enzyme activities, we obtained a crystal structure for the terminal enzyme in the pathway that forms caffeine. The structure reveals that convergent solutions have evolved for substrate positioning because different amino acid residues facilitate a different substrate orientation such that efficient methylation occurs in the independently evolved enzymes in YM and coffee. While our results show phylogenomic constraint limits the genes coopted for convergence of caffeine biosynthesis, the X-ray diffraction data suggest structural constraints are minimal for the convergent evolution of individual reactions.
Collapse
Affiliation(s)
| | | | - Carlos P Modenutti
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2Ciudad Autonoma de Buenos AiresArgentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2Ciudad Autónoma de Buenos AiresArgentina
| | - Ezequiel J Sosa
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2Ciudad Autonoma de Buenos AiresArgentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2Ciudad Autónoma de Buenos AiresArgentina
| | - Lucas A Defelipe
- European Molecular Biology Laboratory - Hamburg UnitHamburgGermany
| | | | | | - Raúl M Acevedo
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del NordesteCorrientesArgentina
| | - German F Burguener
- Department of Plant Sciences, University of California, DavisDavisUnited States
| | - Sebastian M Rossi
- Instituto de Biotecnología de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (INBIOMIS-FCEQyN-UNaM)MisionesArgentina
| | - Pedro D Zapata
- Instituto de Biotecnología de Misiones, Facultad de Ciencias Exactas, Químicas y Naturales, Universidad Nacional de Misiones (INBIOMIS-FCEQyN-UNaM)MisionesArgentina
| | - Dardo A Marti
- Instituto de Biología Subtropical, Universidad Nacional de Misiones (IBS-UNaM-CONICET)PosadasArgentina
| | - Pedro Sansberro
- Laboratorio de Biotecnología Aplicada y Genómica Funcional, Instituto de Botánica del Nordeste (IBONE-CONICET), Facultad de Ciencias Agrarias, Universidad Nacional del NordesteCorrientesArgentina
| | | | - Emily M Catania
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Madeline N Smith
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Nicole M Dubs
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Satish Nair
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-ChampaignUrbanaUnited States
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana ChampaignUrbanaUnited States
| | - Todd J Barkman
- Department of Biological Sciences, Western Michigan UniversityKalamazooUnited States
| | - Adrian G Turjanski
- IQUIBICEN-CONICET, Ciudad Universitaria, Pabellón 2Ciudad Autonoma de Buenos AiresArgentina
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2Ciudad Autónoma de Buenos AiresArgentina
| |
Collapse
|
3
|
Abdisa T, Dilbato T. Toxic Plants and Their Impact on Livestock Health and Economic Losses: A Comprehensive Review. J Toxicol 2024; 2024:9857933. [PMID: 39723202 PMCID: PMC11669433 DOI: 10.1155/jt/9857933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/25/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Plants are important components in sustaining the life of humans and animals, balancing ecosystems, providing animal feed and edible food for human consumption, and serving as sources of traditional and modern medicine. However, plants can be harmful to both animals and humans when ingested, leading to poisoning regardless of the quantity consumed. This presents significant risks to livestock health and can impede economic growth. In several developing countries, including Ethiopia, traditional communities have depended on medicinal plants for treating livestock and human diseases. The incidences of livestock poisoning from medicinal and poisonous plants are due to the misuse and lack of dosage standardization. Therefore, this paper aimed to review toxic plants and their effects on livestock health and associated economic losses. Toxic plants contain secondary metabolites that serve as a defense mechanism against predators. The most common secondary metabolites of toxic plants that affect livestock health and the economy include alkaloids (Asteraceae, Convolvulaceae, Lamiaceae, Fabaceae, and Boraginaceae), cyanides (Sorghum spp. and grass spp.), nitrates (Pennisetum purpureum roots, Amaranthus, nightshades, Solanum spp. Chenopodium spp., and weed spp.), oxalates (Poaecea, Amaranthaceae, and Polygonaceae), and glycosides (Pteridium aquiline). The most common effects of toxic plants on livestock health include teratogenic and abortifacient (Locoweeds, Lupines, Poison Hemlock, and Veratrum), hepatoxicity (Crotalaria, Lantana camara, Xanthium, and Senecio), photosensitization (L. camara, Alternanthera philoxeroides, Brachiaria brizantha, and Heracleum sphondylium), and impairing respiratory and circulatory systems (nitrite and cyanide toxic). Toxic plants lead to substantial economic losses, both direct and indirect. Direct losses stem from livestock deaths, abortions, decreased milk quality, and reduced skin and hide production, while indirect losses are associated with the costs of treatment and management of affected animals. Overall, toxic plants negatively impact livestock health and production, resulting in significant economic repercussions. Therefore, it is crucial to prioritize the identification of the most prevalent toxic plants, isolate secondary metabolites, conduct toxicity tests, standardize dosages, and develop effective strategies for managing both the toxic plants and their associated toxicity.
Collapse
Affiliation(s)
- Tagesu Abdisa
- Chelia District Agricultural and Land Office, Animal Health Protection Team, Chelia District, West Shewa, Oromia, Ethiopia
| | - Tegegn Dilbato
- Ambo University, Guder Mamo Mezemir Campus, Department of Veterinary Science, West Shewa Zone, Oromia, Ethiopia
| |
Collapse
|
4
|
Weryszko-Chmielewska E, Sulborska-Różycka A. Myosotis scorpioides L. (Boraginaceae) floral nectary: Micromorphology, fluorescence, and ultrastructure. Micron 2024; 190:103773. [PMID: 39693728 DOI: 10.1016/j.micron.2024.103773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024]
Abstract
The small flowers of Myosotis scorpioides are pollinated by various groups of insects feeding on their nectar accumulating at the base of the corolla tube. To date, only few studies have focused on the anatomy and ultrastructure of nectaries in plants from the family Boraginaceae. The aim of this study was to analyse the structure of the M. scorpioides nectary at different levels of organisation, with special emphasis on its ultrastructure, which has not been investigated so far. The studies were carried out with the use of light, fluorescence, scanning electron, and transmission electron microscopes. Undulated discoidal nectaries with a diameter of up to 0.9 mm and a height of about 0.2 mm were localised at the ovary base. There were numerous nectarostomata on the top and abaxial surfaces of the nectary. Phenolic compounds present in the nectary exhibited autofluorescence. The ultrastructural studies of nectary epidermis and secretory parenchyma cells revealed the presence of thin cell walls, different-sized vacuoles, medium-sized nuclei, plasmodesmata in the cell walls, and various types of chromoplasts. Numerous mitochondria were visible in close proximity to the plastids. Additionally, clusters of dictyosomes, well-developed rough ER profiles, and numerous ribosomes and different-sized vesicles often located near the cell walls were observed. Our study conducted at the subcellular level indicated high metabolic activity of the M. scorpioides nectary. The presence of phenolic compounds in the nectary may both serve as a protection of this part of the flower against biological factors and contribute to the intensification of the floral scent acting as a pollinator attractant.
Collapse
Affiliation(s)
- Elżbieta Weryszko-Chmielewska
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, Lublin 20-950, Poland
| | - Aneta Sulborska-Różycka
- Department of Botany and Plant Physiology, University of Life Sciences in Lublin, Akademicka 15, Lublin 20-950, Poland.
| |
Collapse
|
5
|
Feio AC, Furtado ACS, Coutinho ÍAC. An exploratory study of the functional significance of the floral secretory structures in two Miconia species (Melastomataceae). AN ACAD BRAS CIENC 2024; 96:e20240468. [PMID: 39630716 DOI: 10.1590/0001-3765202420240468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/22/2024] [Indexed: 12/07/2024] Open
Abstract
Aiming to verify whether the diversity of secretory structures with their respective exudates are or not responsible for the attendance of floral visitors in Miconia species, the floral secretory structures of two Amazonian species of Miconia were described and interpreted from the functional perspectives and observations of floral visitors. Flowers and floral visitors were collected in the field for 16 months. The flowers were subjected to standard anatomical analyzes using light and scanning electron microscopy, and the secretory structures were evaluated using histochemical tests. The insects were photographed, collected and identified by a specialist. Floral secretory structures (stigmatic papillae and trichomes at the apex of the ovary) were found in M. alata and M. ciliata. Trichomes were found at the hypanthium of M. alata, and of the sepals and receptacles in M. ciliata. In both species, different hydrophilic compounds were detected in the exudates. Only phenolic compounds were found in the trichomes of the M. ciliata receptacle. This study provides information that confirms the hypothesis that other secretory structures and exudates are related to floral visitors, and adds new informations about the features of the secretory structures in Miconia.
Collapse
Affiliation(s)
- Ana Carla Feio
- Universidade Federal do Rio de Janeiro/Museu Nacional, Programa de Pós-graduação em Ciências Biológicas/Botânica, Parque Quinta da Boa Vista 1, 20940-040 Rio de Janeiro, RJ, Brazil
- Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Avenida Perimetral 1901, 66077-830 Belém, PA, Brazil
| | - Ana Catarina S Furtado
- Universidade Federal Rural da Amazônia/Museu Paraense Emílio Goeldi, Programa de Pós-Graduação em Ciências Biológicas - Botânica Tropical, Avenida Perimetral 1901, 66077-830 Belém, PA, Brazil
| | - Ítalo Antônio C Coutinho
- Universidade Federal do Ceará, Centro de Ciências, Departamento de Biologia, Programa de Pós-graduação em Sistemática Uso e Conservação da Biodiversidade, Avenida Mister Hull, s/n, Campus do PICI, 60440-900 Fortaleza, CE, Brazil
| |
Collapse
|
6
|
Lee S, Dobes P, Marciniak J, Mascellani Bergo A, Kamler M, Marsik P, Pohl R, Titera D, Hyrsl P, Havlik J. Phytochemical S-methyl-L-cysteine sulfoxide from Brassicaceae: a key to health or a poison for bees? Open Biol 2024; 14:240219. [PMID: 39657820 PMCID: PMC11631464 DOI: 10.1098/rsob.240219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/12/2024] Open
Abstract
Intensive agricultural practices impact the health and nutrition of pollinators like honey bees (Apis mellifera). Rapeseed (Brassica napus L.) is widely cultivated, providing diverse nutrients and phytochemicals, including S-methyl-L-cysteine sulfoxide (SMCSO). While the nutritional impact of rapeseed on bees is known, SMCSO's effects remain unexplored. We examined SMCSO and its related metabolites-3-methylthiolactic acid sulfoxide and N-acetyl-S-methyl-L-cysteine sulfoxide-analysing their seasonal fluctuations, colony variations and distribution in body parts. Our findings showed that these compounds in bee gut vary among colonies, possibly due to the dietary preferences, and are highly concentrated in bodies during the summer. They are distributed differently within bee bodies, with higher concentrations in the abdomens of foragers compared with nurses. Administration of SMCSO in a laboratory setting showed no immediate toxic effects but significantly boosted bees' antioxidant capacity. Long-term administration decreased bee body weight, particularly in the thorax and head, and altered amino acid metabolism. SMCSO is found in the nectar and pollen of rapeseed flowers and highly accumulates in rapeseed honey compared with other types of honey. This study reveals the dual impact of SMCSO on bee health, providing a basis for further ecological and physiological research to enhance bee health and colony sustainability.
Collapse
Affiliation(s)
- Saetbyeol Lee
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Pavel Dobes
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jacek Marciniak
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Anna Mascellani Bergo
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | | | - Petr Marsik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Radek Pohl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | | | - Pavel Hyrsl
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jaroslav Havlik
- Department of Food Science, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
7
|
Hua Q, Chi X, Zhang W, Song H, Wang Y, Liu Z, Wang H, Xu B. Damage to the behavior and physiological functions of Apis mellifera (Hymenoptera: Apidae) by monocrotaline via the modulation of tryptophan metabolism and the corazonin receptor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175931. [PMID: 39218096 DOI: 10.1016/j.scitotenv.2024.175931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Monocrotaline (MCT) is a toxic pyrrolizidine alkaloid found in plants of the Crotalaria genus. As primary pollinators of Crotalaria plants, honeybees come into contact with this harmful substance. However, limited research has been conducted on the effects of MCT on Apis mellifera, particularly the risks of long-term exposure to sublethal concentrations. Through evaluating the proboscis extension reflex (PER) ability, analyzing the honeybee brain transcriptome, and analyzing the honeybee hemolymph metabolome, we discovered that sublethal concentrations of MCT impair the olfactory and memory capabilities of honeybees by affecting tryptophan (Trp) metabolism. Furthermore, MCT upregulates the expression of the corazonin receptor (CrzR) gene in the honeybee brain, which elevates reactive oxygen species (ROS) levels in the brain while reducing glucose levels in the hemolymph, consequently shortening the honeybees' lifespan. Our findings regarding the multifaceted impact of MCT on honeybees lay the foundation for exploring its toxicological pathways and management in honeybee populations.
