1
|
Du M, Xu C, Wang A, Lv P, Xu Z, Zhang X. Different drought recovery strategy between Larix spp. and Quercus mongolica in temperate forests. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 938:173521. [PMID: 38802012 DOI: 10.1016/j.scitotenv.2024.173521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Forests are experiencing increasingly severe drought stress worldwide. Although most studies have quantified how tree growth was affected by extreme droughts, how trees recover from different drought intensities are still poorly understood for different species. We used a network of tree-ring data comprising 731 Quercus mongolica trees across 29 sites, 312 Larix olgensis Henry trees from 13 sites, and 818 Larix principis-rupprechtii trees from 34 sites, covering most of their distribution range in northern China, to compare the influences of drought intensity on post-drought recovery. The results showed that summer droughts had strong negative influences on tree growth. Post-drought growth varied with drought intensity for the three species. Larix species exhibited strong legacy effects after severe droughts, which is related to the lack of compensatory growth. In contrast, the compensatory growth of Q. mongolica reduced drought legacy effect. However, the compensatory growth of Q. mongolica gradually weaken with increasing drought intensity and disappeared during severe drought. Our findings indicated that influence of drought on Q. mongolica growth mainly shown in drought years, but Larix species suffered from long-term drought legacy effects, implying Q. mongolica rapidly recovered from droughts but Larix species need several years to recover from droughts, thus the two genera have different recovery strategy.
Collapse
Affiliation(s)
- Mingchao Du
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Chen Xu
- College of Landscape Architecture and Tourism, Hebei Agricultural University, 071001 Baoding, China
| | - Ao Wang
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Pengcheng Lv
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Zhongqi Xu
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China
| | - Xianliang Zhang
- College of Forestry, Hebei Agricultural University, 071001 Baoding, China; Long-term Silviculture base in Saihanba, Chengde, Hebei 068456, China; Urban Forest Health Technology Innovation Center, 071001 Baoding, China.
| |
Collapse
|
2
|
Lu LL, Liu H, Wang J, Zhao KP, Miao Y, Li HC, Hao GY, Han SJ. Seasonal patterns of nonstructural carbohydrate storage and mobilization in two tree species with distinct life-history traits. TREE PHYSIOLOGY 2024; 44:tpae042. [PMID: 38602710 DOI: 10.1093/treephys/tpae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 01/30/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Nonstructural carbohydrates (NSC) are essential for tree growth and adaptation, yet our understanding of the seasonal storage and mobilization dynamics of whole-tree NSC is still limited, especially when tree functional types are involved. Here, Quercus acutissima Carruth. and Pinus massoniana Lamb, with distinct life-history traits (i.e. a deciduous broadleaf species vs an evergreen coniferous species), were studied to assess the size and seasonal fluctuations of organ and whole-tree NSC pools with a focus on comparing differences in carbon resource mobilization patterns between the two species. We sampled the organs (leaf, branch, stem and root) of the target trees repeatedly over four seasons of the year. Then, NSC concentrations in each organ were paired with biomass estimates from the allometric model to generate whole-tree NSC pools. The seasonal dynamics of the whole-tree NSC of Q. acutissima and P. massoniana reached the peak in autumn and summer, respectively. The starch pools of the two species were supplemented in the growing season while the soluble sugar pools were the largest in the dormant season. Seasonal dynamics of organ-level NSC concentrations and pools were affected by organ type and tree species, with above-ground organs generally increasing during the growing season and P. massoniana roots decreasing during the growing season. In addition, the whole-tree NSC pools of P. massoniana were larger but Q. acutissima showed larger seasonal fluctuations, indicating that larger storage was not associated with more pronounced seasonal fluctuations. We also found that the branch and root were the most dynamic organs of Q. acutissima and P. massoniana, respectively, and were the major suppliers of NSC to support tree growth activities. These results provide fundamental insights into the dynamics and mobilization patterns of NSC at the whole-tree level, and have important implications for investigating environmental adaptions of different tree functional types.
Collapse
Affiliation(s)
- Long-Long Lu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Hao Liu
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Jing Wang
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Kun-Peng Zhao
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Yuan Miao
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Hai-Chang Li
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| | - Guang-You Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 72 Wenhua Road, Shenhe District, Shenyang, Liaoning 110016, China
| | - Shi-Jie Han
- International Joint Research Laboratory for Global Change Ecology, School of Life Sciences, Henan University, Jinming Avenue, Kaifeng, Henan 475004, China
| |
Collapse
|
3
|
Dimitrova A, Balzano A, Tsedensodnom E, Byambadorj SO, Nyam-Osor B, Scippa GS, Merela M, Chiatante D, Montagnoli A. The adaptability of Ulmus pumila and the sensitivity of Populus sibirica to semi-arid steppe is reflected in the stem and root vascular cambium and anatomical wood traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1393245. [PMID: 38933456 PMCID: PMC11202817 DOI: 10.3389/fpls.2024.1393245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024]
Abstract
Afforestation success is measured by the tree establishment and growth capacity which contribute to a range of ecosystem services. In the Mongolian steppe, Populus sibirica and Ulmus pumila have been tested as candidate species for large afforestation programs, by analyzing their response to a combination of irrigation and fertilization treatments. While in temperate and Mediterranean forest ecosystems, xylogenetic studies provide insight into the trees' plasticity and adaptability, this type of knowledge is non-existent in semi-arid regions, whose climatic features are expected to become a global issue. Furthermore, in general, a comparison between the stem and root response is scarce or absent. In the present study, we show that the anatomical traits of the vascular cambium and the xylem, from stem and root microcores, reflect the previously noted dependence of P. sibirica from irrigation - as they proportionally increase and the higher adaptability of U. pumila to drought - due to the reduced impact across all five characteristics. As the first wood anatomy study of these species in semiarid areas, future research is urgently needed, as it could be a tool for quicker understanding of species' suitability under expected to be exacerbated semi-arid conditions.
