1
|
Dzul MC, Kendall WL, Yackulic CB, Van Haverbeke DR, Mackinnon P, Young K, Pillow MJ, Thomas J. Estimating migration timing and abundance in partial migratory systems by integrating continuous antenna detections with physical captures. J Anim Ecol 2024; 93:796-811. [PMID: 38561901 DOI: 10.1111/1365-2656.14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 02/09/2024] [Indexed: 04/04/2024]
Abstract
Many populations migrate between two different habitats (e.g. wintering/foraging to breeding area, mainstem-tributary, river-lake, river-ocean, river-side channel) as part of their life history. Detection technologies, such as passive integrated transponder (PIT) antennas or sonic receivers, can be placed at boundaries between habitats (e.g. near the confluence of rivers) to detect migratory movements of marked animals. Often, these detection systems have high detection probabilities and detect many individuals but are limited in their ability to make inferences about abundance because only marked individuals can be detected. Here, we introduce a mark-recapture modelling approach that uses detections from a double-array PIT antenna system to imply movement directionality from arrays and estimate migration timing. Additionally, when combined with physical captures, the model can be used to estimate abundances for both migratory and non-migratory groups and help quantify partial migration. We first test our approach using simulation, and results indicate our approach displayed negligible bias for total abundance (less than ±1%) and slight biases for state-specific abundance estimates (±1%-6%). We fit our model to array detections and physical captures of three native fishes (humpback chub [Gila cypha], flannelmouth sucker [Catostomus latipinnis] and bluehead sucker [Catostomus discobolus]) in the Little Colorado River (LCR) in Grand Canyon, AZ, a system that exhibits partial migration (i.e. includes residents and migrants). Abundance estimates from our model confirm that, for all three species, migratory individuals are much more numerous than residents. There was little difference in movement timing between 2021 (a year without preceding winter/spring floods) and 2022 (a year with a small flood occurring in early April). In both years, flannelmouth sucker arrived in mid-March whereas humpback chub and bluehead sucker arrivals occurred early- to mid-April. With humpback chub and flannelmouth sucker, movement timing was influenced by body size so that large individuals were more likely to arrive early compared to smaller individuals. With more years of data, this model framework could be used to evaluate ecological questions pertaining to flow cues and movement timing or intensity, relative trends in migrants versus residents and ecological drivers of skipped spawning.
Collapse
Affiliation(s)
- M C Dzul
- Southwest Biological Science Center, U.S. Geological Survey, Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, USA
| | - W L Kendall
- Colorado Cooperative Fish and Wildlife Research Unit, U.S. Geological Survey, Colorado State University, Fort Collins, Colorado, USA
| | - C B Yackulic
- Southwest Biological Science Center, U.S. Geological Survey, Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, USA
| | - D R Van Haverbeke
- U.S. Fish and Wildlife Service, Arizona Fish and Wildlife Conservation Office, Flagstaff, Arizona, USA
| | - P Mackinnon
- Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| | - K Young
- U.S. Fish and Wildlife Service, Arizona Fish and Wildlife Conservation Office, Flagstaff, Arizona, USA
| | - M J Pillow
- U.S. Fish and Wildlife Service, Arizona Fish and Wildlife Conservation Office, Flagstaff, Arizona, USA
| | - J Thomas
- Southwest Biological Science Center, U.S. Geological Survey, Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, USA
| |
Collapse
|
2
|
Blake S, Cabrera F, Rivas‐Torres G, Deem SL, Nieto‐Claudin A, Zahawi RA, Bastille‐Rousseau G. Invasion by Cedrela odorata threatens long distance migration of Galapagos tortoises. Ecol Evol 2024; 14:e10994. [PMID: 38357592 PMCID: PMC10864728 DOI: 10.1002/ece3.10994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024] Open
Abstract
Invasive alien species are among the most pervasive threats to biodiversity. Invasive species can cause catastrophic reductions in populations of native and endemic species and the collapse of ecosystem function. A second major global conservation concern is the extirpation of large-bodied mobile animals, including long-distance migrants, which often have keystone ecological roles over extensive spatial extents. Here, we report on a potentially catastrophic synergy between these phenomena that threatens the endemic biota of the Galapagos Archipelago. We used GPS telemetry to track 140 migratory journeys by 25 Western Santa Cruz Island Galapagos tortoises. We plotted the spatial interaction between tortoise migrations and recently established non-native forest dominated by the invasive tree Cedrela odorata (Cedrela forest). We qualified (a) the proportion of migratory journeys that traversed Cedrela forest, and (b) the probability that this observed pattern occurred by chance. Tortoise migrations were overwhelmingly restricted to small corridors between Cedrela forest blocks, indicating clear avoidance of those blocks. Just eight of 140 migrations traversed extensive Cedrela stands. Tortoises avoid Cedrela forest during their migrations. Further expansion of Cedrela forest threatens long-distance migration and population viability of critically endangered Galapagos tortoises. Applied research to determine effective management solutions to mitigate Cedrela invasion is a high priority.
