1
|
Eleftherianos I, Zhang W, Tettamanti G, Daley L, Mohamed A, Stanley D. Nutrition influences immunity: Diet and host-parasite interactions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2024; 175:104210. [PMID: 39515668 DOI: 10.1016/j.ibmb.2024.104210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 10/13/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Nutrition plays a major role in host immune responses and in pathogen resistance. Understanding the network that modulates the relationship between nutrition and immunity remains a challenge. Several pathways govern the direct effects of nutrition on host immunity and the indirect effects mediated by pathogen populations. We note host microbiota also influence the intricate relationships between nutrition and immunity. The purpose of this review is to discuss recent findings from nutritional research in relation to insect immunology. We outline the relationship between diet, immunity, disease, and microbiota in insects and emphasize the significance of utilizing an integrative, multifaceted approach to grasping the influence of nutrition on immunity.
Collapse
Affiliation(s)
- Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, 20052, USA.
| | - Wei Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Guizhou University, Guiyang, Huaxi District, 550025, China.
| | - Gianluca Tettamanti
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Interuniversity Center for Studies on Bioinspired Agro-environmental Technology (BAT Center), University of Napoli Federico II, Portici, Italy.
| | - Lillia Daley
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington DC, 20052, USA
| | - Amr Mohamed
- Department of Entomology, Faculty of Science, Cairo University, Giza, 12613, Egypt.
| | - David Stanley
- Biological Control of Insects Research Laboratory, USDA, Agricultural Research Service, Columbia, MO, 65203, USA.
| |
Collapse
|
2
|
Basu A, Singh A, Sehgal S, Madaan T, Prasad NG. Starvation increases susceptibility to bacterial infection and promotes systemic pathogen proliferation in Drosophila melanogaster females. J Invertebr Pathol 2024; 207:108209. [PMID: 39322010 DOI: 10.1016/j.jip.2024.108209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/03/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Defense against pathogens and parasites requires substantial investment of energy and resources on part of the host. This makes the host immune function dependent on availability and accessibility of resources. A resource deprived host is therefore expected to be more susceptible to infections, although empirical results do not always align with this prediction. Limiting host access to resources can additionally impact within-host pathogen numbers, either directly by altering the amount of resources available to the pathogens for proliferation or indirectly by altering the efficiency of the host immune system. We tested for the effects of host starvation (complete deprivation of resources) on susceptibility to bacterial pathogens, and within-host pathogen proliferation, in Drosophila melanogaster females. Our results show that starvation increases post-infection mortality of the host, but in a pathogen-specific manner. This increase in mortality is always accompanied by increased within-host pathogen proliferation. We therefore propose that starvation compromises host resistance to bacterial infections in Drosophila melanogaster females thereby increasing susceptibility to infections.
Collapse
Affiliation(s)
- Aabeer Basu
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Aparajita Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| | - Suhaas Sehgal
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland(2).
| | - Tanvi Madaan
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India; Institute of Science and Technology Austria, Klosterneuburg, Austria(2).
| | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
| |
Collapse
|
3
|
Wensveen FM, Šestan M, Polić B. The immunology of sickness metabolism. Cell Mol Immunol 2024; 21:1051-1065. [PMID: 39107476 PMCID: PMC11364700 DOI: 10.1038/s41423-024-01192-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/29/2024] [Indexed: 09/01/2024] Open
Abstract
Everyone knows that an infection can make you feel sick. Although we perceive infection-induced changes in metabolism as a pathology, they are a part of a carefully regulated process that depends on tissue-specific interactions between the immune system and organs involved in the regulation of systemic homeostasis. Immune-mediated changes in homeostatic parameters lead to altered production and uptake of nutrients in circulation, which modifies the metabolic rate of key organs. This is what we experience as being sick. The purpose of sickness metabolism is to generate a metabolic environment in which the body is optimally able to fight infection while denying vital nutrients for the replication of pathogens. Sickness metabolism depends on tissue-specific immune cells, which mediate responses tailored to the nature and magnitude of the threat. As an infection increases in severity, so do the number and type of immune cells involved and the level to which organs are affected, which dictates the degree to which we feel sick. Interestingly, many alterations associated with metabolic disease appear to overlap with immune-mediated changes observed following infection. Targeting processes involving tissue-specific interactions between activated immune cells and metabolic organs therefore holds great potential for treating both people with severe infection and those with metabolic disease. In this review, we will discuss how the immune system communicates in situ with organs involved in the regulation of homeostasis and how this communication is impacted by infection.
Collapse
Affiliation(s)
| | - Marko Šestan
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| | - Bojan Polić
- University of Rijeka Faculty of Medicine, Rijeka, Croatia
| |
Collapse
|
4
|
Villalba JJ, Ramsey RD, Athanasiadou S. Review: Herbivory and the power of phytochemical diversity on animal health. Animal 2024:101287. [PMID: 39271413 DOI: 10.1016/j.animal.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/15/2024] Open
Abstract
Plant secondary compounds (PSCs) were thought to be waste products of plant metabolism when first identified in the mid-1800 s. Since then, many different roles have been recognized for these chemicals. With regard to their function as defense, PSCs can negatively impact different cellular and metabolic processes in the herbivore, causing illness and reductions in feed intake. This penalty on fitness also applies to other trophic levels, like the microorganisms and parasites that infect herbivores and thus, PSCs at certain doses may function as medicines. In turn, herbivores evolved learning mechanisms to cope with the constant variability in their environment and physiological needs. Under this context, foraging can be viewed as the quest for substances in the external environment that provide homeostatic utility to the animal. For instance, herbivores increase preference for PSC-containing feeds that negatively impact infectious agents (i.e., therapeutic self-medication). Given that some classes of PSCs like polyphenols present antioxidant, antiinflammatory, immunomodulatory and prebiotic properties, chronic and sustained consumption of these chemicals results in robust animals that are tolerant to disease (i.e., prophylactic self-medication). Foraging plasticity in terms of the quality and quantity of nutrients ingested in the absence and during sickness may also influence immunocompetence, resistance and resilience to infection, and thus can be interpreted as another form of medication. Finally, self-medicative behaviors can be transmitted through social learning. We suggest that foraging studies will benefit from exploring self-medicative behaviors in chemically diverse plant communities, in particular when considering the vast diversity of PSC structures (more than 200 000) observed in nature. We then lay out a framework for enhancing the medicinal effects of PSCs on grazing herbivores. We propose landscape interventions through the establishment of resource patches or "islands" with a diversity of PSC-containing forages (e.g., legumes, herbs, shrubs) in monotonous rangelands or pasturelands, viewed as a "sea" of low-diversity vegetation devoid of functional biochemicals. Strategies aimed at enhancing the diversity of plant communities lead to heterogeneity in chemical, structural and functional landscape traits that offer options to foragers, and thus allow for balanced diets that maintain and restore health. Beyond animal health, such heterogeneity promotes a broad array of ecosystem services that significantly improve landscape resilience to environmental disturbances.