Collapse
Affiliation(s)
- Anastazija Dimitrova
- Department of Bioscience and Territory, University of Molise, Pesche, Italy
- Department of Seed Science and Forest Stands, Hans Em Faculty of Forest Sciences, Landscape Architecture and Environmental Engineering, Ss. Cyril and Methodius University in Skopje, Skopje, North Macedonia
| | - Angela Balzano
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Enkhchimeg Tsedensodnom
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Ser-Oddamba Byambadorj
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
- Laboratory of Silviculture, College of Agriculture and Life Science, Chungnam National University, Daejeon, Republic of Korea
| | - Batkhuu Nyam-Osor
- Laboratory of Forest Genetics and Ecophysiology, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, Mongolia
| | | | - Maks Merela
- Department of Wood Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Donato Chiatante
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Antonio Montagnoli
- Laboratory of Environmental and Applied Botany, Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
García-González I, Souto-Herrero M. Earlywood Anatomy Highlights the Prevalent Role of Winter Conditions on Radial Growth of Oak at Its Distribution Boundary in NW Iberia. PLANTS (BASEL, SWITZERLAND) 2023; 12:1185. [PMID: 36904045 PMCID: PMC10007082 DOI: 10.3390/plants12051185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/16/2023] [Accepted: 03/01/2023] [Indexed: 06/18/2023]
Abstract
We compared climate-growth relationships (1956-2013) of two natural pedunculate oak (Quercus robur L.) stands with different water-holding capacities growing at the species distribution limit of the Mediterranean Region in NW Iberia. For this, tree-ring chronologies of earlywood vessel size (separating the first row from the other vessels) and latewood width were obtained. Earlywood traits were coupled to conditions during dormancy, whereby an elevated winter temperature appears to induce a high consumption of carbohydrates, resulting in smaller vessels. This effect was reinforced by waterlogging at the wettest site, whose correlation to winter precipitation was strongly negative. Soil water regimes caused differences between vessel rows, since all earlywood vessels were controlled by winter conditions at the wettest site, but only the first row at the driest one; radial increment was related to water availability during the previous rather than the current season. This confirms our initial hypothesis that oak trees near their southern distribution boundary adopt a conservative strategy, prioritizing reserve storage under limiting conditions during the growing period. We believe that wood formation is highly dependent on the balance between the previous accumulation of carbohydrates and their consumption to maintain both respiration during dormancy and early spring growth.
Collapse
|
5
|
Bar-On P, Yaakobi A, Moran U, Rozenstein O, Kopler I, Klein T. A montane species treeline is defined by both temperature and drought effects on growth season length. TREE PHYSIOLOGY 2022; 42:1700-1719. [PMID: 35738872 DOI: 10.1093/treephys/tpac070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Montane treelines are defined by a threshold low temperature. However, what are the dynamics when the snow-free summer growth season coincides with a 6-month seasonal drought? We tested this fundamental question by measuring tree growth and leaf activity across elevations in Mt Hermon (2814 m; in Israel and Syria), where oak trees (Quercus look and Quercus boissieri) form an observed treeline at 1900 m. While in theory, individuals can be established at higher elevations (minimum daily temperature >6.5 °C for >4 months even at the summit), soil drying and vapor pressure deficit in summer enforces growth cessation in August, leaving only 2-3 months for tree growth. At lower elevations, Q. look Kotschy is replaced by Quercus cerris L. (1300 m) and Quercus calliprinos Webb (1000 m) in accompanying Q. boissieri Reut., and growth season length (GSL) is longer due to an earlier start in April. Leaf gas exchange continues during autumn, but assimilates are no longer utilized in growth. Interestingly, the growth and activity of Q. boissieri were equivalent to that of each of the other three species across the ~1 km elevation gradient. A planting experiment at 2100 m showed that seedlings of the four oak species survived the cold winter and showed budding of leaves in summer, but wilted in August. Our unique mountain site in the Eastern Mediterranean introduces a new factor to the formation of treelines, involving a drought limitation on GSL. This site presents the elevation edge for each species and the southern distribution edge for both the endemic Q. look and the broad-range Q. cerris. With ongoing warming, Q. look and Q. boissieri are slowly expanding to higher elevations, while Q. cerris is at risk of future extirpation.
Collapse
Affiliation(s)
- Peleg Bar-On
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Assaf Yaakobi
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uri Moran
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Offer Rozenstein
- Institute of Soil, Water, and Environmental Studies, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Idan Kopler
- MIGAL - Galilee Research Institute, South Industrial Zone, PO Box 831, Kiryat Shmona 11016, Israel
| | - Tamir Klein
- Department of Plant and Environmental Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
6
|
Chen Y, Rademacher T, Fonti P, Eckes‐Shephard AH, LeMoine JM, Fonti MV, Richardson AD, Friend AD. Inter-annual and inter-species tree growth explained by phenology of xylogenesis. THE NEW PHYTOLOGIST 2022; 235:939-952. [PMID: 35488501 PMCID: PMC9325364 DOI: 10.1111/nph.18195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 04/15/2022] [Indexed: 05/13/2023]
Abstract
Wood formation determines major long-term carbon (C) accumulation in trees and therefore provides a crucial ecosystem service in mitigating climate change. Nevertheless, we lack understanding of how species with contrasting wood anatomical types differ with respect to phenology and environmental controls on wood formation. In this study, we investigated the seasonality and rates of radial growth and their relationships with climatic factors, and the seasonal variations of stem nonstructural carbohydrates (NSC) in three species with contrasting wood anatomical types (red oak: ring-porous; red maple: diffuse-porous; white pine: coniferous) in a temperate mixed forest during 2017-2019. We found that the high ring width variability observed in both red oak and red maple was caused more by changes in growth duration than growth rate. Seasonal radial growth patterns did not vary following transient environmental factors for all three species. Both angiosperm species showed higher concentrations and lower inter-annual fluctuations of NSC than the coniferous species. Inter-annual variability of ring width varied by species with contrasting wood anatomical types. Due to the high dependence of annual ring width on growth duration, our study highlights the critical importance of xylem formation phenology for understanding and modelling the dynamics of wood formation.