Collapse
Affiliation(s)
- Qi Hua
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Xuepeng Chi
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Wei Zhang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China.
| |
Collapse
|
8
|
Hemingway CT, Leonard AS, MacNeill FT, Pimplikar S, Muth F. Pollinator cognition and the function of complex rewards. Trends Ecol Evol 2024; 39:1047-1058. [PMID: 39019730 DOI: 10.1016/j.tree.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/19/2024]
Abstract
The cognitive ecology of pollination is most often studied using simple rewards, yet flowers often contain multiple types of chemically complex rewards, each varying along multiple dimensions of quality. In this review we highlight ways in which reward complexity can impact pollinator cognition, demonstrating the need to consider ecologically realistic rewards to fully understand plant-pollinator interactions. We show that pollinators' reward preferences can be modulated by reward chemistry and the collection of multiple reward types. We also discuss how reward complexity can mediate pollinator learning through a variety of mechanisms, both with and without reward preference being altered. Finally, we show how an understanding of decision-making strategies is necessary to predict how pollinators' evaluation of reward options depends on the other options available.
Collapse
Affiliation(s)
- Claire T Hemingway
- Department of Ecology & Evolutionary Biology, Dabney Hall, 1416 Circle Dr., University of Tennessee, Knoxville, TN 37996, USA; Department of Psychology, Austin Peay, 1404 Circle Dr., University of Tennessee, Knoxville, TN 37996, USA; Department of Integrative Biology, 2415 Speedway, University of Texas at Austin, Austin, TX 78712, USA.
| | - Anne S Leonard
- Department of Biology, 1664 North Virginia St, Mailstop 314, University of Nevada, Reno, NV 89557, USA
| | - Fiona Tiley MacNeill
- Department of Integrative Biology, 2415 Speedway, University of Texas at Austin, Austin, TX 78712, USA
| | - Smruti Pimplikar
- Department of Integrative Biology, 2415 Speedway, University of Texas at Austin, Austin, TX 78712, USA
| | - Felicity Muth
- Department of Integrative Biology, 2415 Speedway, University of Texas at Austin, Austin, TX 78712, USA; Department of Neurobiology, Physiology, and Behavior, 196 Briggs Hall, University of California, Davis, CA 95616, USA
| |
Collapse
|
9
|
Hsieh EM, Dolezal AG. Nutrition, pesticide exposure, and virus infection interact to produce context-dependent effects in honey bees (Apis mellifera). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175125. [PMID: 39084359 DOI: 10.1016/j.scitotenv.2024.175125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Declines in pollinator health are frequently hypothesized to be the combined result of multiple interacting biotic and abiotic stressors; namely, nutritional limitations, pesticide exposure, and infection with pathogens and parasites. Despite this hypothesis, most studies examining stressor interactions have been constrained to two concurrent factors, limiting our understanding of multi-stressor dynamics. Using honey bees as a model, we addressed this gap by studying how variable diet, field-realistic levels of multiple pesticides, and virus infection interact to affect survival, infection intensity, and immune and detoxification gene expression. Although we found evidence that agrochemical exposure (a field-derived mixture of chlorpyrifos and two fungicides) can exacerbate infection and increase virus-induced mortality, this result was nutritionally-dependent, only occurring when bees were provided artificial pollen. Provisioning with naturally-collected polyfloral pollen inverted the effect, reducing virus-induced mortality and suggesting a hormetic response. To test if the response was pesticide specific, we repeated our experiment with a pyrethroid (lambda-cyhalothrin) and a neonicotinoid (thiamethoxam), finding variable results. Finally, to understand the underpinnings of these effects, we measured viral load and expression of important immune and detoxification genes. Together, our results show that multi-stressor interactions are complex and highly context-dependent, but have great potential to affect bee health and physiology.
Collapse
Affiliation(s)
- Edward M Hsieh
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin, Urbana, IL 61801-3795, USA.
| | - Adam G Dolezal
- Department of Entomology, University of Illinois Urbana-Champaign, 505 S. Goodwin, Urbana, IL 61801-3795, USA
| |
Collapse
|
10
|
Jirabanjongjit A, Stewart AB, Chitchak N, Rattamanee C, Traiperm P. Variation in floral morphology, histochemistry, and floral visitors of three sympatric morning glory species. PeerJ 2024; 12:e17866. [PMID: 39210916 PMCID: PMC11361269 DOI: 10.7717/peerj.17866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Three morning glory species in the genus Argyreia Lour., A. lycioides (Choisy) Traiperm & Rattanakrajang, A. mekongensis Gagnep & Courchet, and A. versicolor (Kerr) Staples & Traiperm, were found co-occurring and co-flowering. Argyreia mekongensis and A. versicolor are rare, while A. lycioides is near threatened and distributed throughout Myanmar and Thailand. We investigated key floral characters (floral morphology and phenology, as well as the micromorphology of the floral nectary disc and staminal trichomes) and screened for important chemical compounds hypothesized to contribute to pollinator attraction. Our findings demonstrate that some aspects of floral morphology (e.g., corolla size, limb presence, and floral color) of the three studied congeners exhibit significant differences. Moreover, pollinator composition appears to be influenced by floral shape and size; morning glory species with wider corolla tubes were pollinated by larger bees. The morphology of the floral nectary disc was similar in all species, while variation in staminal trichomes was observed across species. Glandular trichomes were found in all three species, while non-glandular trichomes were found only in A. versicolor. Histochemical results revealed different compounds in the floral nectary and staminal trichomes of each species, which may contribute to both floral attraction and defense. These findings demonstrate some segregation of floral visitors among sympatric co-flowering morning glory species, which appears to be influenced by the macro- and micromorphology of flowers and their chemical compounds. Moreover, understanding the floral morphology and chemical attractants of these sympatric co-flowering Argyreia species may help to maintain their common pollinators in order to conserve these rare and endangered species, especially A. versicolor.
Collapse
Affiliation(s)
- Awapa Jirabanjongjit
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Alyssa B. Stewart
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Natthaphong Chitchak
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
11
|
Iorizzo M, Albanese G, Letizia F, Testa B, Di Criscio D, Petrarca S, Di Martino C, Ganassi S, Avino P, Pannella G, Aturki Z, Tedino C, De Cristofaro A. Diversity of plant pollen sources, microbial communities, and phenolic compounds present in bee pollen and bee bread. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34517-x. [PMID: 39073714 DOI: 10.1007/s11356-024-34517-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
The pollination of several crops, as well as wild plants, depends on honeybees. To get the nutrients required for growth and survival, honeybee colonies are dependent on pollen supply. Bee pollen (BP) is partially packed in honeycomb cells and processed into beebread (BB) by microbial metabolism. The composition of pollen is highly variable and is mainly dependent on ecological habitat, geographical origin, honey plants, climatic conditions, and seasonal variations. Although there are important differences between the BP and the BB, little comparative chemical and microbiological data on this topic exists in the literature, particularly for samples with the same origin. In this study, BP and BB pollen samples were collected from two apiaries located in the Campania and Molise regions of Southern Italy. Phenolic profiles were detected via HPLC, while antioxidant activity was determined by ABTS·+ and DPPH· assay. The next-generation sequencing (NGS) based on RNA analysis of 16S (rRNA) and internal transcribed spacer (ITS2) regions were used to investigate the microbial community (bacteria and fungi) and botanical origin of the BP and BB. Chemical analysis showed a higher content of flavonols in BP (rutin, myricetin, quercetin, and kaempferol), while in BB there was a higher content of phenolic acids. The NGS analysis revealed that the microbial communities and pollen sources are dependent on the geographical location of apiaries. In addition, diversity was highlighted between the microbial communities present in the BP and BB samples collected from each apiary.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianluca Albanese
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy.
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Bruno Testa
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Dalila Di Criscio
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Petrarca
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- CONAPROA, Consorzio Nazionale Produttori Apistici, 86100, Campobasso, Italy
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Sonia Ganassi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Pasquale Avino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Gianfranco Pannella
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
- Department of Science and Technology for Sustainable Development and One Health, University Campus Bio-Medico of Rome, 00159, Rome, Italy
| | - Zeineb Aturki
- Istituto Per I Sistemi Biologici, Consiglio Nazionale Delle Ricerche, Area Della Ricerca Di Roma I, Via Salaria Km 29.300, 00015, Monterotondo, Rome, Italy
| | - Cosimo Tedino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| | - Antonio De Cristofaro
- Department of Agricultural, Environmental and Food Sciences, University of Molise, 86100, Campobasso, Italy
| |
Collapse
|
12
|
Leoni V, Panseri S, Giupponi L, Pavlovic R, Gianoncelli C, Coatti G, Beretta G, Giorgi A. Phytochemical profiling of red raspberry (Rubus idaeus L.) honey and investigation of compounds related to its pollen occurrence. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5391-5406. [PMID: 38345434 DOI: 10.1002/jsfa.13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/12/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Red raspberry (Rubus idaeus L.) is an important nectar source for honey production in some specific habitats as well as an important crop, so the definition of the features of this kind of honey is noteworthy. However, due to its rarity on the market, red raspberry honey is poorly characterized. The aim of this work was the phytochemical characterization of honey containing red raspberry from different geographical origins, through melissopalynological analyses concurrently with untargeted metabolomics achieved with different chromatographic techniques coupled to mass spectrometry: solid-phase micro-extraction/gas chromatography/mass spectrometry (SPME-GC-MS) and high-performance liquid chromatography/Orbitrap mass spectrometry (HPLC-Orbitrap). RESULTS Only 4 out of the 12 samples involved in the study contained raspberry pollen as dominant pollen, although these honeys did not group in the hierarchical cluster analysis nor in the classical multidimensional scaling analyses used for data evaluation. The first result was the detection of mislabelling in two samples, which contained raspberry pollen only as minor or important minor pollen. Of the 188 compounds identified by HPLC-Orbitrap and of the 260 identified by SPME-GC-MS, 87 and 31 compounds were present in all samples, respectively. The structurally related compounds nicotinaldehyde and nicotinamide, nicotinic acid and nicotinyl alcohol were present in 100% of the samples and correlated with R. idaeus pollen count (r > 0.60, Pearson's correlation analysis). CONCLUSION This study reveals important aspects about the characterization of red raspberry honey and could give new insights on bee diet and preferences, since niacin compounds resulted interestingly to be related to the presence of red raspberry pollen. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valeria Leoni
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Sara Panseri
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Lodi, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Radmila Pavlovic
- Proteomics and Metabolomics Facility (PROMEFA), San Raffaele Scientific Institute, Milan, Italy
| | | | - Gloria Coatti
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| | - Giangiacomo Beretta
- Department of Environmental Science and Policy (ESP), University of Milan, Milan, Italy
| | - Annamaria Giorgi
- Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DISAA), University of Milan, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Milan, Italy
| |
Collapse
|
13
|
Fernandes KE, Frost EA, Kratz M, Carter DA. Pollen products collected from honey bee hives experiencing minor stress have altered fungal communities and reduced antimicrobial properties. FEMS Microbiol Ecol 2024; 100:fiae091. [PMID: 38886123 PMCID: PMC11210501 DOI: 10.1093/femsec/fiae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024] Open
Abstract
Fungi are increasingly recognized to play diverse roles within honey bee hives, acting as pathogens, mutualists, and commensals. Pollen products, essential for hive nutrition, host significant fungal communities with potential protective and nutritional benefits. In this study, we profile the fungal communities and antifungal properties of three pollen products from healthy and stressed hives: fresh pollen collected by forager bees from local plants; stored pollen packed into the comb inside the hive; and bee bread, which is stored pollen following anaerobic fermentation used for bee and larval nutrition. Using amplicon sequencing, we found significant differences in fungal community composition, with hive health and sample type accounting for 8.8% and 19.3% of variation in beta diversity, respectively. Pollen and bee bread extracts had species-specific antimicrobial activity and inhibited the fungal hive pathogens Ascosphaera apis, Aspergillus flavus, and Aspergillus fumigatus, and the bacterial hive pathogen Paenibacillus larvae. Activity was positively correlated with phenolic and antioxidant content and was diminished in stressed hives. The plant source of pollen determined by amplicon sequencing differed in stressed hives, suggesting altered foraging behaviour. These findings illustrate the complex interplay between honey bees, fungal communities, and hive products, which should be considered in hive management and conservation.