Collapse
Affiliation(s)
- Stephen Blake
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Max Planck Institute of Animal BehaviorRadolfzellGermany
- WildCare InstituteSaint Louis ZooSaint LouisMissouriUSA
- Charles Darwin FoundationPuerto AyoraGalapagosEcuador
| | | | - Gonzalo Rivas‐Torres
- Ecuador Colegio de Ciencias Biológicas y Ambientales and Galapagos Academic Institute for the Arts and SciencesUniversidad San Francisco de QuitoQuitoEcuador
- Department of Wildlife Ecology and ConservationUniversity of FloridaGainesvilleFloridaUSA
- GeographyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Sharon L. Deem
- Charles Darwin FoundationPuerto AyoraGalapagosEcuador
- Institute for Conservation MedicineSaint Louis ZooSaint LouisMissouriUSA
| | - Ainoa Nieto‐Claudin
- Charles Darwin FoundationPuerto AyoraGalapagosEcuador
- Institute for Conservation MedicineSaint Louis ZooSaint LouisMissouriUSA
| | - Rakan A. Zahawi
- Charles Darwin FoundationPuerto AyoraGalapagosEcuador
- School of Life SciencesUniversity of Hawai'i at MānoaHonoluluHawaiiUSA
| | | |
Collapse
|
3
|
Deem SL, Rivera S, Nieto‐Claudin A, Emmel E, Cabrera F, Blake S. Temperature along an elevation gradient determines Galapagos tortoise sex ratios. Ecol Evol 2023; 13:e10008. [PMID: 37091568 PMCID: PMC10116026 DOI: 10.1002/ece3.10008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Climate change threatens endemic island ectothermic reptiles that display small population sizes and temperature-dependent sex determination (TSD). Studies of captive Galapagos tortoises demonstrate type A TSD with warmer incubation temperatures producing females. However, there are few published data from free-living Galapagos tortoises on incubation temperature regimes, and none on hatchling sex ratios in the wild or the potential impacts of climate change on future sex ratios. We sought to address these deficits by quantifying incubation temperatures of nests and sex ratios of juvenile tortoises along an elevation gradient on Santa Cruz Island. We focused on three geographically separated nesting zones with mean elevations of 14 m (lower), 57 m (middle), and 107 m (upper) above sea level. Nest temperatures in 54 nests distributed across the three nesting zones were measured every 4 h throughout the incubation period using iButton thermochrons. We used coelioscopy to conduct visual exams of gonads to determine the sex of 40 juvenile tortoises from the three nesting zones. During the middle trimester of incubation, the period during which sex is determined in turtles, mean nest temperatures were 25.75°C (SD = 1.08) in the upper zone, and 27.02°C (SD = 1.09), and 27.09°C (SD = 0.85) in the middle and lower zones, respectively. The proportion of juveniles that was male increased from 11.1% in the lower zone and 9.5% in the middle zone, to 80% in the upper zone. A ca. 50 m increase in elevation induced a decrease of >1.25°C in mean nest temperature during the second trimester of incubation. Over the same elevation change, the proportion of males in the juvenile tortoise population increased by ca. 70%. Temperatures on Galapagos are predicted to increase by 1-4°C over the next 50 years, which is likely to increase the frequency of female tortoises across the archipelago.