Collapse
Affiliation(s)
- Yizhao Chen
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
| | - Tim Rademacher
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
- Harvard ForestHarvard UniversityPetershamMA01366USA
- Institut des Sciences de la Forêt TempéréeUniversité du Québec en OutaouaisRiponQCJOV1V0Canada
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSLBirmensdorfCH‐8903Switzerland
| | - Annemarie H. Eckes‐Shephard
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
- Department of Physical Geography and Ecosystem ScienceLund UniversityLundS‐223 62Sweden
| | - James M. LeMoine
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
| | - Marina V. Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSLBirmensdorfCH‐8903Switzerland
- Institute of Ecology and GeographySiberian Federal UniversitySvobodny pr 79Krasnoyarsk660041Russia
| | - Andrew D. Richardson
- School of Informatics, Computing, and Cyber SystemsNorthern Arizona UniversityFlagstaffAZ86011USA
- Center for Ecosystem Science and SocietyNorthern Arizona UniversityFlagstaffAZ86011USA
| | - Andrew D. Friend
- Department of GeographyUniversity of CambridgeCambridgeCB2 3ENUK
| |
Collapse
|
7
|
Different-Sized Vessels of Quercus variabilis Blume Respond Diversely to Six-Year Canopy and Understory N Addition in a Warm-Temperate Transitional Zone. FORESTS 2022. [DOI: 10.3390/f13071075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nitrogen is a necessary macroelement in plant growth and is usually considered a limiting factor in many forest ecosystems. Increasing N deposition has been reported to affect tree growth. However, the effects still remain controversial due to variable N fertilization methods used. In order to study the realistic responses of tree growth to increasing N deposition, we investigated effects of canopy and understory N addition on tree-ring growth and vessel traits of Quercus variabilis Blume. Since 2013, 50 kg N ha−1 year was applied monthly from April to December to either the canopy (CN) or understory (UN) of trees in a warm-temperate forest in Central China. During 2013–2018, tree-ring growth and vessel-related traits (mean vessel area, theoretical xylem hydraulic conductivity (KH), relative ratio of KH, etc.) were analyzed. Tree rings were negatively impacted by both CN and UN treatments, but only the effect of UN was significant. Neither CN nor UN significantly impacted the detected vessel traits. However, some diverging influencing trends were still showed in some vessel traits. Both CN and UN treatments positively affected the percentage of annual total vessel area and vessel density, with the effect of UN on vessel density being more severe. All the detected vessel traits of the large vessels formed at the beginning of the tree-ring responded positively to CN, whereas the opposite response to UN was showed on mean vessel area and the relative ratio of KH. All these diverging responses in different vessel traits likely reflected the compensation and trade-off between maximizing growth and adapting to CN and UN treatments. Six-year long N addition negatively and positively affected tree-ring growth and vessel traits of Q. variabilis in Central China, respectively. UN treatment could not fully simulate the real effect on tree growth, especially on the hydraulic architecture.
Collapse
|
8
|
D’Orangeville L, Itter M, Kneeshaw D, Munger JW, Richardson AD, Dyer JM, Orwig DA, Pan Y, Pederson N. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. TREE PHYSIOLOGY 2022; 42:304-316. [PMID: 34312673 PMCID: PMC8842417 DOI: 10.1093/treephys/tpab101] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 07/07/2021] [Indexed: 05/27/2023]
Abstract
Climate models project warmer summer temperatures will increase the frequency and heat severity of droughts in temperate forests of Eastern North America. Hotter droughts are increasingly documented to affect tree growth and forest dynamics, with critical impacts on tree mortality, carbon sequestration and timber provision. The growing acknowledgement of the dominant role of drought timing on tree vulnerability to water deficit raises the issue of our limited understanding of radial growth phenology for most temperate tree species. Here, we use well-replicated dendrometer band data sampled frequently during the growing season to assess the growth phenology of 610 trees from 15 temperate species over 6 years. Patterns of diameter growth follow a typical logistic shape, with growth rates reaching a maximum in June, and then decreasing until process termination. On average, we find that diffuse-porous species take 16-18 days less than other wood-structure types to put on 50% of their annual diameter growth. However, their peak growth rate occurs almost a full month later than ring-porous and conifer species (ca. 24 ± 4 days; mean ± 95% credible interval). Unlike other species, the growth phenology of diffuse-porous species in our dataset is highly correlated with their spring foliar phenology. We also find that the later window of growth in diffuse-porous species, coinciding with peak evapotranspiration and lower water availability, exposes them to a higher water deficit of 88 ± 19 mm (mean ± SE) during their peak growth than ring-porous and coniferous species (15 ± 35 mm and 30 ± 30 mm, respectively). Given the high climatic sensitivity of wood formation, our findings highlight the importance of wood porosity as one predictor of species climatic sensitivity to the projected intensification of the drought regime in the coming decades.
