1
|
Lebeau E, Dunn JC. The prevalence and immune response to coinfection by avian haemosporidians in wild Eurasian blackbirds Turdus merula. Parasitology 2025:1-10. [PMID: 39851095 DOI: 10.1017/s0031182024000829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
Coinfection of a host by more than 1 parasite is more common than single infection in wild environments and can have differing impacts, although coinfections have relatively rarely been quantified. Host immune responses to coinfection can contribute to infection costs but are often harder to predict than those associated with single infection, due to the influence of within-host parasite–parasite interactions on infection virulence. To first quantify coinfection in a common bird species, and then to test for immune-related impacts of coinfection, we investigated the prevalence and immune response to avian haemosporidian (genera: Plasmodium, Haemoproteus and Leucocytozoon) coinfection in wild blackbirds. Coinfection status was diagnosed using a 1-step multiplex polymerase chain reaction, immune response was quantified through white blood cell counts and heterophil: lymphocyte ratios, and parasitaemia was quantified for each infected sample. We detected high rates of haemosporidian infection and coinfection, although neither impacted immune activity, despite a significantly higher parasitaemia in individuals experiencing double vs single infection. This suggests that immune-related costs of haemosporidian single and coinfection are low in this system. This could be due to long-term host–parasite coevolution, which has decreased infection virulence, or a consequence of reduced costs associated with chronic infections compared to acute infections. Alternatively, our results may obscure immune-related costs associated with specific combinations of coinfecting haemosporidian genera, species or lineages. Future research should investigate interactions that occur between haemosporidian parasites within hosts, as well as the ways in which these interactions and resulting impacts may vary depending on parasite identity.
Collapse
Affiliation(s)
- Ellie Lebeau
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
| | - Jenny C Dunn
- Joseph Banks Laboratories, School of Life and Environmental Sciences, University of Lincoln, Lincoln, UK
- School of Biology, University of Leeds, Leeds, UK
| |
Collapse
|
2
|
Palavecino CC, Cuervo PF, Fantozzi MC, Bontempi IA, Ruiz MF, Marengo RE, Beldomenico PM, Racca AL. Environmental Challenges and Co-Infection Modulate Resistance and Tolerance Against Trypanosoma Cruzi and Trichinella Spiralis in Rats. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025. [PMID: 39831643 DOI: 10.1002/jez.2902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 11/09/2024] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
To overcome infection, hosts employ two defense strategies: resistance (which limits pathogen fitness), and tolerance (which reduces infection damage). These strategies may be influenced by environmental challenges such as food shortage, social conflict, and co-infections. Here, our objective was to assess defense strategies in rats infected with Trichinella spiralis and/or Trypanosoma cruzi under environmental challenges. After four weeks of treatment with environmental challenges (food restriction [0/1] and/or social conflict [0/1]), rats were exposed to Tri. spiralis [0/1] and/or Try. cruzi [0/1]. Six weeks postinoculation, we measured parasite intensity and several indicators of health or pathology. Tolerance to Try. cruzi increased in the presence of social conflict and food restriction. Coinfected animals showed reduced tolerance compared to mono-infected. However, food-restricted mono-infected rats had lower tolerance than other groups. No significant differences were found in resistance to Try. cruzi. Tolerance to Tri. spiralis was higher in food-restricted rats and Coinfected rats. Moreover, we found a potential shift in defense strategy: rats that are mono-infected and exposed to social conflict may be more resistant but less tolerant to Tri. spiralis than all other experimental groups. Overall, our findings highlight that defense strategies are context-dependent in the nematode-protozoan infection model studied, and provide evidence of a shift in the defense strategy to accommodate during environmental challenges. Given that rodents play a key role as reservoirs of zoonotic pathogens, understanding the range and variability of defense strategies in these animals is of utmost importance.
Collapse
Affiliation(s)
- Cintia C Palavecino
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral - CONICET, Santa Fe, Santa Fe, Argentina
| | - Pablo F Cuervo
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral - CONICET, Santa Fe, Santa Fe, Argentina
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Instituto de Salud Carlos IIII, CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - María C Fantozzi
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Burjassot, Valencia, Spain
- Instituto de Salud Carlos IIII, CIBER de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain
| | - Ivan A Bontempi
- Laboratorio de Tecnología Inmunológica, Facultad de Bioquímica y Ciencias Biológica, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Marcelo F Ruiz
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Rafael E Marengo
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Pablo M Beldomenico
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral - CONICET, Santa Fe, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| | - Andrea L Racca
- Laboratorio de Ecología de Enfermedades, Instituto de Ciencias Veterinarias del Litoral (ICIVET LITORAL), Universidad Nacional del Litoral - CONICET, Santa Fe, Santa Fe, Argentina
- Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Santa Fe, Santa Fe, Argentina
| |
Collapse
|
3
|
Poulin R, Salloum PM, Bennett J. Evolution of parasites in the Anthropocene: new pressures, new adaptive directions. Biol Rev Camb Philos Soc 2024; 99:2234-2252. [PMID: 38984760 DOI: 10.1111/brv.13118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
The Anthropocene is seeing the human footprint rapidly spreading to all of Earth's ecosystems. The fast-changing biotic and abiotic conditions experienced by all organisms are exerting new and strong selective pressures, and there is a growing list of examples of human-induced evolution in response to anthropogenic impacts. No organism is exempt from these novel selective pressures. Here, we synthesise current knowledge on human-induced evolution in eukaryotic parasites of animals, and present a multidisciplinary framework for its study and monitoring. Parasites generally have short generation times and huge fecundity, features that predispose them for rapid evolution. We begin by reviewing evidence that parasites often have substantial standing genetic variation, and examples of their rapid evolution both under conditions of livestock production and in serial passage experiments. We then present a two-step conceptual overview of the causal chain linking anthropogenic impacts to parasite evolution. First, we review the major anthropogenic factors impacting parasites, and identify the selective pressures they exert on parasites through increased mortality of either infective stages or adult parasites, or through changes in host density, quality or immunity. Second, we discuss what new phenotypic traits are likely to be favoured by the new selective pressures resulting from altered parasite mortality or host changes; we focus mostly on parasite virulence and basic life-history traits, as these most directly influence the transmission success of parasites and the pathology they induce. To illustrate the kinds of evolutionary changes in parasites anticipated in the Anthropocene, we present a few scenarios, either already documented or hypothetical but plausible, involving parasite taxa in livestock, aquaculture and natural systems. Finally, we offer several approaches for investigations and real-time monitoring of rapid, human-induced evolution in parasites, ranging from controlled experiments to the use of state-of-the-art genomic tools. The implications of fast-evolving parasites in the Anthropocene for disease emergence and the dynamics of infections in domestic animals and wildlife are concerning. Broader recognition that it is not only the conditions for parasite transmission that are changing, but the parasites themselves, is needed to meet better the challenges ahead.
Collapse
Affiliation(s)
- Robert Poulin
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Priscila M Salloum
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Jerusha Bennett
- Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand
| |
Collapse
|
4
|
Kalbskopf V, Aželytė J, Palinauskas V, Hellgren O. Genomic variation in Plasmodium relictum (lineage SGS1) and its implications for avian malaria infection outcomes: insights from experimental infections and genome-wide analysis. Malar J 2024; 23:260. [PMID: 39210339 PMCID: PMC11360878 DOI: 10.1186/s12936-024-05061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The globally transmitted avian malaria parasite Plasmodium relictum (lineage SGS1) has been found to infect hundreds of different bird species with differences in infection outcomes ranging from more or less latent to potentially mortal. However, to date basic knowledge about the links between genetic differentiation and variation in infection outcome within this single malaria parasite species is lacking. METHODS In this study, two different isolates of SGS1, obtained in the wild from two different host species, were used to investigate differences in their development in the blood and virulence in the experimentally infected canaries. Simultaneously, 258 kb of the parasite genome was screened for genetic differences using parasite mRNA and compared between experimental groups. RESULTS The two isolates showed differences in development and caused mortality as well as effects on the blood parameters of their hosts. Although previous studies using single genes have shown very limited within lineage genetic diversity in the European population of SGS1, 226 SNPs were found across 322 genes, which separated the two experimental groups with a total of 23 SNPs that were fixed in either of the experimental groups. Moreover, genetic variation was found within each experimental group, hinting that each avian malaria infection harbours standing genetic variation that might be selected during each individual infection episode. CONCLUSION These results highlight extensive genetic variation within the SGS1 population that is transferred into individual infections, thus adding to the complexity of the infection dynamics seen in these host-parasite interactions. Simultaneously, the results open up the possibility of understanding how genetic variation within the parasite populations is linked to the commonly observed differences in infection outcomes, both in experimental settings and in the wild.
Collapse
Affiliation(s)
- Victor Kalbskopf
- Evolutionary Ecology and Infection biology, Department of Biology, Lund University, Lund, Sweden
| | - Justė Aželytė
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | | | - Olof Hellgren
- Evolutionary Ecology and Infection biology, Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
5
|
Cruz JT, de Carvalho LM, Ferreira MR, Nunes C, Casero M, Marzal A. Avian Haemosporidian Infection in Wildlife Rehabilitation Centres of Portugal: Causes, Consequences, and Genetic Diversity. Animals (Basel) 2024; 14:1216. [PMID: 38672371 PMCID: PMC11047687 DOI: 10.3390/ani14081216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/16/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
In the last decade, over 40% of bird species in Europe have experienced poor and bad conservation status, with more than 30% of bird species in mainland Portugal threatened with extinction. Along with anthropogenic factors, parasites and pathogens such as avian haemosporidians have been suggested to be responsible for these avian population declines. Wildlife rehabilitation centres play an essential role in species conservation and preservation. Moreover, animals admitted for rehabilitation can provide valuable information regarding transmission and pathogenicity of many diseases that affect wild birds that are rarely sampled in nature. However, reports of haemosporidians in captive birds are still limited. Here, we explored the prevalence and genetic diversity of avian haemosporidians in 89 birds from 29 species admitted to rehabilitation centres in Portugal, showing an overall infection prevalence of 30.3%. The prevalence of infection was higher in Strigiformes and in birds admitted to rehabilitation centres due to debilitating diseases. Remarkably, 30% of the infected bird species have not been found to harbour malaria parasites in preceding studies. We detected 15 different haemosporidian lineages infecting a third of bird species sampled. Notably, 2 out of these 15 detected haemosporidian lineages have not been obtained previously in other studies. Furthermore, we also identified nine new host-parasite interactions representing new host records for these haemosporidian parasites. Finally, our results revealed that birds infected with haemosporidians require longer rehabilitation treatments, which increase the economic costs for rehabilitation and may impair their survival prospects. These findings emphasise the importance of integrating haemosporidian infection considerations into rehabilitation protocols, highlighting the challenges posed by these infections in avian conservation and rehabilitation, including economic and logistical demands.
