1
|
Baker CJ, Class B, Dwyer RG, Franklin CE, Campbell HA, Irwin TR, Frère CH. Active crocodiles are less sociable. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220528. [PMID: 39230456 PMCID: PMC11449168 DOI: 10.1098/rstb.2022.0528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/19/2024] [Accepted: 02/14/2024] [Indexed: 09/05/2024] Open
Abstract
How animals move and associate with conspecifics is rarely random, with a population's spatial structure forming the foundation on which the social behaviours of individuals form. Studies examining the spatial-social interface typically measure averaged behavioural differences between individuals; however, this neglects the inherent variation present within individuals and how it may impact the spatial-social interface. Here, we investigated differences in among-individual (co)variance in sociability, activity and site fidelity in a population of wild estuarine crocodiles, Crocodylus porosus, across a 10-year period. By monitoring 118 crocodiles using coded acoustic transmitters and an array of fixed underwater receivers, we discovered that not only did individual crocodiles repeatably differ (among-individual variation) in each behaviour measured but also in how consistently they expressed these behaviours through time (within-individual variation). As expected, crocodile activity and sociability formed a behavioural syndrome, with more active individuals being less sociable. Interestingly, we also found that individuals that were either more sociable or displayed greater site fidelity were also more specialized (lower within-individual variation) in these behaviours. Together, our results provide important empirical evidence for the interplay between spatial, temporal and social individual-level behavioural variation and how these contribute to forming behavioural niches. This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- Cameron J. Baker
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0815, Australia
- The School of the Environment, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Barbara Class
- Ludwig-Maximilians-Universität München, Munich80539, Germany
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland4556, Australia
| | - Ross G. Dwyer
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, Queensland4556, Australia
| | - Craig E. Franklin
- The School of the Environment, The University of Queensland, Brisbane, Queensland4072, Australia
| | - Hamish A. Campbell
- Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, Northern Territory0815, Australia
| | - Terri R. Irwin
- Australia Zoo, Steve Irwin Way, Beerwah, Queensland4519, Australia
| | - Céline H. Frère
- The School of the Environment, The University of Queensland, Brisbane, Queensland4072, Australia
| |
Collapse
|
2
|
Hendrix JG, Robitaille AL, Kusch JM, Webber QMR, Vander Wal E. Faithful pals and familiar locales: differentiating social and spatial site fidelity during reproduction. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220525. [PMID: 39230451 PMCID: PMC11449207 DOI: 10.1098/rstb.2022.0525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/10/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
Site fidelity-the tendency to reuse familiar spaces-is expected to improve fitness. Familiarity with the local environment is particularly crucial when resource demands or predation risk are high. Consequently, site fidelity often peaks during reproduction when energetic costs are high and offspring are vulnerable. For many species, the environment they experience is not solely a function of geography but also of the social environment. Social fidelity, the selection for familiar social environments, could constitute an independent or parallel strategy to spatial fidelity when considering behaviour at the spatial-social interface. Using global positioning system locations from caribou across Newfoundland, we tested whether females selected calving sites based on proximity to familiar conspecifics, in addition to geographical (spatial) fidelity. These strategies were synergistic, not alternative, and correlated across the population but more variable within individuals. We also tested whether either form of fidelity affected reproductive success. We failed to detect an effect of spatial or social fidelity on reproductive success in this population. Nevertheless, given the association between social and spatial fidelity and the demonstrated fitness consequences of site fidelity in other systems, familiar conspecifics and the potential benefits these social partners provide may be an underappreciated component driving site fidelity.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- J G Hendrix
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| | - A L Robitaille
- Department of Biology, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| | - J M Kusch
- Department of Biology, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| | - Q M R Webber
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada
| | - E Vander Wal
- Cognitive and Behavioural Ecology Interdisciplinary Program, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
- Department of Biology, Memorial University of Newfoundland and Labrador, St John's, Newfoundland and Labrador, Canada
| |
Collapse
|
3
|
Wehr NH, Moore SA, Isaac EJ, Kellner KF, Millspaugh JJ, Belant JL. Spatial overlap of gray wolves and ungulate prey changes seasonally corresponding to prey migration. MOVEMENT ECOLOGY 2024; 12:33. [PMID: 38671527 PMCID: PMC11046751 DOI: 10.1186/s40462-024-00466-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/18/2024] [Indexed: 04/28/2024]
Abstract
BACKGROUND Prey are more vulnerable during migration due to decreased familiarity with their surroundings and spatially concentrated movements. Predators may respond to increased prey vulnerability by shifting their ranges to match prey. Moose (Alces alces) and white-tailed deer (Odocoileus virginianus) are primary gray wolf (Canis lupus) prey and important subsistence species for Indigenous communities. We hypothesized wolves would increase use of ungulate migration corridors during migrations and predicted wolf distributions would overlap primary available prey. METHODS We examined seasonal gray wolf, moose, and white-tailed deer movements on and near the Grand Portage Indian Reservation, Minnesota, USA. We analyzed GPS collar data during 2012-2021 using Brownian bridge movement models (BBMM) in Migration Mapper and mechanistic range shift analysis (MRSA) to estimate individual- and population-level occurrence distributions and determine the status and timing of range shifts. We estimated proportional overlap of wolf distributions with moose and deer distributions and tested for differences among seasons, prey populations, and wolf sex and pack affiliations. RESULTS We identified a single migration corridor through which white-tailed deer synchronously departed in April and returned in October-November. Gray wolf distributions overlapped the deer migration corridor similarly year-round, but wolves altered within-range distributions seasonally corresponding to prey distributions. Seasonal wolf distributions had the greatest overlap with deer during fall migration (10 October-28 November) and greatest overlap with moose during summer (3 May-9 October). CONCLUSIONS Gray wolves did not increase their use of the white-tailed deer migration corridor but altered distributions within their territories in response to seasonal prey distributions. Greater overlap of wolves and white-tailed deer in fall may be due to greater predation success facilitated by asynchronous deer migration movements. Greater summer overlap between wolves and moose may be linked to moose calf vulnerability, American beaver (Castor canadensis) co-occurrence, and reduced deer abundance associated with migration. Our results suggest increases in predation pressure on deer in fall and moose in summer, which can inform Indigenous conservation efforts. We observed seasonal plasticity of wolf distributions suggestive of prey switching; that wolves did not exhibit migratory coupling was likely due to spatial constraints resulting from territoriality.
