1
|
Vandvik V, Halbritter AH, Althuizen IHJ, Christiansen CT, Henn JJ, Jónsdóttir IS, Klanderud K, Macias-Fauria M, Malhi Y, Maitner BS, Michaletz S, Roos RE, Telford RJ, Bass P, Björnsdóttir K, Bustamante LLV, Chmurzynski A, Chen S, Haugum SV, Kemppinen J, Lepley K, Li Y, Linabury M, Matos IS, Neto-Bradley BM, Ng M, Niittynen P, Östman S, Pánková K, Roth N, Castorena M, Spiegel M, Thomson E, Vågenes AS, Enquist BJ. Plant traits and associated data from a warming experiment, a seabird colony, and along elevation in Svalbard. Sci Data 2023; 10:578. [PMID: 37666874 PMCID: PMC10477187 DOI: 10.1038/s41597-023-02467-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
The Arctic is warming at a rate four times the global average, while also being exposed to other global environmental changes, resulting in widespread vegetation and ecosystem change. Integrating functional trait-based approaches with multi-level vegetation, ecosystem, and landscape data enables a holistic understanding of the drivers and consequences of these changes. In two High Arctic study systems near Longyearbyen, Svalbard, a 20-year ITEX warming experiment and elevational gradients with and without nutrient input from nesting seabirds, we collected data on vegetation composition and structure, plant functional traits, ecosystem fluxes, multispectral remote sensing, and microclimate. The dataset contains 1,962 plant records and 16,160 trait measurements from 34 vascular plant taxa, for 9 of which these are the first published trait data. By integrating these comprehensive data, we bridge knowledge gaps and expand trait data coverage, including on intraspecific trait variation. These data can offer insights into ecosystem functioning and provide baselines to assess climate and environmental change impacts. Such knowledge is crucial for effective conservation and management in these vulnerable regions.
Collapse
Affiliation(s)
- Vigdis Vandvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway.
| | - Aud H Halbritter
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | - Inge H J Althuizen
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
- NORCE, Norwegian Research Centre AS, Bjerknes Centre for Climate Research, Bergen, Norway
| | | | - Jonathan J Henn
- Institute of Arctic and Alpine Research, University of Colorado Boulder, Boulder, USA
| | | | - Kari Klanderud
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Marc Macias-Fauria
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Yadvinder Malhi
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Brian Salvin Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Sean Michaletz
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Ruben E Roos
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Richard J Telford
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Polly Bass
- Department of Ethnobotany, University of Alaska, Fairbanks, Canada
| | | | | | - Adam Chmurzynski
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Shuli Chen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Siri Vatsø Haugum
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway
| | | | - Kai Lepley
- School of Geography, Development and Environment, University of Arizona, Tucson, USA
| | - Yaoqi Li
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Mary Linabury
- Department of Biology, Colorado State University, Fort Collins, USA
| | - Ilaíne Silveira Matos
- Department of Environmental Science Policy and Management, University of California, Berkeley, Berkeley, USA
| | | | - Molly Ng
- Section of Botany, Carnegie Museum of Natural History, Pittsburgh, USA
| | | | - Silje Östman
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Karolína Pánková
- Department of Botany, Charles University, Prague, Czech Republic
| | - Nina Roth
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | - Matiss Castorena
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA
| | - Marcus Spiegel
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eleanor Thomson
- School of Geography and the Environment, University of Oxford, Oxford, UK
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, USA.
| |
Collapse
|
2
|
Mortelliti A. The importance of animal behavior for ecosystem services. Trends Ecol Evol 2023; 38:320-323. [PMID: 36402652 DOI: 10.1016/j.tree.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Animal behavior plays a critical role in the delivery of ecosystem services, yet the study of animal behavior and ecosystem services rarely intersect. The study of behavior-mediated ecosystem services should be prioritized, focusing on the conditions that allow these critical behaviors to persist and adapt to global change.