Collapse
Affiliation(s)
- João T. Cruz
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine (FMV-ULisboa), University of Lisbon, 1300-477 Lisbon, Portugal; (J.T.C.); (L.M.d.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Luís Madeira de Carvalho
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine (FMV-ULisboa), University of Lisbon, 1300-477 Lisbon, Portugal; (J.T.C.); (L.M.d.C.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Mariana Ribeiro Ferreira
- Centre for Studies and Rehabilitation of Wild Animals of Castelo Branco (CERAS), Quercus ANCN, Rua Tenente Valadim, 17, 6000-284 Castelo Branco, Portugal;
| | - Carolina Nunes
- Wildlife Rehabilitation Centre of Santo André (CRASSA), Quercus ANCN, Moinho Novo, Galiza, 7500-022 Vila Nova de Santo André, Portugal;
| | - María Casero
- Wildlife Rehabilitation and Investigation Centre of the Ria Formosa (RIAS), Parque Natural da Ria Formosa, 8700-194 Olhão, Portugal;
| | - Alfonso Marzal
- Department of Anatomy, Cellular Biology and Zoology, University of Extremadura, 06006 Badajoz, Spain
- Wildlife Research Group, San Martin National University, Tarapoto 22021, Peru
| |
Collapse
|
6
|
Gutiérrez-Ramos NA, Acevedo MA. Higher body condition with infection by Haemoproteus parasites in Bananaquits ( Coereba flaveola). PeerJ 2024; 12:e16361. [PMID: 38563018 PMCID: PMC10984167 DOI: 10.7717/peerj.16361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 10/05/2023] [Indexed: 04/04/2024] Open
Abstract
Parasite transmission is a heterogenous process in host-parasite interactions. This heterogeneity is particularly apparent in vector-borne parasite transmission where the vector adds an additional level of complexity. Haemosporidian parasites, a widespread protist, cause a malaria-like disease in birds globally, but we still have much to learn about the consequences of infection to hosts' health. In the Caribbean, where malarial parasites are endemic, studying host-parasites interactions may give us important insights about energetic trade-offs involved in malarial parasites infections in birds. In this study, we tested the consequences of Haemoproteus infection on the Bananaquit, a resident species of Puerto Rico. We also tested for potential sources of individual heterogeneity in the consequences of infection such as host age and sex. To quantify the consequences of infection to hosts' health we compared three complementary body condition indices between infected and uninfected individuals. Our results showed that Bananaquits infected by Haemoproteus had higher body condition than uninfected individuals. This result was consistent among the three body condition indices. Still, we found no clear evidence that this effect was mediated by host age or sex. We discuss a set of non-mutually exclusive hypotheses that may explain this pattern including metabolic syndrome, immunological responses leading to host tolerance or resistance to infection, and potential changes in consumption rates. Overall, our results suggest that other mechanisms, may drive the consequences of avian malarial infection.
Collapse
Affiliation(s)
| | - Miguel A. Acevedo
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
7
|
Knutie SA, Webster CN, Vaziri GJ, Albert L, Harvey JA, LaRue M, Verrett TB, Soldo A, Koop JAH, Chaves JA, Wegrzyn JL. Urban living can rescue Darwin's finches from the lethal effects of invasive vampire flies. GLOBAL CHANGE BIOLOGY 2024; 30:e17145. [PMID: 38273516 DOI: 10.1111/gcb.17145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 12/15/2023] [Accepted: 12/21/2023] [Indexed: 01/27/2024]
Abstract
Human activity changes multiple factors in the environment, which can have positive or negative synergistic effects on organisms. However, few studies have explored the causal effects of multiple anthropogenic factors, such as urbanization and invasive species, on animals and the mechanisms that mediate these interactions. This study examines the influence of urbanization on the detrimental effect of invasive avian vampire flies (Philornis downsi) on endemic Darwin's finches in the Galápagos Islands. We experimentally manipulated nest fly abundance in urban and non-urban locations and then characterized nestling health, fledging success, diet, and gene expression patterns related to host defense. Fledging success of non-parasitized nestlings from urban (79%) and non-urban (75%) nests did not differ significantly. However, parasitized, non-urban nestlings lost more blood, and fewer nestlings survived (8%) compared to urban nestlings (50%). Stable isotopic values (δ15 N) from urban nestling feces were higher than those from non-urban nestlings, suggesting that urban nestlings are consuming more protein. δ15 N values correlated negatively with parasite abundance, which suggests that diet might influence host defenses (e.g., tolerance and resistance). Parasitized, urban nestlings differentially expressed genes within pathways associated with red blood cell production (tolerance) and pro-inflammatory response (innate immunological resistance), compared to parasitized, non-urban nestlings. In contrast, parasitized non-urban nestlings differentially expressed genes within pathways associated with immunoglobulin production (adaptive immunological resistance). Our results suggest that urban nestlings are investing more in pro-inflammatory responses to resist parasites but also recovering more blood cells to tolerate blood loss. Although non-urban nestlings are mounting an adaptive immune response, it is likely a last effort by the immune system rather than an effective defense against avian vampire flies since few nestlings survived.
Collapse
Affiliation(s)
- Sarah A Knutie
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| | - Cynthia N Webster
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Grace J Vaziri
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Lauren Albert
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Johanna A Harvey
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Department of Science and Technology, University of Maryland, College Park, Maryland, USA
| | - Michelle LaRue
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Taylor B Verrett
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Alexandria Soldo
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
| | - Jennifer A H Koop
- Department of Biological Sciences, Northern Illinois University, DeKalb, Illinois, USA
| | - Jaime A Chaves
- Department of Biology, San Francisco State University, San Francisco, California, USA
- Colegio de Ciencias Biológicas y Ambientales, Universidad San Francisco de Quito, Quito, Ecuador
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
8
|
Warfel HC, Wilcoxen TE. Lack of vitamin B12 impairs innate and adaptive immunity of Cuban tree frog (Osteopilus septentrionalis) tadpoles. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2023; 339:878-886. [PMID: 37522473 DOI: 10.1002/jez.2738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023]
Abstract
Vitamin B12 is a micronutrient required by a variety of organisms for healthy cellular functioning. Despite the systemic effects observed in cases of B12 deficiency, relatively little is known about how vitamin B12 affects immune health, especially in amphibians, which are declining at unprecedented rates. In this study, we tested how supplementing an algae diet with B12 affects the innate and adaptive immunity of Cuban tree frog (Osteopilus septentrionalis) tadpoles. We found that innate immunity, as measured by a bacterial killing assay, was significantly more robust in B12-supplemented tadpoles than control tadpoles, but no significant differences were found in natural antibody production or hematocrit between groups. Adaptive immunity, as measured by Aeromonas hydrophila-specific IgY antibodies, was significantly greater in tadpoles challenged with A. hydrophila and supplemented with B12 than in control tadpoles, those only challenged with A. hydrophila, and those only given B12. Our results suggest that vitamin B12 is an important factor in maintaining a functional immune system in tadpoles, which may also be true for all vertebrates.
Collapse
Affiliation(s)
- Hannah C Warfel
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
- Department of Biology, Millikin University, Decatur, Illinois, USA
| | | |
Collapse
|
9
|
Prakash A, Monteith KM, Bonnet M, Vale PF. Duox and Jak/Stat signalling influence disease tolerance in Drosophila during Pseudomonas entomophila infection. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 147:104756. [PMID: 37302730 DOI: 10.1016/j.dci.2023.104756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/18/2023] [Accepted: 06/09/2023] [Indexed: 06/13/2023]
Abstract
Disease tolerance describes an infected host's ability to maintain health independently of the ability to clear microbe loads. The Jak/Stat pathway plays a pivotal role in humoral innate immunity by detecting tissue damage and triggering cellular renewal, making it a candidate tolerance mechanism. Here, we find that in Drosophila melanogaster infected with Pseudomonas entomophila disrupting ROS-producing dual oxidase (duox) or the negative regulator of Jak/Stat Socs36E, render male flies less tolerant. Another negative regulator of Jak/Stat, G9a - which has previously been associated with variable tolerance of viral infections - did not affect the rate of mortality with increasing microbe loads compared to flies with functional G9a, suggesting it does not affect tolerance of bacterial infection as in viral infection. Our findings highlight that ROS production and Jak/Stat signalling influence the ability of flies to tolerate bacterial infection sex-specifically and may therefore contribute to sexually dimorphic infection outcomes in Drosophila.
Collapse
Affiliation(s)
- Arun Prakash
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, UK.
| | - Katy M Monteith
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, UK
| | - Mickael Bonnet
- UFR De Biologie, Campus Universitaire Des Cezeaux, France
| | - Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, UK.
| |
Collapse
|
10
|
Talbott KM, Ketterson ED. Physiological impacts of chronic and experimental Plasmodium infection on breeding-condition male songbirds. Sci Rep 2023; 13:13091. [PMID: 37567885 PMCID: PMC10421889 DOI: 10.1038/s41598-023-38438-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 07/07/2023] [Indexed: 08/13/2023] Open
Abstract
While Plasmodium parasitism is common in songbirds, its impact on avian reproduction is unclear owing to conflicting reports in the existing literature. Particularly understudied is the impact of phase of infection on variation in host reproductive physiology in wild, breeding-condition birds. However, assessing the full impact of Plasmodium on reproductive success in the wild can be difficult because individuals experiencing severe effects of parasitism may not enter the breeding population and may be less likely to be captured during field studies. To address these factors, we quantified metrics of health and reproductive physiology in wild-caught, breeding-condition male dark-eyed juncos (Junco hyemalis hyemalis) before and after experimental Plasmodium inoculation in a captive setting. Metrics of health and reproductive physiology included activity rate, hematocrit, scaled body mass, testosterone and sperm production. Individuals already infected at capture (i.e., chronically infected) had higher levels of hematocrit than males without chronic infections. Experimentally infected males showed a larger reduction in hematocrit and activity rate as compared to controls. However, chronic infection status did not influence the extent of metric decline. Testosterone production did not vary by treatment and most birds produced sperm following inoculation. Broadly, our results suggest that male juncos exposed to Plasmodium during the breeding season likely experience declines in general health, but Plasmodium infections do not negatively impact reproductive physiology. We conclude that physiological tradeoffs in males may favor maintenance of reproductive function despite infection.