Collapse
Affiliation(s)
- Kenya E Fernandes
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| | - Elizabeth A Frost
- ABGU, A Joint Venture of NSW Department of Primary Industries and University of New England, Armidale, NSW 2350, Australia
- NSW Department of Primary Industries, Paterson, NSW 2421, Australia
| | - Madlen Kratz
- NSW Department of Primary Industries, Paterson, NSW 2421, Australia
| | - Dee A Carter
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
14
|
Kline O, Joshi NK. Microbial Symbiont-Based Detoxification of Different Phytotoxins and Synthetic Toxic Chemicals in Insect Pests and Pollinators. J Xenobiot 2024; 14:753-771. [PMID: 38921652 PMCID: PMC11204611 DOI: 10.3390/jox14020043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Insects are the most diverse form of life, and as such, they interact closely with humans, impacting our health, economy, and agriculture. Beneficial insect species contribute to pollination, biological control of pests, decomposition, and nutrient cycling. Pest species can cause damage to agricultural crops and vector diseases to humans and livestock. Insects are often exposed to toxic xenobiotics in the environment, both naturally occurring toxins like plant secondary metabolites and synthetic chemicals like herbicides, fungicides, and insecticides. Because of this, insects have evolved several mechanisms of resistance to toxic xenobiotics, including sequestration, behavioral avoidance, and enzymatic degradation, and in many cases had developed symbiotic relationships with microbes that can aid in this detoxification. As research progresses, the important roles of these microbes in insect health and function have become more apparent. Bacterial symbionts that degrade plant phytotoxins allow host insects to feed on otherwise chemically defended plants. They can also confer pesticide resistance to their hosts, especially in frequently treated agricultural fields. It is important to study these interactions between insects and the toxic chemicals they are exposed to in order to further the understanding of pest insect resistance and to mitigate the negative effect of pesticides on nontarget insect species like Hymenopteran pollinators.
Collapse
Affiliation(s)
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
15
|
Moore CD, Farman DI, Särkinen T, Stevenson PC, Vallejo-Marín M. Floral scent changes in response to pollen removal are rare in buzz-pollinated Solanum. PLANTA 2024; 260:15. [PMID: 38829528 PMCID: PMC11147924 DOI: 10.1007/s00425-024-04403-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/30/2024] [Indexed: 06/05/2024]
Abstract
MAIN CONCLUSION One of seven Solanum taxa studied displayed associations between pollen presence and floral scent composition and volume, suggesting buzz-pollinated plants rarely use scent as an honest cue for foraging pollinators. Floral scent influences the recruitment, learning, and behaviour of floral visitors. Variation in floral scent can provide information on the amount of reward available or whether a flower has been visited recently and may be particularly important in species with visually concealed rewards. In many buzz-pollinated flowers, tubular anthers opening via small apical pores (poricidal anthers) visually conceal pollen and appear similar regardless of pollen quantity within the anther. We investigated whether pollen removal changes floral scent composition and emission rate in seven taxa of buzz-pollinated Solanum (Solanaceae). We found that pollen removal reduced both the overall emission of floral scent and the emission of specific compounds (linalool and farnesol) in S. lumholtzianum. Our findings suggest that in six out of seven buzz-pollinated taxa studied here, floral scent could not be used as a signal by visitors as it does not contain information on pollen availability.
Collapse
Affiliation(s)
- C Douglas Moore
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Dudley I Farman
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
| | - Tiina Särkinen
- Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh, EH3 5LR, UK
| | - Philip C Stevenson
- Natural Resources Institute, University of Greenwich, Kent, ME4 4TB, UK
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE, UK
| | - Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 752 36, Uppsala, Sweden
| |
Collapse
|
16
|
Vignesh A, Amal TC, Sivalingam R, Selvakumar S, Vasanth K. Unraveling the impact of nanopollution on plant metabolism and ecosystem dynamics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108598. [PMID: 38608503 DOI: 10.1016/j.plaphy.2024.108598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/09/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024]
Abstract
Nanopollution (NPOs), a burgeoning consequence of the widespread use of nanoparticles (NPs) across diverse industrial and consumer domains, has emerged as a critical environmental issue. While extensive research has scrutinized the repercussions of NPs pollution on ecosystems and human health, scant attention has been directed towards unraveling its implications for plant life. This comprehensive review aims to bridge this gap by delving into the nuanced interplay between NPOs and plant metabolism, encompassing both primary and secondary processes. Our exploration encompasses an in-depth analysis of the intricate mechanisms governing the interaction between plants and NPs. This involves a thorough examination of how physicochemical properties such as size, shape, and surface characteristics influence the uptake and translocation of NPs within plant tissues. The impact of NPOs on primary metabolic processes, including photosynthesis, respiration, nutrient uptake, and water transport. Additionally, this study explored the multifaceted alterations in secondary metabolism, shedding light on the synthesis and modulation of secondary metabolites in response to NPs exposure. In assessing the consequences of NPOs for plant life, we scrutinize the potential implications for plant growth, development, and environmental interactions. The intricate relationships revealed in this review underscore the need for a holistic understanding of the plant-NPs dynamics. As NPs become increasingly prevalent in ecosystems, this investigation establishes a fundamental guide that underscores the importance of additional research to shape sustainable environmental management strategies and address the extensive effects of NPs on the development of plant life and environmental interactions.
Collapse
Affiliation(s)
- Arumugam Vignesh
- Department of Botany, Nallamuthu Gounder Mahalingam College (Autonomous), Bharathiar University (Affiliated), Pollachi, 642 001, Tamil Nadu, India
| | - Thomas Cheeran Amal
- ICAR - Central Institute for Cotton Research, RS, Coimbatore, 641 003, Tamil Nadu, India
| | | | - Subramaniam Selvakumar
- Department of Biochemistry, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Krishnan Vasanth
- Department of Botany, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
17
|
Rivest S, Lee ST, Cook D, Forrest JRK. Consequences of pollen defense compounds for pollinators and antagonists in a pollen-rewarding plant. Ecology 2024; 105:e4306. [PMID: 38590050 DOI: 10.1002/ecy.4306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/09/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024]
Abstract
Plants produce an array of defensive compounds with toxic or deterrent effects on insect herbivores. Pollen can contain relatively high concentrations of such defense compounds, but the causes and consequences of this enigmatic phenomenon remain mostly unknown. These compounds could potentially protect pollen against antagonists but could also reduce flower attractiveness to pollinators. We combined field observations of the pollen-rewarding Lupinus argenteus with chemical analysis and laboratory assays to test three hypotheses for the presence of pollen defense compounds: (1) these compounds are the result of spillover from adjacent tissues, (2) they protect against pollen thieves, and (3) they act as antimicrobial compounds. We also tested whether pollen defense compounds affect pollinator behavior. We found a positive relationship between alkaloid concentrations in pollen and petals, supporting the idea that pollen defense compounds partly originate from spillover. However, pollen and petals exhibited quantitatively (but not qualitatively) distinct alkaloid profiles, suggesting that plants can adjust pollen alkaloid composition independently from that of adjacent tissues. We found no relationship between pollen alkaloid concentration and the abundance of pollen thieves in Lupinus flowers. However, pollen alkaloids were negatively associated with bacterial abundance. Finally, plants with more alkaloids in their pollen received more pollinator visits, but these visits were shorter, resulting in no change in the overall number of flowers visited. We propose that pollen defense compounds are partly the result of spillover from other tissues, while they also play an antimicrobial role. The absence of negative effects of these compounds on pollinator visitation likely allows their maintenance in pollen at relatively high concentrations. Taken together, our results suggest that pollen alkaloids affect and are mediated by the interplay of multiple interactions.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| | - Stephen T Lee
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Daniel Cook
- USDA ARS Poisonous Plant Research Laboratory, Logan, Utah, USA
| | - Jessica R K Forrest
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado, USA
| |
Collapse
|
18
|
Rivest S, Muralidhar M, Forrest JRK. Pollen chemical and mechanical defences restrict host-plant use by bees. Proc Biol Sci 2024; 291:20232298. [PMID: 38471551 PMCID: PMC10932708 DOI: 10.1098/rspb.2023.2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/31/2024] [Indexed: 03/14/2024] Open
Abstract
Plants produce an array of chemical and mechanical defences that provide protection against many herbivores and pathogens. Putatively defensive compounds and structures can even occur in floral rewards: for example, the pollen of some plant taxa contains toxic compounds or possesses conspicuous spines. Yet little is known about whether pollen defences restrict host-plant use by bees. In other words, do bees, like other insect herbivores, tolerate the defences of their specific host plants while being harmed by non-host defences? To answer this question, we compared the effects of a chemical defence from Lupinus (Fabaceae) pollen and a putative mechanical defence (pollen spines) from Asteraceae pollen on larval survival of nine bee species in the tribe Osmiini (Megachilidae) varying in their pollen-host use. We found that both types of pollen defences reduce larval survival rate in some bee species. These detrimental effects were, however, mediated by host-plant associations, with bees being more tolerant of the pollen defences of their hosts, relative to the defences of plant taxa exploited by other species. This pattern strongly suggests that bees are adapted to the pollen defences of their hosts, and that host-plant use by bees is constrained by their ability to tolerate such defences.
Collapse
Affiliation(s)
- Sébastien Rivest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | | | - Jessica R. K. Forrest
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 6N5
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
19
|
Thiel S, Gottstein M, Heymann EW, Kroszewski J, Lieker N, Tello NS, Tschapka M, Junker RR, Heer K. Vertically stratified interactions of nectarivores and nectar-inhabiting bacteria in a liana flowering across forest strata. AMERICAN JOURNAL OF BOTANY 2024; 111:e16303. [PMID: 38531667 DOI: 10.1002/ajb2.16303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 03/28/2024]
Abstract
PREMISE Vertical stratification is a key feature of tropical forests and plant-frugivore interactions. However, it is unclear whether equally strong patterns of vertical stratification exist for plant-nectarivore interactions and, if so, which factors drive these patterns. Further, nectar-inhabiting bacteria, acting as "hidden players" in plant-nectarivore interactions, might be vertically stratified, either in response to differences among strata in microenvironmental conditions or to the nectarivore community serving as vectors. METHODS We observed visitations by a diverse nectarivore community to the liana Marcgravia longifolia in a Peruvian rainforest and characterized diversity and community composition of nectar-inhabiting bacteria. Unlike most other plants, M. longifolia produces inflorescences across forest strata, enabling us to study effects of vertical stratification on plant-nectarivore interactions without confounding effects of plant species and stratum. RESULTS A significantly higher number of visits were by nectarivorous bats and hummingbirds in the midstory than in the understory and canopy, and the visits were strongly correlated to flower availability and nectar quantity and quality. Trochiline hummingbirds foraged across all strata, whereas hermits remained in the lower strata. The Shannon diversity index for nectar-inhabiting bacterial communities was highest in the midstory. CONCLUSIONS Our findings suggest that vertical niche differentiation in plant-nectarivore interactions seems to be partly driven by resource abundance, but other factors such as species-specific preferences of hummingbirds, likely caused by competition, play an important role. We conclude that vertical stratification is an important driver of a species' interaction niche highlighting its role for promoting biodiversity and ecosystem functioning.