Collapse
Affiliation(s)
- J J Villalba
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA.
| | - R D Ramsey
- Department of Wildland Resources, Utah State University, Logan, UT 84322-5230, USA
| | - S Athanasiadou
- Animal and Veterinary Sciences, Scotland's Rural College, Easter Bush, Roslin Institute, EH25 9RG Midlothian, UK
| |
Collapse
|
5
|
Silva RCMC, Ramos IB, Travassos LH, Mendez APG, Gomes FM. Evolution of innate immunity: lessons from mammalian models shaping our current view of insect immunity. J Comp Physiol B 2024; 194:105-119. [PMID: 38573502 DOI: 10.1007/s00360-024-01549-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 04/05/2024]
Abstract
The innate immune system, a cornerstone for organismal resilience against environmental and microbial insults, is highly conserved across the evolutionary spectrum, underpinning its pivotal role in maintaining homeostasis and ensuring survival. This review explores the evolutionary parallels between mammalian and insect innate immune systems, illuminating how investigations into these disparate immune landscapes have been reciprocally enlightening. We further delve into how advancements in mammalian immunology have enriched our understanding of insect immune responses, highlighting the intertwined evolutionary narratives and the shared molecular lexicon of immunity across these organisms. Therefore, this review posits a holistic understanding of innate immune mechanisms, including immunometabolism, autophagy and cell death. The examination of how emerging insights into mammalian and vertebrate immunity inform our understanding of insect immune responses and their implications for vector-borne disease transmission showcases the imperative for a nuanced comprehension of innate immunity's evolutionary tale. This understanding is quintessential for harnessing innate immune mechanisms' potential in devising innovative disease mitigation strategies and promoting organismal health across the animal kingdom.
Collapse
Affiliation(s)
- Rafael Cardoso M C Silva
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Isabela B Ramos
- Laboratório de Ovogênese Molecular de Vetores, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil
| | - Leonardo H Travassos
- Laboratory of Immunoreceptors and Signaling, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Paula Guzman Mendez
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio M Gomes
- Instituto Nacional de Entomologia Molecular, Rio de Janeiro, Brazil.
- Laboratório de Ultraestrutura Celular Hertha Meyer, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Ponton F, Tan YX, Forster CC, Austin AJ, English S, Cotter SC, Wilson K. The complex interactions between nutrition, immunity and infection in insects. J Exp Biol 2023; 226:jeb245714. [PMID: 38095228 DOI: 10.1242/jeb.245714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Insects are the most diverse animal group on the planet. Their success is reflected by the diversity of habitats in which they live. However, these habitats have undergone great changes in recent decades; understanding how these changes affect insect health and fitness is an important challenge for insect conservation. In this Review, we focus on the research that links the nutritional environment with infection and immune status in insects. We first discuss the research from the field of nutritional immunology, and we then investigate how factors such as intracellular and extracellular symbionts, sociality and transgenerational effects may interact with the connection between nutrition and immunity. We show that the interactions between nutrition and resistance can be highly specific to insect species and/or infection type - this is almost certainly due to the diversity of insect social interactions and life cycles, and the varied environments in which insects live. Hence, these connections cannot be easily generalised across insects. We finally suggest that other environmental aspects - such as the use of agrochemicals and climatic factors - might also influence the interaction between nutrition and resistance, and highlight how research on these is essential.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Yin Xun Tan
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | - Casey C Forster
- School of Natural Sciences , Macquarie University, North Ryde, NSW 2109, Australia
| | | | - Sinead English
- School of Biological Sciences , University of Bristol, Bristol, BS8 1QU, UK
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| |
Collapse
|
7
|
Blubaugh CK, Jones CR, Josefson C, Scoles GA, Snyder WE, Owen JP. Omnivore diet composition alters parasite resistance and host condition. J Anim Ecol 2023; 92:2175-2188. [PMID: 37732627 DOI: 10.1111/1365-2656.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 08/25/2023] [Indexed: 09/22/2023]
Abstract
Diet composition modulates animals' ability to resist parasites and recover from stress. Broader diet breadths enable omnivores to mount dynamic responses to parasite attack, but little is known about how plant/prey mixing might influence responses to infection. Using omnivorous deer mice (Peromyscus maniculatus) as a model, we examine how varying plant and prey concentrations in blended diets influence resistance and body condition following infestation by Rocky Mountain wood ticks (Dermacentor andersoni). In two repeated experiments, deer mice fed for 4 weeks on controlled diets that varied in proportions of seeds and insects were then challenged with 50 tick larvae in two sequential infestations. The numbers of ticks successfully feeding on mice declined by 25% and 66% after the first infestation (in the first and second experiments, respectively), reflecting a pattern of acquired resistance, and resistance was strongest when plant/prey ratios were more equally balanced in mouse diets, relative to seed-dominated diets. Diet also dramatically impacted the capacity of mice to cope with tick infestations. Mice fed insect-rich diets lost 15% of their body weight when parasitized by ticks, while mice fed seed-rich diets lost no weight at all. While mounting/maintaining an immune response may be energetically demanding, mice may compensate for parasitism with fat and carbohydrate-rich diets. Altogether, these results suggest that a diverse nutritional landscape may be key in enabling omnivores' resistance and resilience to infection and immune stressors in their environments.
Collapse
Affiliation(s)
- Carmen K Blubaugh
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Cami R Jones
- Department of Entomology, Washington State University, Pullman, Washington, USA
| | - Chloe Josefson
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, Idaho, USA
| | - Glen A Scoles
- Invasive Insect Biocontrol & Behavior Laboratory, USDA-ARS, Beltsville, Maryland, USA
| | - William E Snyder
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Jeb P Owen
- Department of Entomology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
8
|
Darby AM, Lazzaro BP. Interactions between innate immunity and insulin signaling affect resistance to infection in insects. Front Immunol 2023; 14:1276357. [PMID: 37915572 PMCID: PMC10616485 DOI: 10.3389/fimmu.2023.1276357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023] Open
Abstract
An active immune response is energetically demanding and requires reallocation of nutrients to support resistance to and tolerance of infection. Insulin signaling is a critical global regulator of metabolism and whole-body homeostasis in response to nutrient availability and energetic needs, including those required for mobilization of energy in support of the immune system. In this review, we share findings that demonstrate interactions between innate immune activity and insulin signaling primarily in the insect model Drosophila melanogaster as well as other insects like Bombyx mori and Anopheles mosquitos. These studies indicate that insulin signaling and innate immune activation have reciprocal effects on each other, but that those effects vary depending on the type of pathogen, route of infection, and nutritional status of the host. Future research will be required to further understand the detailed mechanisms by which innate immunity and insulin signaling activity impact each other.