Collapse
Affiliation(s)
- K M Talbott
- Department of Biology, Indiana University, Biology Building 149, 1001 East 3rd St, Bloomington, IN, 47405, USA.
| | - E D Ketterson
- Department of Biology, Indiana University, Biology Building 149, 1001 East 3rd St, Bloomington, IN, 47405, USA
| |
Collapse
|
11
|
Yabsley MJ, Coker SM, Welch CN, Garrett KB, Murray M, Grunert R, Seixas JS, Kistler WM, Curry SE, Adams HC, Nakatsu CS, Swanepoel L, Wyckoff ST, Koser TM, Kurimo-Beechuk E, Haynes E, Hernandez SM. A single Haemoproteus plataleae haplotype is widespread in white ibis ( Eudocimus albus) from urban and rural sites in southern Florida. Int J Parasitol Parasites Wildl 2023; 21:269-276. [PMID: 37520900 PMCID: PMC10372042 DOI: 10.1016/j.ijppaw.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023]
Abstract
The American white ibis (Eudocimus albus), a common bird species in Florida, has become increasingly urban, with many populations relying heavily on urban and suburban habitats, which may alter parasite transmission. Parasites of ibis, especially haemosporidians, are understudied. Avian haemosporidia can have a wide range of impacts on birds, including decreased reproductive success or increased mortality. Because southern Florida is subtropical and has a high diversity of potential vectors for haemosporidia, we hypothesized that there will be a high prevalence and genetic diversity of haemosporidia in white ibis. A total of 636 ibis from South Florida were sampled from 2010 to 2022, and blood samples were tested for haemosporidia by examination of Giemsa-stained thin blood smears and/or nested PCRs targeting the cytochrome b gene. A total of 400 (62.9%, 95% CI 59-66.7%) ibis were positive for parasites that were morphologically identified as Haemoproteus plataleae. Sequences of 302 positives revealed a single haplotype of Haemoproteus (EUDRUB01), which was previously reported from white ibis in South Florida and captive scarlet ibis (E. ruber) in Brazil. No Plasmodium or Leucocytozoon infections were detected. Parasitemias of the 400 positive birds were very low (average 0.084%, range 0.001%-2.16% [although only 2 birds had parasitemias >1%]). Prevalence and parasitemias were similar for males and females (68% vs. 61.6% and 0.081% vs. 0.071%, respectively). Prevalence in juveniles was lower compared with adults (52% vs. 67.4%) but parasitemias were higher in juveniles (0.117% vs. 0.065%). This data shows that H. plataleae is common in ibis in South Florida. Although parasitemias were generally low, additional research is needed to determine if this parasite has subclinical effects on ibis, if additional haplotypes or parasite species infect ibis in other regions of their range, or if H. plataleae is pathogenic for other sympatric avian species.
Collapse
Affiliation(s)
- Michael J. Yabsley
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
- Center for Ecology of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Sarah M. Coker
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Catharine N. Welch
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
- Common Ground Ecology, Tampa, FL, USA
| | - Kayla B. Garrett
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Maureen Murray
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Ryan Grunert
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Julia S. Seixas
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Whitney M. Kistler
- School of Mathematics and Sciences, Lincoln Memorial University, Harrogate, TN, USA
| | - Shannon E. Curry
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Henry C. Adams
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Charlie S. Nakatsu
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Liandrie Swanepoel
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Seth T. Wyckoff
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Troy M. Koser
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Elizabeth Kurimo-Beechuk
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Ellen Haynes
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| | - Sonia M. Hernandez
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA, USA
| |
Collapse
|
12
|
Occurrence of Gastrointestinal Parasites in Synanthropic Neozoan Egyptian Geese (Alopochen aegyptiaca, Linnaeus 1766) in Germany. DIVERSITY 2023. [DOI: 10.3390/d15030388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Various studies have shown that the transmission and passage of alien and native pathogens play a critical role in the establishment process of an invasive species and its further spread. Egyptian geese (Alopochen aegyptiaca) are neozotic birds on various continents. They live not only in the countryside near fresh water bodies but also in urban habitats in Central Europe with close contact to humans and their pets. Although their rapid distribution in Europe is widely debated, scientific studies on the anthropozoonotic risks of the population and studies on the present endoparasites in Egyptian geese are rare worldwide. In the present study, 114 shot Egyptian geese and 148 non-invasively collected faecal samples of wild Egyptian geese from 11 different Federal States in Germany were examined. A total of 13 metazoan endoparasite species in 12 different genera were identified. The main endoparasites found were Hystrichis tricolor, Polymorphus minutus, and, in lesser abundance, Cloacotaenia sp. and Echinuria uncinata. Adult stages of Echinostoma revolutum, an anthropozoonotic heteroxenic trematode, were found in 7.9% of the animals examined postmortem. This species was additionally identified by molecular analysis. Although Egyptian geese live in communities with native waterfowl, it appears that they have a lower parasitic load in general. The acquisition of generalistic parasites in an alien species and the associated increased risk of infection for native species is known as “spill-back” and raises the question of impacts on native waterfowl. Differences between animals from rural populations and urban populations were observed. The present study represents the first large-scale survey on gastrointestinal parasites of free-ranging Egyptian geese.
Collapse
|
13
|
Remacha C, Ramírez Á, Arriero E, Pérez-Tris J. Haemosporidian infections influence risk-taking behaviours in young male blackcaps, Sylvia atricapilla. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2022.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
14
|
Schoepf I, Olson S, Moore IT, Bonier F. Experimental reduction of haemosporidian infection affects maternal reproductive investment, parental behaviour and offspring condition. Proc Biol Sci 2022; 289:20221978. [PMID: 36448284 PMCID: PMC9709520 DOI: 10.1098/rspb.2022.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/07/2022] [Indexed: 12/05/2022] Open
Abstract
When hosts have a long coevolutionary history with their parasites, fitness costs of chronic infection have often been assumed to be negligible. Yet, experimental manipulation of infections sometimes reveals effects of parasites on their hosts, particularly during reproduction. Whether these effects translate into fitness costs remains unclear. Here, we present the results of an experimental study conducted in a free-ranging population of red-winged blackbirds (Agelaius phoeniceus) naturally experiencing a high prevalence of haemosporidian infections, with more than 95% of breeding adults infected with parasites from one or more haemosporidian genus. To assess effects of infection during reproduction, we manipulated adult red-winged blackbird females' parasite burden by administering an anti-haemosporidian medication before onset of egg-laying. Experimental reduction of infection resulted in significant benefits to mothers and their offspring. Medicated females laid heavier clutches, invested more in incubation and provisioning behaviour, and produced more fledglings than control females. Nestlings of medicated females had higher haematocrit, higher blood glucose, and lower reactive oxygen metabolites than nestlings of control females. Overall, our results provide evidence that, even in a species with high prevalence of infection, parasites can lead to decreased maternal investment and offspring quality, substantially reducing fitness.
Collapse
Affiliation(s)
- Ivana Schoepf
- Biology Department, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
- University of Alberta, Augustana Campus, 4901 46 Avenue, Camrose, Alberta, Canada T4V 2R3
| | - Sarena Olson
- Biology Department, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| | - Ignacio T. Moore
- Department of Biological Sciences, Virginia Tech, 1405 Perry Street, Blacksburg, VA 24061, USA
| | - Frances Bonier
- Biology Department, Queen's University, 116 Barrie Street, Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
15
|
Zilio G, Kaltz O, Koella JC. Resource availability for the mosquito Aedes aegypti affects the transmission mode evolution of a microsporidian parasite. Evol Ecol 2022. [DOI: 10.1007/s10682-022-10184-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AbstractEcological conditions may greatly affect the relative importance of vertical and horizontal transmission, in particular for parasites with a mixed mode of transmission. Resource availability is one important environmental factor, affecting host growth and fecundity, but also the parasite’s own development. The consequences for the potential of vertical and horizontal transmission and for the evolution of transmission mode are largely unknown. We let the mixed-mode microsporidian parasite Edhazardia aedis evolve on its mosquito host Aedes aegypti under high-food or low-food conditions, representing permissive and restricted conditions. These alter the timing of development of infected larvae and thereby the probabilities for the parasites to enter the vertical or horizontal transmission pathways. After 10 generations, evolved parasites were assayed under the two food levels. There was an ecological trade-off between transmission modes, mediated by nutrient effects on host development, resulting in a higher vertical transmission (VT) potential under high-food and a higher horizontal transmission (HT) potential under low-food test conditions. Evolution under high food increased the VT potential of the parasite, particularly if it was tested at low food. This involved higher probability of carrying binucleate spores for the emerging females, greater fecundity and a longer life compared to parasites that were tested in the same conditions but had evolved under low food. The changes are related to the developmental regulation and switch in the production of two spore types, affecting investment in VT or HT. In contrast, the HT potential remained relatively unaffected by the parasite’s evolutionary history, suggesting that, within our experiential design, the VT mode evolved independently of the HT mode. Our work illustrates the possible links between resource availability, within-host developmental processes and the evolution of parasite transmission investment. Future work, theoretical and experimental, should scale up from within-host to between-host levels, including eco-evolutionary and epidemiological dynamics.