Collapse
Affiliation(s)
- Sharon L. Deem
- One Government DriveSaint Louis Zoo Institute for Conservation MedicineSt. LouisMissouriUSA
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
| | - Sam Rivera
- Department of Animal HealthZoo AtlantaAtlantaGeorgiaUSA
| | - Ainoa Nieto‐Claudin
- One Government DriveSaint Louis Zoo Institute for Conservation MedicineSt. LouisMissouriUSA
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
| | - Evan Emmel
- The Maritime Aquarium at NorwalkNorwalkConnecticutUSA
| | - Freddy Cabrera
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
| | - Stephen Blake
- Charles Darwin FoundationSanta CruzGalapagos IslandsEcuador
- Department of BiologySaint Louis UniversitySt. LouisMissouriUSA
- Max Planck Institute of Animal BehaviorRadolfzellGermany
| |
Collapse
|
4
|
Somveille M, Ellis‐Soto D. Linking animal migration and ecosystem processes: Data-driven simulation of propagule dispersal by migratory herbivores. Ecol Evol 2022; 12:e9383. [PMID: 36267687 PMCID: PMC9577414 DOI: 10.1002/ece3.9383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Animal migration is a key process underlying active subsidies and species dispersal over long distances, which affects the connectivity and functioning of ecosystems. Despite much research describing patterns of where animals migrate, we still lack a framework for quantifying and predicting how animal migration affects ecosystem processes. In this study, we aim to integrate animal movement behavior and ecosystem functioning by developing a predictive modeling framework that can inform ecosystem management and conservation. We propose a framework to model individual‐level migration trajectories between populations' seasonal ranges as well as the resulting dispersal and fate of propagules carried by the migratory animals, which can be calibrated using empirical data at every step of the modeling process. As a case study, we applied our framework to model the spread of guava seeds, Psidium guajava, by a population of migratory Galapagos tortoises, Chelonoidis porteri, across Santa Cruz Island. Galapagos tortoises are large herbivores that transport seeds and nutrients across the island, while Guava is one of the most problematic invasive species in the Galapagos archipelago. Our model can predict the pattern of spread of guava seeds alongside tortoises' downslope migration range, and it identified areas most likely to see establishment success. Our results show that Galapagos tortoises' seed dispersal may particularly contribute to guava range expansion on Santa Cruz Island, due to both long gut retention time and tortoise's long‐distance migration across vegetation zones. In particular, we predict that tortoises are dispersing a significant amount of guava seeds into the Galapagos National Park, which has important consequences for the native flora. The flexibility and modularity of our framework allow for the integration of multiple data sources. It also allows for a wide range of applications to investigate how migratory animals affect ecosystem processes, including propagule dispersal but also other processes such as nutrient transport across ecosystems. Our framework is also a valuable tool for predicting how animal‐mediated propagule dispersal can be affected by environmental change. These different applications can have important conservation implications for the management of ecosystems that include migratory animals.