Collapse
Affiliation(s)
- Alessio Mortelliti
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA; Department of Life Sciences, University of Trieste, Edificio M, Via Licio Giorgieri 10, 34127 Trieste, Italy.
| |
Collapse
|
3
|
Somveille M, Ellis‐Soto D. Linking animal migration and ecosystem processes: Data-driven simulation of propagule dispersal by migratory herbivores. Ecol Evol 2022; 12:e9383. [PMID: 36267687 PMCID: PMC9577414 DOI: 10.1002/ece3.9383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/27/2022] [Accepted: 08/27/2022] [Indexed: 11/24/2022] Open
Abstract
Animal migration is a key process underlying active subsidies and species dispersal over long distances, which affects the connectivity and functioning of ecosystems. Despite much research describing patterns of where animals migrate, we still lack a framework for quantifying and predicting how animal migration affects ecosystem processes. In this study, we aim to integrate animal movement behavior and ecosystem functioning by developing a predictive modeling framework that can inform ecosystem management and conservation. We propose a framework to model individual‐level migration trajectories between populations' seasonal ranges as well as the resulting dispersal and fate of propagules carried by the migratory animals, which can be calibrated using empirical data at every step of the modeling process. As a case study, we applied our framework to model the spread of guava seeds, Psidium guajava, by a population of migratory Galapagos tortoises, Chelonoidis porteri, across Santa Cruz Island. Galapagos tortoises are large herbivores that transport seeds and nutrients across the island, while Guava is one of the most problematic invasive species in the Galapagos archipelago. Our model can predict the pattern of spread of guava seeds alongside tortoises' downslope migration range, and it identified areas most likely to see establishment success. Our results show that Galapagos tortoises' seed dispersal may particularly contribute to guava range expansion on Santa Cruz Island, due to both long gut retention time and tortoise's long‐distance migration across vegetation zones. In particular, we predict that tortoises are dispersing a significant amount of guava seeds into the Galapagos National Park, which has important consequences for the native flora. The flexibility and modularity of our framework allow for the integration of multiple data sources. It also allows for a wide range of applications to investigate how migratory animals affect ecosystem processes, including propagule dispersal but also other processes such as nutrient transport across ecosystems. Our framework is also a valuable tool for predicting how animal‐mediated propagule dispersal can be affected by environmental change. These different applications can have important conservation implications for the management of ecosystems that include migratory animals.
Collapse
Affiliation(s)
- Marius Somveille
- Department of BiologyColorado State UniversityFort CollinsColoradoUSA,Department of Genetics, Evolution and Environment, Centre for Biodiversity and Environment ResearchUniversity College LondonLondonUK
| | - Diego Ellis‐Soto
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticutUSA,Center for Biodiversity and Global ChangeYale UniversityNew HavenConnecticutUSA
| |
Collapse
|
4
|
Benkwitt CE, Carr P, Wilson SK, Graham NAJ. Seabird diversity and biomass enhance cross-ecosystem nutrient subsidies. Proc Biol Sci 2022; 289:20220195. [PMID: 35538790 PMCID: PMC9091852 DOI: 10.1098/rspb.2022.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mobile consumers are key vectors of cross-ecosystem nutrients, yet have experienced population declines which threaten their ability to fill this role. Despite their importance and vulnerability, there is little information on how consumer biodiversity, in addition to biomass, influences the magnitude of nutrient subsidies. Here, we show that both biomass and diversity of seabirds enhanced the provisioning of nutrients across tropical islands and coral reefs, but their relative influence varied across systems. Seabird biomass was particularly important for terrestrial and near-shore subsidies and enhancing fish biomass, while seabird diversity was associated with nutrient subsidies further offshore. The positive effects of diversity were likely driven by high functional complementarity among seabird species in traits related to nutrient storage and provisioning. However, introduced rats and non-native vegetation reduced seabird biomass and diversity, with rats having a stronger effect on biomass and vegetation having a stronger effect on diversity. Accordingly, the restoration of cross-ecosystem nutrient flows provided by seabirds will likely be most successful when both stressors are removed, thus protecting both high biomass and diversity. Recognizing the importance of mobile consumer diversity and biomass, and their underlying drivers, is a necessary step to conserving these species and the ecosystem functions they provide.