Collapse
|
16
|
Tepox-Vivar N, Stephenson JF, Guevara-Fiore P. Transmission dynamics of ectoparasitic gyrodactylids (Platyhelminthes, Monogenea): An integrative review. Parasitology 2022; 149:1-13. [PMID: 35481457 DOI: 10.1017/s0031182022000361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Parasite transmission is the ability of pathogens to move between hosts. As a key component of the interaction between hosts and parasites, it has crucial implications for the fitness of both. Here, we review the transmission dynamics of Gyrodactylus species, which are monogenean ectoparasites of teleost fishes and a prominent model for studies of parasite transmission. Particularly, we focus on the most studied host–parasite system within this genus: guppies, Poecilia reticulata, and G. turnbulli/G. bullatarudis. Through an integrative literature examination, we identify the main variables affecting Gyrodactylus spread between hosts, and the potential factors that enhance their transmission. Previous research indicates that Gyrodactylids spread when their current conditions are unsuitable. Transmission depends on abiotic factors like temperature, and biotic variables such as gyrodactylid biology, host heterogeneity, and their interaction. Variation in the degree of social contact between hosts and sexes might also result in distinct dynamics. Our review highlights a lack of mathematical models that could help predict the dynamics of gyrodactylids, and there is also a bias to study only a few species. Future research may usefully focus on how gyrodactylid reproductive traits and host heterogeneity promote transmission and should incorporate the feedbacks between host behaviour and parasite transmission.
Collapse
Affiliation(s)
- Natalia Tepox-Vivar
- Maestría en Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| | - Jessica F Stephenson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Palestina Guevara-Fiore
- Facultad de Ciencias Biológicas, Benemérita Universidad Autónoma de Puebla (BUAP), Puebla 72592, Mexico
| |
Collapse
|
17
|
The weaker sex: Male lingcod (Ophiodon elongatus) with blue color polymorphism are more burdened by parasites than are other sex-color combinations. PLoS One 2022; 16:e0261202. [PMID: 34972116 PMCID: PMC8719767 DOI: 10.1371/journal.pone.0261202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 11/25/2021] [Indexed: 11/26/2022] Open
Abstract
The unusual blue color polymorphism of lingcod (Ophiodon elongatus) is the subject of much speculation but little empirical research; ~20% of lingcod individuals exhibit this striking blue color morph, which is discrete from and found within the same populations as the more common brown morph. In other species, color polymorphisms are intimately linked with host–parasite interactions, which led us to ask whether blue coloration in lingcod might be associated with parasitism, either as cause or effect. To test how color and parasitism are related in this host species, we performed parasitological dissection of 89 lingcod individuals collected across more than 26 degrees of latitude from Alaska, Washington, and California, USA. We found that male lingcod carried 1.89 times more parasites if they were blue than if they were brown, whereas there was no difference in parasite burden between blue and brown female lingcod. Blue individuals of both sexes had lower hepatosomatic index (i.e., relative liver weight) values than did brown individuals, indicating that blueness is associated with poor body condition. The immune systems of male vertebrates are typically less effective than those of females, due to the immunocompromising properties of male sex hormones; this might explain why blueness is associated with elevated parasite burdens in males but not in females. What remains to be determined is whether parasites induce physiological damage that produces blueness or if both blue coloration and parasite burden are driven by some unmeasured variable, such as starvation. Although our study cannot discriminate between these possibilities, our data suggest that the immune system could be involved in the blue color polymorphism–an exciting jumping-off point for future research to definitively identify the cause of lingcod blueness and a hint that immunocompetence and parasitism may play a role in lingcod population dynamics.
Collapse
|
18
|
Fracasso G, Matthysen E, Heylen D. Heritable variation in host quality as measured through an ectoparasite's performance. OIKOS 2021. [DOI: 10.1111/oik.08824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
| | | | - Dieter Heylen
- Interuniversity Inst. for Biostatistics and Statistical Bioinformatics, Hasselt Univ. Diepenbeek Belgium
- Eco‐Epidemiology Group, Dept of Biomedical Sciences, Inst. of Tropical Medicine Antwerp Belgium
| |
Collapse
|
19
|
Warburton EM, Blanar CA. Life in the margins: host-parasite relationships in ecological edges. Parasitol Res 2021; 120:3965-3977. [PMID: 34694518 DOI: 10.1007/s00436-021-07355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022]
Abstract
Transitional zones, such as edge habitat, are key landscapes for investigating biodiversity. "Soft edges" are permeable corridors that hosts can cross, while "hard edges" are impermeable borders that hosts cannot pass. Although pathogen transmission in the context of edges is vital to species conservation, drivers of host-parasite relationships in ecological edges remain poorly understood. Thus, we defined a framework for testing hypotheses of host-parasite interactions in hard and soft edges by (1) characterizing hard and soft edges from both the host and parasite perspectives, (2) predicting the types of parasites that would be successful in each type of edge, and (3) applying our framework to species invasion fronts as an example of host-parasite relationships in a soft edge. Generally, we posited that parasites in soft edges are more likely to be negatively affected by habitat fragmentation than their hosts because they occupy higher trophic levels but parasite transmission would benefit from increased host connectivity. Parasites along hard edges, however, are at higher risk of local extinction due to host population perturbations with limited opportunity for parasite recolonization. We then used these characteristics to predict functional traits that would lead to parasite success along soft and hard edges. Finally, we applied our framework to invasive species fronts to highlight predictions regarding host connectivity and parasite traits in soft edges. We anticipate that our work will promote a more complete discussion of habitat connectivity using a common framework and stimulate empirical research into host-parasite relationships within ecological edges and transitional zones.
Collapse
Affiliation(s)
- Elizabeth M Warburton
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, 30606, USA.
| | - Christopher A Blanar
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Davie, FL, 33314, USA
| |
Collapse
|
20
|
Keesing F, Ostfeld RS. Dilution effects in disease ecology. Ecol Lett 2021; 24:2490-2505. [PMID: 34482609 PMCID: PMC9291114 DOI: 10.1111/ele.13875] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 08/19/2021] [Indexed: 01/03/2023]
Abstract
For decades, people have reduced the transmission of pathogens by adding low‐quality hosts to managed environments like agricultural fields. More recently, there has been interest in whether similar ‘dilution effects’ occur in natural disease systems, and whether these effects are eroded as diversity declines. For some pathogens of plants, humans and other animals, the highest‐quality hosts persist when diversity is lost, so that high‐quality hosts dominate low‐diversity communities, resulting in greater pathogen transmission. Meta‐analyses reveal that these natural dilution effects are common. However, studying them remains challenging due to limitations on the ability of researchers to manipulate many disease systems experimentally, difficulties of acquiring data on host quality and confusion about what should and should not be considered a dilution effect. Because dilution effects are widely used in managed disease systems and have been documented in a variety of natural disease systems, their existence should not be considered controversial. Important questions remain about how frequently they occur and under what conditions to expect them. There is also ongoing confusion about their relationships to both pathogen spillover and general biogeographical correlations between diversity and disease, which has resulted in an inconsistent and confusing literature. Progress will require rigorous and creative research.
Collapse
|
21
|
Messina S, Edwards DP, Van Houtte N, Tomassi S, Benedick S, Eens M, Costantini D. Impacts of selective logging on haemosporidian infection and physiological correlates in tropical birds. Int J Parasitol 2021; 52:87-96. [PMID: 34450133 DOI: 10.1016/j.ijpara.2021.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/24/2022]
Abstract
Tropical forest degradation affects host-parasite interactions, determining the probability of animals acquiring an infection. The activation of an immune response to fight off infections requires energy and other resources such as antioxidants which may be redirected from growth and reproduction. A key question is how selective logging-the most common form of tropical forest degradation-impacts the prevalence of avian haemosporidian infection and its correlated physiological responses (nutritional and oxidative status markers). We investigated the prevalence of Plasmodium, Haemoproteus, and Leucocytozoon parasites in 14 understorey bird species in lowland, logged and unlogged, old-growth forests of Borneo. Prevalences of infections were similar between selectively logged and unlogged forests. To explore nutritional and oxidative status effects of haemosporidian infections, we examined associations between infections and plasma proteins, plasma triglycerides, and multiple blood-based markers of oxidative status, testing for an impact of selective logging on those markers. Birds infected with Plasmodium showed higher levels of plasma proteins and non-enzymatic antioxidant capacity, and lower levels of plasma triglycerides and glutathione, compared with haemosporidian-free individuals. Conversely, birds infected with Haemoproteus showed no changes in nutritional or physiological markers compared with uninfected individuals. These results indicate higher metabolic and physiological costs of controlling Plasmodium infection, compared with Haemoproteus, possibly due to higher pathogenicity of Plasmodium. Selectively logged forests had no effect on the responses of birds to infection, suggesting that the environmental conditions of degraded forests do not appear to induce any appreciable physiological demands in parasitised birds.
Collapse
Affiliation(s)
- Simone Messina
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - David Paul Edwards
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Natalie Van Houtte
- Evolutionary Ecology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Suzanne Tomassi
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Suzan Benedick
- School of Sustainable Agriculture, Universiti Malaysia Sabah, Malaysia
| | - Marcel Eens
- Behavioural Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - David Costantini
- UMR 7221 CNRS/MNHN, Muséum National d'Histoirie Naturelle, Sorbonne Universités, 7 rue Cuvier, 75005 Paris, France
| |
Collapse
|
22
|
Wait LF, Kamiya T, Fairlie-Clarke KJ, Metcalf CJE, Graham AL, Mideo N. Differential drivers of intraspecific and interspecific competition during malaria-helminth co-infection. Parasitology 2021; 148:1030-1039. [PMID: 33971991 PMCID: PMC11010048 DOI: 10.1017/s003118202100072x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/04/2021] [Indexed: 11/05/2022]
Abstract
Various host and parasite factors interact to determine the outcome of infection. We investigated the effects of two factors on the within-host dynamics of malaria in mice: initial infectious dose and co-infection with a helminth that limits the availability of red blood cells (RBCs). Using a statistical, time-series approach to model the within-host ‘epidemiology’ of malaria, we found that increasing initial dose reduced the time to peak cell-to-cell parasite propagation, but also reduced its magnitude, while helminth co-infection delayed peak cell-to-cell propagation, except at the highest malaria doses. Using a mechanistic model of within-host infection dynamics, we identified dose-dependence in parameters describing host responses to malaria infection and uncovered a plausible explanation of the observed differences in single vs co-infections. Specifically, in co-infections, our model predicted a higher background death rate of RBCs. However, at the highest dose, when intraspecific competition between malaria parasites would be highest, these effects of co-infection were not observed. Such interactions between initial dose and co-infection, although difficult to predict a priori, are key to understanding variation in the severity of disease experienced by hosts and could inform studies of malaria transmission dynamics in nature, where co-infection and low doses are the norm.