Collapse
Affiliation(s)
- Andrea M. Darby
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| | - Brian P. Lazzaro
- Department of Entomology, Cornell University, Ithaca, NY, United States
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, NY, United States
| |
Collapse
|
9
|
Srygley RB. Selective protein self-deprivation by Mormon crickets following fungal attack. JOURNAL OF INSECT PHYSIOLOGY 2023; 149:104555. [PMID: 37595783 DOI: 10.1016/j.jinsphys.2023.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 08/20/2023]
Abstract
Immune responses to infection result in behavioral changes that affect resource acquisition, such as general starvation and compensatory feeding to offset changes in resource allocation. Mormon crickets aggregate and march in bands containing millions of insects. Some bands are comprised of insects seeking proteins. They are also low in circulating phenoloxidase (PO) and more susceptible to fungal attack, as we have demonstrated in the lab. Here, we ask: Do Mormon crickets elevate PO and consume protein in response to infection by the pathogenic fungus Beauveria bassiana? B. bassiana was applied topically (day 0), and mortality began on day 5. Total protein, PO, and prophenoloxidase (proPO) were assayed in hemolymph on day 1 and 4. On day 1, PO titers were not different between inoculated and control insects, whereas by day 4, PO was greater in the inoculated group. proPO activity was unchanged. Circulating protein declined in inoculated insects relative to controls. As predicted, PO titers were elevated as a result of fungal infection, and hemolymph protein was reduced, but the insects did not compensate behaviorally. Indeed, during the first three days post-infection, infected insects reduced protein consumption while maintaining carbohydrate consumption similar to the controls. Following day 3, a more general reduction in protein and carbohydrate intake was evident in infected insects. Survivorship to infection was associated with the amount of protein consumed and unrelated to carbohydrate consumption. Selective protein deprivation by the host seems counterintuitive, but it might limit growth and toxin production by the invading fungus. Alternatively, the fungus might control the host diet to compromise host immunity to infection. Abrupt changes in allocation resulting from an infection can lead to changes in acquisition that are not always intuitive. Because protein acquisition drives aggression between members of the migratory band, B. bassiana application may reduce cannibalism and slow band movement.
Collapse
Affiliation(s)
- Robert B Srygley
- USDA-Agricultural Research Service, Northern Plains Agricultural Research Laboratory, 1500 N. Central Ave., Sidney, MT 59270, USA.
| |
Collapse
|
10
|
Zhou L, Ma L, Liu L, Sun S, Jing X, Lu Z. The Effects of Diet on the Immune Responses of the Oriental Armyworm Mythimna separata. INSECTS 2023; 14:685. [PMID: 37623395 PMCID: PMC10455674 DOI: 10.3390/insects14080685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023]
Abstract
Nutrients can greatly affect host immune defenses against infection. Possessing a simple immune system, insects have been widely used as models to address the relationships between nutrition and immunity. The effects of high versus low protein-to-carbohydrate ratio (P:C) diets on insect immune responses vary in different studies. To reveal the dietary manipulation of immune responses in the polyphagous agricultural pest oriental armyworm, we examined immune gene expression, phenoloxidase (PO) activity, and phagocytosis to investigate the immune traits of bacteria-challenged oriental armyworms, which were fed different P:C ratio diets. We found the oriental armyworms that were fed a 35:7 (P:C) diet showed higher phenoloxidase (PO) activity and stronger melanization, and those reared on a 28:14 (P:C) diet showed higher antimicrobial activity. However, different P:C diets had no apparent effect on the hemocyte number and phagocytosis. These results overall indicate that high P:C diets differently optimize humoral immune defense responses in oriental armyworms, i.e., PO-mediated melanization and antimicrobial peptide synthesis in response to bacteria challenge.
Collapse
Affiliation(s)
- Lizhen Zhou
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Li Ma
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Lu Liu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Shaolei Sun
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
| | - Xiangfeng Jing
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, China
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (L.Z.); (L.M.); (L.L.); (S.S.); (X.J.)
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Northwest A&F University, Yangling 712100, China
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling 712100, China
- Key Laboratory of Integrated Pest Management on Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
11
|
Magistrado D, El-Dougdoug NK, Short SM. Sugar restriction and blood ingestion shape divergent immune defense trajectories in the mosquito Aedes aegypti. Sci Rep 2023; 13:12368. [PMID: 37524824 PMCID: PMC10390476 DOI: 10.1038/s41598-023-39067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
Immune defense is comprised of (1) resistance: the ability to reduce pathogen load, and (2) tolerance: the ability to limit the disease severity induced by a given pathogen load. The study of tolerance in the field of animal immunity is fairly nascent in comparison to resistance. Consequently, studies which examine immune defense comprehensively (i.e. considering both resistance and tolerance in conjunction) are uncommon, despite their exigency in achieving a thorough understanding of immune defense. Furthermore, understanding tolerance in arthropod disease vectors is uniquely relevant, as tolerance is essential to the cyclical transmission of pathogens by arthropods. Here, we tested the effect(s) of dietary sucrose concentration and blood ingestion on resistance and tolerance to Escherichia coli infection in the yellow fever mosquito Aedes aegypti. Resistance and tolerance were measured concurrently and at multiple timepoints. We found that mosquitoes from the restricted sugar treatment displayed enhanced resistance at all timepoints post-infection compared to those from the laboratory standard sugar treatment. Blood also improved resistance, but only early post-infection. While sucrose restriction had no effect on tolerance, we show that consuming blood prior to bacterial infection ameliorates a temporal decline in tolerance that mosquitoes experience when provided with only sugar meals. Taken together, our findings indicate that different dietary components can have unique and sometimes temporally dynamic impacts on resistance and tolerance.
Collapse
Affiliation(s)
- Dom Magistrado
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
| | - Noha K El-Dougdoug
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA
- Department of Botany and Microbiology, Faculty of Science, Benha University, Benha, Egypt
| | - Sarah M Short
- Department of Entomology, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
12
|
Borer ET, Kendig AE, Holt RD. Feeding the fever: Complex host-pathogen dynamics along continuous resource gradients. Ecol Evol 2023; 13:e10315. [PMID: 37502304 PMCID: PMC10368943 DOI: 10.1002/ece3.10315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/29/2023] Open
Abstract
Food has long been known to perform dual functions of nutrition and medicine, but mounting evidence suggests that complex host-pathogen dynamics can emerge along continuous resource gradients. Empirical examples of nonmonotonic responses of infection with increasing host resources (e.g., low prevalence at low and high resource supply but high prevalence at intermediate resources) have been documented across the tree of life, but these dynamics, when observed, often are interpreted as nonintuitive, idiosyncratic features of pathogen and host biology. Here, by developing generalized versions of existing models of resource dependence for within- and among-host infection dynamics, we provide a synthetic view of nonmonotonic infection dynamics. We demonstrate that where resources jointly impact two (or more) processes (e.g., growth, defense, transmission, mortality, predation), nonmonotonic infection dynamics, including alternative states, can emerge across a continuous resource supply gradient. We review the few empirical examples that concurrently measured resource effects on multiple rates and pair this with a wide range of examples in which resource dependence of multiple rates could generate nonmonotonic infection outcomes under realistic conditions. This review and generalized framework highlight the likely generality of such resource effects in natural systems and point to opportunities ripe for future empirical and theoretical work.