Collapse
Affiliation(s)
| | - Peter Carr
- Institute of Zoology, Zoological Society of London, Outer Circle, Regent's Park, London NW1 4RY, UK,Chagos Conservation Trust, 23 The Avenue, Sandy, Beds SG19 1ER, UK
| | - Shaun K. Wilson
- Marine Science Program, Department of Biodiversity Conservation and Attractions, Kensington, Western Australia, Australia,Oceans Institute, University of Western Australia, Crawly, Western Australia, Australia
| | | |
Collapse
|
5
|
Little CJ, Rizzuto M, Luhring TM, Monk JD, Nowicki RJ, Paseka RE, Stegen JC, Symons CC, Taub FB, Yen JDL. Movement with meaning: integrating information into meta‐ecology. OIKOS 2022. [DOI: 10.1111/oik.08892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chelsea J. Little
- Biodiversity Research Centre, Univ. of British Columbia Vancouver BC Canada
- School of Environmental Science, Simon Fraser Univ. Burnaby BC Canada
| | - Matteo Rizzuto
- Dept of Biology, Memorial Univ. of Newfoundland St. John's NL Canada
| | | | - Julia D. Monk
- School of the Environment, Yale Univ. New Haven CT USA
| | - Robert J. Nowicki
- Elizabeth Moore International Center for Coral Reef Research and Restoration, Mote Marine Laboratory Summerland Key FL USA
| | - Rachel E. Paseka
- Dept of Ecology, Evolution and Behavior, Univ. of Minnesota Saint Paul MN USA
| | | | - Celia C. Symons
- Dept of Ecology and Evolutionary Biology, Univ. of California Irvine CA USA
| | - Frieda B. Taub
- School of Aquatic and Fishery Sciences, Univ. of Washington Seattle WA USA
| | - Jian D. L. Yen
- School of BioSciences, Univ. of Melbourne, Melbourne, Australia, and Arthur Rylah Inst. for Environmental Reserach Heidelberg Victoria Australia
| |
Collapse
|
6
|
Meade J, Martin JM, Welbergen JA. Fast food in the city? Nomadic flying-foxes commute less and hang around for longer in urban areas. Behav Ecol 2021. [DOI: 10.1093/beheco/arab078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract
Urbanization creates novel ecological spaces where some species thrive. Geographical urbanization promotes human–wildlife conflict; however, we know relatively little about the drivers of biological urbanization, which poses impediments for sound wildlife management and conservation action. Flying-foxes are extremely mobile and move nomadically in response to flowering resources, but are now increasingly found in urban areas, for reasons that are poorly understood. To investigate the mechanisms behind flying-fox urbanization, we examined the movement of 99 satellite tracked grey-headed flying-foxes (Pteropus poliocephalus) over 1 year in urban versus non-urban environments. We found that tracked individuals preferentially visited major-urban roosts, exhibited higher fidelity to major-urban roosts, and foraged over shorter distances when roosting in major-urban areas. In contrast to other colonial species, there were no density-dependent effects of colony size on foraging distance, suggesting that at a landscape scale, flying-foxes distribute themselves across roosts in an ideal-free manner, minimizing competition over urban and non-urban foraging resources. Yet, males consistently foraged over shorter distances than females, suggesting that at a local scale foraging distances reflect competitive inequalities between individuals. Overall, our study supports the hypothesis that flying-fox urbanization is driven by increased spatiotemporal availability of food resources in urban areas; however, unlike in other species, it is likely a consequence of increased urban visitation by nomadic individuals rather than a subset of the population becoming “urban residents” per se. We discuss the implications of the movement behavior we report for the conservation and management of highly mobile species.
Collapse
Affiliation(s)
- Jessica Meade
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Bourke Street, Richmond, NSW, Australia
| | - John M Martin
- Institute of Science and Learning, Taronga Conservation Society Australia, Bradley’s Head Rd, Mosman, 2088 NSW, Australia
| | - Justin A Welbergen
- Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Bourke Street, Richmond, NSW, Australia
| |
Collapse
|
7
|
African forest elephant movements depend on time scale and individual behavior. Sci Rep 2021; 11:12634. [PMID: 34135350 PMCID: PMC8208977 DOI: 10.1038/s41598-021-91627-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/28/2021] [Indexed: 02/06/2023] Open
Abstract
The critically endangered African forest elephant (Loxodonta cyclotis) plays a vital role in maintaining the structure and composition of Afrotropical forests, but basic information is lacking regarding the drivers of elephant movement and behavior at landscape scales. We use GPS location data from 96 individuals throughout Gabon to determine how five movement behaviors vary at different scales, how they are influenced by anthropogenic and environmental covariates, and to assess evidence for behavioral syndromes-elephants which share suites of similar movement traits. Elephants show some evidence of behavioral syndromes along an 'idler' to 'explorer' axis-individuals that move more have larger home ranges and engage in more 'exploratory' movements. However, within these groups, forest elephants express remarkable inter-individual variation in movement behaviours. This variation highlights that no two elephants are the same and creates challenges for practitioners aiming to design conservation initiatives.