Collapse
Affiliation(s)
- L. F. Wait
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - T. Kamiya
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | - C. J. E. Metcalf
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - A. L. Graham
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, USA
| | - N. Mideo
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
First records of prevalence and diversity of avian haemosporidia in snipe species (genus Gallinago) of Japan. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 16:5-17. [PMID: 34377664 PMCID: PMC8326977 DOI: 10.1016/j.ijppaw.2021.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/12/2021] [Accepted: 07/18/2021] [Indexed: 11/20/2022]
Abstract
Migratory birds are important carriers of pathogens such as viruses, bacteria and protozoa. Avian haemosporidia have been detected from many wild birds of Japan, but the infection status of migratory birds and transmission area are still largely unknown. Gallinago snipes are long-distance migratory shorebirds, and five species migrate to or through Japan, including Latham's snipe which is near threatened. Haemosporidian parasites in four snipe species were investigated to understand the role of migratory birds in the transmission of avian haemosporidia. Namely, this study aimed: i) to investigate differences in parasite prevalence and related factors explaining infection likelihood among these migratory species, ii) to explore the diversity in haemosporidian lineages and possible transmission areas, and iii) to assess the possibility of morphological effects of infection. Blood samples were collected from snipes caught in central and southwest Japan during migration. Parasites cytb gene DNA were detected via PCR-based testing, and detected lineages were phylogenetically analyzed. Additionally, factors related to prevalence and morphological effects of infection were statistically tested. 383 birds from four Gallinago snipe species were caught, showing higher overall prevalence of avian haemosporidia (17.8 %) than reported in other wader species in previous studies. This high infection rate is presumably due to increased contact with vector insects, resultant of environmental preferences. The prevalence of Plasmodium spp. Was higher in Swinhoe's snipes, while Haemoproteus spp. Was higher in Latham's snipes. These differences are thought to be related to ecological factors including habitat use, distribution and migratory route. Six lineages detected from juveniles indicate transmission between the breeding and sampling area. Contrary to expectations, a direct link between morphological features and haemosporidian parasite infection were not detected. These findings provide valuable information for conservation of this endangered migratory bird group. Further studies linking biological and parasitological research are anticipated to contribute to conservational actions.
Collapse
|
24
|
Ishtiaq F. Ecology and Evolution of Avian Malaria: Implications of Land Use Changes and Climate Change on Disease Dynamics. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00235-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Turner WC, Kamath PL, van Heerden H, Huang YH, Barandongo ZR, Bruce SA, Kausrud K. The roles of environmental variation and parasite survival in virulence-transmission relationships. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210088. [PMID: 34109041 PMCID: PMC8170194 DOI: 10.1098/rsos.210088] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Disease outbreaks are a consequence of interactions among the three components of a host-parasite system: the infectious agent, the host and the environment. While virulence and transmission are widely investigated, most studies of parasite life-history trade-offs are conducted with theoretical models or tractable experimental systems where transmission is standardized and the environment controlled. Yet, biotic and abiotic environmental factors can strongly affect disease dynamics, and ultimately, host-parasite coevolution. Here, we review research on how environmental context alters virulence-transmission relationships, focusing on the off-host portion of the parasite life cycle, and how variation in parasite survival affects the evolution of virulence and transmission. We review three inter-related 'approaches' that have dominated the study of the evolution of virulence and transmission for different host-parasite systems: (i) evolutionary trade-off theory, (ii) parasite local adaptation and (iii) parasite phylodynamics. These approaches consider the role of the environment in virulence and transmission evolution from different angles, which entail different advantages and potential biases. We suggest improvements to how to investigate virulence-transmission relationships, through conceptual and methodological developments and taking environmental context into consideration. By combining developments in life-history evolution, phylogenetics, adaptive dynamics and comparative genomics, we can improve our understanding of virulence-transmission relationships across a diversity of host-parasite systems that have eluded experimental study of parasite life history.
Collapse
Affiliation(s)
- Wendy C. Turner
- US Geological Survey, Wisconsin Cooperative Wildlife Research Unit, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Pauline L. Kamath
- School of Food and Agriculture, University of Maine, Orono, ME 04469, USA
| | - Henriette van Heerden
- Faculty of Veterinary Science, Department of Veterinary Tropical Diseases, University of Pretoria, Onderstepoort, South Africa
| | - Yen-Hua Huang
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Zoe R. Barandongo
- Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Spencer A. Bruce
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kyrre Kausrud
- Section for Epidemiology, Norwegian Veterinary Institute, Ullevålsveien 68, 0454 Oslo, Norway
| |
Collapse
|
26
|
Chakarov N, Blanco G. Blood Parasites in Sympatric Vultures: Role of Nesting Habits and Effects on Body Condition. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:2431. [PMID: 33801498 PMCID: PMC7967578 DOI: 10.3390/ijerph18052431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/18/2022]
Abstract
Avian haemosporidians are a common and widespread group of vector-borne parasites capable of infecting most bird species around the world. They can negatively affect host condition and fitness. Vultures are assumed to have a very low prevalence of these blood parasites, likely due to their strong immunity; however, factors contributing to variation in host exposure and susceptibility to haemosporidians are complex, and supporting evidence is still very limited. We analyzed blood samples collected from nestlings of three vulture species in Spain over 18 years, and used updated nested-PCR protocols capable of detecting all haesmosporidian cytochrome b lineages typical for diurnal birds of prey (Accipitriformes). Similarly to previous studies, we found low haemosporidian prevalence in cliff-breeding species, with Leucocytozoon as the only represented blood parasite genus: 3.1% in griffon vultures (Gyps fulvus) (n = 128) and 5.3% in Egyptian vultures (Neophron percnopterus) (n = 114). In contrast, the tree-breeding cinereous vulture (Aegypius monachus) had a substantially higher prevalence: 10.3% (n = 146). By far the most common lineage in Spanish scavenging raptors was the Leucocytozoon lineage CIAE02. No effects of nestling age and sex, or temporal trends in prevalence were found, but an effect of nest habitat (tree-nest vs. cliff-nest) was found in the griffon vulture. These patterns may be explained by a preference of vectors to forage in and around trees rather than on cliffs and wide open spaces. We found an apparent detrimental effect of haemosporidians on body mass of nestling cinereous vultures. Further research is needed to evaluate the pathogenicity of each haemosporidian lineage and their interaction with the immune system of nestlings, especially if compromised due to pollution with pharmaceuticals and infection by bacterial and mycotic pathogens.
Collapse
Affiliation(s)
- Nayden Chakarov
- Department of Animal Behaviour, Bielefeld University, Konsequenz 45, 33615 Bielefeld, Germany
| | - Guillermo Blanco
- Department of Evolutionary, Ecology, National Museum of Natural Sciences, CSIC. José Gutiérrez Abascal 2, 28006 Madrid, Spain;
| |
Collapse
|
27
|
Cold water reduces the severity of parasite-inflicted damage: support for wintertime recuperation in aquatic hosts. Oecologia 2021; 195:155-161. [PMID: 33387006 DOI: 10.1007/s00442-020-04818-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
The reduction in host fitness caused by parasite infections (virulence) depends on infection intensity and the degree of damage caused per parasite. Environmental conditions can shape both virulence components, but in contrast to infection intensity, environmental impacts on per-parasite damage are poorly understood. Here, we studied the effect of ambient temperature on per-parasite damage, which is jointly determined by the ability of parasites to induce harm (per-parasite pathogenicity) and the ability of hosts to limit damage (tolerance). We experimentally exposed two salmonid species, Atlantic salmon (Salmo salar) and sea trout (Salmo trutta), to replicated genotypes of the eye fluke Diplostomum pseudospathaceum. After development of health damage (eye cataracts) in warm water (16 °C) during the first 12 weeks post exposure, we maintained the fish at either 5 °C (cold water) or 16 °C for another 8 weeks and quantified changes in cataracts as a function of parasite load. We found that per-parasite damage was reduced in cold compared to warm water, suggesting that cold temperatures improved host health. Per-parasite damage was also affected by parasite genotype and host species, but these effects did not change with temperature. Our findings suggest that cold-water seasons, which are often neglected in host-parasite studies due to low infection risk, could allow hosts to recuperate and thus, may have important implications for the ecology and epidemiology of parasite infections.
Collapse
|
28
|
Siva-Jothy JA, Vale PF. Dissecting genetic and sex-specific sources of host heterogeneity in pathogen shedding and spread. PLoS Pathog 2021; 17:e1009196. [PMID: 33465160 PMCID: PMC7846003 DOI: 10.1371/journal.ppat.1009196] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/29/2021] [Accepted: 11/30/2020] [Indexed: 11/18/2022] Open
Abstract
Host heterogeneity in disease transmission is widespread but precisely how different host traits drive this heterogeneity remains poorly understood. Part of the difficulty in linking individual variation to population-scale outcomes is that individual hosts can differ on multiple behavioral, physiological and immunological axes, which will together impact their transmission potential. Moreover, we lack well-characterized, empirical systems that enable the quantification of individual variation in key host traits, while also characterizing genetic or sex-based sources of such variation. Here we used Drosophila melanogaster and Drosophila C Virus as a host-pathogen model system to dissect the genetic and sex-specific sources of variation in multiple host traits that are central to pathogen transmission. Our findings show complex interactions between genetic background, sex, and female mating status accounting for a substantial proportion of variance in lifespan following infection, viral load, virus shedding, and viral load at death. Two notable findings include the interaction between genetic background and sex accounting for nearly 20% of the variance in viral load, and genetic background alone accounting for ~10% of the variance in viral shedding and in lifespan following infection. To understand how variation in these traits could generate heterogeneity in individual pathogen transmission potential, we combined measures of lifespan following infection, virus shedding, and previously published data on fly social aggregation. We found that the interaction between genetic background and sex explained ~12% of the variance in individual transmission potential. Our results highlight the importance of characterising the sources of variation in multiple host traits to understand the drivers of heterogeneity in disease transmission.