Collapse
Affiliation(s)
- Loïc D’Orangeville
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
- Faculty of Forestry and Environmental Management, University of New Brunswick, P.O. Box 4400, 28 Dineen Drive, Fredericton, NB, E3B 5A3, Canada
| | - Malcolm Itter
- Research Center for Ecological Change, University of Helsinki, P.O. Box 4, 00014, Finland
- Department of Environmental Conservation, University of Massachusetts Amherst, 225 Holdsworth Hall, Amherst MA 01003, USA
| | - Dan Kneeshaw
- Center for Forest Research, Université du Québec à Montréal, CP 8888, succ. Centre-ville, Montréal, QC, H3C 3P8, Canada
| | - J William Munger
- School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, 20 Oxford Street, Cambridge, MA 02138, USA
| | - Andrew D Richardson
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, 1295 S. Knoles Dr., Flagstaff, AZ 86011, USA
- Center for Ecosystem Science and Society, Northern Arizona University, P.O. Box 5620, Flagstaff, AZ 86011, USA
| | - James M Dyer
- Department of Geography, Ohio University, Clippinger 122, Athens, OH 45701, USA
| | - David A Orwig
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| | - Yude Pan
- U.S. Department of Agriculture Forest Service, 11 Campus Blvd #200, Newtown Square, PA 19073, USA
| | - Neil Pederson
- Harvard Forest, Harvard University, 324 N Main St, Petersham, MA, 10366, USA
| |
Collapse
|
9
|
Environment Controls Seasonal and Daily Cycles of Stem Diameter Variations in Portuguese Oak (Quercus faginea Lambert). FORESTS 2022. [DOI: 10.3390/f13020170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tree growth takes place at different time scales ranging from hours to days. To understand growth responses to climate, continuous high-resolution measurements of tree diameter variations are needed, which are usually obtained with automatic dendrometers. Here, we monitored stem diameter increment of Quercus faginea Lambert growing in central Portugal to determine the effect of climate on daily and seasonal growth dynamics during the 2013 growing season. Stem diameter variation presented a unimodal seasonal pattern characterized by an exponential phase in spring followed by a plateau during summer, interrupted by an abrupt increase in autumn caused by rainfall. Stem diameter increment started in March when the temperature was above 10 °C. Stem diameter variation showed a double climatic constrain, with temperature limiting growth in spring and precipitation in summer. The amplitude of the daily cycles of stem variation was higher in summer, as well as the expansion phase length, meaning that trees needed longer to replenish the water lost through transpiration during the day. The absence of a pronounced stem shrinkage during the summer suggests that Q. faginea has access to water over the whole growing season. Our results indicate that this species relies on deep soil water reserves and can be physiologically active during summer drought.
Collapse
|
10
|
Gričar J, Jevšenak J, Hafner P, Prislan P, Ferlan M, Lavrič M, Vodnik D, Eler K. Climatic regulation of leaf and cambial phenology in Quercus pubescens: Their interlinkage and impact on xylem and phloem conduits. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149968. [PMID: 34525737 DOI: 10.1016/j.scitotenv.2021.149968] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Increased frequency and severity of stressful events affects the growth patterns and functioning of trees which adjust their phenology to given conditions. Here, we analysed environmental effects (temperature, precipitation, VPD and SWC) on the timing of leaf phenology, seasonal stem radial growth patterns, and xylem and phloem anatomy of Quercus pubescens in the sub-Mediterranean in the period 2014-2019, when various adverse weather events occurred, i.e. spring drought in 2015, summer fire in 2016 and summer drought in 2017. Results showed that the timings of leaf and cambium phenology do not occur simultaneously in Q. pubescens, reflecting different environmental and internal constraints. Although year-to-year variability in the timings of leaf and cambial phenology exists, their chronological sequence is fairly fixed. Different effects of weather conditions on different stages of leaf development in spring were observed. Common climatic drivers (i.e., negative effect of hot and dry summers and a positive effect of increasing moisture availability in winter and summer) were found to affect the widths of xylem and phloem increments with more pronounced effect on late formed parts. A legacy effect of the timing of leaf and cambial phenology of the previous growing season on the timing of phenology of the following spring was confirmed. Rarely available phloem data permitted a comprehensive insight into the interlinkage of the timing of cambium and leaf phenology and adjustment strategies of vascular tissues in Mediterranean pubescent oak to various environmental constraints, including frequent extreme events (drought, fire). Our results suggest that predicted changes in autumn/winter and spring climatic conditions for this area could affect the timings of leaf and stem cambial phenology of Q. pubescens in the coming years, which would affect stem xylem and phloem structure and hydraulic properties, and ultimately its performance.
Collapse
Affiliation(s)
- Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia.