Collapse
|
8
|
Ellis-Soto D, Ferraro KM, Rizzuto M, Briggs E, Monk JD, Schmitz OJ. A methodological roadmap to quantify animal-vectored spatial ecosystem subsidies. J Anim Ecol 2021; 90:1605-1622. [PMID: 34014558 DOI: 10.1111/1365-2656.13538] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/04/2021] [Indexed: 12/31/2022]
Abstract
Energy, nutrients and organisms move over landscapes, connecting ecosystems across space and time. Meta-ecosystem theory investigates the emerging properties of local ecosystems coupled spatially by these movements of organisms and matter, by explicitly tracking exchanges of multiple substances across ecosystem borders. To date, meta-ecosystem research has focused mostly on abiotic flows-neglecting biotic nutrient flows. However, recent work has indicated animals act as spatial nutrient vectors when they transport nutrients across landscapes in the form of excreta, egesta and their own bodies. Partly due to its high level of abstraction, there are few empirical tests of meta-ecosystem theory. Furthermore, while animals may be viewed as important mediators of ecosystem functions, better integration of tools is needed to develop predictive insights of their relative roles and impacts on diverse ecosystems. We present a methodological roadmap that explains how to do such integration by discussing how to combine insights from movement, foraging and ecosystem ecology to develop a coherent understanding of animal-vectored nutrient transport on meta-ecosystems processes. We discuss how the slate of newly developed technologies and methods-tracking devices, mechanistic movement models, diet reconstruction techniques and remote sensing-that when integrated have the potential to advance the quantification of animal-vectored nutrient flows and increase the predictive power of meta-ecosystem theory. We demonstrate that by integrating novel and established tools of animal ecology, ecosystem ecology and remote sensing, we can begin to identify and quantify animal-mediated nutrient translocation by large animals. We also provide conceptual examples that show how our proposed integration of methodologies can help investigate ecosystem impacts of large animal movement. We conclude by describing practical advancements to understanding cross-ecosystem contributions of animals on the move. Understanding the mechanisms by which animals shape ecosystem dynamics is important for ongoing conservation, rewilding and restoration initiatives around the world, and for developing more accurate models of ecosystem nutrient budgets. Our roadmap will enable ecologists to better qualify and quantify animal-mediated nutrient translocation for animals on the move.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.,Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | | | - Matteo Rizzuto
- Department of Biology, Memorial University of Newfoundland, St. John's, Canada
| | - Emily Briggs
- School of the Environment, Yale University, New Haven, CT, USA.,Department of Anthropology, Yale University, New Haven, CT, USA
| | - Julia D Monk
- School of the Environment, Yale University, New Haven, CT, USA
| | | |
Collapse
|
9
|
Teitelbaum CS, Hepinstall-Cymerman J, Kidd-Weaver A, Hernandez SM, Altizer S, Hall RJ. Urban specialization reduces habitat connectivity by a highly mobile wading bird. MOVEMENT ECOLOGY 2020; 8:49. [PMID: 33372623 PMCID: PMC7720518 DOI: 10.1186/s40462-020-00233-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/17/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Mobile animals transport nutrients and propagules across habitats, and are crucial for the functioning of food webs and for ecosystem services. Human activities such as urbanization can alter animal movement behavior, including site fidelity and resource use. Because many urban areas are adjacent to natural sites, mobile animals might connect natural and urban habitats. More generally, understanding animal movement patterns in urban areas can help predict how urban expansion will affect the roles of highly mobile animals in ecological processes. METHODS Here, we examined movements by a seasonally nomadic wading bird, the American white ibis (Eudocimus albus), in South Florida, USA. White ibis are colonial wading birds that forage on aquatic prey; in recent years, some ibis have shifted their behavior to forage in urban parks, where they are fed by people. We used a spatial network approach to investigate how individual movement patterns influence connectivity between urban and non-urban sites. We built a network of habitat connectivity using GPS tracking data from ibis during their non-breeding season and compared this network to simulated networks that assumed individuals moved indiscriminately with respect to habitat type. RESULTS We found that the observed network was less connected than the simulated networks, that urban-urban and natural-natural connections were strong, and that individuals using urban sites had the least-variable habitat use. Importantly, the few ibis that used both urban and natural habitats contributed the most to connectivity. CONCLUSIONS Habitat specialization in urban-acclimated wildlife could reduce the exchange of propagules and nutrients between urban and natural areas, which has consequences both for beneficial effects of connectivity such as gene flow and for detrimental effects such as the spread of contaminants or pathogens.