Collapse
Affiliation(s)
- Elizabeth T. Borer
- Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | - Amy E. Kendig
- Agronomy DepartmentUniversity of FloridaGainesvilleFloridaUSA
- Minnesota Department of Natural ResourcesMinnesota Biological SurveySaint PaulMinnesotaUSA
| | - Robert D. Holt
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
13
|
Hector TE, Gehman ALM, King KC. Infection burdens and virulence under heat stress: ecological and evolutionary considerations. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220018. [PMID: 36744570 PMCID: PMC9900716 DOI: 10.1098/rstb.2022.0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/17/2022] [Indexed: 02/07/2023] Open
Abstract
As a result of global change, hosts and parasites (including pathogens) are experiencing shifts in their thermal environment. Despite the importance of heat stress tolerance for host population persistence, infection by parasites can impair a host's ability to cope with heat. Host-parasite eco-evolutionary dynamics will be affected if infection reduces host performance during heating. Theory predicts that within-host parasite burden (replication rate or number of infecting parasites per host), a key component of parasite fitness, should correlate positively with virulence-the harm caused to hosts during infection. Surprisingly, however, the relationship between within-host parasite burden and virulence during heating is often weak. Here, we describe the current evidence for the link between within-host parasite burden and host heat stress tolerance. We consider the biology of host-parasite systems that may explain the weak or absent link between these two important host and parasite traits during hot conditions. The processes that mediate the relationship between parasite burden and host fitness will be fundamental in ecological and evolutionary responses of host and parasites in a warming world. This article is part of the theme issue 'Infectious disease ecology and evolution in a changing world'.
Collapse
Affiliation(s)
- T. E. Hector
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| | - A.-L. M. Gehman
- Hakai Institute, End of Kwakshua Channel, Calvert Island, BC Canada, V0N 1M0
- Institute for the Oceans and Fisheries, University of British Columbia, 2202 Main Mall, Vancouver, BC Canada, V6T 1Z4
| | - K. C. King
- Department of Biology, University of Oxford, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
14
|
Mo C, Smilanich AM. Feeding on an exotic host plant enhances plasma levels of phenoloxidase by modulating feeding efficiency in a specialist insect herbivore. Front Physiol 2023; 14:1127670. [PMID: 36909228 PMCID: PMC9998540 DOI: 10.3389/fphys.2023.1127670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Background: Exotic plant species represent a novel resource for invertebrates and many herbivorous insects have incorporated exotic plants into their diet. Using a new host plant can have physiological repercussions for these herbivores that may be beneficial or detrimental. In this study, we compared how using an exotic versus native host plant affected the immune system response and feeding efficiency of a specialist lepidopteran, the common buckeye (Junonia coenia: Nymphalidae, Hübner 1822). Materials and Methods: In a lab experiment, larvae were reared on either the exotic host plant, Plantago lanceolata (Plantaginaceae), or the native host plant, Mimulus guttatus (Phrymaceae). Beginning at second instar feeding efficiency data were collected every 2 days until fifth instar when immune assays were performed. Immune assays consisted of standing phenoloxidase activity, total phenoloxidase activity, and melanization. Results: Interestingly, we found that all three immune system parameters were higher on the exotic host plant compared to the native host plant. The exotic host plant also supported higher pupal weights, faster development time, greater consumption, and more efficient approximate digestibility. In contrast, the native host plant supported higher efficiency of conversion of ingested and digested food. The relationship between immunity and feeding efficiency was more complex but showed a large positive effect of greater host plant consumption on all immune parameters, particularly for the exotic host plant. While not as strong, the efficiency of conversion of digested food tended to show a negative effect on the three immune parameters. Conclusion: Overall, the exotic host plant proved to be beneficial for this specialist insect with regard to immunity and many of the feeding efficiency parameters and continued use of this host plant is predicted for populations already using it.
Collapse
Affiliation(s)
- Carmen Mo
- Department of Biology, University of Nevada, Reno, NV, United States
| | - Angela M Smilanich
- Department of Biology, University of Nevada, Reno, NV, United States.,Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV, United States
| |
Collapse
|
15
|
Corbally MK, Regan JC. Fly immunity comes of age: The utility of Drosophila as a model for studying variation in immunosenescence. FRONTIERS IN AGING 2022; 3:1016962. [PMID: 36268532 PMCID: PMC9576847 DOI: 10.3389/fragi.2022.1016962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
| | - Jennifer C. Regan
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
16
|
Savola E, Vale PF, Walling CA. Larval diet affects adult reproduction, but not survival, independent of the effect of injury and infection in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 142:104428. [PMID: 35932926 DOI: 10.1016/j.jinsphys.2022.104428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Early-life conditions have profound effects on many life-history traits, where early-life diet affects both juvenile development, and adult survival and reproduction. Early-life diet also has consequences for the ability of adults to withstand environmental challenges such as starvation, temperature and desiccation. However, it is less well known how early-life diet influences the consequences of infection in adults. Here we test whether varying the larval diet of female Drosophila melanogaster (through altering protein to carbohydrate ratio, P:C) influences the long-term consequences of injury and infection with the bacterial pathogen Pseudomonasentomophila. Given previous work manipulating adult dietary P:C, we predicted that adults from larvae raised on higher P:C diets would have increased reproduction, but shorter lifespans and an increased rate of ageing, and that the lowest larval P:C diets would be particularly detrimental for adult survival in infected individuals. For larval development, we predicted that low P:C would lead to a longer development time and lower viability. We found that early-life and lifetime egg production were highest at intermediate to high larval P:C diets, but this was independent of injury and infection. There was no effect of larval P:C on adult survival. Larval development was quickest on intermediate P:C and egg-to-pupae and egg-to-adult viability were slightly higher on higher P:C. Overall, despite larval P:C affecting several measured traits, we saw no evidence that larval P:C altered the consequence of infection or injury for adult survival or early-life and lifetime reproduction. Taken together, these data suggest that larval diets appear to have a limited impact on the adult life history consequences of infection.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK
| | - Craig A Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh EH9 3FL, UK.
| |
Collapse
|
17
|
Zhang S, Huang J, Wang Q, You M, Xia X. Changes in the Host Gut Microbiota during Parasitization by Parasitic Wasp Cotesia vestalis. INSECTS 2022; 13:760. [PMID: 36135461 PMCID: PMC9506224 DOI: 10.3390/insects13090760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
Abstract
Parasites attack the host insects and possibly impact the host-gut microbiota, which leads to provision of a suitable host environment for parasites' development. However, little is known about whether and how the parasitic wasp Cotesia vestalis alters the gut microbiota of the host Plutella xylostella. In this study, 16S rDNA microbial profiling, combined with a traditional isolation and culture method, were used to assess changes in the bacterial microbiome of parasitized and non-parasitized hosts at different developmental stages of C. vestalis larvae. Parasitization affected both the diversity and structure of the host-gut microbiota, with a significant reduction in richness on the sixth day post parasitization (6 DPP) and significant differences in bacterial structure between parasitized and non-parasitized hosts on the third day. The bacterial abundance of host-gut microbiota changed significantly as the parasitization progressed, resulting in alteration of potential functional contribution. Notably, the relative abundance of the predominant family Enterobacteriaceae was significantly decreased on the third day post-parasitization. In addition, the results of traditional isolation and culture of bacteria indicated differences in the bacterial composition between the three DPP and CK3 groups, as with 16S microbial profiling. These findings shed light on the interaction between a parasitic wasp and gut bacteria in the host insect during parasitization.