Collapse
Affiliation(s)
- Marius Somveille
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA,Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
| | - Diego Ellis‐Soto
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA,Center for Biodiversity and Global ChangeYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
5
|
Pike KN, Blake S, Gordon IJ, Cabrera F, Nieto-Claudin A, Deem SL, Guézou A, Schwarzkopf L. Sharing land with giants: Habitat preferences of Galapagos tortoises on farms. Glob Ecol Conserv 2022. [DOI: 10.1016/j.gecco.2022.e02171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
6
|
Charney ND, Bastille‐Rousseau G, Yackulic CB, Blake S, Gibbs JP. A greener future for the Galapagos: forecasting ecosystem productivity by finding climate analogs in time. Ecosphere 2021. [DOI: 10.1002/ecs2.3753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Affiliation(s)
- Noah D. Charney
- Department of Wildlife, Fisheries, and Conservation Biology University of Maine Orono Maine USA
- WildCare Institute, Saint Louis Zoo,1 Government Drive Saint Louis Missouri USA
| | - Guillaume Bastille‐Rousseau
- Cooperative Wildlife Research Laboratory Southern Illinois University 1263 Lincoln Dr Carbondale United States 62901 USA
| | - Charles B. Yackulic
- U.S. Geological Survey Southwest Biological Science Center Flagstaff Arizona USA
| | - Stephen Blake
- Biology Department Saint Louis University Saint Louis Missouri USA
- Max Planck Institute for Animal Behaviour Radolfzell Germany
| | - James P. Gibbs
- Department of Environmental Biology College of Environmental Science and Forestry State University of New York Syracuse New York USA
| |
Collapse
|
7
|
Body size, sex and high philopatry influence the use of agricultural land by Galapagos giant tortoises. ORYX 2021. [DOI: 10.1017/s0030605320001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
AbstractAs agricultural areas expand, interactions between wild animals and farmland are increasing. Understanding the nature of such interactions is vital to inform the management of human–wildlife coexistence. We investigated patterns of space use of two Critically Endangered Galapagos tortoise species, Chelonoidis porteri and Chelonoidis donfaustoi, on privately owned and agricultural land (hereafter farms) on Santa Cruz Island, where a human–wildlife conflict is emerging. We used GPS data from 45 tortoises tracked for up to 9 years, and data on farm characteristics, to identify factors that influence tortoise movement and habitat use in the agricultural zone. Sixty-nine per cent of tagged tortoises used the agricultural zone, where they remained for a mean of 150 days before returning to the national park. Large male tortoises were more likely to use farms for longer periods than female and smaller individuals. Tortoises were philopatric (mean overlap of farmland visits = 88.7 ± SE 2.9%), on average visiting four farms and occupying a mean seasonal range of 2.9 ± SE 0.3 ha. We discuss the characteristics of farm use by tortoises, and its implications for tortoise conservation and coexistence with people.
Collapse
|
8
|
De Angelis D, Kusak J, Huber D, Reljić S, Gužvica G, Ciucci P. Environmental and anthropogenic correlates of seasonal migrations in the Dinaric‐Pindos brown bear population. J Zool (1987) 2021. [DOI: 10.1111/jzo.12864] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Daniele De Angelis
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Roma Italy
| | - Josip Kusak
- Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Djuro Huber
- Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia
- Institute of Nature Conservation Polish Academy of Sciences Kraków Poland
| | - Slaven Reljić
- Faculty of Veterinary Medicine University of Zagreb Zagreb Croatia
| | - Goran Gužvica
- Oikon Ltd. Institute of Applied Ecology Zagreb Croatia
| | - Paolo Ciucci
- Department of Biology and Biotechnologies “Charles Darwin” Sapienza University of Rome Roma Italy
| |
Collapse
|
9
|
Johannesen E, Yoccoz NG, Tveraa T, Shackell NL, Ellingsen KE, Dolgov AV, Frank KT. Resource-driven colonization by cod in a high Arctic food web. Ecol Evol 2020; 10:14272-14281. [PMID: 33391714 PMCID: PMC7771159 DOI: 10.1002/ece3.7025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Climate change is commonly associated with many species redistributions and the influence of other factors may be marginalized, especially in the rapidly warming Arctic.The Barents Sea, a high latitude large marine ecosystem in the Northeast Atlantic has experienced above-average temperatures since the mid-2000s with divergent bottom temperature trends at subregional scales.Concurrently, the Barents Sea stock of Atlantic cod Gadus morhua, one of the most important commercial fish stocks in the world, increased following a large reduction in fishing pressure and expanded north of 80°N.We examined the influence of food availability and temperature on cod expansion using a comprehensive data set on cod stomach fullness stratified by subregions characterized by divergent temperature trends. We then tested whether food availability, as indexed by cod stomach fullness, played a role in cod expansion in subregions that were warming, cooling, or showed no trend.The greatest increase in cod occupancy occurred in three northern subregions with contrasting temperature trends. Cod apparently benefited from initial high food availability in these regions that previously had few large-bodied fish predators.The stomach fullness in the northern subregions declined rapidly after a few years of high cod abundance, suggesting that the arrival of cod caused a top-down effect on the prey base. Prolonged cod residency in the northern Barents Sea is, therefore, not a certainty.