| | - Jernej Jevšenak
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Polona Hafner
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department of Forest Techniques and Economics, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Mitja Ferlan
- Department of Forest Ecology, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Martina Lavrič
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia
| | - Dominik Vodnik
- Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| | - Klemen Eler
- Department of Forest Ecology, Slovenian Forestry Institute, Vecna pot 2, SI-1000 Ljubljana, Slovenia; Department of Agronomy, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, SI-1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Asbjornsen H, McIntire CD, Vadeboncoeur MA, Jennings KA, Coble AP, Berry ZC. Sensitivity and threshold dynamics of Pinus strobus and Quercus spp. in response to experimental and naturally occurring severe droughts. TREE PHYSIOLOGY 2021; 41:1819-1835. [PMID: 33904579 DOI: 10.1093/treephys/tpab056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/30/2021] [Indexed: 06/12/2023]
Abstract
Increased drought frequency and severity are a pervasive global threat, yet the capacity of mesic temperate forests to maintain resilience in response to drought remains poorly understood. We deployed a throughfall removal experiment to simulate a once in a century drought in New Hampshire, USA, which coupled with the region-wide 2016 drought, intensified moisture stress beyond that experienced in the lifetimes of our study trees. To assess the sensitivity and threshold dynamics of two dominant northeastern tree genera (Quercus and Pinus), we monitored sap flux density (Js), leaf water potential and gas exchange, growth and intrinsic water-use efficiency (iWUE) for one pretreatment year (2015) and two treatment years (2016-17). Results showed that Js in pine (Pinus strobus L.) declined abruptly at a soil moisture threshold of 0.15 m3 m-3, whereas oak's (Quercus rubra L. and Quercus velutina Lam.) threshold was 0.11 m3 m-3-a finding consistent with pine's more isohydric strategy. Nevertheless, once oaks' moisture threshold was surpassed, Js declined abruptly, suggesting that while oaks are well adapted to moderate drought, they are highly susceptible to extreme drought. The radial growth reduction in response to the 2016 drought was more than twice as great for pine as for oaks (50 vs 18%, respectively). Despite relatively high precipitation in 2017, the oaks' growth continued to decline (low recovery), whereas pine showed neutral (treatment) or improved (control) growth. The iWUE increased in 2016 for both treatment and control pines, but only in treatment oaks. Notably, pines exhibited a significant linear relationship between iWUE and precipitation across years, whereas the oaks only showed a response during the driest conditions, further underscoring the different sensitivity thresholds for these species. Our results provide new insights into how interactions between temperate forest tree species' contrasting physiologies and soil moisture thresholds influence their responses and resilience to extreme drought.
Collapse
Affiliation(s)
- Heidi Asbjornsen
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Cameron D McIntire
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- State and Private Forestry, USDA Forest Service, 271 Mast Road, Durham, NH 03824, USA
| | - Matthew A Vadeboncoeur
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Katie A Jennings
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Earth Systems Research Center, University of New Hampshire, 8 College Rd, Durham, NH 03824, USA
| | - Adam P Coble
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Private Forests Division, Oregon Department of Forestry, 2600 State St, Salem, OR 97310, USA
| | - Z Carter Berry
- Department of Natural Resources and the Environment, University of New Hampshire, 56 College Rd, Durham, NH 03824, USA
- Schmid College of Science and Technology, Chapman University, Orange, CA 92866, USA
| |
Collapse
|
12
|
Marchand LJ, Dox I, Gričar J, Prislan P, Van den Bulcke J, Fonti P, Campioli M. Timing of spring xylogenesis in temperate deciduous tree species relates to tree growth characteristics and previous autumn phenology. TREE PHYSIOLOGY 2021; 41:1161-1170. [PMID: 33367844 DOI: 10.1093/treephys/tpaa171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
We explored the timing of spring xylogenesis and its potential drivers in homogeneous mature forest stands in a temperate European region. Three species with contrasting leaf development dynamics and wood anatomy were studied: European beech, silver birch and pedunculate oak. Detailed phenological observations of xylogenesis and leaf phenology were performed from summer 2017 until spring 2018. Cambium reactivation (CR) occurred before the buds of oak and birch were swollen, whereas these two phenological phases were concurrent for beech. On the other hand, initial earlywood vessels were fully differentiated (FDIEV) after leaf unfolding for all three species. Timing of CR was correlated to average ring-width of the last 10 years (2008-17), tree diameter and, partially, with tree age. In addition, the timing of FDIEV was correlated to tree age and previous year's autumn phenology, i.e., timing of wood growth cessation and onset of leaf senescence. Multivariate models could explain up to 68% of the variability of CR and 55% of the variability of FDIEV. In addition to the 'species' factor, the variability could be explained by ca 30% by tree characteristics and previous year's autumn phenology for both CR and FDIEV. These findings are important to better identify which factors (other than environment) can be driving the onset of the growing season, and highlight the influence of tree growth characteristics and previous year's phenology on spring wood phenology, wood formation and, potentially, forest production.
Collapse
Affiliation(s)
- Lorène Julia Marchand
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
- UMR 6553 ECOBIO (Ecosystèmes, Biodiversité, Evolution), Université de Rennes 1, CNRS, 263 Av. du Général Leclerc, 35042 Rennes, France
| | - Inge Dox
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
| | - Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Peter Prislan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Jan Van den Bulcke
- Laboratory of Wood Technology, UGent-Woodlab, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium
| | - Patrick Fonti
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Matteo Campioli
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Campus Drie Eiken, Universiteitplan 1, 2160 Wilrijk, Belgium
| |
Collapse
|
13
|
Precipitation Gradient Drives Divergent Relationship between Non-Structural Carbohydrates and Water Availability in Pinus tabulaeformis of Northern China. FORESTS 2021. [DOI: 10.3390/f12020133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Seasonal non-structural carbohydrate (NSC) dynamics in different organs can indicate the strategies trees use to cope with water stress; however, these dynamics remain poorly understood along a large precipitation gradient. In this study, we hypothesized that the correlation between water availability and NSC concentrations in different organs might be strengthened by decreasing precipitation in Pinus tabulaeformis Carr. forests in temperate China. Our results show that the concentrations of soluble sugars were lower in stems and coarse roots, and starch was higher in branches in the early growing season at drier sites. Throughout the growing season, the concentrations of soluble sugars increased in drier sites, especially for leaves, and remained stable in wetter sites, while starch concentrations were relatively stable in branches and stems at all sites. The NSC concentrations, mainly starch, decreased in coarse roots along the growing season at drier sites. Trees have a faster growth rate with an earlier cessation in active stem growth at drier sites. Interestingly, we also found a divergent relationship between NSCs in different organs and mean growing season water availability, and a stronger correlation was observed in drier sites. These results show that pine forests in arid and semi-arid regions of northern China exhibit different physiological responses to water availability, improving our understanding of the adaptive mechanisms of trees to water limitations in a warmer and drier climate.