Collapse
Affiliation(s)
- Sarina Thiel
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Str, 8, Marburg, Germany
| | - Malika Gottstein
- Eva Mayr-Stihl Professorship for Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstr. 17, Freiburg, Germany
| | - Eckhard W Heymann
- Verhaltensökologie & Soziobiologie, Deutsches Primatenzentrum - Leibniz-Institut für Primatenforschung, Kellnerweg 4, Göttingen, Germany
| | - Jana Kroszewski
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Str, 8, Marburg, Germany
| | - Narges Lieker
- Department of Biology, Conservation Ecology, Philipps-Universität Marburg, Karl-von-Frisch-Str, 8, Marburg, Germany
| | | | - Marco Tschapka
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert Einstein Allee 11, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of Panama
| | - Robert R Junker
- Evolutionary Ecology of Plants, Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Str. 8, Marburg, Germany
| | - Katrin Heer
- Eva Mayr-Stihl Professorship for Forest Genetics, Albert-Ludwigs-Universität Freiburg, Bertoldstr. 17, Freiburg, Germany
| |
Collapse
|
20
|
Rasool F, Nizamani ZA, Ahmad KS, Parveen F, Khan SA, Sabir N. An appraisal of traditional knowledge of plant poisoning of livestock and its validation through acute toxicity assay in rats. Front Pharmacol 2024; 15:1328133. [PMID: 38420196 PMCID: PMC10900104 DOI: 10.3389/fphar.2024.1328133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/30/2024] [Indexed: 03/02/2024] Open
Abstract
Background: Kashmir Himalaya hosts the most diverse and rich flora in the world, which serves as grazing land for millions of small ruminants in the area. While most plant species are beneficial, some can be poisonous, causing economic losses and animal health issues for livestock. Consequently, this study is the first comprehensive report on the traditional phyto-toxicological knowledge in District Muzaffarabad and the assessment of its authenticity through experimental studies in rats. Methods: The data regarding traditional knowledge was gathered from 70 key respondents through semi-structured interviews, which was quantitatively analyzed and authenticated through plant extract testing on Wistar female rats and comparison with published resources. Results: A total of 46 poisonous plant species belonging to 23 families and 38 genera were reported to be poisonous in the study area. Results revealed that leaves were the most toxic plant parts (24 species, 52.1%), followed by the whole plant (18 species, 39.1%), stem (17 species, 36.9%), and seeds (10 species, 21.7%). At the organ level, liver as most susceptible affected by 13 species (28.2%), followed by the gastrointestinal tract (15 species, 32.6%), nervous system (13 species, 8.2%), dermis (8 species, 17.3%), renal (7 species, 15.2%), respiratory (4 species, 8.7%), cardiovascular system (3 species, 6.5%), and reproductive system (2 species, 4.3%). The poisonous plant species with high Relative frequency citation (RFC) and fidelity level (FL) were Nerium oleander (RFC, 0.6; FL, 100), Lantana camara (RFC, 0.6; FL, 100), and Ricinus communis (RFC, 0.6; FL, 100). Experimental assessment of acute toxicity assay in rats revealed that Nerium oleander was the most toxic plant with LD50 of (4,000 mg/kg), trailed by Ricinus communis (4,200 mg/kg), L. camara (4,500 mg/kg), and Datura stramonium (4,700 mg/kg); however, other plants showed moderate to mild toxicity. The major clinical observations were anorexia, piloerection, dyspnea, salivation, tachypnea, constipation, diarrhea, tremor, itchiness, and dullness. Conclusion: This study showed that numerous poisonous plants pose a significant risk to the livestock industry within Himalayan territory, leading to substantial economic losses. Consequently, it is of utmost importance to conduct further comprehensive studies on the phytotoxicity of plants.
Collapse
Affiliation(s)
- Faisal Rasool
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Zaheer Ahmed Nizamani
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | | | - Fahmida Parveen
- Department of Veterinary Pathology, Sindh Agriculture University Tandojam, Hyderabad, Pakistan
| | - Shahzad Akbar Khan
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| | - Naveed Sabir
- Department of Pathobiology, University of Poonch Rawalakot, Rawalakot, Pakistan
| |
Collapse
|
21
|
Pioltelli E, Guzzetti L, Larbi MO, Celano R, Piccinelli AL, Galimberti A, Biella P, Labra M. Land use influences the nutrient concentration and composition of pollen and nectar rewards of wildflowers in human-dominated landscapes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168130. [PMID: 37907100 DOI: 10.1016/j.scitotenv.2023.168130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Plant biodiversity is crucial to satisfy the trophic needs of pollinators, mainly through nectar and pollen rewards. However, a few studies have been directed to ascertain the intraspecific variation of chemical features and the nutritional value of nectar and pollen floral rewards in relation to the alteration of landscapes due to human activities. In this study, by using an existing scenario of land use gradients as an open air laboratory, we tested the variation in pollen and nectar nutrient profiles along gradients of urbanization and agriculture intensity, by focusing on sugar, aminoacids of nectar and phytochemicals of pollen from local wild plants. We also highlighted bioactive compounds from plants primary and secondary metabolism due to their importance for insect wellbeing and pollinator health. We surveyed 7 different meadow species foraged by pollinators and common in the main land uses studied. The results indicated that significant variations of nutritional components occur in relation to different land uses, and specifically that the agricultural intensification decreases the sugars and increases the antioxidant content of flower rewards, while the urbanization is positively associated with the total flavonoid content in pollen. These effects are more evident in some species than in others, such as Lotus corniculatus L. (Fabaceae) and Malva sylvestris L. (Malvaceae), as shown by the untargeted metabolomic investigation. This study is crucial for understanding the nutritional landscape quality for pollinators in association to different land uses and sets a base for landscape management and planning of pollinator-friendly strategies by improving the quality of plant rewards to provide benefits to pollinator health in various environmental contexts.
Collapse
Affiliation(s)
- Emiliano Pioltelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Lorenzo Guzzetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Malika Ouled Larbi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Rita Celano
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Salerno, Italy
| | - Anna Lisa Piccinelli
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy; Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084, Salerno, Italy
| | - Andrea Galimberti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - Paolo Biella
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy.
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126, Milano, Italy; NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
22
|
Quarrell S, Weinstein AM, Hannah L, Bonavia N, del Borrello O, Flematti GR, Bohman B. Critical Pollination Chemistry: Specific Sesquiterpene Floral Volatiles in Carrot Inhibit Honey Bee Feeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16079-16089. [PMID: 37871312 PMCID: PMC10623568 DOI: 10.1021/acs.jafc.3c03392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
Many plants rely on insect pollination, yet numerous agricultural plant-breeding programs focus on traits that appeal to growers and consumers instead of pollinators, leading to declining pollinator attraction and crop yields. Using hybrid carrot seed production as a model, we investigated low-yielding carrot varieties by analyzing sugars and minerals in nectar and floral volatile composition. While the analysis of nectar sugars and minerals did not reveal any key differences between the carrot varieties, differences between the 112 detected volatiles in 23 samples were observed. Numerous differentiating sesquiterpenes were identified in floral solvent extracts, and subsequent behavioral assays showed that β-ocimene from higher-yielding carrot varieties stimulated nectar feeding (attractant), while α- and β-selinene from lower-yielding lines decreased feeding (deterrents). Sesquiterpenes have previously been implicated in plant defense, suggesting a trade-off between pollination and protection. Our results highlight the importance of volatiles as regulators of pollinator attraction in agricultural settings.
Collapse
Affiliation(s)
- Stephen
R. Quarrell
- Tasmanian
Institute of Agriculture, University of
Tasmania, College Rd, Hobart 7005, Australia
| | - Alyssa M. Weinstein
- Ecology
and Evolution, Research School of Biology, The Australian National University, Canberra 2601, Australia
| | - Lea Hannah
- Seed
Production Research, Research and Development, Rijk Zwaan Australia, Musk, Victoria 3461, Australia
- Hawkesbury
Institute for the Environment, Western Sydney
University, Richmond, New South Wales 2753, Australia
| | - Nicole Bonavia
- Seed
Production Research, Research and Development, Rijk Zwaan Australia, Musk, Victoria 3461, Australia
| | - Oscar del Borrello
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
| | - Gavin R. Flematti
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
| | - Björn Bohman
- School
of Molecular Sciences, University of Western
Australia, Crawley, Western Australia 6009, Australia
- Department
of Plant Protection Biology, Swedish University
of Agricultural Sciences, Lomma 234 22, Sweden
| |
Collapse
|
23
|
Wang X, Yao R, Lv X, Yi Y, Tang X. Nectar robbing by bees affects the reproductive fitness of the distylous plant Tirpitzia sinensis (Linaceae). Ecol Evol 2023; 13:e10714. [PMID: 37953984 PMCID: PMC10638493 DOI: 10.1002/ece3.10714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
Nectar robbing can affect plant reproductive success directly by influencing female and male fitness, and indirectly by affecting pollinator behavior. Flowers have morphological and chemical features that may protect them from nectar robbers. Previous studies on nectar robbing have focused mainly on homotypic plants. It remains unclear how nectar robbing affects the reproductive success of distylous plants, and whether defense strategies of two morphs are different. Nectar-robbing rates on the long- and short-styled morph (L-morph, S-morph) of the distylous Tirpitzia sinensis were investigated. We compared floral traits, the temporal pattern of change in nectar volume and sugar concentration, nectar secondary metabolites, and sugar composition between robbed and unrobbed flowers of two morphs. We tested direct effects of nectar robbing on female and male components of plant fitness and indirect effects of nectar robbing via pollinators. Nectar-robbing rates did not differ between the two morphs. Flowers with smaller sepals and petals were more easily robbed. The floral tube diameter and thickness were greater in L-morphs than in S-morphs, and the nectar rob holes were significantly smaller in L-morphs than in S-morphs. Nectar robbing significantly decreased nectar replenishment rate but did not affect nectar sugar concentration or sugar composition. After robbery, the quantities and diversity of secondary compounds in the nectar of S-morphs increased significantly and total relative contents of secondary compounds in L-morphs showed no obvious changes. Nectar robbing could decrease female fitness by decreasing pollen germination rate and thus decreasing seed set. Nectar robbing had no significant effects on male fitness. Robbed flowers were less likely to be visited by hawkmoth pollinators, especially in S-morphs. These results suggest that nectar robbing could directly and indirectly decrease the female fitness of T. sinensis, and different morphs have evolved different defense mechanisms in response to nectar-robbing pressure.
Collapse
Affiliation(s)
- Xiaoyue Wang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Renxiu Yao
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Xiaoqin Lv
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Yin Yi
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| | - Xiaoxin Tang
- Key Laboratory of State Forestry Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern ChinaGuizhou Normal UniversityGuiyangChina
- School of Life SciencesGuizhou Normal UniversityGuiyangChina
| |
Collapse
|
24
|
Leoni V, Panseri S, Giupponi L, Pavlovic R, Gianoncelli C, Sala S, Zeni V, Benelli G, Giorgi A. Formal analyses are fundamental for the definition of honey, a product representing specific territories and their changes: the case of North Tyrrhenian dunes (Italy). Sci Rep 2023; 13:17542. [PMID: 37845313 PMCID: PMC10579322 DOI: 10.1038/s41598-023-44769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Honey is a variegate matrix depending significantly on the floral origin, and it could become an important agri-food product to valorise specific territories. Being so diverse, different analytical techniques are necessary for its description. Herein we characterized the honey produced in one of the Italian sand dunes systems hosting beekeeping activities. In terms of floristic origin, phytochemical characterization, and sensory and colour analysis, honey collected in 2021 and 2022 was comparable. Honey was polyfloral, with several pollens from dune habitat plants classified as minor. The presence of the allochthonous Amorpha fruticosa L. and the ruderal Rubus fruticosus L. pollens in the category of the secondary pollens testifies the alteration of the park vegetation. The phytochemical profile was rich in polyphenols. Other interesting compounds were coumarine derivatives, likely attributable to resin-laden plants as rockroses, long chain hydroxyacids typical of royal jelly and nicotinic acid and its analogues (2-hydroxynicotinic acid and 2-hydroxyquinoline). The above-mentioned honey showed interesting features and was a good representation of the vegetation of this area. Our study pointed out the importance of relying on multiple analytical techniques for the characterization of honey and the advisability of a technical support toward beekeepers to correctly describe and valorise their product.