Collapse
Affiliation(s)
| | - Nigel G. Yoccoz
- Department of Arctic and Marine BiologyUiT The Arctic University of NorwayTromsøNorway
- Norwegian Institute for Nature Research (NINA)Fram CentreLangnesNorway
| | - Torkild Tveraa
- Norwegian Institute for Nature Research (NINA)Fram CentreLangnesNorway
| | - Nancy L. Shackell
- Ocean Sciences DivisionBedford Institute of OceanographyDarthmouthCanada
| | - Kari E. Ellingsen
- Norwegian Institute for Nature Research (NINA)Fram CentreLangnesNorway
| | - Andrey V. Dolgov
- Polar Branch of the Federal Russian Research Institute of Fisheries and Oceanography (PINRO)MurmanskRussia
- Murmansk State Technical University branch of Federal State Educational Institution of Higher EducationMurmanskRussia
- Tomsk State UniversityTomskRussia
| | - Kenneth T. Frank
- Ocean Sciences DivisionBedford Institute of OceanographyDarthmouthCanada
| |
Collapse
|
10
|
Nieto-Claudin A, Esperón F, Blake S, Deem SL. Antimicrobial resistance genes present in the faecal microbiota of free-living Galapagos tortoises (Chelonoidis porteri). Zoonoses Public Health 2019; 66:900-908. [PMID: 31444864 DOI: 10.1111/zph.12639] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/20/2019] [Accepted: 07/22/2019] [Indexed: 01/27/2023]
Abstract
Antimicrobial resistance (AMR), encoded by plasmid-mediated AMR genes (ARGs), is an increasing global public health threat. Wildlife play a fundamental role as sentinels, reservoirs and potential vectors of ARGs. For the first time in Galapagos, we have identified and quantified the presence of ARGs in free-living giant tortoises (Chelonoidis porteri). We performed ARG analyses by quantitative PCR of faeces collected from the cloaca of 30 tortoises widely distributed across Santa Cruz Island. Validated samples (n = 28) were analysed by a panel of up to 21 different ARGs and all 28 tortoise samples were positive to one or more genes encoding resistance. Thirteen of 21 tested ARGs were present in at least one sample, and 10 tortoises (35.7%) had a multi-resistant pattern. We recommend additional research so we may more fully understand resistance patterns across taxa and geographical locations throughout the Galapagos archipelago, and the implications of ARGs for the health of wildlife, domestic animals, and humans. In this study, we found 100% of sampled giant tortoises had ARGs present in their faeces, suggesting a large-scale distribution of these genes within the archipelago.