Collapse
|
14
|
Dox I, Gričar J, Marchand LJ, Leys S, Zuccarini P, Geron C, Prislan P, Mariën B, Fonti P, Lange H, Peñuelas J, Van den Bulcke J, Campioli M. Timeline of autumn phenology in temperate deciduous trees. TREE PHYSIOLOGY 2020; 40:1001-1013. [PMID: 32348497 DOI: 10.1093/treephys/tpaa058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/21/2020] [Indexed: 05/12/2023]
Abstract
Cessation of xylem formation or wood growth (CWG) and onset of foliar senescence (OFS) are key autumn phenological events in temperate deciduous trees. Their timing is fundamental for the development and survival of trees, ecosystem nutrient cycling and the seasonal exchange of matter and energy between the biosphere and atmosphere, and affects the impact and feedback of forests to global change. A large-scale experimental effort and improved observational methods have allowed us to compare the timing of CWG and OFS for different deciduous tree species in Western Europe, particularly in silver birch, a pioneer species, and European beech, a late-succession species, at stands of different latitudes, of different levels of site fertility, for 2 years with contrasting meteorological and drought conditions, i.e., the low moderately dry 2017 and the extremely dry 2018. Specifically, we tested whether foliar senescence started before, after or concurrently with CWG. Onset of foliar senescence and CWG occurred generally between late September and early November, with larger differences across species and sites for OFS. Foliar senescence started concurrently with CWG in most cases, except for the drier 2018 and, for beech, at the coldest site, where OFS occurred significantly later than CWG. The behavior of beech in Spain, the southern edge of its European distribution, was unclear, with no CWG, but very low wood growth at the time of OFS. Our study suggests that OFS is generally triggered by the same drivers of CWG or when wood growth decreases in late summer, indicating an overarching mechanism of sink limitation as a possible regulator of the timing of foliar senescence.
Collapse
Affiliation(s)
- Inge Dox
- Department of Biology, Centre of Excellence Plants and Ecosystems, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Jožica Gričar
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Lorène J Marchand
- Department of Biology, Centre of Excellence Plants and Ecosystems, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
- ECOBIO (Ecosystèmes, Biodiversité, Evolution), Université de Rennes, Campus Beaulieu, CS 74205, 35042 Rennes Cedex, Rennes, France
| | - Sebastien Leys
- Department of Biology, Centre of Excellence Plants and Ecosystems, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Paolo Zuccarini
- Centre for Research on Ecology and Forestry Applications (CREAF), 08290, Cerdanyola del Vallès, Barcelona, Spain
| | - Charly Geron
- Department of Biology, Centre of Excellence Plants and Ecosystems, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
- Faculty of Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Peter Prislan
- Department of Yield and Silviculture, Slovenian Forestry Institute, Vecna pot 2, 1000 Ljubljana, Slovenia
| | - Bertold Mariën
- Department of Biology, Centre of Excellence Plants and Ecosystems, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Patrick Fonti
- Dendro-Sciences Research Unit, Subunit Palaeo-Ecology, Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Holger Lange
- Norwegian Institute of Bioeconomy Research, Postboks 115, NO-1431 Ås, Norway
| | - Josep Peñuelas
- Centre for Research on Ecology and Forestry Applications (CREAF), 08290, Cerdanyola del Vallès, Barcelona, Spain
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, Barcelona, Spain
| | - Jan Van den Bulcke
- UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, University of Ghent, Coupure Links 653, B-9000 Ghent, Belgium
| | - Matteo Campioli
- Department of Biology, Centre of Excellence Plants and Ecosystems, University of Antwerp, Campus Drie Eiken, Universiteitsplein 1, 2610 Wilrijk, Belgium
| |
Collapse
|
15
|
Deslauriers A, Rossi S. Metabolic memory in the phenological events of plants: looking beyond climatic factors. TREE PHYSIOLOGY 2019; 39:1272-1276. [PMID: 31359049 DOI: 10.1093/treephys/tpz082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/18/2019] [Accepted: 06/27/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Annie Deslauriers
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'université, Chicoutimi, Canada
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'université, Chicoutimi, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, 723 Xingke Road, Tianhe District, Guangzhou, China
| |
Collapse
|
16
|
Genetic features of the phenological forms of Quercus robur (Fagaceae) according to the analysis of the introns polymorphism of β-tubulin genes and microsatellite loci. UKRAINIAN BOTANICAL JOURNAL 2018. [DOI: 10.15407/ukrbotj75.05.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
17
|
Fernández-de-Uña L, Aranda I, Rossi S, Fonti P, Cañellas I, Gea-Izquierdo G. Divergent phenological and leaf gas exchange strategies of two competing tree species drive contrasting responses to drought at their altitudinal boundary. TREE PHYSIOLOGY 2018; 38:1152-1165. [PMID: 29718459 DOI: 10.1093/treephys/tpy041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 04/04/2018] [Indexed: 06/08/2023]
Abstract
In Mediterranean mountains, Pinus sylvestris L. is expected to be displaced under a warming climate by more drought-tolerant species such as the sub-Mediterranean Quercus pyrenaica Willd. Understanding how environmental factors drive tree physiology and phenology is, therefore, essential to assess the effect of changing climatic conditions on the performance of these species and, ultimately, their distribution. We compared the cambial and leaf phenology and leaf gas exchange of Q. pyrenaica and P. sylvestris at their altitudinal boundary in Central Spain and assessed the environmental variables involved. Results indicate that P. sylvestris cambial phenology was more sensitive to weather conditions (temperature at the onset and water deficit at the end of the growing season) than Q. pyrenaica. On the other hand, Q. pyrenaica cambial and leaf phenology were synchronized and driven by photoperiod and temperatures. Pinus sylvestris showed lower photosynthetic nitrogen-use efficiency and higher intrinsic water-use efficiency than Q. pyrenaica as a result of a tighter stomatal control in response to summer dry conditions, despite its less negative midday leaf water potentials. These phenological and leaf gas exchange responses evidence a stronger sensitivity to drought of P. sylvestris than that of Q. pyrenaica, which may therefore hold a competitive advantage over P. sylvestris under the predicted increase in recurrence and intensity of drought events. On the other hand, both species could benefit from warmer springs through an advanced phenology, although this effect could be limited in Q. pyrenaica if it maintains a photoperiod control over the onset of xylogenesis.