Collapse
Affiliation(s)
- Valeria Leoni
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Sara Panseri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Luca Giupponi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy.
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy.
| | - Radmila Pavlovic
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, Via Dell'Università, 6, 26900, Lodi, Italy
| | - Carla Gianoncelli
- Fondazione Fojanini Di Studi Superiori, Via Valeriana 32, 23100, Sondrio, Italy
| | - Stefano Sala
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Annamaria Giorgi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy (DISAA), University of Milan, Via Celoria 2, 20133, Milan, Italy
- Centre of Applied Studies for the Sustainable Management and Protection of Mountain Areas (CRC Ge.S.Di.Mont.), University of Milan, Via Morino 8, 25048, Edolo, BS, Italy
| |
Collapse
|
25
|
Leponiemi M, Freitak D, Moreno-Torres M, Pferschy-Wenzig EM, Becker-Scarpitta A, Tiusanen M, Vesterinen EJ, Wirta H. Honeybees' foraging choices for nectar and pollen revealed by DNA metabarcoding. Sci Rep 2023; 13:14753. [PMID: 37679501 PMCID: PMC10484984 DOI: 10.1038/s41598-023-42102-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023] Open
Abstract
Honeybees are the most widespread managed pollinators of our food crops, and a crucial part of their well-being is a suitable diet. Yet, we do not know how they choose flowers to collect nectar or pollen from. Here we studied forty-three honeybee colonies in six apiaries over a summer, identifying the floral origins of honey and hive-stored pollen samples by DNA-metabarcoding. We recorded the available flowering plants and analyzed the specialized metabolites in honey. Overall, we find that honeybees use mostly the same plants for both nectar and pollen, yet per colony less than half of the plant genera are used for both nectar and pollen at a time. Across samples, on average fewer plant genera were used for pollen, but the composition was more variable among samples, suggesting higher selectivity for pollen sources. Of the available flowering plants, honeybees used only a fraction for either nectar or pollen foraging. The time of summer guided the plant choices the most, and the location impacted both the plants selected and the specialized metabolite composition in honey. Thus, honeybees are selective for both nectar and pollen, implicating a need of a wide variety of floral resources to choose an optimal diet from.
Collapse
Affiliation(s)
- Matti Leponiemi
- Institute of Biology, Karl-Franzen University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Dalial Freitak
- Institute of Biology, Karl-Franzen University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Miguel Moreno-Torres
- Institute of Environmental Systems Science, Karl-Franzens-Universität Graz, Merangasse 18/I, 8010, Graz, Austria
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstraße 8, Graz, Austria
| | | | - Mikko Tiusanen
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland
| | - Eero J Vesterinen
- Department of Biology, University of Turku, Vesilinnantie 5, Turku, Finland
| | - Helena Wirta
- Department of Agricultural Sciences, University of Helsinki, Latokartanonkaari 5, P.O. Box 27, 00014, Helsinki, Finland.
| |
Collapse
|
26
|
Breygina M, Kochkin D, Voronkov A, Ivanova T, Babushkina K, Klimenko E. Plant Hormone and Fatty Acid Screening of Nicotiana tabacum and Lilium longiflorum Stigma Exudates. Biomolecules 2023; 13:1313. [PMID: 37759713 PMCID: PMC10526190 DOI: 10.3390/biom13091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Pollen germination in vivo on wet stigmas is assisted by the receptive fluid-stigma exudate. Its exact composition is still unknown because only some components have been studied. For the first time, hormonal screening was carried out, and the fatty acid (FA) composition of lipid-rich (Nicotiana tabacum) and sugar-rich (Lilium longiflorum) exudates was studied. Screening of exudate for the presence of plant hormones using HPLC-MS revealed abscisic acid (ABA) in tobacco stigma exudate at the two stages of development, at pre-maturity and in mature stigmas awaiting pollination, increasing at the fertile stage. To assess physiological significance of ABA on stigma, we tested the effect of this hormone in vitro. ABA concentration found in the exudate strongly stimulated the germination of tobacco pollen, a lower concentration had a weaker effect, increasing the concentration did not increase the effect. GC-MS analysis showed that both types of exudate are characterized by a predominance of saturated FAs. The lipids of tobacco stigma exudate contain significantly more myristic, oleic, and linoleic acids, resulting in a higher unsaturation index relative to lily stigma exudate lipids. The latter, in turn, contain more 14-hexadecenoic and arachidic acids. Both exudates were found to contain significant amounts of squalene. The possible involvement of saturated FAs, ABA, and squalene in various exudate functions, as well as their potential relationship on the stigma, is discussed.
Collapse
Affiliation(s)
- Maria Breygina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, LeninskiyeGory 1-12, 119991 Moscow, Russia
| | - Dmitry Kochkin
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, LeninskiyeGory 1-12, 119991 Moscow, Russia
- Russian Academy of Sciences, Timiryazev Institute of Plant Physiology, Botanicheskaya St. 35, 127276 Moscow, Russia
| | - Alexander Voronkov
- Russian Academy of Sciences, Timiryazev Institute of Plant Physiology, Botanicheskaya St. 35, 127276 Moscow, Russia
| | - Tatiana Ivanova
- Russian Academy of Sciences, Timiryazev Institute of Plant Physiology, Botanicheskaya St. 35, 127276 Moscow, Russia
| | - Ksenia Babushkina
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, LeninskiyeGory 1-12, 119991 Moscow, Russia
| | - Ekaterina Klimenko
- Department of Plant Physiology, Biological Faculty, Lomonosov Moscow State University, LeninskiyeGory 1-12, 119991 Moscow, Russia
| |
Collapse
|
27
|
Bernklau E, Arathi HS. Seasonal patterns of beneficial phytochemical availability in honey and stored pollen from honey bee colonies in large apiaries. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1069-1077. [PMID: 37247384 DOI: 10.1093/jee/toad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 04/24/2023] [Accepted: 05/10/2023] [Indexed: 05/31/2023]
Abstract
Honey bees (Apis mellifera L.; Hymenoptera, Apidae) are the most efficient pollinators in agroecosystems, responsible for the successful production of fruits, nuts, and vegetables, but they continue to face debilitating challenges. One of the major factors leading to these challenges could be linked to poor nutrition that results in weakening the colony, increasing susceptibility to pests and pathogens, and reducing the ability of bees to adapt to other abiotic stresses. Extensively used for commercial pollination, honey bee colonies regularly face exposure to limited diversity in their pollen diet as they are placed in flowering monocrops. Lack of access to diverse plant species compromises the availability of plant secondary compounds (phytochemicals), which, in small amounts, provide significant benefits to honey bee health. We analyzed the beneficial phytochemical content of honey and stored pollen (bee bread) samples from colonies in large apiaries through the active bee season. Samples were evaluated for 4 beneficial phytochemicals (caffeine, kaempferol, gallic acid, and p-coumaric acid), which have previously been shown to improve honey bee health. Our results, as relevant to the apiary locations in the study, indicated that p-coumaric acid is uniformly available throughout the season. Caffeine is completely absent, and gallic acid and kaempferol are not regularly available. Our results suggest the need to explore the potential to deliver beneficial phytochemicals as nutritional supplements to improve bee health. It may be vital for the pollination industry to consider such targeted dietary supplementation as beekeepers strive to meet the increasing demand for crop pollination services.
Collapse
Affiliation(s)
- Elisa Bernklau
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80525, USA
| | - H S Arathi
- Invasive Species and Pollinator Health Research Unit, USDA-ARS, Davis, CA 95616, USA
| |
Collapse
|
28
|
Jones PL, Martin KR, Prachand SV, Hastings AP, Duplais C, Agrawal AA. Compound-Specific Behavioral and Enzymatic Resistance to Toxic Milkweed Cardenolides in a Generalist Bumblebee Pollinator. J Chem Ecol 2023; 49:418-427. [PMID: 36745328 DOI: 10.1007/s10886-023-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 02/07/2023]
Abstract
Plant secondary metabolites that defend leaves from herbivores also occur in floral nectar. While specialist herbivores often have adaptations providing resistance to these compounds in leaves, many social insect pollinators are generalists, and therefore are not expected to be as resistant to such compounds. The milkweeds, Asclepias spp., contain toxic cardenolides in all tissues including floral nectar. We compared the concentrations and identities of cardenolides between tissues of the North American common milkweed Asclepias syriaca, and then studied the effect of the predominant cardenolide in nectar, glycosylated aspecioside, on an abundant pollinator. We show that a generalist bumblebee, Bombus impatiens, a common pollinator in eastern North America, consumes less nectar with experimental addition of ouabain (a standard cardenolide derived from Apocynacid plants native to east Africa) but not with addition of glycosylated aspecioside from milkweeds. At a concentration matching that of the maximum in the natural range, both cardenolides reduced activity levels of bees after four days of consumption, demonstrating toxicity despite variation in behavioral deterrence (i.e., consumption). In vitro enzymatic assays of Na+/K+-ATPase, the target site of cardenolides, showed lower toxicity of the milkweed cardenolide than ouabain for B. impatiens, indicating that the lower deterrence may be due to greater tolerance to glycosylated aspecioside. In contrast, there was no difference between the two cardenolides in toxicity to the Na+/K+-ATPase from a control insect, the fruit fly Drosophila melanogaster. Accordingly, this work reveals that even generalist pollinators such as B. impatiens may have adaptations to reduce the toxicity of specific plant secondary metabolites that occur in nectar, despite visiting flowers from a wide variety of plants over the colony's lifespan.
Collapse
Affiliation(s)
| | - Kyle R Martin
- Department of Biology, Bowdoin College, Brunswick, ME, USA
| | | | - Amy P Hastings
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
| | - Christophe Duplais
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY, USA
| | - Anurag A Agrawal
- Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, USA
- Department of Entomology, Cornell AgriTech, Cornell University, Geneva, NY, USA
| |
Collapse
|
29
|
Poelman EH, Bourne ME, Croijmans L, Cuny MAC, Delamore Z, Joachim G, Kalisvaart SN, Kamps BBJ, Longuemare M, Suijkerbuijk HAC, Zhang NX. Bringing Fundamental Insights of Induced Resistance to Agricultural Management of Herbivore Pests. J Chem Ecol 2023; 49:218-229. [PMID: 37138167 PMCID: PMC10495479 DOI: 10.1007/s10886-023-01432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
In response to herbivory, most plant species adjust their chemical and morphological phenotype to acquire induced resistance to the attacking herbivore. Induced resistance may be an optimal defence strategy that allows plants to reduce metabolic costs of resistance in the absence of herbivores, allocate resistance to the most valuable plant tissues and tailor its response to the pattern of attack by multiple herbivore species. Moreover, plasticity in resistance decreases the potential that herbivores adapt to specific plant resistance traits and need to deal with a moving target of variable plant quality. Induced resistance additionally allows plants to provide information to other community members to attract natural enemies of its herbivore attacker or inform related neighbouring plants of pending herbivore attack. Despite the clear evolutionary benefits of induced resistance in plants, crop protection strategies to herbivore pests have not exploited the full potential of induced resistance for agriculture. Here, we present evidence that induced resistance offers strong potential to enhance resistance and resilience of crops to (multi-) herbivore attack. Specifically, induced resistance promotes plant plasticity to cope with multiple herbivore species by plasticity in growth and resistance, maximizes biological control by attracting natural enemies and, enhances associational resistance of the plant stand in favour of yield. Induced resistance may be further harnessed by soil quality, microbial communities and associational resistance offered by crop mixtures. In the transition to more sustainable ecology-based cropping systems that have strongly reduced pesticide and fertilizer input, induced resistance may prove to be an invaluable trait in breeding for crop resilience.
Collapse
Affiliation(s)
- Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands.