Collapse
Affiliation(s)
- Shuaiqi Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Jieling Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Qiuping Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Minsheng You
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| | - Xiaofeng Xia
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China
| |
Collapse
|
18
|
Dinh H, Lundbäck I, Kumar S, Than AT, Morimoto J, Ponton F. Sugar-rich larval diet promotes lower adult pathogen load and higher survival after infection in a polyphagous fly. J Exp Biol 2022; 225:276376. [PMID: 35904096 DOI: 10.1242/jeb.243910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/19/2022] [Indexed: 11/20/2022]
Abstract
Nutrition is a central factor influencing immunity and resistance to infection, but the extent to which nutrition during development affects adult responses to infections is poorly understood. Our study investigated how the nutritional composition of the larval diet affects the survival, pathogen load, and food intake of adult fruit flies, Bactrocera tryoni, after septic bacterial infection. We found a sex-specific effect of larval diet composition on survival post-infection: survival rate was higher and bacterial load was lower for infected females fed sugar-rich larval diet compared with females fed protein-rich larval diet, an effect that was absent in males. Both males and females were heavier when fed a balanced larval diet compared to protein- or sugar-rich diet, while body lipid reserves were higher in the sugar-rich larval diet compared with other diets. Body protein reserve was lower for sugar-rich larval diets compared to other diets in males, but not females. Both females and males shifted their nutrient intake to ingest a sugar-rich diet when infected compared with sham-infected flies without any effect of the larval diet, suggesting that sugar-rich diets can be beneficial to fight off bacterial infection as shown in previous literature. Overall, our findings show that nutrition during early life can shape individual fitness in adulthood.
Collapse
Affiliation(s)
- Hue Dinh
- School of Natural Sciences, Macquarie University, Australia
| | - Ida Lundbäck
- School of Natural Sciences, Macquarie University, Australia
| | - Sheemal Kumar
- School of Natural Sciences, Macquarie University, Australia
| | - Anh The Than
- School of Natural Sciences, Macquarie University, Australia.,Department of Entomology, Vietnam National University of Agriculture, Vietnam
| | - Juliano Morimoto
- School of Natural Sciences, Macquarie University, Australia.,School of Biological Sciences, University of Aberdeen, Zoology Building, Tillydrone Ave, Aberdeen AB24 2TZ, UK.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, 82590-300, Brazil
| | - Fleur Ponton
- School of Natural Sciences, Macquarie University, Australia
| |
Collapse
|
19
|
Meshrif WS, Elkayal SH, Soliman MA, Seif AI, Roeder T. Metabolic and immunological responses of Drosophila melanogaster to dietary restriction and bacterial infection differ substantially between genotypes in a population. Ecol Evol 2022; 12:e8960. [PMID: 35646322 PMCID: PMC9130643 DOI: 10.1002/ece3.8960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
To respond to changing environmental conditions, a population may either shift toward better‐adapted genotypes or adapt on an individual level. The present work aimed to quantify the relevance of these two processes by comparing the responses of defined Drosophila melanogaster populations to different stressors. To do this, we infected two homogeneous populations (isofemale lines), which differ significantly in fitness, and a synthetic heterogeneous population with a specific pathogen and/or exposed them to food restriction. Pectobacterium carotovorum was used to infect Drosophila larvae either fed standard or protein‐restricted diet. In particular, the two homogeneous groups, which diverged in their fitness, showed considerable differences in all parameters assessed (survivorship, protein and lipid contents, phenol‐oxidase (PO) activity, and antibacterial rate). Under fully nutritious conditions, larvae of the homogeneous population with low fitness exhibited lower survivorship and protein levels, as well as higher PO activity and antibacterial rate compared with the fitter population. A protein‐restricted diet and bacterial infection provoked a decrease in survivorship, and antibacterial rate in most populations. Bacterial infection elicited an opposite response in protein and lipid content in both isofemale lines tested. Interestingly, the heterogeneous population showed a complex response pattern. The response of the heterogeneous population followed the fit genotype in terms of survival and antibacterial activity but followed the unfit genotype in terms of PO activity. In conclusion, our results show that defined genotypes exhibit highly divergent responses to varying stressors that are difficult to predict. Furthermore, the responses of heterogeneous populations do not follow a fixed pattern showing a very high degree of plasticity and differences between different genotypes.
Collapse
Affiliation(s)
- Wesam S Meshrif
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Sandy H Elkayal
- Faculty of Pharmacy Pharmaceutical Services Center Tanta University Tanta Egypt
| | - Mohamed A Soliman
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Amal I Seif
- Department of Zoology Faculty of Science Tanta University Tanta Egypt
| | - Thomas Roeder
- Department of Molecular Physiology Zoological Institute Kiel University Kiel Germany.,Airway Research Center North German Center for Lung Research Kiel Germany
| |
Collapse
|
20
|
Cotter SC, Al Shareefi E. Nutritional ecology, infection and immune defence - exploring the mechanisms. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100862. [PMID: 34952240 DOI: 10.1016/j.cois.2021.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/01/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Diet can impact the outcome of parasitic infection in three, non-mutually exclusive ways: 1) by changing the physiological environment of the host, such as the availability of key nutritional resources, the presence of toxic dietary chemicals, the pH or osmolality of the blood or gut, 2) by enhancing the immune response and 3) by altering the presence of host microbiota, which help to digest nutrients and are a potential source of antibiotics. We show that there are no clear patterns in the effects of diet across taxa and that good evidence for the mechanisms by which diet exerts its effects are often lacking. More studies are required to understand the mechanisms of action if we are to discern patterns that can be generalised across host and parasite taxa.
Collapse
Affiliation(s)
- Sheena C Cotter
- School of Life Sciences, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, UK.
| | - Ekhlas Al Shareefi
- Dept of Biology, College of Science for Women, University of Babylon, Hillah-Babil, Iraq
| |
Collapse
|
21
|
Maslov DL, Zemskaya NV, Trifonova OP, Lichtenberg S, Balashova EE, Lisitsa AV, Moskalev AA, Lokhov PG. Comparative Metabolomic Study of Drosophila Species with Different Lifespans. Int J Mol Sci 2021; 22:ijms222312873. [PMID: 34884677 PMCID: PMC8657752 DOI: 10.3390/ijms222312873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
The increase in life expectancy, leading to a rise in the proportion of older people, is accompanied by a prevalence of age-related disorders among the world population, the fight against which today is one of the leading biomedical challenges. Exploring the biological insights concerning the lifespan is one of the ways to provide a background for designing an effective treatment for the increase in healthy years of life. Untargeted direct injection mass spectrometry-based metabolite profiling of 12 species of Drosophila with significant variations in natural lifespans was conducted in this research. A cross-comparison study of metabolomic profiles revealed lifespan signatures of flies. These signatures indicate that lifespan extension is associated with the upregulation of amino acids, phospholipids, and carbohydrate metabolism. Such information provides a metabolome-level view on longevity and may provide a molecular measure of organism age in age-related studies.