Collapse
Affiliation(s)
- Laura Fernández-de-Uña
- INIA-CIFOR, Ctra. La Coruña, km 7.5, Madrid, Spain
- Université de Lorraine, AgroParisTech, INRA, UMR Silva, INRA Grand Est-Nancy, Rue d'Amance, Champenoux, France
| | | | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi (QC), Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Patrick Fonti
- Swiss Federal Research Institute for Forest, Snow and Landscape Research WSL, 111 Zürcherstrasse, Birmensdorf, Switzerland
| | | | | |
Collapse
|
18
|
Gazol A, Camarero JJ, Vicente-Serrano SM, Sánchez-Salguero R, Gutiérrez E, de Luis M, Sangüesa-Barreda G, Novak K, Rozas V, Tíscar PA, Linares JC, Martín-Hernández N, Martínez Del Castillo E, Ribas M, García-González I, Silla F, Camisón A, Génova M, Olano JM, Longares LA, Hevia A, Tomás-Burguera M, Galván JD. Forest resilience to drought varies across biomes. GLOBAL CHANGE BIOLOGY 2018; 24:2143-2158. [PMID: 29488293 DOI: 10.1111/gcb.14082] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/19/2017] [Accepted: 01/18/2018] [Indexed: 05/25/2023]
Abstract
Forecasted increase drought frequency and severity may drive worldwide declines in forest productivity. Species-level responses to a drier world are likely to be influenced by their functional traits. Here, we analyse forest resilience to drought using an extensive network of tree-ring width data and satellite imagery. We compiled proxies of forest growth and productivity (TRWi, absolutely dated ring-width indices; NDVI, Normalized Difference Vegetation Index) for 11 tree species and 502 forests in Spain corresponding to Mediterranean, temperate, and continental biomes. Four different components of forest resilience to drought were calculated based on TRWi and NDVI data before, during, and after four major droughts (1986, 1994-1995, 1999, and 2005), and pointed out that TRWi data were more sensitive metrics of forest resilience to drought than NDVI data. Resilience was related to both drought severity and forest composition. Evergreen gymnosperms dominating semi-arid Mediterranean forests showed the lowest resistance to drought, but higher recovery than deciduous angiosperms dominating humid temperate forests. Moreover, semi-arid gymnosperm forests presented a negative temporal trend in the resistance to drought, but this pattern was absent in continental and temperate forests. Although gymnosperms in dry Mediterranean forests showed a faster recovery after drought, their recovery potential could be constrained if droughts become more frequent. Conversely, angiosperms and gymnosperms inhabiting temperate and continental sites might have problems to recover after more intense droughts since they resist drought but are less able to recover afterwards.
Collapse
Affiliation(s)
- Antonio Gazol
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
| | | | | | - Raúl Sánchez-Salguero
- Instituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, Spain
- Depto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, Sevilla, Spain
| | - Emilia Gutiérrez
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Martin de Luis
- Depto. Geografía y Ordenación del Territorio - IUCA, Univ. Zaragoza, Zaragoza, Spain
| | | | - Klemen Novak
- Depto. Geografía y Ordenación del Territorio - IUCA, Univ. Zaragoza, Zaragoza, Spain
- Depto. de Ecología, Universidad de Alicante, Alicante, Spain
| | - Vicente Rozas
- Depto. Ciencias Agroforestales, EU Ing. Agrarias, iuFOR-Univ., Valladolid, Spain
| | - Pedro A Tíscar
- Centro de Capacitación y Experimentación Forestal, Cazorla, Spain
| | - Juan C Linares
- Depto. Sistemas Físicos, Químicos y Naturales, Univ. Pablo de Olavide, Sevilla, Spain
| | | | | | - Montse Ribas
- Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Ignacio García-González
- Depto. Botánica, Escola Politécnica Superior, Campus Terra, Univ. Santiago de Compostela, Lugo, Spain
| | - Fernando Silla
- Depto. Biología Animal, Parasitología, Ecología, Edafología y Química Agrícola, Univ. Salamanca, Salamanca, Spain
| | - Alvaro Camisón
- Ingeniería Forestal y del Medio Natural, Univ. Extremadura, Plasencia, Spain
| | - Mar Génova
- Depto. Sistemas y Recursos Naturales, Univ. Politécnica de Madrid, Madrid, Spain
| | - José M Olano
- Depto. Ciencias Agroforestales, EU Ing. Agrarias, iuFOR-Univ., Valladolid, Spain
| | - Luis A Longares
- Depto. Geografía y Ordenación del Territorio - IUCA, Univ. Zaragoza, Zaragoza, Spain
| | - Andrea Hevia
- Forest and Wood Technology Research Centre (CETEMAS), Grado, Spain
| | - Miquel Tomás-Burguera
- Estación Experimental Aula Dei, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Zaragoza, Spain
| | | |
Collapse
|
19
|
Ren P, Rossi S, Camarero JJ, Ellison AM, Liang E, Peñuelas J. Critical temperature and precipitation thresholds for the onset of xylogenesis of Juniperus przewalskii in a semi-arid area of the north-eastern Tibetan Plateau. ANNALS OF BOTANY 2018; 121:617-624. [PMID: 29300821 PMCID: PMC5853012 DOI: 10.1093/aob/mcx188] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 11/20/2017] [Indexed: 05/11/2023]
Abstract