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Luuk Croijmans
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Zoë Delamore
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Gabriel Joachim
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Sarah N Kalisvaart
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Bram B J Kamps
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maxence Longuemare
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Hanneke A C Suijkerbuijk
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Nina Xiaoning Zhang
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
30
|
Fattorini R, Egan PA, Rosindell J, Farrell IW, Stevenson PC. Grayanotoxin I variation across tissues and species of Rhododendron suggest pollinator-herbivore defence trade-offs. PHYTOCHEMISTRY 2023; 212:113707. [PMID: 37149121 DOI: 10.1016/j.phytochem.2023.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Grayanotoxin I (GTX I) is a major toxin in leaves of Rhododendron species, where it provides a defence against insect and vertebrate herbivores. Surprisingly, it is also present in R. ponticum nectar, and this can hold important implications for plant-pollinator mutualisms. However, knowledge of GTX I distributions across the genus Rhododendron and in different plant materials is currently limited, despite the important ecological function of this toxin. Here we characterise GTX I expression in the leaves, petals, and nectar of seven Rhododendron species. Our results indicated interspecific variation in GTX I concentration across all species. GTX I concentrations were consistently higher in leaves compared to petals and nectar. Our findings provide preliminary evidence for phenotypic correlation between GTX I concentrations in defensive tissues (leaves and petals) and floral rewards (nectar), suggesting that Rhododendron species may commonly experience functional trade-offs between herbivore defence and pollinator attraction.
Collapse
Affiliation(s)
- Róisín Fattorini
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK; Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, Alnarp 23053, Sweden
| | - James Rosindell
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot, Berkshire, SL5 7PY, UK
| | - Iain W Farrell
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE UK
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew Green, Kew, Richmond, Surrey, TW9 3AE UK; Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
31
|
Sulborska-Różycka A, Konarska A, Weryszko-Chmielewska E, Dmitruk M. Nectar guides and floral nectary in Lamium album L. subsp. album: structure and histochemistry in light, fluorescence, and electron microscopy. Micron 2023; 171:103474. [PMID: 37156083 DOI: 10.1016/j.micron.2023.103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/05/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
Lamium album is a native common plant growing in Eurasia. It is used in medicine and cosmetics and is highly valued in apiculture. The aim of the study was to investigate the structure of the floral nectary in three stages of flower development. Additionally, histochemical studies of the nectary and nectar guides present on the lower corolla lobe were carried out. No detailed analyses of nectary tissues in this species have been conducted to date. The present analyses were performed with the use of light, fluorescence, and scanning electron microscopy. The nectary gland in the flowers of Lamium album subsp. album formed an incomplete ring at the ovary base. The nectarostomata were arranged in clusters only in the adaxial epidermis of the anterior part of the nectary. During the secretory activity of the nectary (1st day of flowering), numerous small vacuoles and cells with large lobulate nuclei with surrounding plastid clusters were observed in the epidermis and glandular parenchyma cells. The vascular bundles contained xylem and phloem elements. Corolla wilting (3rd day of flowering) was accompanied by destructive changes in the nectary parenchyma, leading to the formation of empty spaces and appearance of cell remnants on the nectary surface. The histochemical analyses revealed the presence of starch and phenolic compounds as well as acidic and neutral lipids, which are characteristic of essential oils, in the nectary tissues. The nectar guides were composed of large yellow papillae containing phenolic compounds and acidic and neutral lipids, which were also present in glandular trichomes and abaxial parenchyma cells. The present study has demonstrated that the scent of Lamium album subsp. album flowers is produced with the involvement of essential oils contained in adaxial and abaxial epidermis cells, glandular trichomes, and nectary tissues.
Collapse
Affiliation(s)
- Aneta Sulborska-Różycka
- Department of Botany and Plant Physiology, University of Life Sciences, Akademicka 15, 20-950 Lublin, Poland
| | - Agata Konarska
- Department of Botany and Plant Physiology, University of Life Sciences, Akademicka 15, 20-950 Lublin, Poland.
| | | | - Marta Dmitruk
- Department of Botany and Plant Physiology, University of Life Sciences, Akademicka 15, 20-950 Lublin, Poland
| |
Collapse
|
32
|
Haas J, Beck E, Troczka BJ, Hayward A, Hertlein G, Zaworra M, Lueke B, Buer B, Maiwald F, Beck ME, Nebelsiek B, Glaubitz J, Bass C, Nauen R. A conserved hymenopteran-specific family of cytochrome P450s protects bee pollinators from toxic nectar alkaloids. SCIENCE ADVANCES 2023; 9:eadg0885. [PMID: 37043574 PMCID: PMC10096648 DOI: 10.1126/sciadv.adg0885] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/09/2023] [Indexed: 06/19/2023]
Abstract
Many plants produce chemical defense compounds as protection against antagonistic herbivores. However, how beneficial insects such as pollinators deal with the presence of these potentially toxic chemicals in nectar and pollen is poorly understood. Here, we characterize a conserved mechanism of plant secondary metabolite detoxification in the Hymenoptera, an order that contains numerous highly beneficial insects. Using phylogenetic and functional approaches, we show that the CYP336 family of cytochrome P450 enzymes detoxifies alkaloids, a group of potent natural insecticides, in honeybees and other hymenopteran species that diverged over 281 million years. We linked this function to an aspartic acid residue within the main access channel of CYP336 enzymes that is highly conserved within this P450 family. Together, these results provide detailed insights into the evolution of P450s as a key component of detoxification systems in hymenopteran species and reveal the molecular basis of adaptations arising from interactions between plants and beneficial insects.
Collapse
Affiliation(s)
- Julian Haas
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Elena Beck
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
- University of Cologne, Department of Chemistry, Institute of Biochemistry, Cologne, Germany
| | - Bartlomiej J. Troczka
- College for Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Angela Hayward
- College for Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Gillian Hertlein
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Marion Zaworra
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Bettina Lueke
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Benjamin Buer
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Frank Maiwald
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Michael E. Beck
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Birgit Nebelsiek
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Johannes Glaubitz
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| | - Chris Bass
- College for Life and Environmental Sciences, University of Exeter, Penryn, Cornwall, UK
| | - Ralf Nauen
- Crop Science Division, Bayer AG, Alfred Nobel-Strasse 50, Monheim, Germany
| |
Collapse
|
33
|
Visschers IGS, Macel M, Peters JL, Sergeeva L, Bruin J, van Dam NM. Exploring Thrips Preference and Resistance in Flowers, Leaves, and Whole Plants of Ten Capsicum Accessions. PLANTS (BASEL, SWITZERLAND) 2023; 12:825. [PMID: 36840173 PMCID: PMC9960883 DOI: 10.3390/plants12040825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Capsicum species grown for pepper production suffer severely from thrips damage, urging the identification of natural resistance. Resistance levels are commonly assessed on leaves. However, Capsicum plants are flower-bearing during most of the production season, and thrips also feed on pollen and flower tissues. In order to obtain a comprehensive estimate of elements contributing to thrips resistance, flower tissues should be considered as well. Therefore, we assessed resistance to Frankliniella occidentalis in flowers, leaves, and whole plants of ten Capsicum accessions. Using choice assays, we found that thrips prefer flowers of certain accessions over others. The preference of adult thrips for flowers was positively correlated to trehalose and fructose concentration in anthers as well as to pollen quantity. Resistance measured on leaf discs and thrips population development on whole plants was significantly and positively correlated. Leaf-based resistance thus translates to reduced thrips population development. Results of the flower assays were not significantly correlated with resistance in leaves or on whole plants. This suggests that both leaves and flowers represent a different part of the resistance spectrum and should both be considered for understanding whole plant resistance and the identification of resistant Capsicum varieties.
Collapse
Affiliation(s)
| | - Mirka Macel
- Weerbare Planten, Aeres University of Applied Science, Arboretum West 98, 1325 WB Almere, The Netherlands
| | - Janny L. Peters
- Plant Systems Physiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Department of Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Jan Bruin
- Syngenta, Westeinde 62, 1601 BK Enkhuizen, The Netherlands
| | - Nicole M. van Dam
- Leibniz-Institute for Vegetable and Ornamental Crops (IGZ), Theodor-Echtermeyer-Weg 1, 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger-Str. 159, 07743 Jena, Germany
| |
Collapse
|
34
|
Theodoridis S, Drakou EG, Hickler T, Thines M, Nogues-Bravo D. Evaluating natural medicinal resources and their exposure to global change. Lancet Planet Health 2023; 7:e155-e163. [PMID: 36754471 DOI: 10.1016/s2542-5196(22)00317-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Medicinal plants and their bioactive molecules are integral components of nature and have supported the health of human societies for millennia. However, the prevailing view of medicinal biodiversity solely as an ecosystem-decoupled natural resource of commercial value prevents people from fully benefiting from the capacity of nature to provide medicines and from assessing the vulnerability of this capacity to the global environmental crisis. Emerging scientific and technological developments and traditional knowledge allow for appreciating medicinal plant resources from a planetary health perspective. In this Personal View, we highlight and integrate current knowledge that includes medicinal, biodiversity, and environmental change research in a transdisciplinary framework to evaluate natural medicinal resources and their vulnerability in the anthropocene. With Europe as an application case, we propose proxy spatial indicators for establishing the capacity, potential societal benefits, and economic values of native medicinal plant resources and the exposure of these resources to global environmental change. The proposed framework and indicators aim to be a basis for transdisciplinary research on medicinal biodiversity and could guide decisions in addressing crucial multiple Sustainable Development Goals, from accessible global health care to natural habitat protection and restoration.
Collapse
Affiliation(s)
- Spyros Theodoridis
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany.
| | | | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Department of Physical Geography, Geosciences, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany
| | - Marco Thines
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt, Germany; Department for Biological Sciences, Institute of Ecology, Evolution and Diversity, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, Germany
| | - David Nogues-Bravo
- Center for Macroecology, Evolution and Climate, GLOBE Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
35
|
Balduino HDK, Tunes P, Giordano E, Guarnieri M, Machado SR, Nepi M, Guimarães E. To each their own! Nectar plasticity within a flower mediates distinct ecological interactions. AOB PLANTS 2023; 15:plac067. [PMID: 36751365 PMCID: PMC9893873 DOI: 10.1093/aobpla/plac067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/29/2022] [Indexed: 06/18/2023]
Abstract
Nuptial and extranuptial nectaries are involved in interactions with different animal functional groups. Nectar traits involved in pollination mutualisms are well known. However, we know little about those traits involved in other mutualisms, such as ant-plant interactions, especially when both types of nectaries are in the same plant organ, the flower. Here we investigated if when two types of nectaries are exploited by distinct functional groups of floral visitors, even being within the same plant organ, the nectar secreted presents distinct features that fit animal requirements. We compared nectar secretion dynamics, floral visitors and nectar chemical composition of both nuptial and extranuptial nectaries in natural populations of the liana Amphilophium mansoanum (Bignoniaceae). For that we characterized nectar sugar, amino acid and specialized metabolite composition by high-performance liquid chromatography. Nuptial nectaries were visited by three medium- and large-sized bee species and extranuptial nectaries were visited mainly by ants, but also by cockroaches, wasps and flies. Nuptial and extranuptial nectar differed regarding volume, concentration, milligrams of sugars per flower and secretion dynamics. Nuptial nectar was sucrose-dominated, with high amounts of γ-aminobutyric acid and β-aminobutyric acid and with theophylline-like alkaloid, which were all exclusive of nuptial nectar. Whereas extranuptial nectar was hexose-rich, had a richer and less variable amino acid chemical profile, with high amounts of serine and alanine amino acids and with higher amounts of the specialized metabolite tyramine. The nectar traits from nuptial and extranuptial nectaries differ in energy amount and nutritional value, as well as in neuroactive specialized metabolites. These differences seem to match floral visitors' requirements, since they exclusively consume one of the two nectar types and may be exerting selective pressures on the composition of the respective resources of interest.