Collapse
Affiliation(s)
| | | | - Anjelika Kidd-Weaver
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Present address: College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC, USA
| | - Sonia M Hernandez
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA, USA
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Sonia Altizer
- Odum School of Ecology, University of Georgia, Athens, GA, USA
| | - Richard J Hall
- Odum School of Ecology, University of Georgia, Athens, GA, USA
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Simulating the relative effects of movement and sociality on the distribution of animal-transported subsidies. THEOR ECOL-NETH 2020. [DOI: 10.1007/s12080-020-00480-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Bampoh D, Earl JE, Zollner PA. Examining the relative influence of animal movement patterns and mortality models on the distribution of animal transported subsidies. Ecol Modell 2019. [DOI: 10.1016/j.ecolmodel.2019.108824] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
McInturf AG, Pollack L, Yang LH, Spiegel O. Vectors with autonomy: what distinguishes animal‐mediated nutrient transport from abiotic vectors? Biol Rev Camb Philos Soc 2019; 94:1761-1773. [DOI: 10.1111/brv.12525] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 05/07/2019] [Accepted: 05/08/2019] [Indexed: 11/29/2022]
Affiliation(s)
- Alexandra G. McInturf
- Department of Wildlife, Fish, and Conservation Biology University of California One Shields Avenue, Davis, CA 95616 U.S.A
| | - Lea Pollack
- Department of Environmental Science and Policy University of California One Shields Avenue, Davis, CA 95616 U.S.A
| | - Louie H. Yang
- Department of Entomology and Nematology University of California, Davis One Shields Avenue, Davis, CA, 95616 U.S.A
| | - Orr Spiegel
- School of Zoology, Faculty of Life Sciences Sherman Building, Tel Aviv University Tel Aviv, 69978 Israel
| |
Collapse
|
13
|
Teitelbaum CS, Mueller T. Beyond Migration: Causes and Consequences of Nomadic Animal Movements. Trends Ecol Evol 2019; 34:569-581. [PMID: 30885413 DOI: 10.1016/j.tree.2019.02.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 02/08/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022]
Abstract
Recent advances in animal tracking reveal that many species display irregular movements that do not fall into classical categories of movement patterns such as range residency or migration. Here, we develop a unifying framework that distinguishes these nomadic movements based on their patterns, drivers, and mechanisms. Though they occur in diverse taxa and geographic regions, nomadic movements are united by both their underlying environmental drivers, mainly environmental stochasticity, and the resulting irregular, far-ranging movement patterns. The framework further classifies types of nomadic movements, including full, seasonal, phase, irruptive, and partial nomadism. Nomadic movements can have unique effects on populations, communities, and ecosystems, most notably providing intermittent disturbances and novel introductions of propagules.
Collapse
Affiliation(s)
- Claire S Teitelbaum
- Odum School of Ecology, University of Georgia, 140 E Green St., Athens, GA 30602, USA. https://twitter.com/@cs_teitelbaum
| | - Thomas Mueller
- Department of Biological Sciences, Goethe-University Frankfurt and Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Senckenberganlage 25, 60325 Frankfurt, Germany. https://twitter.com/@secnkenberg
| |
Collapse
|
14
|
Subalusky AL, Post DM. Context dependency of animal resource subsidies. Biol Rev Camb Philos Soc 2018; 94:517-538. [DOI: 10.1111/brv.12465] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Amanda L. Subalusky
- Department of Ecology and Evolutionary Biology Yale University New Haven CT 06511 U.S.A
- Cary Institute of Ecosystem Studies Millbrook NY 12545 U.S.A
| | - David M. Post
- Department of Ecology and Evolutionary Biology Yale University New Haven CT 06511 U.S.A
| |
Collapse
|