Collapse
Affiliation(s)
- Jonathon A. Siva-Jothy
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro F. Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
29
|
Nørgaard LS, Ghedini G, Phillips BL, Hall MD. Energetic scaling across different host densities and its consequences for pathogen proliferation. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Louise Solveig Nørgaard
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| | - Giulia Ghedini
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| | - Ben L. Phillips
- Department of Biosciences University of Melbourne Parkville Vic. Australia
| | - Matthew D. Hall
- School of Biological Sciences and Centre for Geometric Biology Monash University Melbourne Vic. Australia
| |
Collapse
|
30
|
Videvall E, Palinauskas V, Valkiūnas G, Hellgren O. Host Transcriptional Responses to High- and Low-Virulent Avian Malaria Parasites. Am Nat 2020; 195:1070-1084. [DOI: 10.1086/708530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
31
|
Melo RDFP, Guarneri AA, Silber AM. The Influence of Environmental Cues on the Development of Trypanosoma cruzi in Triatominae Vector. Front Cell Infect Microbiol 2020; 10:27. [PMID: 32154185 PMCID: PMC7046586 DOI: 10.3389/fcimb.2020.00027] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Trypanosoma cruzi, a hemoflagellate parasite, is the etiological agent of Chagas disease that affects about 6-7 million people worldwide, mostly in Latin America. The parasite life cycle is complex and alternates between an invertebrate host-Triatominae vector-and a mammalian host. The parasite adaptation to the several microenvironments through which it transits is critical to success in establishing infection. Moreover, environmental cues also play an important role on the parasite development, and it can modulate the infection. In the present study, we discussed how the temperature oscillations and the nutritional state of the invertebrate host can affect the parasite development, multiplication, and the differentiation process of epimastigote forms into metacyclic trypomastigotes, called metacyclogenesis. The impact of oxidative imbalance and osmotic stresses on the parasite-vector relationship are also discussed.
Collapse
Affiliation(s)
- Raíssa de Fátima Pimentel Melo
- Laboratório de Bioquímica de Tryps (LaBTryps), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alessandra Aparecida Guarneri
- Vector Behaviour and Pathogen Interaction Group, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Ariel Mariano Silber
- Laboratório de Bioquímica de Tryps (LaBTryps), Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
32
|
Knutie SA. Food supplementation affects gut microbiota and immunological resistance to parasites in a wild bird species. J Appl Ecol 2020. [DOI: 10.1111/1365-2664.13567] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Sarah A. Knutie
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
- Institute for Systems Genomics University of Connecticut Storrs CT USA
| |
Collapse
|
33
|
Nwaogu CJ, Galema A, Cresswell W, Dietz MW, Tieleman BI. A fruit diet rather than invertebrate diet maintains a robust innate immunity in an omnivorous tropical songbird. J Anim Ecol 2020; 89:867-883. [PMID: 31764994 PMCID: PMC7079115 DOI: 10.1111/1365-2656.13152] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 11/04/2019] [Indexed: 11/30/2022]
Abstract
Diet alteration may lead to nutrient limitations even in the absence of food limitation, and this may affect physiological functions, including immunity. Nutrient limitations may also affect the maintenance of body mass and key life‐history events that may affect immune function. Yet, variation in immune function is largely attributed to energetic trade‐offs rather than specific nutrient constraints. To test the effect of diet on life‐history traits, we tested how diet composition affects innate immune function, body mass and moult separately and in combination with each other, and then used path analyses to generate hypotheses about the mechanistic connections between immunity and body mass under different diet compositions. We performed a balanced parallel and crossover design experiment with omnivorous common bulbuls Pycnonotus barbatus in out‐door aviaries in Nigeria. We fed 40 wild‐caught bulbuls ad libitum on fruits or invertebrates for 24 weeks, switching half of each group between treatments after 12 weeks. We assessed innate immune indices (haptoglobin, nitric oxide and ovotransferrin concentrations, and haemagglutination and haemolysis titres), body mass and primary moult, fortnightly. We simplified immune indices into three principal components (PCs), but we explored mechanistic connections between diet, body mass and each immune index separately. Fruit‐fed bulbuls had higher body mass, earlier moult and showed higher values for two of the three immune PCs compared to invertebrate‐fed bulbuls. These effects were reversed when we switched bulbuls between treatments after 12 weeks. Exploring the correlations between immune function, body mass and moult, showed that an increase in immune function was associated with a decrease in body mass and delayed moult in invertebrate‐fed bulbuls, while fruit‐fed bulbuls maintained body mass despite variation in immune function. Path analyses indicated that diet composition was most likely to affect body mass and immune indices directly and independently from each other. Only haptoglobin concentration was indirectly linked to diet composition via body mass. We demonstrated a causal effect of diet composition on innate immune function, body mass and moult: bulbuls were in a better condition when fed on fruits than invertebrates, confirming that innate immunity is nutrient specific. Our results are unique because they show a reversible effect of diet composition on wild adult birds whose immune systems are presumably fully developed and adapted to wild conditions—demonstrating a short‐term consequence of diet alteration on life‐history traits.
Collapse
Affiliation(s)
- Chima J Nwaogu
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.,School of Biology, University of St Andrews, St Andrews Fife, UK.,A.P. Leventis Ornithological Research Institute, Jos, Nigeria
| | - Annabet Galema
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Will Cresswell
- School of Biology, University of St Andrews, St Andrews Fife, UK.,A.P. Leventis Ornithological Research Institute, Jos, Nigeria
| | - Maurine W Dietz
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - B Irene Tieleman
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Vale PF. Disease Tolerance: Linking Sickness Behaviours to Metabolism Helps Mitigate Malaria. Curr Biol 2019; 28:R606-R607. [PMID: 29787724 DOI: 10.1016/j.cub.2018.04.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Malaria-infected mice exhibit a range of sickness behaviours, and experience metabolic shifts and physiological pathologies that result in reduced energy expenditure. Treating sick mice with glucose increases disease tolerance by improving the physiological and behavioural symptoms of malaria infection without affecting parasite loads.
Collapse
Affiliation(s)
- Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, EH9 3FL, Edinburgh, UK.
| |
Collapse
|
35
|
Shocket MS, Magnante A, Duffy MA, Cáceres CE, Hall SR. Can hot temperatures limit disease transmission? A test of mechanisms in a zooplankton–fungus system. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Meghan A. Duffy
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor MI USA
| | - Carla E. Cáceres
- School of Integrative Biology University of Illinois at Urbana‐Champaign Urbana IL USA
| | | |
Collapse
|
36
|
Pike VL, Lythgoe KA, King KC. On the diverse and opposing effects of nutrition on pathogen virulence. Proc Biol Sci 2019; 286:20191220. [PMID: 31288706 PMCID: PMC6650706 DOI: 10.1098/rspb.2019.1220] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 06/17/2019] [Indexed: 01/01/2023] Open
Abstract
Climate change and anthropogenic activity are currently driving large changes in nutritional availability across ecosystems, with consequences for infectious disease. An increase in host nutrition could lead to more resources for hosts to expend on the immune system or for pathogens to exploit. In this paper, we report a meta-analysis of studies on host-pathogen systems across the tree of life, to examine the impact of host nutritional quality and quantity on pathogen virulence. We did not find broad support across studies for a one-way effect of nutrient availability on pathogen virulence. We thus discuss a hypothesis that there is a balance between the effect of host nutrition on the immune system and on pathogen resources, with the pivot point of the balance differing for vertebrate and invertebrate hosts. Our results suggest that variation in nutrition, caused by natural or anthropogenic factors, can have diverse effects on infectious disease outcomes across species.
Collapse
Affiliation(s)
| | | | - Kayla C. King
- Department of Zoology, University of Oxford, Oxford OX1 3SZ, UK
| |
Collapse
|
37
|
Paige AS, Bellamy SK, Alto BW, Dean CL, Yee DA. Linking nutrient stoichiometry to Zika virus transmission in a mosquito. Oecologia 2019; 191:1-10. [DOI: 10.1007/s00442-019-04429-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
|
38
|
Ilgūnas M, Bukauskaitė D, Palinauskas V, Iezhova T, Fragner K, Platonova E, Weissenböck H, Valkiūnas G. Patterns of Plasmodium homocircumflexum virulence in experimentally infected passerine birds. Malar J 2019; 18:174. [PMID: 31113429 PMCID: PMC6528185 DOI: 10.1186/s12936-019-2810-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/13/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Avian malaria parasites (genus Plasmodium) are cosmopolitan and some species cause severe pathologies or even mortality in birds, yet their virulence remains fragmentally investigated. Understanding mechanisms and patterns of virulence during avian Plasmodium infections is crucial as these pathogens can severely affect bird populations in the wild and cause mortality in captive individuals. The goal of this study was to investigate the pathologies caused by the recently discovered malaria parasite Plasmodium homocircumflexum (lineage pCOLL4) in four species of European passeriform birds. METHODS One cryopreserved P. homocircumflexum strain was multiplied and used for experimental infections. House sparrows (Passer domesticus), common chaffinches (Fringilla coelebs), common crossbills (Loxia curvirostra) and common starlings (Sturnus vulgaris) were exposed by subinoculation of infected blood. Experimental and control groups (8 individuals in each) were observed for over 1 month. Parasitaemia, haematocrit value and body mass were monitored. At the end of the experiment, samples of internal organs were collected and examined using histological and chromogenic in situ hybridization methods. RESULTS All exposed birds were susceptible, with similar average prepatent period and maximum parasitaemia, yet virulence was different in different bird species. Mortality due to malaria was reported in chaffinches, house sparrows and crossbills (7, 5 and 3 individuals died respectively), but not in starlings. Exoerythrocytic meronts (phanerozoites) were observed in the brain of all dead experimental birds. Blockage of blood vessels in the brain led to cerebral ischaemia, invariably causing brain damage, which is likely the main reason of mortality. Phanerozoites were observed in parenchymal organs, heart and muscles of all infected individuals, except starlings. CONCLUSION This study shows that P. homocircumflexum is generalist and the same lineage caused similar parasitaemia-related pathologies in different host species. Additionally, the mode of exo-erythrocytic development is different in different birds, resulting in different mortality rates. This should be taken into consideration in studies addressing pathology during avian malaria infections.