Collapse
Affiliation(s)
- Dmitry L. Maslov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Correspondence: ; Tel.: +7-499-246-6980
| | - Nadezhda V. Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Oxana P. Trifonova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Steven Lichtenberg
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
- Metabometrics Inc., 651 N Broad Street, Suite 205 #1370, Middletown, DE 19709, USA
| | - Elena E. Balashova
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Andrey V. Lisitsa
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| | - Alexey A. Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Komi Science Center, Institute of Biology, Russian Academy of Sciences, 167982 Syktyvkar, Russia; (N.V.Z.); (A.A.M.)
| | - Petr G. Lokhov
- Analytical Branch, Institute of Biomedical Chemistry, 10 Building 8, Pogodinskaya Street, 119121 Moscow, Russia; (O.P.T.); (S.L.); (E.E.B.); (A.V.L.); (P.G.L.)
| |
Collapse
|
22
|
Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A Redox Disease-What a Stress Pandemic Can Teach Us About Resilience and What We May Learn from the Reactive Species Interactome About Its Treatment. Antioxid Redox Signal 2021; 35:1226-1268. [PMID: 33985343 DOI: 10.1089/ars.2021.0017] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus causing coronavirus disease 2019 (COVID-19), affects every aspect of human life by challenging bodily, socioeconomic, and political systems at unprecedented levels. As vaccines become available, their distribution, safety, and efficacy against emerging variants remain uncertain, and specific treatments are lacking. Recent Advances: Initially affecting the lungs, COVID-19 is a complex multisystems disease that disturbs the whole-body redox balance and can be long-lasting (Long-COVID). Numerous risk factors have been identified, but the reasons for variations in susceptibility to infection, disease severity, and outcome are poorly understood. The reactive species interactome (RSI) was recently introduced as a framework to conceptualize how cells and whole organisms sense, integrate, and accommodate stress. Critical Issues: We here consider COVID-19 as a redox disease, offering a holistic perspective of its effects on the human body, considering the vulnerability of complex interconnected systems with multiorgan/multilevel interdependencies. Host/viral glycan interactions underpin SARS-CoV-2's extraordinary efficiency in gaining cellular access, crossing the epithelial/endothelial barrier to spread along the vascular/lymphatic endothelium, and evading antiviral/antioxidant defences. An inflammation-driven "oxidative storm" alters the redox landscape, eliciting epithelial, endothelial, mitochondrial, metabolic, and immune dysfunction, and coagulopathy. Concomitantly reduced nitric oxide availability renders the sulfur-based redox circuitry vulnerable to oxidation, with eventual catastrophic failure in redox communication/regulation. Host nutrient limitations are crucial determinants of resilience at the individual and population level. Future Directions: While inflicting considerable damage to health and well-being, COVID-19 may provide the ultimate testing ground to improve the diagnosis and treatment of redox-related stress diseases. "Redox phenotyping" of patients to characterize whole-body RSI status as the disease progresses may inform new therapeutic approaches to regain redox balance, reduce mortality in COVID-19 and other redox diseases, and provide opportunities to tackle Long-COVID. Antioxid. Redox Signal. 35, 1226-1268.
Collapse
Affiliation(s)
- Andrew F Cumpstey
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Anna D Clark
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Jérôme Santolini
- Institute for Integrative Biology of the Cell (I2BC), Biochemistry, Biophysics and Structural Biology, CEA, CNRS, Université Paris-Sud, Universite Paris-Saclay, Gif-sur-Yvette, France
| | - Alan A Jackson
- Human Nutrition, University of Southampton and University Hospital Southampton, Southampton, United Kingdom
| | - Martin Feelisch
- Respiratory and Critical Care Research Group, Southampton NIHR Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
23
|
Sugar feeding protects against arboviral infection by enhancing gut immunity in the mosquito vector Aedes aegypti. PLoS Pathog 2021; 17:e1009870. [PMID: 34473801 PMCID: PMC8412342 DOI: 10.1371/journal.ppat.1009870] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 08/06/2021] [Indexed: 12/27/2022] Open
Abstract
As mosquito females require a blood meal to reproduce, they can act as vectors of numerous pathogens, such as arboviruses (e.g. Zika, dengue and chikungunya viruses), which constitute a substantial worldwide public health burden. In addition to blood meals, mosquito females can also take sugar meals to get carbohydrates for their energy reserves. It is now recognised that diet is a key regulator of health and disease outcome through interactions with the immune system. However, this has been mostly studied in humans and model organisms. So far, the impact of sugar feeding on mosquito immunity and in turn, how this could affect vector competence for arboviruses has not been explored. Here, we show that sugar feeding increases and maintains antiviral immunity in the digestive tract of the main arbovirus vector Aedes aegypti. Our data demonstrate that the gut microbiota does not mediate the sugar-induced immunity but partly inhibits it. Importantly, sugar intake prior to an arbovirus-infected blood meal further protects females against infection with arboviruses from different families. Sugar feeding blocks arbovirus initial infection and dissemination from the gut and lowers infection prevalence and intensity, thereby decreasing the transmission potential of female mosquitoes. Finally, we show that the antiviral role of sugar is mediated by sugar-induced immunity. Overall, our findings uncover a crucial role of sugar feeding in mosquito antiviral immunity which in turn decreases vector competence for arboviruses. Since Ae. aegypti almost exclusively feed on blood in some natural settings, our findings suggest that this lack of sugar intake could increase the spread of mosquito-borne arboviral diseases.