Collapse
Affiliation(s)
- Nathaniel H Wehr
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA.
| | - Seth A Moore
- Department of Biology and Environment, Grand Portage Band of Lake Superior Chippewa, Grand Portage, MN, USA
| | - Edmund J Isaac
- Department of Biology and Environment, Grand Portage Band of Lake Superior Chippewa, Grand Portage, MN, USA
| | - Kenneth F Kellner
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Joshua J Millspaugh
- Wildlife Biology Program, Department of Ecosystem and Conservation Sciences, W.A. Franke College of Forestry and Conservation, University of Montana, Missoula, MT, USA
- Camp Fire Program in Wildlife Conservation, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA
| | - Jerrold L Belant
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
4
|
Ranc N, Cain JW, Cagnacci F, Moorcroft PR. The role of memory-based movements in the formation of animal home ranges. J Math Biol 2024; 88:59. [PMID: 38589609 DOI: 10.1007/s00285-024-02055-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 01/22/2024] [Accepted: 01/28/2024] [Indexed: 04/10/2024]
Abstract
Most animals live in spatially-constrained home ranges. The prevalence of this space-use pattern in nature suggests that general biological mechanisms are likely to be responsible for their occurrence. Individual-based models of animal movement in both theoretical and empirical settings have demonstrated that the revisitation of familiar areas through memory can lead to the formation of stable home ranges. Here, we formulate a deterministic, mechanistic home range model that includes the interplay between a bi-component memory and resource preference, and evaluate resulting patterns of space-use. We show that a bi-component memory process can lead to the formation of stable home ranges and control its size, with greater spatial memory capabilities being associated with larger home range size. The interplay between memory and resource preferences gives rise to a continuum of space-use patterns-from spatially-restricted movements into a home range that is influenced by local resource heterogeneity, to diffusive-like movements dependent on larger-scale resource distributions, such as in nomadism. Future work could take advantage of this model formulation to evaluate the role of memory in shaping individual performance in response to varying spatio-temporal resource patterns.
Collapse
Affiliation(s)
- Nathan Ranc
- Université de Toulouse, INRAE, CEFS, Castanet-Tolosan, France.
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele All'Adige, Italy.
| | - John W Cain
- Department of Mathematics, Harvard University, Cambridge, MA, USA
| | - Francesca Cagnacci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, Trento, Italy
- National Biodiversity Future Center, Palermo, Italy
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
5
|
Ellis-Soto D, Oliver RY, Brum-Bastos V, Demšar U, Jesmer B, Long JA, Cagnacci F, Ossi F, Queiroz N, Hindell M, Kays R, Loretto MC, Mueller T, Patchett R, Sims DW, Tucker MA, Ropert-Coudert Y, Rutz C, Jetz W. A vision for incorporating human mobility in the study of human-wildlife interactions. Nat Ecol Evol 2023; 7:1362-1372. [PMID: 37550509 DOI: 10.1038/s41559-023-02125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 06/19/2023] [Indexed: 08/09/2023]
Abstract
As human activities increasingly shape land- and seascapes, understanding human-wildlife interactions is imperative for preserving biodiversity. Habitats are impacted not only by static modifications, such as roads, buildings and other infrastructure, but also by the dynamic movement of people and their vehicles occurring over shorter time scales. Although there is increasing realization that both components of human activity substantially affect wildlife, capturing more dynamic processes in ecological studies has proved challenging. Here we propose a conceptual framework for developing a 'dynamic human footprint' that explicitly incorporates human mobility, providing a key link between anthropogenic stressors and ecological impacts across spatiotemporal scales. Specifically, the dynamic human footprint integrates a range of metrics to fully acknowledge the time-varying nature of human activities and to enable scale-appropriate assessments of their impacts on wildlife behaviour, demography and distributions. We review existing terrestrial and marine human-mobility data products and provide a roadmap for how these could be integrated and extended to enable more comprehensive analyses of human impacts on biodiversity in the Anthropocene.
Collapse
Affiliation(s)
- Diego Ellis-Soto
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
| | - Ruth Y Oliver
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA.
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA.
- Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, USA.
| | - Vanessa Brum-Bastos
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
- Institute of Geodesy and Geoinformatics, Wroclaw University of Environmental Sciences, Wroclaw, Poland
- School of Earth and Environment, University of Canterbury, Christchurch, New Zealand
| | - Urška Demšar
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, UK
| | - Brett Jesmer
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Jed A Long
- Department of Geography & Environment, Centre for Animals on the Move, Western University, London, Ontario, Canada
| | - Francesca Cagnacci
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- National Biodiversity Future Center S.C.A.R.L., Palermo, Italy
| | - Federico Ossi
- Animal Ecology Unit, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Nuno Queiroz
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado/BIOPOLIS Program in Genomics, Biodiversity and Land Planning, Universidade do Porto, Vairão, Portugal
- Marine Biological Association, Plymouth, UK
| | - Mark Hindell
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
- Antarctic Climate and Ecosystems Cooperative Research Centre, University of Tasmania, Hobart, Tasmania, Australia
| | - Roland Kays
- North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Dept Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
| | - Matthias-Claudio Loretto
- Ecosystem Dynamics and Forest Management Group, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
- Berchtesgaden National Park, Berchtesgaden, Germany
- Department of Migration, Max-Planck Institute of Animal Behavior, Radolfzell, Germany
| | - Thomas Mueller
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt (Main), Germany
- Department of Biological Sciences, Goethe University, Frankfurt (Main), Germany
| | - Robert Patchett
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - David W Sims
- Marine Biological Association, Plymouth, UK
- Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, Southampton, UK
- Centre for Biological Sciences, University of Southampton, Southampton, UK
| | - Marlee A Tucker
- Department of Environmental Science, Radboud Institute for Biological and Environmental Sciences, Radboud University, Nijmegen, The Netherlands
| | - Yan Ropert-Coudert
- Centre d'Etudes Biologiques de Chizé, La Rochelle Université - CNRS, Villiers en Bois, France
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK
| | - Walter Jetz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| |
Collapse
|
6
|
Shiratsuru S, Studd EK, Boutin S, Peers MJL, Majchrzak YN, Menzies AK, Derbyshire R, Jung TS, Krebs CJ, Boonstra R, Murray DL. When death comes: linking predator-prey activity patterns to timing of mortality to understand predation risk. Proc Biol Sci 2023; 290:20230661. [PMID: 37192667 PMCID: PMC10188243 DOI: 10.1098/rspb.2023.0661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/21/2023] [Indexed: 05/18/2023] Open
Abstract
The assumption that activity and foraging are risky for prey underlies many predator-prey theories and has led to the use of predator-prey activity overlap as a proxy of predation risk. However, the simultaneous measures of prey and predator activity along with timing of predation required to test this assumption have not been available. Here, we used accelerometry data on snowshoe hares (Lepus americanus) and Canada lynx (Lynx canadensis) to determine activity patterns of prey and predators and match these to precise timing of predation. Surprisingly we found that lynx kills of hares were as likely to occur during the day when hares were inactive as at night when hares were active. We also found that activity rates of hares were not related to the chance of predation at daily and weekly scales, whereas lynx activity rates positively affected the diel pattern of lynx predation on hares and their weekly kill rates of hares. Our findings suggest that predator-prey diel activity overlap may not always be a good proxy of predation risk, and highlight a need for examining the link between predation and spatio-temporal behaviour of predator and prey to improve our understanding of how predator-prey behavioural interactions drive predation risk.