Collapse
Affiliation(s)
- Ainoa Nieto-Claudin
- Complutense University of Madrid, Madrid, Spain.,Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Ecuador.,Saint Louis Zoo Institute for Conservation Medicine, St. Louis, MO, USA
| | - Fernando Esperón
- Complutense University of Madrid, Madrid, Spain.,INIA-CISA, Valdeolmos, Spain
| | - Stephen Blake
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Ecuador.,Max Planck Institute for Animal Behavior, Radolfzell, Germany.,University of Saint Louis, St. Louis, MO, USA
| | - Sharon L Deem
- Charles Darwin Research Station, Charles Darwin Foundation, Santa Cruz, Ecuador.,Saint Louis Zoo Institute for Conservation Medicine, St. Louis, MO, USA
| |
Collapse
|
11
|
Bastille-Rousseau G, Yackulic CB, Gibbs JP, Frair JL, Cabrera F, Blake S. Migration triggers in a large herbivore: Galápagos giant tortoises navigating resource gradients on volcanoes. Ecology 2019; 100:e02658. [PMID: 30998258 DOI: 10.1002/ecy.2658] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/21/2018] [Accepted: 12/20/2018] [Indexed: 01/19/2023]
Abstract
To understand how migratory behavior evolved and to predict how migratory species will respond to global environmental change it is important to quantify the fitness consequences of intra- and inter-individual variation in migratory behavior. Intra-individual variation includes behavioral responses to changing environmental conditions and hence behavioral plasticity in the context of novel or variable conditions. Inter-individual variation determines the degree of variation on which selection can act and the rate of evolutionary responses to changes in average and extreme environmental conditions. Here we focus on variation in the partial migratory behavior of giant Galápagos tortoises (Chelonoidis spp.) and its energetic consequences. We evaluate the extent and mechanisms by which tortoises adjust migration timing in response to varying annual environmental conditions, and integrate movement data within a bioenergetic model of tortoise migration to quantify the fitness consequences of migration timing. We find strong inter-individual variation in the timing of migration, which was not affected by environmental conditions prevailing at the time of migration but rather by average expectations estimated from multi-annual averaged conditions. This variation is associated with an average annual loss in efficiency of ~15% relative to optimal timing based on year-specific conditions. These results point towards a limited ability of tortoises to adjust the timing of their migrations based on prevailing (and, by extension, future) conditions, suggesting that the adaptability of tortoise migratory behavior to changing conditions is predicated more by past "normal" conditions than responses to prevailing, changing conditions. Our work offers insights into the level of environmental-tuning in migratory behavior and a general framework for future research across taxa.
Collapse
Affiliation(s)
- Guillaume Bastille-Rousseau
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210, USA
- Roosevelt Wild Life Station, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210, USA
| | - Charles B Yackulic
- U.S. Geological Survey, Southwest Biological Science Center, Flagstaff, Arizona, 86001, USA
| | - James P Gibbs
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210, USA
- Roosevelt Wild Life Station, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210, USA
| | - Jacqueline L Frair
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210, USA
- Roosevelt Wild Life Station, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210, USA
| | - Freddy Cabrera
- Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador
| | - Stephen Blake
- Department of Environmental and Forest Biology, College of Environmental Science and Forestry, State University of New York, Syracuse, New York, 13210, USA
- Charles Darwin Foundation, Puerto Ayora, Galápagos, Ecuador
- Max Planck Institute for Ornithology, Radolfzell, Germany
- Whitney Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, Missouri, 63121, USA
- Department of Biology, Saint Louis University, 3507 Laclede Avenue, St. Louis, Missouri, 63103, USA
- WildCare Institute, Saint Louis Zoo, 1 Government Drive, Saint Louis, Missouri, 63110, USA
| |
Collapse
|
12
|