Background and Aims The onset of xylogenesis plays an important role in tree growth and carbon sequestration, and it is thus a key variable in modelling the responses of forest ecosystems to climate change. Temperature regulates the resumption of cambial activity, but little is known about the effect of water availability on the onset of xylogenesis in cold but semi-arid regions. Methods The onset of xylogenesis during 2009-2014 was monitored by weekly microcoring Juniperus przewalskii trees at upper and lower treelines on the north-eastern Tibetan Plateau. A logistic regression was used to calculate the probability of xylogenic activity at a given temperature and a two-dimensional reverse Gaussian model to fit the differences between the observed and estimated days of xylogenesis onset at given temperatures and precipitation within a certain time window. Key Results The thermal thresholds at the beginning of the growing season were highly variable, suggesting that temperature was not the only factor initiating xylem growth under cold and dry climatic conditions. The onset of xylogenesis was well predicted for climatic thresholds characterized by a cumulative precipitation of 17.0 ± 5.6 mm and an average minimum temperature of 1.5 ± 1.4 °C for a period of 12 d. Conclusions Xylogenesis in semi-arid regions with dry winters and springs can start when both critical temperature and precipitation thresholds are reached. Such findings contribute to our knowledge of the environmental drivers of growth resumption that previously had been investigated largely in cold regions without water shortages during early growing seasons. Models of the onset of xylogenesis should include water availability to improve predictions of xylem phenology in dry areas. A mismatch between the thresholds of temperature and moisture for the onset of xylogenesis may increase forest vulnerability in semi-arid areas under forecasted warmer and drier conditions.
Collapse
Affiliation(s)
- Ping Ren
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
| | - Sergio Rossi
- University of Quebec in Chicoutimi, Département des Sciences Fondamentales, Boulevard de l’Université, Canada
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - J Julio Camarero
- Instituto Pirenaico de Ecología (IPE, CSIC), Avda. Montañana, Zaragoza, Spain
| | | | - Eryuan Liang
- Key Laboratory of Alpine Ecology and Biodiversity, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China
- CAS Centre for Excellence in Tibetan Plateau Earth Sciences, Beijing, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
20
|
Granda E, Alla AQ, Laskurain NA, Loidi J, Sánchez-Lorenzo A, Camarero JJ. Coexisting oak species, including rear-edge populations, buffer climate stress through xylem adjustments. TREE PHYSIOLOGY 2018; 38:159-172. [PMID: 29300954 DOI: 10.1093/treephys/tpx157] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 11/17/2017] [Indexed: 05/12/2023]
Abstract
The ability of trees to cope with climate change is a pivotal feature of forest ecosystems, especially for rear-edge populations facing warm and dry conditions. To evaluate current and future forests threats, a multi-proxy focus on the growth, anatomical and physiological responses to climate change is needed. We examined the long-term xylem adjustments to climate variability of the temperate Quercus robur L. at its rear edge and the sub-Mediterranean Quercus pyrenaica Willd. Both species coexist at a mesic (ME, humid and warmer) and a xeric (XE, dry and cooler) site in northern Spain, the latter experiencing increasing temperatures in recent decades. We compared xylem traits at each site and assessed their trends, relationships and responses to climate (1960-2008). Traits included basal area increment, earlywood vessel hydraulic diameter, density and theoretical-specific hydraulic conductivity together with latewood oxygen (δ18O) stable isotopes and δ13C-derived water-use efficiency (iWUE). Quercus robur showed the highest growth at ME, likely through enhanced cambial activity. Quercus pyrenaica had higher iWUE at XE compared with ME, but limited plasticity of anatomical xylem traits was found for the two oak species. Similar physiological performance was found for both species. The iWUE augmented in recent years especially at XE, likely explained by stomatal closure given the increasing δ18O signal in response to drier and sunnier growing seasons. Overall, traits were more correlated at XE than at ME. The iWUE improvements were linked to higher growth up to a threshold (~85 μmol mol-1) after which reduced growth was found at XE. Our results are consistent with Q. pyrenaica and Q. robur coexisting at the central and dry edge of the climatic species distribution, respectively, showing similar responses to buffer warmer conditions. In fact, the observed adjustments found for Q. robur point towards growth stability of similar rear-edge oak populations under warmer climate conditions.
Collapse
Affiliation(s)
- E Granda
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50080 Zaragoza, Spain
| | - A Q Alla
- Fakulteti i Shkencave Pyjore, Universiteti Bujqësor i Tiranës, Kodër-Kamëz 1029, Tirana, Albania
| | - N A Laskurain
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - J Loidi
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940 Leioa, Spain
| | - A Sánchez-Lorenzo
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50080 Zaragoza, Spain
| | - J J Camarero
- Instituto Pirenaico de Ecología (IPE-CSIC), Avenida Montañana 1005, 50080 Zaragoza, Spain
| |
Collapse
|