Collapse
Affiliation(s)
- Shotaro Shiratsuru
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Emily K. Studd
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
- Department of Biological Sciences, Thompson Rivers University, Kamloops, British Columbia, Canada V2C 0B8
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Michael J. L. Peers
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Yasmine N. Majchrzak
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2R3
| | - Allyson K. Menzies
- Department of Natural Resource Sciences, McGill University, St-Anne-de-Bellevue, Québec, Canada H9X 3V9
| | | | - Thomas S. Jung
- Department of Environment, Government of Yukon, Whitehorse, Yukon, Canada
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Charles J. Krebs
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Ontario, Canada
| | - Dennis L. Murray
- Department of Biology, Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
7
|
Heathcote RJP, Whiteside MA, Beardsworth CE, Van Horik JO, Laker PR, Toledo S, Orchan Y, Nathan R, Madden JR. Spatial memory predicts home range size and predation risk in pheasants. Nat Ecol Evol 2023; 7:461-471. [PMID: 36690732 DOI: 10.1038/s41559-022-01950-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 11/09/2022] [Indexed: 01/24/2023]
Abstract
Most animals confine their activities to a discrete home range, long assumed to reflect the fitness benefits of obtaining spatial knowledge about the landscape. However, few empirical studies have linked spatial memory to home range development or determined how selection operates on spatial memory via the latter's role in mediating space use. We assayed the cognitive ability of juvenile pheasants (Phasianus colchicus) reared under identical conditions before releasing them into the wild. Then, we used high-throughput tracking to record their movements as they developed their home ranges, and determined the location, timing and cause of mortality events. Individuals with greater spatial reference memory developed larger home ranges. Mortality risk from predators was highest at the periphery of an individual's home range in areas where they had less experience and opportunity to obtain spatial information. Predation risk was lower in individuals with greater spatial memory and larger core home ranges, suggesting selection may operate on spatial memory by increasing the ability to learn about predation risk across the landscape. Our results reveal that spatial memory, determined from abstract cognitive assays, shapes home range development and variation, and suggests predation risk selects for spatial memory via experience-dependent spatial variation in mortality.
Collapse
Affiliation(s)
- Robert J P Heathcote
- School of Biological Sciences, University of Bristol, Bristol, UK. .,Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.
| | - Mark A Whiteside
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,School of Biological and Marine Sciences, University of Plymouth, Plymouth, UK
| | - Christine E Beardsworth
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,NIOZ Royal Netherlands Institute for Sea Research, Department of Coastal Systems, Den Burg, the Netherlands.,School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK
| | - Jayden O Van Horik
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK.,University of Exeter Clinical Trials Unit, College of Medicine and Health, University of Exeter Medical School, Exeter, UK
| | - Philippa R Laker
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Sivan Toledo
- Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel
| | - Yotam Orchan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ran Nathan
- Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Joah R Madden
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
8
|
Burton-Roberts R, Cordes LS, Slotow R, Vanak AT, Thaker M, Govender N, Shannon G. Seasonal range fidelity of a megaherbivore in response to environmental change. Sci Rep 2022; 12:22008. [PMID: 36550171 PMCID: PMC9780231 DOI: 10.1038/s41598-022-25334-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
For large herbivores living in highly dynamic environments, maintaining range fidelity has the potential to facilitate the exploitation of predictable resources while minimising energy expenditure. We evaluate this expectation by examining how the seasonal range fidelity of African elephants (Loxodonta africana) in the Kruger National Park, South Africa is affected by spatiotemporal variation in environmental conditions (vegetation quality, temperature, rainfall, and fire). Eight-years of GPS collar data were used to analyse the similarity in seasonal utilisation distributions for thirteen family groups. Elephants exhibited remarkable consistency in their seasonal range fidelity across the study with rainfall emerging as a key driver of space-use. Within years, high range fidelity from summer to autumn and from autumn to winter was driven by increased rainfall and the retention of high-quality vegetation. Across years, sequential autumn seasons demonstrated the lowest levels of range fidelity due to inter-annual variability in the wet to dry season transition, resulting in unpredictable resource availability. Understanding seasonal space use is important for determining the effects of future variability in environmental conditions on elephant populations, particularly when it comes to management interventions. Indeed, over the coming decades climate change is predicted to drive greater variability in rainfall and elevated temperatures in African savanna ecosystems. The impacts of climate change also present particular challenges for elephants living in fragmented or human-transformed habitats where the opportunity for seasonal range shifts are greatly constrained.
Collapse
Affiliation(s)
- Rhea Burton-Roberts
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Bangor, Gwynedd UK
| | - Line S. Cordes
- grid.7362.00000000118820937School of Ocean Sciences, Bangor University, Bangor, Gwynedd UK
| | - Rob Slotow
- grid.16463.360000 0001 0723 4123School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Abi Tamim Vanak
- grid.16463.360000 0001 0723 4123School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa ,grid.464760.70000 0000 8547 8046Centre for Biodiversity and Conservation, Ashoka Trust for Research in Ecology and the Environment, Bangalore, India
| | - Maria Thaker
- grid.34980.360000 0001 0482 5067Centre for Ecological Sciences, Indian Institute of Science, Bangalore, India
| | - Navashni Govender
- grid.463628.d0000 0000 9533 5073Conservation Management, Kruger National Park, South African National Parks, Private Bag X402, Skukuza, 1350 South Africa ,grid.412139.c0000 0001 2191 3608School of Natural Resource Management, Nelson Mandela University, Private Bag X6531, George, 6530 South Africa
| | - Graeme Shannon
- grid.7362.00000000118820937School of Natural Sciences, Bangor University, Bangor, Gwynedd UK
| |
Collapse
|
9
|
Brogi R, Apollonio M, Brivio F, Merli E, Grignolio S. Behavioural syndromes going wild: individual risk-taking behaviours of free-ranging wild boar. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Let’s go hide in the forest! Escape behavior of Chaetophractus vellerosus to Tala forest remnant in Buenos Aires province, Argentina. MAMMAL RES 2022. [DOI: 10.1007/s13364-022-00621-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Loftus JC, Harel R, Núñez CL, Crofoot MC. Ecological and social pressures interfere with homeostatic sleep regulation in the wild. eLife 2022; 11:73695. [PMID: 35229719 PMCID: PMC8887896 DOI: 10.7554/elife.73695] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/18/2022] [Indexed: 12/12/2022] Open
Abstract
Sleep is fundamental to the health and fitness of all animals. The physiological importance of sleep is underscored by the central role of homeostasis in determining sleep investment – following periods of sleep deprivation, individuals experience longer and more intense sleep bouts. Yet, most sleep research has been conducted in highly controlled settings, removed from evolutionarily relevant contexts that may hinder the maintenance of sleep homeostasis. Using triaxial accelerometry and GPS to track the sleep patterns of a group of wild baboons (Papio anubis), we found that ecological and social pressures indeed interfere with homeostatic sleep regulation. Baboons sacrificed time spent sleeping when in less familiar locations and when sleeping in proximity to more group-mates, regardless of how long they had slept the prior night or how much they had physically exerted themselves the preceding day. Further, they did not appear to compensate for lost sleep via more intense sleep bouts. We found that the collective dynamics characteristic of social animal groups persist into the sleep period, as baboons exhibited synchronized patterns of waking throughout the night, particularly with nearby group-mates. Thus, for animals whose fitness depends critically on avoiding predation and developing social relationships, maintaining sleep homeostasis may be only secondary to remaining vigilant when sleeping in risky habitats and interacting with group-mates during the night. Our results highlight the importance of studying sleep in ecologically relevant contexts, where the adaptive function of sleep patterns directly reflects the complex trade-offs that have guided its evolution.