Collapse
Affiliation(s)
- Hannelise de Kassia Balduino
- Graduate Course in Plant Biology, São Paulo State University, 18618-689 Botucatu, Brazil
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, 18618-689 Botucatu, Brazil
| | - Priscila Tunes
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, 18618-689 Botucatu, Brazil
| | - Emanuele Giordano
- Laboratory of Analytical Methods for Chemical Ecology - Plant Reproductive Biology, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Massimo Guarnieri
- Laboratory of Analytical Methods for Chemical Ecology - Plant Reproductive Biology, Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Silvia Rodrigues Machado
- Laboratory of Plant Anatomy, Institute of Biosciences, São Paulo State University, 18618-689 Botucatu, Brazil
| | - Massimo Nepi
- Laboratory of Analytical Methods for Chemical Ecology - Plant Reproductive Biology, Department of Life Sciences, University of Siena, 53100 Siena, Italy
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Elza Guimarães
- Laboratory of Ecology and Evolution of Plant-Animal Interactions, Institute of Biosciences, São Paulo State University, 18618-689 Botucatu, Brazil
| |
Collapse
|
36
|
Barberis M, Calabrese D, Galloni M, Nepi M. Secondary Metabolites in Nectar-Mediated Plant-Pollinator Relationships. PLANTS (BASEL, SWITZERLAND) 2023; 12:550. [PMID: 36771634 PMCID: PMC9920422 DOI: 10.3390/plants12030550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 06/01/2023]
Abstract
In recent years, our understanding of the complex chemistry of floral nectar and its ecological implications for plant-pollinator relationships has certainly increased. Nectar is no longer considered merely a reward for pollinators but rather a plant interface for complex interactions with insects and other organisms. A particular class of compounds, i.e., nectar secondary compounds (NSCs), has contributed to this new perspective, framing nectar in a more comprehensive ecological context. The aim of this review is to draft an overview of our current knowledge of NSCs, including emerging aspects such as non-protein amino acids and biogenic amines, whose presence in nectar was highlighted quite recently. After considering the implications of the different classes of NSCs in the pollination scenario, we discuss hypotheses regarding the evolution of such complex nectar profiles and provide cues for future research on plant-pollinator relationships.
Collapse
Affiliation(s)
- Marta Barberis
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Daniele Calabrese
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - Marta Galloni
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126 Bologna, Italy
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
- National Biodiversity Future Centre (NBFC), 90123 Palermo, Italy
| |
Collapse
|
37
|
Microbial Community Structure among Honey Samples of Different Pollen Origin. Antibiotics (Basel) 2023; 12:antibiotics12010101. [PMID: 36671302 PMCID: PMC9855004 DOI: 10.3390/antibiotics12010101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Honey's antibacterial activity has been recently linked to the inhibitory effects of honey microbiota against a range of foodborne and human pathogens. In the current study, the microbial community structure of honey samples exerting pronounced antimicrobial activity was examined. The honey samples were obtained from different geographical locations in Greece and had diverse pollen origin (fir, cotton, fir-oak, and Arbutus unedo honeys). Identification of honey microbiota was performed by high-throughput amplicon sequencing analysis, detecting 335 distinct taxa in the analyzed samples. Regarding ecological indices, the fir and cotton honeys possessed greater diversity than the fir-oak and Arbutus unedo ones. Lactobacillus kunkeei (basionym of Apilactobacillus kun-keei) was the predominant taxon in the fir honey examined. Lactobacillus spp. appeared to be favored in honey from fir-originated pollen and nectar since lactobacilli were more pronounced in fir compared to fir-oak honey. Pseudomonas, Streptococcus, Lysobacter and Meiothermus were the predominant taxa in cotton honey, whereas Lonsdalea, the causing agent of acute oak decline, and Zymobacter, an osmotolerant facultative anaerobic fermenter, were the dominant taxa in fir-oak honey. Moreover, methylotrophic bacteria represented 1.3-3% of the total relative abundance, independently of the geographical and pollen origin, indicating that methylotrophy plays an important role in honeybee ecology and functionality. A total of 14 taxa were identified in all examined honey samples, including bacilli/anoxybacilli, paracocci, lysobacters, pseudomonads, and sphingomonads. It is concluded that microbial constituents of the honey samples examined were native gut microbiota of melliferous bees and microbiota of their flowering plants, including both beneficial bacteria, such as potential probiotic strains, and animal and plant pathogens, e.g., Staphylococcus spp. and Lonsdalea spp. Further experimentation will elucidate aspects of potential application of microbial bioindicators in identifying the authenticity of honey and honeybee-derived products.
Collapse
|
38
|
Motta EVS, Gage A, Smith TE, Blake KJ, Kwong WK, Riddington IM, Moran N. Host-microbiome metabolism of a plant toxin in bees. eLife 2022; 11:82595. [PMID: 36472498 PMCID: PMC9897726 DOI: 10.7554/elife.82595] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
While foraging for nectar and pollen, bees are exposed to a myriad of xenobiotics, including plant metabolites, which may exert a wide range of effects on their health. Although the bee genome encodes enzymes that help in the metabolism of xenobiotics, it has lower detoxification gene diversity than the genomes of other insects. Therefore, bees may rely on other components that shape their physiology, such as the microbiota, to degrade potentially toxic molecules. In this study, we show that amygdalin, a cyanogenic glycoside found in honey bee-pollinated almond trees, can be metabolized by both bees and members of the gut microbiota. In microbiota-deprived bees, amygdalin is degraded into prunasin, leading to prunasin accumulation in the midgut and hindgut. In microbiota-colonized bees, on the other hand, amygdalin is degraded even further, and prunasin does not accumulate in the gut, suggesting that the microbiota contribute to the full degradation of amygdalin into hydrogen cyanide. In vitro experiments demonstrated that amygdalin degradation by bee gut bacteria is strain-specific and not characteristic of a particular genus or species. We found strains of Bifidobacterium, Bombilactobacillus, and Gilliamella that can degrade amygdalin. The degradation mechanism appears to vary since only some strains produce prunasin as an intermediate. Finally, we investigated the basis of degradation in Bifidobacterium wkB204, a strain that fully degrades amygdalin. We found overexpression and secretion of several carbohydrate-degrading enzymes, including one in glycoside hydrolase family 3 (GH3). We expressed this GH3 in Escherichia coli and detected prunasin as a byproduct when cell lysates were cultured with amygdalin, supporting its contribution to amygdalin degradation. These findings demonstrate that both host and microbiota can act together to metabolize dietary plant metabolites.
Collapse
Affiliation(s)
- Erick VS Motta
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Alejandra Gage
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Thomas E Smith
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| | - Kristin J Blake
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at AustinAustinUnited States
| | | | - Ian M Riddington
- Mass Spectrometry Facility, Department of Chemistry, The University of Texas at AustinAustinUnited States
| | - Nancy Moran
- Department of Integrative Biology, The University of Texas at AustinAustinUnited States
| |
Collapse
|
39
|
Role of Phenylpropanoids and Flavonoids in Plant Resistance to Pests and Diseases. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238371. [PMID: 36500459 PMCID: PMC9735708 DOI: 10.3390/molecules27238371] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/02/2022]
Abstract
Phenylpropanoids and flavonoids are specialized metabolites frequently reported as involved in plant defense to biotic or abiotic stresses. Their biosynthetic accumulation may be constitutive and/or induced in response to external stimuli. They may participate in plant signaling driving plant defense responses, act as a physical or chemical barrier to prevent invasion, or as a direct toxic weapon against microbial or insect targets. Their protective action is described as the combinatory effect of their localization during the host's interaction with aggressors, their sustained availability, and the predominance of specific compounds or synergy with others. Their biosynthesis and regulation are partly deciphered; however, a lot of gaps in knowledge remain to be filled. Their mode of action on microorganisms and insects probably arises from an interference with important cellular machineries and structures, yet this is not fully understood for all type of pests and pathogens. We present here an overview of advances in the state of the art for both phenylpropanoids and flavonoids with the objective of paving the way for plant breeders looking for natural sources of resistance to improve plant varieties. Examples are provided for all types of microorganisms and insects that are targeted in crop protection. For this purpose, fields of phytopathology, phytochemistry, and human health were explored.
Collapse
|
40
|
Creating a Design Framework to Diagnose and Enhance Grassland Health under Pastoral Livestock Production Systems. Animals (Basel) 2022; 12:ani12233306. [PMID: 36496827 PMCID: PMC9738856 DOI: 10.3390/ani12233306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/11/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Grasslands and ecosystem services are under threat due to common practices adopted by modern livestock farming systems. Design theory has been an alternative to promote changes and develop more sustainable strategies that allow pastoral livestock production systems to evolve continually within grasslands by enhancing their health and enabling the continuous delivery of multiple ecosystem services. To create a design framework to design alternative and more sustainable pastoral livestock production systems, a better comprehension of grassland complexity and dynamism for a diagnostic assessment of its health is needed, from which the systems thinking theory could be an important approach. By using systems thinking theory, the key components of grasslands-soil, plant, ruminant-can be reviewed and better understood from a holistic perspective. The description of soil, plant and ruminant individually is already complex itself, so understanding these components, their interactions, their response to grazing management and herbivory and how they contribute to grassland health under different climatic and topographic conditions is paramount to designing more sustainable pastoral livestock production systems. Therefore, by taking a systems thinking approach, we aim to review the literature to better understand the role of soil, plant, and ruminant on grassland health to build a design framework to diagnose and enhance grassland health under pastoral livestock production systems.
Collapse
|
41
|
Konarska A, Weryszko-Chmielewska E, Dmitruk M, Sulborska-Różycka A, Piotrowska-Weryszko K. Does the Floral Nectary in Dracocephalum moldavica L. Produce Nectar and Essential Oil? Structure and Histochemistry of the Nectary. BIOLOGY 2022; 11:1650. [PMID: 36421367 PMCID: PMC9687276 DOI: 10.3390/biology11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 09/08/2024]
Abstract
Dracocephalum moldavica is an aromatic plant with a lemon scent and versatile use. Its flowers produce large amounts of nectar, which is collected by bees and bumblebees. The aim of the study was to investigate the structure of the floral nectary in this melliferous plant, which has not been analysed to date. The analyses were carried out with the use of light, fluorescence, scanning electron, and transmission electron microscopy, as well as histochemical techniques. The four-lobed nectary with a diameter of 0.9-1.2 mm and a maximum height of 1.2 mm is located at the ovary base; one of its lobes is larger than the others and bears 20-30 nectarostomata and 8-9 glandular trichomes. The histochemical assays revealed the presence of essential oil and phenolic compounds in the nectary tissues and in glandular trichomes. The nectary tissues are supplied by xylem- and phloem-containing vascular bundles. The nectariferous parenchyma cells have numerous mitochondria, plastids, ribosomes, dictyosomes, ER profiles, vesicles, thin cell walls, and plasmodesmata. Starch grains are present only in the tissues of nectaries in floral buds. The study showed high metabolic activity of D. moldavica nectary glands, i.e., production of not only nectar but also essential oil, which may increase the attractiveness of the flowers to pollinators, inhibit the growth of fungal and bacterial pathogens, and limit pest foraging.
Collapse
Affiliation(s)
| | | | | | - Aneta Sulborska-Różycka
- Department of Botany and Plant Physiology, University of Life Sciences, Akademicka 15, 20-950 Lublin, Poland
| | | |
Collapse
|
42
|
Palmer-Young EC, Markowitz LM, Grubbs K, Zhang Y, Corona M, Schwarz R, Chen Y, Evans JD. Antiparasitic effects of three floral volatiles on trypanosomatid infection in honey bees. J Invertebr Pathol 2022; 194:107830. [PMID: 36174749 DOI: 10.1016/j.jip.2022.107830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/07/2022] [Accepted: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Trypanosomatid gut parasites are common in pollinators and costly for social bees. The recently described honey bee trypanosomatid Lotmaria passim is widespread, abundant, and correlated with colony losses in some studies. The potential for amelioration of infection by antimicrobial plant compounds has been thoroughly studied for closely related trypanosomatids of humans and is an area of active research in bumble bees, but remains relatively unexplored in honey bees. We recently identified several floral volatiles that inhibited growth of L. passim in vitro. Here, we tested the dose-dependent effects of four such compounds on infection, mortality, and food consumption in parasite-inoculated honey bees. We found that diets containing the monoterpenoid carvacrol and the phenylpropanoids cinnamaldehyde and eugenol at >10-fold the inhibitory concentrations for cell cultures reduced infection, with parasite numbers decreased by >90% for carvacrol and cinnamaldehyde and >99% for eugenol; effects of the carvacrol isomer thymol were non-significant. However, both carvacrol and eugenol also reduced bee survival, whereas parasite inoculation did not, indicating costs of phytochemical exposure that could exceed those of infection itself. To our knowledge, this is the first controlled screening of phytochemicals for effects on honey bee trypanosomatid infection, identifying potential treatments for managed bees afflicted with a newly characterized, cosmopolitan intestinal parasite.