Collapse
|
24
|
Karlsson Green K. The effects of host plant species and larval density on immune function in the polyphagous moth Spodoptera littoralis. Ecol Evol 2021; 11:10090-10097. [PMID: 34367561 PMCID: PMC8328413 DOI: 10.1002/ece3.7802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 04/09/2021] [Accepted: 05/18/2021] [Indexed: 11/07/2022] Open
Abstract
Immune functions are costly, and immune investment is usually dependent on the individual's condition and resource availability. For phytophagous insects, host plant quality has large effects on performance, for example growth and survival, and may also affect their immune function. Polyphagous insects often experience a large variation in quality among different host plant species, and their immune investment may thus vary depending on which host plant species they develop on. Larvae of the polyphagous moth Spodoptera littoralis have previously been found to exhibit density-dependent prophylaxis as they invest more in certain immune responses in high population densities. In addition, the immune response of S. littoralis has been shown to depend on nutrient quality in experiments with artificial diet. Here, I studied the effects of natural host plant diet and larval density on a number of immune responses to understand how host plant species affects immune investment in generalist insects, and whether the density-dependent prophylaxis could be mediated by host plant species. While host plant species in general did not mediate the density-dependent immune expression, particular host plant species was found to increase larval investment in certain functions of the immune system. Interestingly, these results indicate that different host plants may provide a polyphagous species with protection against different kinds of antagonisms. This insight may contribute to our understanding of the relationship between preference and performance in generalists, as well as having applied consequences for sustainable pest management.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
25
|
Daisley BA, Reid G. BEExact: a Metataxonomic Database Tool for High-Resolution Inference of Bee-Associated Microbial Communities. mSystems 2021; 6:e00082-21. [PMID: 33824193 PMCID: PMC8546966 DOI: 10.1128/msystems.00082-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 01/04/2023] Open
Abstract
High-throughput 16S rRNA gene sequencing technologies have robust potential to improve our understanding of bee (Hymenoptera: Apoidea)-associated microbial communities and their impact on hive health and disease. Despite recent computation algorithms now permitting exact inferencing of high-resolution exact amplicon sequence variants (ASVs), the taxonomic classification of these ASVs remains a challenge due to inadequate reference databases. To address this, we assemble a comprehensive data set of all publicly available bee-associated 16S rRNA gene sequences, systematically annotate poorly resolved identities via inclusion of 618 placeholder labels for uncultivated microbial dark matter, and correct for phylogenetic inconsistencies using a complementary set of distance-based and maximum likelihood correction strategies. To benchmark the resultant database (BEExact), we compare performance against all existing reference databases in silico using a variety of classifier algorithms to produce probabilistic confidence scores. We also validate realistic classification rates on an independent set of ∼234 million short-read sequences derived from 32 studies encompassing 50 different bee types (36 eusocial and 14 solitary). Species-level classification rates on short-read ASVs range from 80 to 90% using BEExact (with ∼20% due to "bxid" placeholder names), whereas only ∼30% at best can be resolved with current universal databases. A series of data-driven recommendations are developed for future studies. We conclude that BEExact (https://github.com/bdaisley/BEExact) enables accurate and standardized microbiota profiling across a broad range of bee species-two factors of key importance to reproducibility and meaningful knowledge exchange within the scientific community that together, can enhance the overall utility and ecological relevance of routine 16S rRNA gene-based sequencing endeavors.IMPORTANCE The failure of current universal taxonomic databases to support the rapidly expanding field of bee microbiota research has led to many investigators relying on "in-house" reference sets or manual classification of sequence reads (usually based on BLAST searches), often with vague identity thresholds and subjective taxonomy choices. This time-consuming, error- and bias-prone process lacks standardization, cripples the potential for comparative cross-study analysis, and in many cases is likely to incorrectly sway study conclusions. BEExact is structured on and leverages several complementary bioinformatic techniques to enable refined inference of bee host-associated microbial communities without any other methodological modifications necessary. It also bridges the gap between current practical outcomes (i.e., phylotype-to-genus level constraints with 97% operational taxonomic units [OTUs]) and the theoretical resolution (i.e., species-to-strain level classification with 100% ASVs) attainable in future microbiota investigations. Other niche habitats could also likely benefit from customized database curation via implementation of the novel approaches introduced in this study.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, Ontario, Canada
- Canadian Centre for Human Microbiome and Probiotics Research, London, Ontario, Canada
- Department of Surgery, Schulich School of Medicine, London, Ontario, Canada
| |
Collapse
|
26
|
How insects protect themselves against combined starvation and pathogen challenges, and the implications for reductionism. Comp Biochem Physiol B Biochem Mol Biol 2021; 255:110564. [PMID: 33508422 DOI: 10.1016/j.cbpb.2021.110564] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/31/2020] [Accepted: 01/08/2021] [Indexed: 01/19/2023]
Abstract
An explosion of data has provided detailed information about organisms at the molecular level. For some traits, this information can accurately predict phenotype. However, knowledge of the underlying molecular networks often cannot be used to accurately predict higher order phenomena, such as the response to multiple stressors. This failure raises the question of whether methodological reductionism is sufficient to uncover predictable connections between molecules and phenotype. This question is explored in this paper by examining whether our understanding of the molecular responses to food limitation and pathogens in insects can be used to predict their combined effects. The molecular pathways underlying the response to starvation and pathogen attack in insects demonstrates the complexity of real-world physiological networks. Although known intracellular signaling pathways suggest that food restriction should enhance immune function, a reduction in food availability leads to an increase in some immune components, a decrease in others, and a complex effect on disease resistance in insects such as the caterpillar Manduca sexta. However, our inability to predict the effects of food restriction on disease resistance is likely due to our incomplete knowledge of the intra- and extracellular signaling pathways mediating the response to single or multiple stressors. Moving from molecules to organisms will require novel quantitative, integrative and experimental approaches (e.g. single cell RNAseq). Physiological networks are non-linear, dynamic, highly interconnected and replete with alternative pathways. However, that does not make them impossible to predict, given the appropriate experimental and analytical tools. Such tools are still under development. Therefore, given that molecular data sets are incomplete and analytical tools are still under development, it is premature to conclude that methodological reductionism cannot be used to predict phenotype.
Collapse
|
27
|
Savola E, Montgomery C, Waldron FM, Monteith KM, Vale P, Walling C. Testing evolutionary explanations for the lifespan benefit of dietary restriction in fruit flies (Drosophila melanogaster). Evolution 2021; 75:450-463. [PMID: 33320333 PMCID: PMC8609428 DOI: 10.1111/evo.14146] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 12/22/2022]
Abstract
Dietary restriction (DR), limiting calories or specific nutrients without malnutrition, extends lifespan across diverse taxa. Traditionally, this lifespan extension has been explained as a result of diet-mediated changes in the trade-off between lifespan and reproduction, with survival favored when resources are scarce. However, a recently proposed alternative suggests that the selective benefit of the response to DR is the maintenance of reproduction. This hypothesis predicts that lifespan extension is a side effect of benign laboratory conditions, and DR individuals would be frailer and unable to deal with additional stressors, and thus lifespan extension should disappear under more stressful conditions. We tested this by rearing outbred female fruit flies (Drosophila melanogaster) on 10 different protein:carbohydrate diets. Flies were either infected with a bacterial pathogen (Pseudomonas entomophila), injured with a sterile pinprick, or unstressed. We monitored lifespan, fecundity, and measures of aging. DR extended lifespan and reduced reproduction irrespective of injury and infection. Infected flies on lower protein diets had particularly poor survival. Exposure to infection and injury did not substantially alter the relationship between diet and aging patterns. These results do not provide support for lifespan extension under DR being a side effect of benign laboratory conditions.