Collapse
Affiliation(s)
- J Carter Loftus
- Department of Anthropology, University of California, Davis, Davis, United States.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya.,Animal Behavior Graduate Group, University of California, Davis, Davis, United States
| | - Roi Harel
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya
| | - Chase L Núñez
- Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya
| | - Margaret C Crofoot
- Department of Anthropology, University of California, Davis, Davis, United States.,Department for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.,Mpala Research Centre, Nanyuki, Kenya.,Animal Behavior Graduate Group, University of California, Davis, Davis, United States
| |
Collapse
|
12
|
Ranc N, Cagnacci F, Moorcroft PR. Memory drives the formation of animal home ranges: Evidence from a reintroduction. Ecol Lett 2022; 25:716-728. [PMID: 35099847 DOI: 10.1111/ele.13869] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 05/15/2021] [Accepted: 08/01/2021] [Indexed: 11/29/2022]
Abstract
Most animals live in home ranges, and memory is thought to be an important process in their formation. However, a general memory-based model for characterising and predicting home range emergence has been lacking. Here, we use a mechanistic movement model to: (1) quantify the role of memory in the movements of a large mammal reintroduced into a novel environment, and (2) predict observed patterns of home range emergence in this experimental setting. We show that an interplay between memory and resource preferences is the primary process influencing the movements of reintroduced roe deer (Capreolus capreolus). Our memory-based model fitted with empirical data successfully predicts the formation of home ranges, as well as emergent properties of movement and spatial revisitation observed in the reintroduced animals. These results provide a mechanistic framework for combining memory-based movements, resource preferences, and the formation of home ranges in nature.
Collapse
Affiliation(s)
- Nathan Ranc
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Francesca Cagnacci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Hansen JE, Hertel AG, Frank SC, Kindberg J, Zedrosser A. Social environment shapes female settlement decisions in a solitary carnivore. Behav Ecol 2022; 33:137-146. [PMID: 35197809 PMCID: PMC8857934 DOI: 10.1093/beheco/arab118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 08/25/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022] Open
Abstract
How and where a female selects an area to settle and breed is of central importance in dispersal and population ecology as it governs range expansion and gene flow. Social structure and organization have been shown to influence settlement decisions, but its importance in the settlement of large, solitary mammals is largely unknown. We investigate how the identity of overlapping conspecifics on the landscape, acquired during the maternal care period, influences the selection of settlement home ranges in a non-territorial, solitary mammal using location data of 56 female brown bears (Ursus arctos). We used a resource selection function to determine whether females' settlement behavior was influenced by the presence of their mother, related females, familiar females, and female population density. Hunting may remove mothers and result in socio-spatial changes before settlement. We compared overlap between settling females and their mother's concurrent or most recent home ranges to examine the settling female's response to the absence or presence of her mother on the landscape. We found that females selected settlement home ranges that overlapped their mother's home range, familiar females, that is, those they had previously overlapped with, and areas with higher density than their natal ranges. However, they did not select areas overlapping related females. We also found that when mothers were removed from the landscape, female offspring selected settlement home ranges with greater overlap of their mother's range, compared with mothers who were alive. Our results suggest that females are acquiring and using information about their social environment when making settlement decisions.
Collapse
Affiliation(s)
- J E Hansen
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | - A G Hertel
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
- Senkenberg Biodiversity and Climate Research Centre, Frankfurt, Germany
| | - S C Frank
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
| | - J Kindberg
- Norwegian Institute for Nature Research, Trondheim, Norway
- Swedish University of Agricultural Sciences, Department of Wildlife, Fish, and Environmental Studies, Umeå, Sweden
| | - A Zedrosser
- Faculty of Technology, Natural Sciences and Maritime Sciences, Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
- Department of Integrative Biology, Institute of Wildlife Biology and Game Management, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| |
Collapse
|
14
|
Bergvall UA, Morellet N, Kjellander P, Rauset GR, Groeve JD, Borowik T, Brieger F, Gehr B, Heurich M, Hewison AM, Kröschel M, Pellerin M, Saïd S, Soennichsen L, Sunde P, Cagnacci F. Settle Down! Ranging Behaviour Responses of Roe Deer to Different Capture and Release Methods. Animals (Basel) 2021; 11:ani11113299. [PMID: 34828030 PMCID: PMC8614535 DOI: 10.3390/ani11113299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022] Open
Abstract
The fitting of tracking devices to wild animals requires capture and handling which causes stress and can potentially cause injury, behavioural modifications that can affect animal welfare and the output of research. We evaluated post capture and release ranging behaviour responses of roe deer (Capreolus capreolus) for five different capture methods. We analysed the distance from the centre of gravity and between successive locations, using data from 14 different study sites within the EURODEER collaborative project. Independently of the capture method, we observed a shorter distance between successive locations and contextual shift away from the home range centre of gravity after the capture and release event. However, individuals converged towards the average behaviour within a relatively short space of time (between 10 days and one month). If researchers investigate questions based on the distance between successive locations of the home range, we recommend (1) initial investigation to establish when the animals start to behave normally again or (2) not using the first two to three weeks of data for their analysis. We also encourage researchers to continually adapt methods to minimize stress and prioritize animal welfare wherever possible, according to the Refinement of the Three R's.
Collapse
Affiliation(s)
- Ulrika A. Bergvall
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91 Riddarhyttan, Sweden;
- Correspondence: ; Tel.: +46-707-564845
| | - Nicolas Morellet
- Université de Toulouse, INRAE, CEFS, 31326 Castanet-Tolosan, France; (N.M.); (A.J.M.H.)
- LTSER ZA PYrénéesGARonne, 31320 Auzeville-Tolosane, France
| | - Petter Kjellander
- Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, 730 91 Riddarhyttan, Sweden;
| | - Geir R. Rauset
- Terrestrial Ecology, Norwegian Institute for Nature Research (NINA), P.O. Box 5685 Torgarden, 7485 Trondheim, Norway;
| | - Johannes De Groeve
- Research and Innovation Centre, Biodiversity and Molecular Ecology Department, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Italy; (J.D.G.); (F.C.)