Collapse
Affiliation(s)
| | - Lindsey M Markowitz
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA; Department of Biology, University of Maryland, College Park, MD, USA
| | - Kyle Grubbs
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Yi Zhang
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, PR China
| | - Miguel Corona
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Ryan Schwarz
- Department of Biology, Fort Lewis College, Durango, CO, USA
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| | - Jay D Evans
- USDA-ARS Bee Research Laboratory, Beltsville, MD, USA
| |
Collapse
|
43
|
Costa CP, Leza M, Duennes MA, Fisher K, Vollaro A, Hur M, Kirkwood JS, Woodard SH. Pollen diet mediates how pesticide exposure impacts brain gene expression in nest-founding bumble bee queens. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155216. [PMID: 35421476 DOI: 10.1016/j.scitotenv.2022.155216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
A primary goal in biology is to understand the effects of multiple, interacting environmental stressors on organisms. Wild and domesticated bees are exposed to a wide variety of interacting biotic and abiotic stressors, with widespread declines in floral resources and agrochemical exposure being two of the most important. In this study, we used examinations of brain gene expression to explore the sublethal consequences of neonicotinoid pesticide exposure and pollen diet composition in nest-founding bumble bee queens. We demonstrate for the first time that pollen diet composition can influence the strength of bumble bee queen responses to pesticide exposure at the molecular level. Specifically, one pollen mixture in our study appeared to buffer bumble bee queens entirely against the effects of pesticide exposure, with respect to brain gene expression. Additionally, we detected unique effects of pollen diet and sustained (versus more temporary) pesticide exposure on queen gene expression. Our findings support the hypothesis that nutritional status can help buffer animals against the harmful effects of other stressors, including pesticides, and highlight the importance of using molecular approaches to explore sublethal consequences of stressors.
Collapse
Affiliation(s)
- Claudineia P Costa
- Department of Entomology, University of California, Riverside, Riverside, CA, USA..
| | - Mar Leza
- Department of Biology (Zoology), University of the Balearic Islands, Cra, Valldemossa, Palma, Illes Balears, Spain
| | | | - Kaleigh Fisher
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Alyssa Vollaro
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Manhoi Hur
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - Jay S Kirkwood
- IIGB Metabolomics Core Facility, University of California, Riverside, Riverside, CA, USA
| | - S Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
44
|
Chitchak N, Stewart AB, Traiperm P. Functional Ecology of External Secretory Structures in Rivea ornata (Roxb.) Choisy (Convolvulaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:2068. [PMID: 35956546 PMCID: PMC9370475 DOI: 10.3390/plants11152068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022]
Abstract
Plants have evolved numerous secretory structures that fulfill diverse roles and shape their interactions with other organisms. Rivea ornata (Roxb.) Choisy (Convolvulaceae) is one species that possesses various external secretory organs hypothesized to be ecologically important. This study, therefore, aimed to investigate five secretory structures (nectary disc, petiolar nectaries, calycinal glands, staminal hairs, and foliar glands) using micromorphology, anatomy, histochemistry, and field observations of plant-animal interactions in order to assess the functional contributions of these structures. Results show that the nectary disc and petiolar nectaries are complex working units consisting of at least epidermis and ground tissue, while the other structures are glandular trichomes. Various groups of metabolites (lipids, phenolic compounds, polysaccharides, terpenoids, flavonoids, and alkaloids) were detected in all structures, while starch grains were only found in the nectary disc, petiolar nectaries, and their adjacent tissues. Integrating preliminary observation of animal visitors with micromorphological, anatomical, and histochemical results, two hypotheses are proposed: (I) nectary disc and staminal hairs are important for pollination as they potentially attract and reward floral visitors, and (II) petiolar nectaries, calycinal glands, and foliar glands contribute to plant defense. Specifically, petiolar nectaries and calycinal glands provide protection from herbivores via guard ants, while calycinal and foliar glands may use plant metabolites to help prevent tissue damage from dehydration and insolation.
Collapse
Affiliation(s)
| | | | - Paweena Traiperm
- Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
45
|
Tuerlings T, Buydens L, Smagghe G, Piot N. The impact of mass-flowering crops on bee pathogen dynamics. Int J Parasitol Parasites Wildl 2022; 18:135-147. [PMID: 35586790 PMCID: PMC9108762 DOI: 10.1016/j.ijppaw.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/29/2022] [Accepted: 05/01/2022] [Indexed: 11/24/2022]
Abstract
Nearly two fifths of the Earth's land area is currently used for agriculture, substantially impacting the environment and ecosystems. Besides the direct impact through land use change, intensive agriculture can also have an indirect impact, for example by changing wildlife epidemiology. We review here the potential effects of mass-flowering crops (MFCs), which are rapidly expanding in global cropping area, on the epidemiology of known pathogens in bee pollinators. We bring together the fifty MFCs with largest global area harvested and give an overview of their pollination dependency as well as their impact on bee pollinators. When in bloom these crops provide an abundance of flowers, which can provide nutrition for bees and increase bee reproduction. After their short bloom peak, however, the fields turn into green deserts. These big changes in floral availability strongly affect the plant-pollinator network, which in turn affects the pathogen transmission network, mediated by shared flowers. We address this dual role of flowers provided by MFCs, serving as nutritional resources as well as pathogen transmission spots, and bring together the current knowledge to assess how MFCs could affect pathogen prevalence in bee pollinator communities.
Collapse
Affiliation(s)
| | | | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, Ghent, Belgium
| | - Niels Piot
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Coupure links 653, Ghent University, Ghent, Belgium
| |
Collapse
|
46
|
Muth F, Philbin CS, Jeffrey CS, Leonard AS. Discovery of octopamine and tyramine in nectar and their effects on bumblebee behavior. iScience 2022; 25:104765. [PMID: 35942103 PMCID: PMC9356080 DOI: 10.1016/j.isci.2022.104765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 05/30/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Nectar chemistry can influence the behavior of pollinators in ways that affect pollen transfer, yet basic questions about how nectar chemical diversity impacts plant-pollinator relationships remain unexplored. For example, plants’ capacity to produce neurotransmitters and endocrine disruptors may offer a means to manipulate pollinator behavior. We surveyed 15 plant species and discovered that two insect neurotransmitters, octopamine and tyramine, were widely distributed in floral nectar. We detected the highest concentration of these chemicals in Citrus, alongside the well-studied alkaloid caffeine. We explored the separate and interactive effects of these chemicals on insect pollinators in a series of behavioral experiments on bumblebees (Bombus impatiens). We found that octopamine and tyramine interacted with caffeine to alter key aspects of bee behavior relevant to plant fitness (sucrose responsiveness, long-term memory, and floral preferences). These results provide evidence for a means by which synergistic or antagonistic nectar chemistry might influence pollinators. We found octopamine and tyramine in the floral nectar of 15 plant species These neurotransmitters orchestrate insect foraging and influence bee cognition In Citrus, these chemicals occur with caffeine, well known for its effects on bees Nectar neurotransmitters interact with caffeine to alter pollinator behavior
Collapse
Affiliation(s)
- Felicity Muth
- Department of Integrative Biology, University of Texas at Austin; Austin, TX 78712, USA
- Corresponding author
| | - Casey S. Philbin
- Hitchcock Center for Chemical Ecology, University of Nevada, Reno; Reno, NV 89557, USA
- Corresponding author
| | | | - Anne S. Leonard
- Department of Biology, University of Nevada, Reno; Reno, NV 89557, USA
| |
Collapse
|
47
|
Pollen collection by honey bee hives in almond orchards indicate diverse diets. Basic Appl Ecol 2022. [DOI: 10.1016/j.baae.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Stevenson PC, Koch H, Nicolson SW, Brown MJF. Natural processes influencing pollinator health. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210154. [PMID: 35491596 PMCID: PMC9062705 DOI: 10.1098/rstb.2021.0154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Evidence from the last few decades indicates that pollinator abundance and diversity are at risk, with many species in decline. Anthropogenic impacts have been the focus of much recent work on the causes of these declines. However, natural processes, from plant chemistry, nutrition and microbial associations to landscape and habitat change, can also profoundly influence pollinator health. Here, we argue that these natural processes require greater attention and may even provide solutions to the deteriorating outlook for pollinators. Existing studies also focus on the decline of individuals and colonies and only occasionally at population levels. In the light of this we redefine pollinator health and argue that a top-down approach is required focusing at the ecological level of communities. We use examples from the primary research, opinion and review articles published in this special issue to illustrate how natural processes influence pollinator health, from community to individuals, and highlight where some of these processes could mitigate the challenges of anthropogenic and natural drivers of change. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Philip C Stevenson
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Kent ME4 4TB, UK
| | - Hauke Koch
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK
| | - Susan W Nicolson
- Department of Zoology & Entomology, University of Pretoria, Pretoria 0002, South Africa
| | - Mark J F Brown
- Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| |
Collapse
|
49
|
Egan PA, Stevenson PC, Stout JC. Pollinator selection against toxic nectar as a key facilitator of a plant invasion. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210168. [PMID: 35491597 DOI: 10.1098/rstb.2021.0168] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plant compounds associated with herbivore defence occur widely in floral nectar and can impact pollinator health. We showed previously that Rhododendron ponticum nectar contains grayanotoxin I (GTX I) at concentrations that are lethal or sublethal to honeybees and a solitary bee in the plant's non-native range in Ireland. Here we further examined this conflict and tested the hypotheses that nectar GTX I is subject to negative pollinator-mediated selection in the non-native range, but that phenotypic linkage between GTX I levels in nectar and leaves acts as a constraint on independent evolution. We found that nectar GTX I experienced negative directional selection in the non-native range, in contrast to the native Iberian range, and that the magnitude and frequency of pollinator limitation indicated that selection was pollinator-mediated. Surprisingly, nectar GTX I levels were decoupled from those of leaves in the non-native range, which may have assisted post-invasion evolution of nectar without compromising the anti-herbivore function of GTX I (here demonstrated in bioassays with an ecologically relevant herbivore). Our study emphasizes the centrality of pollinator health as a concept linked to the invasion process, and how post-invasion evolution can be targeted toward minimizing lethal or sub-lethal effects on pollinators. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Paul A Egan
- Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, Alnarp 23053, Sweden
| | - Philip C Stevenson
- Royal Botanic Gardens, Kew, Kew Green, Richmond, Surrey TW9 3AE, UK.,Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | - Jane C Stout
- Department of Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
50
|
Leonhardt SD, Peters B, Keller A. Do amino and fatty acid profiles of pollen provisions correlate with bacterial microbiomes in the mason bee Osmia bicornis? Philos Trans R Soc Lond B Biol Sci 2022; 377:20210171. [PMID: 35491605 DOI: 10.1098/rstb.2021.0171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bee performance and well-being strongly depend on access to sufficient and appropriate resources, in particular pollen and nectar of flowers, which constitute the major basis of bee nutrition. Pollen-derived microbes appear to play an important but still little explored role in the plant pollen-bee interaction dynamics, e.g. through affecting quantities and ratios of important nutrients. To better understand how microbes in pollen collected by bees may affect larval health through nutrition, we investigated correlations between the floral, bacterial and nutritional composition of larval provisions and the gut bacterial communities of the solitary megachilid bee Osmia bicornis. Our study reveals correlations between the nutritional quality of pollen provisions and the complete bacterial community as well as individual members of both pollen provisions and bee guts. In particular pollen fatty acid profiles appear to interact with specific members of the pollen bacterial community, indicating that pollen-derived bacteria may play an important role in fatty acid provisioning. As increasing evidence suggests a strong effect of dietary fatty acids on bee performance, future work should address how the observed interactions between specific fatty acids and the bacterial community in larval provisions relate to health in O. bicornis. This article is part of the theme issue 'Natural processes influencing pollinator health: from chemistry to landscapes'.
Collapse
Affiliation(s)
- Sara Diana Leonhardt
- Plant-Insect Interactions, TUM School of Life Science Systems, Technical University of Munich, Freising, Germany
| | - Birte Peters
- Department for Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.,Center for Computational and Theoretical Biology, University of Würzburg, Emil Fischer Strasse, 97074 Würzburg, Germany
| | - Alexander Keller
- Cellular and Organismic Networks, Faculty of Biology, Ludwig-Maximilians-Universität Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|