Collapse
Affiliation(s)
- Eevi Savola
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Clara Montgomery
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Fergal M Waldron
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Katy M Monteith
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Pedro Vale
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| | - Craig Walling
- Institute of Evolutionary Biology, School of Biological Sciences, The University of Edinburgh, Ashworth Laboratories, Edinburgh, EH9 3FL, UK
| |
Collapse
|
28
|
Resnik JL, Smilanich AM. The Effect of Phenoloxidase Activity on Survival Is Host Plant Dependent in Virus-Infected Caterpillars. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5934963. [PMID: 33089871 PMCID: PMC7583276 DOI: 10.1093/jisesa/ieaa116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Indexed: 06/11/2023]
Abstract
An important goal of disease ecology is to understand trophic interactions influencing the host-pathogen relationship. This study focused on the effects of diet and immunity on the outcome of viral infection for the polyphagous butterfly, Vanessa cardui Linnaeus (Lepidoptera: Nymphalidae) (painted lady). Specifically, we aimed to understand the role that larval host plants play when fighting a viral pathogen. Larvae were orally inoculated with the entomopathogenic virus, Junonia coenia densovirus (JcDV) (Parvovirididae: Densovirinae, Lepidopteran Potoambidensovirus 1) and reared on two different host plants (Lupinus albifrons Bentham (Fabales: Fabaceae) or Plantago lanceolata Linnaeus (Lamiales: Plantaginaceae)). Following viral infection, the immune response (i.e., phenoloxidase [PO] activity), survival to adulthood, and viral load were measured for individuals on each host plant. We found that the interaction between the immune response and survival of the viral infection was host plant dependent. The likelihood of survival was lowest for infected larvae exhibiting suppressed PO activity and feeding on P. lanceolata, providing some evidence that PO activity may be an important defense against viral infection. However, for individuals reared on L. albifrons, the viral infection had a negligible effect on the immune response, and these individuals also had higher survival and lower viral load when infected with the pathogen compared to the controls. Therefore, we suggest that host plant modifies the effects of JcDV infection and influences caterpillars' response when infected with the virus. Overall, we conclude that the outcome of viral infection is highly dependent upon diet, and that certain host plants can provide protection from pathogens regardless of immunity.
Collapse
|
29
|
Moatt JP, Savola E, Regan JC, Nussey DH, Walling CA. Lifespan Extension Via Dietary Restriction: Time to Reconsider the Evolutionary Mechanisms? Bioessays 2020; 42:e1900241. [DOI: 10.1002/bies.201900241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 04/24/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Joshua P. Moatt
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Eevi Savola
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Jennifer C. Regan
- Institute for Immunology and InfectionSchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Daniel H. Nussey
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| | - Craig A. Walling
- Institute of Evolutionary BiologySchool of Biological ScienceUniversity of Edinburgh Edinburgh EH9 3FL UK
| |
Collapse
|
30
|
Wilson K, Holdbrook R, Reavey CE, Randall JL, Tummala Y, Ponton F, Simpson SJ, Smith JA, Cotter SC. Osmolality as a Novel Mechanism Explaining Diet Effects on the Outcome of Infection with a Blood Parasite. Curr Biol 2020; 30:2459-2467.e3. [DOI: 10.1016/j.cub.2020.04.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/19/2020] [Accepted: 04/22/2020] [Indexed: 12/30/2022]
|
31
|
Kelly CD, Mc Cabe Leroux J. No evidence of sickness behavior in immune-challenged field crickets. Ecol Evol 2020; 10:6049-6058. [PMID: 32607212 PMCID: PMC7319135 DOI: 10.1002/ece3.6349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/07/2020] [Accepted: 04/17/2020] [Indexed: 01/05/2023] Open
Abstract
Sickness behavior is a taxonomically widespread coordinated set of behavioral changes that increases shelter-seeking while reducing levels of general activity, as well as food (anorexia) and water (adipsia) consumption, when fighting infection by pathogens and disease. The leading hypothesis explaining such sickness-related shifts in behavior is the energy conservation hypothesis. This hypothesis argues that sick (i.e., immune-challenged) animals reduce energetic expenditure in order have more energy to fuel an immune response, which in some vertebrates, also includes producing an energetically expensive physiological fever. We experimentally tested the hypothesis that an immune challenge with lipopolysaccharide (LPS) will cause Gryllus firmus field crickets to reduce their activity, increase shelter use and avoid foods that interfere with an immune response (i.e., fat) while preferring a diet that fuels an immune response (i.e., protein). We found little evidence of sickness behavior in Gryllus firmus as immune-challenged individuals did not reduce their activity or increase their shelter-seeking. Neither did we observe changes in feeding or drinking behavior nor a preference for protein or avoidance of lipids. Males tended to use shelters less than females but no other behaviors differed between the sexes. The lack of sickness behavior in our study might reflect the fact that invertebrates do not possess energetically expensive physiological fever as part of their immune response. Therefore, there is little reason to conserve energy via reduced activity or increased shelter use when immune-challenged.
Collapse
Affiliation(s)
- Clint D. Kelly
- Département des Sciences biologiquesUniversité du Québec à MontréalMontrealQCCanada
| | - Jules Mc Cabe Leroux
- Département des Sciences biologiquesUniversité du Québec à MontréalMontrealQCCanada
| |
Collapse
|
32
|
Ponton F, Morimoto J, Robinson K, Kumar SS, Cotter SC, Wilson K, Simpson SJ. Macronutrients modulate survival to infection and immunity in Drosophila. J Anim Ecol 2019; 89:460-470. [PMID: 31658371 PMCID: PMC7027473 DOI: 10.1111/1365-2656.13126] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022]
Abstract
Immunity and nutrition are two essential modulators of individual fitness. However, while the implications of immune function and nutrition on an individual's lifespan and reproduction are well established, the interplay between feeding behaviour, infection and immune function remains poorly understood. Asking how ecological and physiological factors affect immune responses and resistance to infections is a central theme of eco‐immunology. In this study, we used the fruit fly, Drosophila melanogaster, to investigate how infection through septic injury modulates nutritional intake and how macronutrient balance affects survival to infection by the pathogenic Gram‐positive bacterium Micrococcus luteus. Our results show that infected flies maintain carbohydrate intake, but reduce protein intake, thereby shifting from a protein‐to‐carbohydrate (P:C) ratio of ~1:4 to ~1:10 relative to non‐infected and sham‐infected flies. Strikingly, the proportion of flies dying after M. luteus infection was significantly lower when flies were fed a low‐P high‐C diet, revealing that flies shift their macronutrient intake as means of nutritional self‐medication against bacterial infection. These results are likely due to the effects of the macronutrient balance on the regulation of the constitutive expression of innate immune genes, as a low‐P high‐C diet was linked to an upregulation in the expression of key antimicrobial peptides. Together, our results reveal the intricate relationship between macronutrient intake and resistance to infection and integrate the molecular cross‐talk between metabolic and immune pathways into the framework of nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Juliano Morimoto
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katie Robinson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Sheemal S Kumar
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | | | - Kenneth Wilson
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Stephen J Simpson
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
33
|
Hudson AL, Moatt JP, Vale PF. Terminal investment strategies following infection are dependent on diet. J Evol Biol 2019; 33:309-317. [DOI: 10.1111/jeb.13566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 10/30/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ali L. Hudson
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Joshua P. Moatt
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| | - Pedro F. Vale
- Institute of Evolutionary Biology School of Biological Sciences University of Edinburgh Edinburgh UK
| |
Collapse
|