- Department of Geography, Ghent University, 9000 Ghent, Belgium
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 94240 Amsterdam, The Netherlands
| | - Tomasz Borowik
- Mammal Research Institute, Polish Academy of Sciences, Stoczek, 17-230 Białowieża, Poland; (T.B.); (L.S.)
| | - Falko Brieger
- Forest Research Institute Baden-Wuerttemberg, 79100 Freiburg, Germany; (F.B.); (M.K.)
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;
| | - Marco Heurich
- Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, 94481 Grafenau, Germany;
- Wildlife Ecology and Wildlife Management, Faculty of Environment and Natural Resources, University of Freiburg, 79106 Freiburg, Germany
- Institute for Forest and Wildlife Management, Campus Evenstad, Innland Norway University of Applied Science, 2480 Koppang, Norway
| | - A.J. Mark Hewison
- Université de Toulouse, INRAE, CEFS, 31326 Castanet-Tolosan, France; (N.M.); (A.J.M.H.)
- LTSER ZA PYrénéesGARonne, 31320 Auzeville-Tolosane, France
| | - Max Kröschel
- Forest Research Institute Baden-Wuerttemberg, 79100 Freiburg, Germany; (F.B.); (M.K.)
| | - Maryline Pellerin
- Office Français de la Biodiversité, Direction de la Recherche et de l’Appui Scientifique, 01330 Birieux, France; (M.P.); (S.S.)
| | - Sonia Saïd
- Office Français de la Biodiversité, Direction de la Recherche et de l’Appui Scientifique, 01330 Birieux, France; (M.P.); (S.S.)
| | - Leif Soennichsen
- Mammal Research Institute, Polish Academy of Sciences, Stoczek, 17-230 Białowieża, Poland; (T.B.); (L.S.)
| | - Peter Sunde
- Department of Ecoscience, Aarhus University, Grenåvej 14, 8410 Rønde, Denmark;
| | - Francesca Cagnacci
- Research and Innovation Centre, Biodiversity and Molecular Ecology Department, Fondazione Edmund Mach, Via Mach 1, 38010 San Michele all’Adige, Italy; (J.D.G.); (F.C.)
| |
Collapse
|
15
|
Passoni G, Coulson T, Ranc N, Corradini A, Hewison AJM, Ciuti S, Gehr B, Heurich M, Brieger F, Sandfort R, Mysterud A, Balkenhol N, Cagnacci F. Roads constrain movement across behavioural processes in a partially migratory ungulate. MOVEMENT ECOLOGY 2021; 9:57. [PMID: 34774097 PMCID: PMC8590235 DOI: 10.1186/s40462-021-00292-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 10/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Human disturbance alters animal movement globally and infrastructure, such as roads, can act as physical barriers that impact behaviour across multiple spatial scales. In ungulates, roads can particularly hamper key ecological processes such as dispersal and migration, which ensure functional connectivity among populations, and may be particularly important for population performance in highly human-dominated landscapes. The impact of roads on some aspects of ungulate behaviour has already been studied. However, potential differences in response to roads during migration, dispersal and home range movements have never been evaluated. Addressing these issues is particularly important to assess the resistance of European landscapes to the range of wildlife movement processes, and to evaluate how animals adjust to anthropogenic constraints. METHODS We analysed 95 GPS trajectories from 6 populations of European roe deer (Capreolus capreolus) across the Alps and central Europe. We investigated how roe deer movements were affected by landscape characteristics, including roads, and we evaluated potential differences in road avoidance among resident, migratory and dispersing animals (hereafter, movement modes). First, using Net Squared Displacement and a spatio-temporal clustering algorithm, we classified individuals as residents, migrants or dispersers. We then identified the start and end dates of the migration and dispersal trajectories, and retained only the GPS locations that fell between those dates (i.e., during transience). Finally, we used the resulting trajectories to perform an integrated step selection analysis. RESULTS We found that roe deer moved through more forested areas during the day and visited less forested areas at night. They also minimised elevation gains and losses along their movement trajectories. Road crossings were strongly avoided at all times of day, but when they occurred, they were more likely to occur during longer steps and in more forested areas. Road avoidance did not vary among movement modes and, during dispersal and migration, it remained high and consistent with that expressed during home range movements. CONCLUSIONS Roads can represent a major constraint to movement across modes and populations, potentially limiting functional connectivity at multiple ecological scales. In particular, they can affect migrating individuals that track seasonal resources, and dispersing animals searching for novel ranges.
Collapse
Affiliation(s)
- Gioele Passoni
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, OX1 3SZ, UK.
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre (CRI), Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy.
| | - Tim Coulson
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, OX1 3SZ, UK
| | - Nathan Ranc
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, 95064, USA
| | - Andrea Corradini
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre (CRI), Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy
- Department of Civil, Environmental and Mechanical Engineering (DICAM), University of Trento, via Mesiano 77, 38123, Trento, TN, Italy
- Stelvio National Park, Via De Simoni 42, 23032, Bormio, SO, Italy
| | - A J Mark Hewison
- INRAE, CEFS, Université de Toulouse, 31326, Castanet-Tolosan, France
- LTSER ZA Pyrénées Garonne, 31320, Auzeville Tolosane, France
| | - Simone Ciuti
- Laboratory of Wildlife Ecology and Behaviour, University College Dublin, Belfield, D4, Ireland
| | - Benedikt Gehr
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Marco Heurich
- Department of Visitor Management and National Park Monitoring, Bavarian Forest National Park, Freyunger Straße 2, 94481, Grafenau, Germany
- Faculty of Environment and Natural Resources, Chair of Wildlife Ecology and Management, University of Freiburg, Tennenbacher Straße 4, 79106, Freiburg, Germany
- Institute for Forest and Wildlife Management, Inland Norway University of Applied Science, 2480, Koppang, Norway
| | - Falko Brieger
- Wildlife Institute, Forest Research Institute Baden-Wuerttemberg, Wonnhaldestraße 4, 79100, Freiburg, Germany
| | - Robin Sandfort
- Department of Integrative Biology and Biodiversity Research, Institute of Wildlife Biology and Game Management, University of Natural Resources and Life Sciences Vienna, Gregor-Mendel Straße 33, 1180, Vienna, Austria
| | - Atle Mysterud
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Blindern, P.O. Box 1066, 0316, Oslo, Norway
| | - Niko Balkenhol
- Wildlife Sciences, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Buesgenweg 3, 37077, Goettingen, Germany
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre (CRI), Fondazione Edmund Mach, Via Edmund Mach 1, 38010, San Michele all'Adige, TN, Italy
| |
Collapse
|
16
|
Maor-Cohen M, Bar-David S, Dolev A, Berger-Tal O, Saltz D, Spiegel O. Settling in: Reintroduced Persian Fallow Deer Adjust the Borders and Habitats of Their Home-Range During the First 5 Years Post Release. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.733703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translocated animals typically find themselves in a novel environment in which they must establish a home range in a manner that will maximize their fitness. We hypothesized that the initial establishment of a home range is followed by adjustments expressed as home range shifting, and occurs as familiarity with the landscape increases, until the home range is stabilized. We studied the process of home range shifting in 42 female Persian fallow deer (Dama mesopotamica) reintroduced into the Galilee, Israel over a period of 2–5 years. We used changes in the degree of home range overlap between consecutive years as an indicator of stabilization. We then compared how the mean percent cover of the key vegetation types (woodland, scrubland and open pastures) differed between the areas abandoned in the first year's home range and the areas added to the last year's home range relative to the first (using a weighted paired t-test). We also compared the distribution (using χ2 test of independence and Levene's test for homogeneity of variance) of %cover of the 3 vegetation types between the first and last year's home range. The average home range overlap increased over the 5 years following the first release. During the first-year post release, deer avoided open pastures and preferred woodland. In later years deer increase in the % open pastures (weighted t-test: p < 0.001) and decreased the % woodland cover (weighted t-test: p = 0.07) by abandoning areas with little open pasture and steeper terrain and moving into areas with more open pasture and moderate terrain. Variance of the cover types across individuals increased with time. We conclude that the home ranges of the reintroduced deer stabilized with time. The changes in vegetation and slope are driven by time-dependent changing needs reflecting a tradeoff between safety (refuge) and foraging. Our findings suggest that using the initially established home range to determine species preferences can create a misleading picture of what the optimal home range of the species really is. Individual variation in term of preferences can take a few years to be expressed due to the initial high-risk perceived by individuals in a novel environment.