Collapse
Affiliation(s)
- Mikas Ilgūnas
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania.
| | | | | | - Tatjana Iezhova
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Karin Fragner
- Institute of Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | - Elena Platonova
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | - Herbert Weissenböck
- Institute of Pathology, University of Veterinary Medicine Vienna, 1210, Vienna, Austria
| | | |
Collapse
|
39
|
McNew SM, Knutie SA, Goodman GB, Theodosopoulos A, Saulsberry A, Yépez R. J, Bush SE, Clayton DH. Annual environmental variation influences host tolerance to parasites. Proc Biol Sci 2019; 286:20190049. [PMID: 30963843 PMCID: PMC6408884 DOI: 10.1098/rspb.2019.0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 02/06/2019] [Indexed: 12/16/2022] Open
Abstract
When confronted with a parasite or pathogen, hosts can defend themselves by resisting or tolerating the attack. While resistance can be diminished when resources are limited, it is unclear how robust tolerance is to changes in environmental conditions. Here, we investigate the sensitivity of tolerance in a single host population living in a highly variable environment. We manipulated the abundance of an invasive parasitic fly, Philornis downsi, in nests of Galápagos mockingbirds ( Mimus parvulus) over four field seasons and measured host fitness in response to parasitism. Mockingbird tolerance to P. downsi varied significantly among years and decreased when rainfall was limited. Video observations indicate that parental provisioning of nestlings appears key to tolerance: in drought years, mockingbirds likely do not have sufficient resources to compensate for the effects of P. downsi. These results indicate that host tolerance is a labile trait and suggest that environmental variation plays a major role in mediating the consequences of host-parasite interactions.
Collapse
Affiliation(s)
- Sabrina M. McNew
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Sarah A. Knutie
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Graham B. Goodman
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | | | - Ashley Saulsberry
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Janai Yépez R.
- Charles Darwin Research Station, Santa Cruz Island, Galápagos, Ecuador
| | - Sarah E. Bush
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| | - Dale H. Clayton
- Department of Biology, University of Utah, Salt Lake City, UT 84112-0840, USA
| |
Collapse
|
40
|
Burgan SC, Gervasi SS, Johnson LR, Martin LB. How Individual Variation in Host Tolerance Affects Competence to Transmit Parasites. Physiol Biochem Zool 2019; 92:49-57. [PMID: 30481116 DOI: 10.1086/701169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Tolerance, or the maintenance of host health or fitness at a given parasite burden, has often been studied in evolutionary and medical contexts, particularly with respect to effects on the evolution of parasite virulence and individual patient outcomes. These bodies of work have provided insight about tolerance for evolutionary phenomena (e.g., virulence) and individual health (e.g., recovering from an infection). However, due to the specific motivations of that work, few studies have considered the ecological ramifications of variation in tolerance, namely, how variation in forms of tolerance could mediate parasite movement through populations and even community-level disease dynamics. Tolerance is most commonly regarded as the relationship between host fitness and parasite burden. However, few if any studies have actually quantified host fitness, instead utilizing proxies of fitness as the response variables to be regressed against parasite burden. Here, we address how attention to the effects of parasite burden on traits that are relevant to host competence (i.e., the ability to amplify parasites to levels transmissible to other hosts/vectors) will enhance our understanding of disease dynamics in nature. We also provide several forms of guidance for how to overcome the challenges of quantifying tolerance in wild organisms.
Collapse
|
41
|
Jiménez-Peñuela J, Ferraguti M, Martínez-de la Puente J, Soriguer R, Figuerola J. Urbanization and blood parasite infections affect the body condition of wild birds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:3015-3022. [PMID: 30463151 DOI: 10.1016/j.scitotenv.2018.10.203] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/13/2018] [Accepted: 10/14/2018] [Indexed: 06/09/2023]
Abstract
Human landscape transformation, especially urbanization, strongly affects ecosystems worldwide. Both urban stressors and parasites have negative effects on organism health, however the potential synergy between those factors has been poorly investigated. We analysed the body condition (i.e. body mass after controlling for wing chord) of 2043 house sparrows (adults and yearlings) captured in 45 localities along an urbanization gradient in relation to Plasmodium, Haemoproteus and Leucocytozoon infection status. Body condition was negatively related to urbanization level and to urbanized land coverage but only in yearling birds from urban habitats. In addition, bird body condition tended to increase in rural habitats, significantly in the case of yearlings. Infected individuals by Plasmodium or Haemoproteus had higher body condition than un-infected birds, but this pattern could be due to a selective disappearance of infected individuals with lower body condition as suggested by the reduced variance in body condition in infected birds in urban habitats. These results provide support for a negative impact of urbanization on bird body condition, while Plasmodium and Haemoproteus may exert selection against individuals with lower body condition living in urban habitats, especially during earlier life stages, underlining the synergistic effects that urbanization and parasites may have on wild birds.
Collapse
Affiliation(s)
- Jéssica Jiménez-Peñuela
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio, 26, 41092 Seville, Spain.
| | - Martina Ferraguti
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio, 26, 41092 Seville, Spain.
| | - Josué Martínez-de la Puente
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio, 26, 41092 Seville, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Ramón Soriguer
- Departamento de Etología y Conservación de la Biodiversidad, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio, 26, 41092 Seville, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain.
| | - Jordi Figuerola
- Departamento de Ecología de Humedales, Estación Biológica de Doñana (EBD-CSIC), C/Américo Vespucio, 26, 41092 Seville, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain.
| |
Collapse
|
42
|
Eastwood JR, Peacock L, Hall ML, Roast M, Murphy SA, Gonçalves da Silva A, Peters A. Persistent low avian malaria in a tropical species despite high community prevalence. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2019; 8:88-93. [PMID: 30723669 PMCID: PMC6350384 DOI: 10.1016/j.ijppaw.2019.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/02/2019] [Accepted: 01/03/2019] [Indexed: 01/28/2023]
Abstract
Malarial and other haemosporidian parasites are widespread; however, their temporal dynamics are ill-understood. Longitudinal sampling of a threatened riparian bird revealed a consistently very low prevalence over 13 years (∼5%) despite infections persisting and prevalence increasing with age. In contrast, three key species within this tropical community were highly infected (∼20–75% prevalence) and these differences were stable. Although we found novel lineages and phylogenetic structure at the local level, there was little geographic structuring within Australasia. This study suggests that malarial parasite susceptibility is determined by host factors and that species can maintain low levels despite high community prevalence. Malarial parasite prevalence varied between species (∼5–75%). Persistent and low prevalence over 12y in a riparian bird. Oldest age category had highest parasite prevalence. Parasites showed genetic structure at the local level but not within Australasia. Tropical species can maintain low malarial parasite levels despite high exposure.
Collapse
Affiliation(s)
- Justin R. Eastwood
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
- Corresponding author.
| | - Lee Peacock
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - Michelle L. Hall
- School of BioSciences, University of Melbourne, Melbourne, Parkville, Victoria, 3010, Australia
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Schlossallee 2, D-78315, Radolfzell, Germany
| | - Michael Roast
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
| | - Stephen A. Murphy
- Adaptive NRM, Malanda, Queensland, 4885, Australia
- Research Institute for the Environment and Livelihoods, Charles Darwin University, Casuarina, Northern Territory, 0909, Australia
| | - Anders Gonçalves da Silva
- Microbiological Diagnostic Unit Public Health Laboratory, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Australia
| | - Anne Peters
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton, Victoria, 3800, Australia
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Schlossallee 2, D-78315, Radolfzell, Germany
| |
Collapse
|
43
|
Budischak SA, Cressler CE. Fueling Defense: Effects of Resources on the Ecology and Evolution of Tolerance to Parasite Infection. Front Immunol 2018; 9:2453. [PMID: 30429848 PMCID: PMC6220035 DOI: 10.3389/fimmu.2018.02453] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 10/04/2018] [Indexed: 12/29/2022] Open
Abstract
Resource availability is a key environmental constraint affecting the ecology and evolution of species. Resources have strong effects on disease resistance, but they can also affect the other main parasite defense strategy, tolerance. A small but growing number of animal studies are beginning to investigate the effects of resources on tolerance phenotypes. Here, we review how resources affect tolerance strategies across animal taxa ranging from fruit flies to frogs to mice. Surprisingly, resources (quality and quantity) can increase or reduce tolerance, dependent upon the particular host-parasite system. To explore this seeming contradiction, we recast predictions of models of sterility tolerance and mortality tolerance in a resource-dependent context. Doing so reveals that resources can have very different epidemiological and evolutionary effects, depending on what aspects of the tolerance phenotype are affected. Thus, it is critical to consider both sterility and mortality in future empirical studies of how behavioral and environmental resource availability affect tolerance to infection.
Collapse
Affiliation(s)
- Sarah A. Budischak
- W. M. Keck Science Department of Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA, United States
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, United States
| | - Clayton E. Cressler
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
44
|
Cozzarolo C, Jenkins T, Toews DPL, Brelsford A, Christe P. Prevalence and diversity of haemosporidian parasites in the yellow-rumped warbler hybrid zone. Ecol Evol 2018; 8:9834-9847. [PMID: 30386579 PMCID: PMC6202724 DOI: 10.1002/ece3.4469] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 07/20/2018] [Accepted: 07/23/2018] [Indexed: 12/30/2022] Open
Abstract
Parasites can play a role in speciation, by exerting different selection pressures on different host lineages, leading to reproductive barriers in regions of possible interbreeding. Hybrid zones therefore offer an ideal system to study the effect of parasites on speciation. Here, we study a hybrid zone in the foothills of the Rocky Mountains where two yellow-rumped warbler subspecies, Setophaga coronata coronata and S. c. auduboni, interbreed. There is partial reproductive isolation between them, but no evidence of strong assortative mating within the hybrid zone, suggesting the existence of a postzygotic selection against hybrids. Here, we test whether haemosporidian parasites might play a role in selecting against hybrids between S. c. coronata and S. c. auduboni. We screened birds from five transects across the hybrid zone for three phylogenetic groupings of avian haemosporidians Plasmodium, Haemoproteus and Leucocytozoon parasites and quantified intensity of infection. Contrary to our prediction, hybrids did not have higher haemosporidian parasite prevalence. Variation in Haemoproteus prevalence was best explained by an interaction between a birds' hybrid index and elevation, while the probability of infection with Leucocytozoon parasites was only influenced by elevation. We also found no significant difference in the diversity of haemosporidian lineages between the warbler subspecies and their hybrids. Finally, intensity of infection by Haemoproteus increased significantly with elevation, but was not significantly linked to birds' hybrid index. In conclusion, our data suggest that haemosporidian parasites do not seem to play a major role in selecting against hybrids in this system.