Parlin AF, Nardone JA, Kelly Dougherty J, Rebein M, Safi K, Schaeffer PJ. Activity and movement of free-living box turtles are largely independent of ambient and thermal conditions. MOVEMENT ECOLOGY 2018; 6:12. [PMID: 30038784 PMCID: PMC6052674 DOI: 10.1186/s40462-018-0130-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Ectotherms are assumed to be strongly influenced by the surrounding ambient and environmental conditions for daily activity and movement. As such, ecological and physiological factors contribute to stimuli influencing navigation, extent of movement, and therefore habitat use. Our study focused on the intensity of activity (from acceleration data) and extent of movement (from GPS and thread trailing data) of Eastern box turtles (Terrapene carolina carolina) in a fragmented landscape near their northern population limit. First, we quantified the thermal performance curve of box turtles using activity as a measure of performance. Second, we investigated ecological factors that could influence activity and movement and characterized the movement as extensive (exploration) and intensive (foraging). RESULTS In contrast to previous lab work investigating effects of temperature on activity, we found no relationship between box turtle activity and temperature in the field. Furthermore, box turtle activity was consistent over a wide range of temperatures. Cluster analysis categorized movement recorded with GPS more as intensive than as extensive, while thread trailing had more movement categorized as extensive than intensive. Box turtle activity was higher during the morning hours and began to decrease as the day progressed. Based on the microclimate conditions tested, we found that box turtle movement was influenced by precipitation and time of day, and activity was most influenced by absolute humidity, ambient temperature, cloud cover, and time of day. CONCLUSIONS Our model ectotherm in this study, the Eastern box turtle, had activity patterns characteristic of a thermal generalist. Sampling resolution altered the characterization of movement as intensive or extensive movement, possibly altering interpretation. More information on the resolution needed to definitively identify foraging and exploratory behavior in turtles is needed. Activity and movement were nearly independent of environmental conditions, which supports the overall interpretation that turtle performance is that of a broad environmental generalist. Future studies of movement of other turtle and reptile species are needed to determine the generality of these findings.
Collapse
Affiliation(s)
- Adam F. Parlin
- Department of Biology, Miami University, Oxford, OH 45056 USA
| | | | | | - Mimi Rebein
- Department of Biology, Miami University, Oxford, OH 45056 USA
| | - Kamran Safi
- Max Planck Institute for Ornithology, Vogelwarte Radolfzell, Am Obstberg 1, 78315, Radolfzell, Germany
| | | |
Collapse
|
13
|
Visscher DR, Merrill EH. Functional connectivity in ruminants: A generalized state-dependent modelling approach. PLoS One 2018; 13:e0199671. [PMID: 29944693 PMCID: PMC6019401 DOI: 10.1371/journal.pone.0199671] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/12/2018] [Indexed: 11/18/2022] Open
Abstract
Animal behaviour is increasingly seen as an important component in maintaining functional connectivity between patches in fragmented landscapes. However, models that explicitly incorporate behavioural trade-offs are rarely applied to landscape planning problems like connectivity. The aim of this study was to explore how state-dependent behaviour influenced functional connectivity between patches from a theoretical perspective. We investigated how inter-patch distances influenced functional connectivity using a dynamic state variable model framework. The decision making process of an individual ruminant facing fitness trade-offs in staying in its patch of origin or moving to another patch at various distances were explicitly modelled. We incorporated energetic costs and predation costs of feeding, ruminating, and resting while in the patch and for transit between patches based on inter-patch distance. Functional connectivity was maintained with isolated patches when they offered high intake and the inactivity of rumination associated with rapid gut fill resulted in reduced predation risk. Nevertheless, individuals in high energetic state often would forgo moving to another patch, whereas individuals in poor energetic states were forced to accept the cost of movement to best meet their requirements in the distant patch. The inclusion of state-dependent behavioural models provides important insights into functional connectivity in fragmented landscapes and helps integrate animal behaviour into landscape planning. We discuss the consequences of our findings for landscape planning to show how the approach provides a heuristic tool to assess alternative scenarios for restoring landscape functional connectivity.