Collapse
|
17
|
Picardi S, Ranc N, Smith BJ, Coates PS, Mathews SR, Dahlgren DK. Individual Variation in Temporal Dynamics of Post-release Habitat Selection. FRONTIERS IN CONSERVATION SCIENCE 2021. [DOI: 10.3389/fcosc.2021.703906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translocated animals undergo a phase of behavioral adjustment after being released in a novel environment, initially prioritizing exploration and gradually shifting toward resource exploitation. This transition has been termed post-release behavioral modification. Post-release behavioral modification may also manifest as changes in habitat selection through time, and these temporal dynamics may differ between individuals. We aimed to evaluate how post-release behavioral modification is reflected in temporal dynamics of habitat selection and its variability across individuals using a population of translocated female greater sage-grouse as a case study. Sage-grouse were translocated from Wyoming to North Dakota (USA) during the summers of 2018–2020. We analyzed individual habitat selection as a function of sagebrush cover, herbaceous cover, slope, and distance to roads. Herbaceous cover is a key foraging resource for sage-grouse during summer; thus, we expected a shift from exploration to exploitation to manifest as temporally-varying selection for herbaceous cover. For each individual sage-grouse (N = 26), we tested two competing models: a null model with no time-dependence and a model with time-dependent selection for herbaceous cover. We performed model selection at the individual level using an information-theoretic approach. Time-dependence was supported for five individuals, unsupported for seven, and the two models were indistinguishable based on AICc for the remaining fourteen. We found no association between the top-ranked model and individual reproductive status (brood-rearing or not). We showed that temporal dynamics of post-release habitat selection may emerge in some individuals but not in others, and that failing to account for time-dependence may hinder the detection of steady-state habitat selection patterns. These findings demonstrate the need to consider both temporal dynamics and individual variability in habitat selection when conducting post-release monitoring to inform translocation protocols.
Collapse
|
18
|
Urbano F, Cagnacci F. Data Management and Sharing for Collaborative Science: Lessons Learnt From the Euromammals Initiative. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.727023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The current and future consequences of anthropogenic impacts such as climate change and habitat loss on ecosystems will be better understood and therefore addressed if diverse ecological data from multiple environmental contexts are more effectively shared. Re-use requires that data are readily available to the scientific scrutiny of the research community. A number of repositories to store shared data have emerged in different ecological domains and developments are underway to define common data and metadata standards. Nevertheless, the goal is far from being achieved and many challenges still need to be addressed. The definition of best practices for data sharing and re-use can benefit from the experience accumulated by pilot collaborative projects. The Euromammals bottom-up initiative has pioneered collaborative science in spatial animal ecology since 2007. It involves more than 150 institutes to address scientific, management and conservation questions regarding terrestrial mammal species in Europe using data stored in a shared database. In this manuscript we present some key lessons that we have learnt from the process of making shared data and knowledge accessible to researchers and we stress the importance of data management for data quality assurance. We suggest putting in place a pro-active data review before data are made available in shared repositories via robust technical support and users’ training in data management and standards. We recommend pursuing the definition of common data collection protocols, data and metadata standards, and shared vocabularies with direct involvement of the community to boost their implementation. We stress the importance of knowledge sharing, in addition to data sharing. We show the crucial relevance of collaborative networking with pro-active involvement of data providers in all stages of the scientific process. Our main message is that for data-sharing collaborative efforts to obtain substantial and durable scientific returns, the goals should not only consist in the creation of e-infrastructures and software tools but primarily in the establishment of a network and community trust. This requires moderate investment, but over long-term horizons.
Collapse
|
19
|
Kautz TM, Beyer DE, Farley Z, Fowler NL, Kellner KF, Lutto AL, Petroelje TR, Belant JL. American martens use vigilance and short-term avoidance to navigate a landscape of fear from fishers at artificial scavenging sites. Sci Rep 2021; 11:12146. [PMID: 34108524 PMCID: PMC8190286 DOI: 10.1038/s41598-021-91587-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/10/2021] [Indexed: 11/09/2022] Open
Abstract
Where two sympatric species compete for the same resource and one species is dominant, there is potential for the subordinate species to be affected through interference competition or energetic costs of avoiding predation. Fishers (Pekania pennanti) and American martens (Martes americana) often have high niche overlap, but fishers are considered dominant and potentially limiting to martens. We observed presence and vigilance of fishers and martens at winter carcass sites using remote cameras in Michigan, USA, to test the hypothesis that interference competition from fishers creates a landscape of fear for martens. Within winters, fishers co-occupied 78–88% of sites occupied by martens, and martens co-occupied 79–88% of sites occupied by fishers. Fishers displaced martens from carcasses during 21 of 6117 marten visits, while martens displaced fishers during 0 of 1359 fisher visits. Martens did not alter diel activity in response to fisher use of sites. Martens allocated 37% of time to vigilance compared to 23% for fishers, and martens increased vigilance up to 8% at sites previously visited by fishers. Fishers increased vigilance by up to 8% at sites previously visited by martens. Our results indicate that fishers were dominant over martens, and martens had greater baseline perception of risk than fishers. However, fishers appeared to be also affected as the dominant competitor by putting effort into scanning for martens. Both species appeared widespread and common in our study area, but there was no evidence that fishers spatially or temporally excluded martens from scavenging at carcasses other than occasional short-term displacement when a fisher was present. Instead, martens appeared to mitigate risk from fishers by using vigilance and short-term avoidance. Multiple short-term anti-predator behaviors within a landscape of fear may facilitate coexistence among carnivore species.