Collapse
Affiliation(s)
| | - Tania Jenkins
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - David P. L. Toews
- Fuller Evolutionary Biology ProgramCornell Lab of OrnithologyCornell UniversityIthacaNew York
| | - Alan Brelsford
- Department of Evolution, Ecology and Organismal BiologyUniversity of California, RiversideRiversideCalifornia
| | - Philippe Christe
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| |
Collapse
|
45
|
Frantz A, Perga M, Guillard J. Parasitic versus nutritional regulation of natural fish populations. Ecol Evol 2018; 8:8713-8725. [PMID: 30271539 PMCID: PMC6157692 DOI: 10.1002/ece3.4391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 05/25/2018] [Accepted: 06/27/2018] [Indexed: 11/13/2022] Open
Abstract
Although parasites are expected to affect their host's fitness, quantitative proof for impacts of parasitism on wild populations is hampered by confounding environmental factors, including dietary resource. Herein, we evaluate whether the physiological conditions of European perch (Perca fluviatilis) in three large peri-alpine lakes (Geneva, Annecy, and Bourget) depend on (a) the nutritional status of the juvenile fish, as revealed by stable isotope and fatty acid compositions, (b) the prevalence of the tapeworm Triaenophorus nodulosus, a parasite transmitted to perch through copepod preys, or (c) interactive effects of both factors. At the scale of lake populations, the deficit in growth and fat storage of juvenile perch during their first summer coincides with a high parasite prevalence and also a low quality of dietary resource. Yet, at the individual level, parasites had no evident effect on the growth of the juvenile perch, while impacts on fat storage appeared only at the highest prevalence of the most infected lake. Fatty acid and stable isotope analyses of fish tissue do not reveal any impact of T. nodulosus on diet, physiology, and feeding behaviour of fish within lakes. Overall, we found a low impact of parasitism on the physiological condition and trophic status of juvenile perch at the end of their first summer. We find instead that juvenile perch growth and fat storage, both factors tied to their winter survival, are under strong nutritional constraints. However, the coinciding nutritional constraints and parasite prevalence of perch juveniles in these three lakes may result from the indirect effect of lake nutrient concentrations, which, as a major control of zooplankton communities, simultaneously regulate both the dietary quality of fish prey and the host-parasite encounter rates.
Collapse
Affiliation(s)
- Amélie Frantz
- UMR 042 CARRTELINRA – University Savoie Mont BlancThonon‐les‐BainsFrance
| | - Marie‐Elodie Perga
- UMR 042 CARRTELINRA – University Savoie Mont BlancThonon‐les‐BainsFrance
- Institute of Earth Surface DynamicsUniversity of LausanneLausanneSwitzerland
| | - Jean Guillard
- UMR 042 CARRTELINRA – University Savoie Mont BlancThonon‐les‐BainsFrance
| |
Collapse
|
46
|
Searle CL, Hochstedler BR, Merrick AM, Ilmain JK, Wigren MA. High resources and infectious disease facilitate invasion by a freshwater crustacean. Oecologia 2018; 188:571-581. [PMID: 30088085 DOI: 10.1007/s00442-018-4237-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 07/27/2018] [Indexed: 01/23/2023]
Abstract
It is well-established that both resources and infectious disease can influence species invasions, but little is known regarding interactive effects of these two factors. We performed a series of experiments to understand how resources and parasites can jointly affect the ability of a freshwater invasive zooplankton to establish in a population of a native zooplankton. In a life history trial, we found that both species increased offspring production to the same degree as algal resources increased, suggesting that changes in resources would have similar effects on both species. In a microcosm experiment simulating an invasion, we found that the invasive species reached its highest densities when there was a combination of both high resources and the presence of a shared parasite, but not for each of these conditions alone (i.e., a significant resource x parasite interaction). This result can be explained by changes in native host population density; high resource levels initially led to an increase in the density of the native host, which caused larger epidemics when the parasite was present. This high infection prevalence caused a subsequent reduction in native host density, increasing available resources and allowing the invasive species to establish relatively dense populations. Thus, in this system, native communities with a combination of high resource levels and parasitism may be the most vulnerable to invasions. More generally, our results suggest that parasitism and resource availability can have interactive, non-additive effects on the outcome of invasions.
Collapse
Affiliation(s)
- Catherine L Searle
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA.
| | - Baylie R Hochstedler
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Abigail M Merrick
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Juliana K Ilmain
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| | - Maggie A Wigren
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN, 47907, USA
| |
Collapse
|
47
|
Shocket MS, Vergara D, Sickbert AJ, Walsman JM, Strauss AT, Hite JL, Duffy MA, Cáceres CE, Hall SR. Parasite rearing and infection temperatures jointly influence disease transmission and shape seasonality of epidemics. Ecology 2018; 99:1975-1987. [PMID: 29920661 DOI: 10.1002/ecy.2430] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 04/03/2018] [Accepted: 05/19/2018] [Indexed: 11/07/2022]
Abstract
Seasonal epidemics erupt commonly in nature and are driven by numerous mechanisms. Here, we suggest a new mechanism that could determine the size and timing of seasonal epidemics: rearing environment changes the performance of parasites. This mechanism arises when the environmental conditions in which a parasite is produced impact its performance-independently from the current environment. To illustrate the potential for "rearing effects", we show how temperature influences infection risk (transmission rate) in a Daphnia-fungus disease system through both parasite rearing temperature and infection temperature. During autumnal epidemics, zooplankton hosts contact (eat) fungal parasites (spores) reared in a gradually cooling environment. To delineate the effect of rearing temperature from temperature at exposure and infection, we used lab experiments to parameterize a mechanistic model of transmission rate. We also evaluated the rearing effect using spores collected from epidemics in cooling lakes. We found that fungal spores were more infectious when reared at warmer temperatures (in the lab and in two of three lakes). Additionally, the exposure (foraging) rate of hosts increased with warmer infection temperatures. Thus, both mechanisms cause transmission rate to drop as temperature decreases over the autumnal epidemic season (from summer to winter). Simulations show how these temperature-driven changes in transmission rate can induce waning of epidemics as lakes cool. Furthermore, via thermally dependent transmission, variation in environmental cooling patterns can alter the size and shape of epidemics. Thus, the thermal environment drives seasonal epidemics through effects on hosts (exposure rate) and the infectivity of parasites (a rearing effect). Presently, the generality of parasite rearing effects remains unknown. Our results suggest that they may provide an important but underappreciated mechanism linking temperature to the seasonality of epidemics.
Collapse
Affiliation(s)
- Marta S Shocket
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Daniela Vergara
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Andrew J Sickbert
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Jason M Walsman
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | | | - Jessica L Hite
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Meghan A Duffy
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Carla E Cáceres
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Spencer R Hall
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| |
Collapse
|
48
|
Unprecedented Symbiont Eukaryote Diversity Is Governed by Internal Trophic Webs in a Wild Non-Human Primate. Protist 2018; 169:307-320. [DOI: 10.1016/j.protis.2018.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 01/08/2023]
|
49
|
The effect of dietary antioxidant supplementation in a vertebrate host on the infection dynamics and transmission of avian malaria to the vector. Parasitol Res 2018; 117:2043-2052. [PMID: 29744700 PMCID: PMC6006207 DOI: 10.1007/s00436-018-5869-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 04/06/2018] [Indexed: 02/05/2023]
Abstract
Host susceptibility to parasites is likely to be influenced by intrinsic factors, such as host oxidative status determined by the balance between pro-oxidant production and antioxidant defences. As a result, host oxidative status acts as an environmental factor for parasites and may constrain parasite development. We evaluated the role of host oxidative status on infection dynamics of an avian malarial parasite by providing canaries (Serinus canaria) with an antioxidant supplementation composed of vitamin E (a lipophilic antioxidant) and olive oil, a source of monounsaturated fatty acids. Another group received a standard, non-supplemented food. Half of the birds in each group where then infected with the haemosporidian parasite, Plasmodium relictum. We monitored the parasitaemia, haematocrit level, and red cell membrane resistance, as well as the transmission success of the parasite to its mosquito vector, Culex pipiens. During the acute phase, the negative effect of the infection was more severe in the supplemented group, as shown by a lower haematocrit level. Parasitaemia was lower in the supplemented group during the chronic phase only. Mosquitoes fed on supplemented hosts were more often infected than mosquitoes fed on the control group. These results suggest that dietary antioxidant supplementation conferred protection against Plasmodium in the long term, at the expense of a short-term negative effect. Malaria parasites may take advantage of antioxidants, as shown by the increased transmission rate in the supplemented group. Overall, our results suggest an important role of oxidative status in infection outcome and parasite transmission.
Collapse
|
50
|
Gibson AK, Stoy KS, Lively CM. Bloody-minded parasites and sex: the effects of fluctuating virulence. J Evol Biol 2018; 31:611-620. [PMID: 29460507 PMCID: PMC5882519 DOI: 10.1111/jeb.13252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/18/2022]
Abstract
Asexual lineages can grow at a faster rate than sexual lineages. Why then is sexual reproduction so widespread? Much empirical evidence supports the Red Queen hypothesis. Under this hypothesis, coevolving parasites favour sexual reproduction by adapting to infect common asexual clones and driving them down in frequency. One limitation, however, seems to challenge the generality of the Red Queen: in theoretical models, parasites must be very virulent to maintain sex. Moreover, experiments show virulence to be unstable, readily shifting in response to environmental conditions. Does variation in virulence further limit the ability of coevolving parasites to maintain sex? To address this question, we simulated temporal variation in virulence and evaluated the outcome of competition between sexual and asexual females. We found that variation in virulence did not limit the ability of coevolving parasites to maintain sex. In fact, relatively high variation in virulence promoted parasite-mediated maintenance of sex. With sufficient variation, sexual females persisted even when mean virulence fell well below the threshold virulence required to maintain sex under constant conditions. We conclude that natural variation in virulence does not limit the relevance of the Red Queen hypothesis for natural populations; on the contrary, it could expand the range of conditions over which coevolving parasites can maintain sex.
Collapse
Affiliation(s)
- Amanda K Gibson
- Department of Biology, Indiana University, Bloomington, IN, USA
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Kayla S Stoy
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Curtis M Lively
- Department of Biology, Indiana University, Bloomington, IN, USA
| |
Collapse
|