Collapse
Affiliation(s)
- Darcy R. Visscher
- Department of Biology, The King’s University, Edmonton, AB, Canada
- * E-mail:
| | - Evelyn H. Merrill
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
14
|
Hsiung AC, Boyle WA, Cooper RJ, Chandler RB. Altitudinal migration: ecological drivers, knowledge gaps, and conservation implications. Biol Rev Camb Philos Soc 2018; 93:2049-2070. [DOI: 10.1111/brv.12435] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 05/14/2018] [Accepted: 05/17/2018] [Indexed: 11/28/2022]
Affiliation(s)
- An C. Hsiung
- Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street, Athens GA 30602 U.S.A
| | - W. Alice Boyle
- Division of Biology; Kansas State University; 116 Ackert Hall Manhattan KS 66506-4901 U.S.A
| | - Robert J. Cooper
- Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street, Athens GA 30602 U.S.A
| | - Richard B. Chandler
- Warnell School of Forestry and Natural Resources; University of Georgia; 180 E. Green Street, Athens GA 30602 U.S.A
| |
Collapse
|
15
|
Reid JM, Travis JMJ, Daunt F, Burthe SJ, Wanless S, Dytham C. Population and evolutionary dynamics in spatially structured seasonally varying environments. Biol Rev Camb Philos Soc 2018; 93:1578-1603. [PMID: 29575449 PMCID: PMC6849584 DOI: 10.1111/brv.12409] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 01/12/2023]
Abstract
Increasingly imperative objectives in ecology are to understand and forecast population dynamic and evolutionary responses to seasonal environmental variation and change. Such population and evolutionary dynamics result from immediate and lagged responses of all key life‐history traits, and resulting demographic rates that affect population growth rate, to seasonal environmental conditions and population density. However, existing population dynamic and eco‐evolutionary theory and models have not yet fully encompassed within‐individual and among‐individual variation, covariation, structure and heterogeneity, and ongoing evolution, in a critical life‐history trait that allows individuals to respond to seasonal environmental conditions: seasonal migration. Meanwhile, empirical studies aided by new animal‐tracking technologies are increasingly demonstrating substantial within‐population variation in the occurrence and form of migration versus year‐round residence, generating diverse forms of ‘partial migration’ spanning diverse species, habitats and spatial scales. Such partially migratory systems form a continuum between the extreme scenarios of full migration and full year‐round residence, and are commonplace in nature. Here, we first review basic scenarios of partial migration and associated models designed to identify conditions that facilitate the maintenance of migratory polymorphism. We highlight that such models have been fundamental to the development of partial migration theory, but are spatially and demographically simplistic compared to the rich bodies of population dynamic theory and models that consider spatially structured populations with dispersal but no migration, or consider populations experiencing strong seasonality and full obligate migration. Second, to provide an overarching conceptual framework for spatio‐temporal population dynamics, we define a ‘partially migratory meta‐population’ system as a spatially structured set of locations that can be occupied by different sets of resident and migrant individuals in different seasons, and where locations that can support reproduction can also be linked by dispersal. We outline key forms of within‐individual and among‐individual variation and structure in migration that could arise within such systems and interact with variation in individual survival, reproduction and dispersal to create complex population dynamics and evolutionary responses across locations, seasons, years and generations. Third, we review approaches by which population dynamic and eco‐evolutionary models could be developed to test hypotheses regarding the dynamics and persistence of partially migratory meta‐populations given diverse forms of seasonal environmental variation and change, and to forecast system‐specific dynamics. To demonstrate one such approach, we use an evolutionary individual‐based model to illustrate that multiple forms of partial migration can readily co‐exist in a simple spatially structured landscape. Finally, we summarise recent empirical studies that demonstrate key components of demographic structure in partial migration, and demonstrate diverse associations with reproduction and survival. We thereby identify key theoretical and empirical knowledge gaps that remain, and consider multiple complementary approaches by which these gaps can be filled in order to elucidate population dynamic and eco‐evolutionary responses to spatio‐temporal seasonal environmental variation and change.
Collapse
Affiliation(s)
- Jane M Reid
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K
| | - Justin M J Travis
- School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Avenue, Aberdeen, AB24 2TZ, U.K
| | - Francis Daunt
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, U.K
| | - Sarah J Burthe
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, U.K
| | - Sarah Wanless
- Centre for Ecology & Hydrology, Bush Estate, Penicuik, Midlothian, EH26 0QB, U.K
| | - Calvin Dytham
- Department of Biology, University of York, Heslington, York, YO10 5DD, U.K
| |
Collapse
|