Collapse
Affiliation(s)
- Todd M Kautz
- Global Wildlife Conservation Center, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA.
| | - Dean E Beyer
- Wildlife Division, Michigan Department of Natural Resources, 1990 US Highway 41 S, Marquette, MI, 49855, USA
| | - Zachary Farley
- Department of Fish, Wildlife, and Conservation Ecology, New Mexico State University, College of Agricultural, Consumer, and Environmental Sciences, 2980 South Espina, Las Cruces, NM, 88003, USA
| | - Nicholas L Fowler
- Global Wildlife Conservation Center, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Kenneth F Kellner
- Global Wildlife Conservation Center, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Ashley L Lutto
- Global Wildlife Conservation Center, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Tyler R Petroelje
- Global Wildlife Conservation Center, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| | - Jerrold L Belant
- Global Wildlife Conservation Center, State University of New York, College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, NY, 13210, USA
| |
Collapse
|
20
|
Ranc N, Moorcroft PR, Ossi F, Cagnacci F. Experimental evidence of memory-based foraging decisions in a large wild mammal. Proc Natl Acad Sci U S A 2021; 118:e2014856118. [PMID: 33837149 PMCID: PMC8053919 DOI: 10.1073/pnas.2014856118] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Many animals restrict their movements to a characteristic home range. This constrained pattern of space use is thought to result from the foraging benefits of memorizing the locations and quality of heterogeneously distributed resources. However, due to the confounding effects of sensory perception, the role of memory in home-range movement behavior lacks definitive evidence in the wild. Here, we analyze the foraging decisions of a large mammal during a field resource manipulation experiment designed to disentangle the effects of memory and perception. We parametrize a mechanistic model of spatial transitions using experimental data to quantify the cognitive processes underlying animal foraging behavior and to predict how individuals respond to resource heterogeneity in space and time. We demonstrate that roe deer (Capreolus capreolus) rely on memory, not perception, to track the spatiotemporal dynamics of resources within their home range. Roe deer foraging decisions were primarily based on recent experience (half-lives of 0.9 and 5.6 d for attribute and spatial memory, respectively), enabling them to adapt to sudden changes in resource availability. The proposed memory-based model was able to both quantify the cognitive processes underlying roe deer behavior and accurately predict how they shifted resource use during the experiment. Our study highlights the fact that animal foraging decisions are based on incomplete information on the locations of available resources, a factor that is critical to developing accurate predictions of animal spatial behavior but is typically not accounted for in analyses of animal movement in the wild.
Collapse
Affiliation(s)
- Nathan Ranc
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138;
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| | - Paul R Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138
| | - Federico Ossi
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
- Centro Agricoltura Alimenti Ambiente, Trento University, 38010 San Michele all'Adige, Italy
| | - Francesca Cagnacci
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge MA 02138
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, 38010 San Michele all'Adige, Italy
| |
Collapse
|
21
|
Ranc N, Cagnacci F, Moorcroft PR. Knowing your neighbours: How memory-mediated conspecific avoidance influences home ranges. J Anim Ecol 2021; 89:2746-2749. [PMID: 33615481 DOI: 10.1111/1365-2656.13374] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/09/2020] [Indexed: 11/28/2022]
Abstract
In Focus: Ellison, N., Hatchwell, B. J., Biddiscombe, S. J., Napper, C. J., & Potts, J. R. (2020). Mechanistic home range analysis reveals drivers of space use patterns for a non-territorial passerine. Journal of Animal Ecology. https://doi.org/10.1111/1365-2656.13292. Most animals for which space use has been studied restrict their movements into a constrained spatial area: their home range. The ubiquity of this space-use pattern suggests that home ranges are adaptive in a wide range of ecological contexts, and that they likely arise from general biological mechanisms. In this issue, Ellison et al. use a mechanistic home range analysis (MHRA) to uncover the drivers underlying home range patterns in a passerine that is non-territorial. They show that a model integrating both resource preferences (specifically, an attraction to woodland centre), and memory-mediated conspecific avoidance can capture the space-use patterns observed in a wild population of long-tailed tits Aegithalos caudatus. In doing so, their analysis extends the applicability of MHRA to capturing and predicting home range patterns beyond the previously studied cases where spatially exclusive home ranges emerge from scent mark-mediated avoidance responses to neighbouring groups.
Collapse
Affiliation(s)
- Nathan Ranc
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.,Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy.,Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Paul R Moorcroft
- Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| |
Collapse
|
22
|
Morrison TA, Merkle JA, Hopcraft JGC, Aikens EO, Beck JL, Boone RB, Courtemanch AB, Dwinnell SP, Fairbanks WS, Griffith B, Middleton AD, Monteith KL, Oates B, Riotte-Lambert L, Sawyer H, Smith KT, Stabach JA, Taylor KL, Kauffman MJ. Drivers of site fidelity in ungulates. J Anim Ecol 2021; 90:955-966. [PMID: 33481254 DOI: 10.1111/1365-2656.13425] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/28/2020] [Indexed: 01/26/2023]
Abstract
While the tendency to return to previously visited locations-termed 'site fidelity'-is common in animals, the cause of this behaviour is not well understood. One hypothesis is that site fidelity is shaped by an animal's environment, such that animals living in landscapes with predictable resources have stronger site fidelity. Site fidelity may also be conditional on the success of animals' recent visits to that location, and it may become stronger with age as the animal accumulates experience in their landscape. Finally, differences between species, such as the way memory shapes site attractiveness, may interact with environmental drivers to modulate the strength of site fidelity. We compared inter-year site fidelity in 669 individuals across eight ungulate species fitted with GPS collars and occupying a range of environmental conditions in North America and Africa. We used a distance-based index of site fidelity and tested hypothesized drivers of site fidelity using linear mixed effects models, while accounting for variation in annual range size. Mule deer Odocoileus hemionus and moose Alces alces exhibited relatively strong site fidelity, while wildebeest Connochaetes taurinus and barren-ground caribou Rangifer tarandus granti had relatively weak fidelity. Site fidelity was strongest in predictable landscapes where vegetative greening occurred at regular intervals over time (i.e. high temporal contingency). Species differed in their response to spatial heterogeneity in greenness (i.e. spatial constancy). Site fidelity varied seasonally in some species, but remained constant over time in others. Elk employed a 'win-stay, lose-switch' strategy, in which successful resource tracking in the springtime resulted in strong site fidelity the following spring. Site fidelity did not vary with age in any species tested. Our results provide support for the environmental hypothesis, particularly that regularity in vegetative phenology shapes the strength of site fidelity at the inter-annual scale. Large unexplained differences in site fidelity suggest that other factors, possibly species-specific differences in attraction to known sites, contribute to variation in the expression of this behaviour. Understanding drivers of variation in site fidelity across groups of organisms living in different environments provides important behavioural context for predicting how animals will respond to environmental change.
Collapse
Affiliation(s)
- Thomas A Morrison
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Jerod A Merkle
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - J Grant C Hopcraft
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Ellen O Aikens
- Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.,Department of Biology, University of Konstanz, Konstanz, Germany.,Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Jeffrey L Beck
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA
| | - Randall B Boone
- Department of Ecosystem Science and Sustainability and the Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
| | | | - Samantha P Dwinnell
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - W Sue Fairbanks
- Department of Natural Resource Ecology and Management, Oklahoma State University, Stillwater, OK, USA
| | - Brad Griffith
- U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Arthur D Middleton
- Department of Environmental Science, Policy and Management, University of California, Berkeley, Berkeley, CA, USA
| | - Kevin L Monteith
- Wyoming Cooperative Fish and Wildlife Research Unit, University of Wyoming, Laramie, WY, USA.,Department of Zoology and Physiology & Haub School of Environment and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - Brendan Oates
- Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Louise Riotte-Lambert
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Hall Sawyer
- Western Ecosystems Technology, Inc, Laramie, WY, USA
| | - Kurt T Smith
- Department of Ecosystem Science and Management, University of Wyoming, Laramie, WY, USA
| | - Jared A Stabach
- Smithsonian Conservation Biology Institute, Conservation Ecology Center, National Zoological Park, Front Royal, VA, USA
| | | | - Matthew J Kauffman
- U.S. Geological Survey, Wyoming Cooperative Fish and Wildlife Research Unit, Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
23
|
Malagnino A, Marchand P, Garel M, Cargnelutti B, Itty C, Chaval Y, Hewison A, Loison A, Morellet N. Do reproductive constraints or experience drive age-dependent space use in two large herbivores? Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Ossi F, Ranc N, Moorcroft P, Bonanni P, Cagnacci F. Ecological and Behavioral Drivers of Supplemental Feeding Use by Roe Deer Capreolus capreolus in a Peri-Urban Context. Animals (Basel) 2020; 10:E2088. [PMID: 33182794 PMCID: PMC7698021 DOI: 10.3390/ani10112088] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Winter supplemental feeding of ungulates potentially alters their use of resources and ecological interactions, yet relatively little is known about the patterns of feeding sites use by target populations. We used camera traps to continuously monitor winter and spring feeding site use in a roe deer population living in a peri-urban area in Northern Italy. We combined circular statistics with generalized additive and linear mixed models to analyze the diel and seasonal pattern of roe deer visits to feeding sites, and the behavioral drivers influencing visit duration. Roe deer visits peaked at dawn and dusk, and decreased from winter to spring when vegetation regrows and temperature increases. Roe deer mostly visited feeding sites solitarily; when this was not the case, they stayed longer at the site, especially when conspecifics were eating, but maintained a bimodal diel pattern of visits. These results support an opportunistic use of feeding sites, following seasonal cycles and the roe deer circadian clock. Yet, the attractiveness of these artificial resources has the potential to alter intra-specific relationships, as competition for their use induces gatherings and may extend the contact time between individuals, with potential behavioral and epidemiological consequences.
Collapse
Affiliation(s)
- Federico Ossi
- Centro Agricoltura Alimenti Ambiente, Università degli Studi di Trento, Via Edmund Mach 1, 38010 San Michele all’Adige, Italy
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (N.R.); (P.B.); (F.C.)
| | - Nathan Ranc
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (N.R.); (P.B.); (F.C.)
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA;
| | - Paul Moorcroft
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA;
| | - Priscilla Bonanni
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (N.R.); (P.B.); (F.C.)
- Department of Animal and Human Biology, University of Rome “La Sapienza”, Viale dell’Università 32, 00185 Rome, Italy
| | - Francesca Cagnacci
- Department of Biodiversity and Molecular Ecology, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010 San Michele all’Adige, Italy; (N.R.); (P.B.); (F.C.)
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA;
| |
Collapse
|
25
|
Brown CL, Smith JB, Wisdom MJ, Rowland MM, Spitz DB, Clark DA. Evaluating Indirect Effects of Hunting on Mule Deer Spatial Behavior. J Wildl Manage 2020. [DOI: 10.1002/jwmg.21916] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Casey L. Brown
- Oregon Department of Fish and Wildlife 1401 Gekeler Lane La Grande OR 97850 USA
| | - Joshua B. Smith
- Oregon Department of Fish and Wildlife 1401 Gekeler Lane La Grande OR 97850 USA
| | - Michael J. Wisdom
- U.S. Forest Service Pacific Northwest Research Station 1401 Gekeler Lane La Grande OR 97850 USA
| | - Mary M. Rowland
- U.S. Forest Service Pacific Northwest Research Station 1401 Gekeler Lane La Grande OR 97850 USA
| | - Derek B. Spitz
- Environmental Studies DepartmentUniversity of California Santa Cruz Santa Cruz CA 95064 USA
| | - Darren A. Clark
- Oregon Department of Fish and Wildlife 1401 Gekeler Lane La Grande OR 97850 USA
| |
Collapse
|
26
|
Merrill E, Killeen J, Pettit J, Trottier M, Martin H, Berg J, Bohm H, Eggeman S, Hebblewhite M. Density-Dependent Foraging Behaviors on Sympatric Winter Ranges in a Partially Migratory Elk Population. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00269] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
27
|
Preference and familiarity mediate spatial responses of a large herbivore to experimental manipulation of resource availability. Sci Rep 2020; 10:11946. [PMID: 32686691 PMCID: PMC7371708 DOI: 10.1038/s41598-020-68046-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 06/11/2020] [Indexed: 11/08/2022] Open
Abstract
The link between spatio-temporal resource patterns and animal movement behaviour is a key ecological process, however, limited experimental support for this connection has been produced at the home range scale. In this study, we analysed the spatial responses of a resident large herbivore (roe deer Capreolus capreolus) using an in situ manipulation of a concentrated food resource. Specifically, we experimentally altered feeding site accessibility to roe deer and recorded (for 25 animal-years) individual responses by GPS tracking. We found that, following the loss of their preferred resource, roe deer actively tracked resource dynamics leading to more exploratory movements, and larger, spatially-shifted home ranges. Then, we showed, for the first time experimentally, the importance of site fidelity in the maintenance of large mammal home ranges by demonstrating the return of individuals to their familiar, preferred resource despite the presence of alternate, equally-valuable food resources. This behaviour was modulated at the individual level, where roe deer characterised by a high preference for feeding sites exhibited more pronounced behavioural adjustments during the manipulation. Together, our results establish the connections between herbivore movements, space-use, individual preference, and the spatio-temporal pattern of resources in home ranging behaviour.
Collapse
|
28
|
Heffelfinger LJ, Stewart KM, Shoemaker KT, Darby NW, Bleich VC. Balancing Current and Future Reproductive Investment: Variation in Resource Selection During Stages of Reproduction in a Long-Lived Herbivore. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|