1
|
Abstract
Bees are essential pollinators of many crops and wild plants, and pesticide exposure is one of the key environmental stressors affecting their health in anthropogenically modified landscapes. Until recently, almost all information on routes and impacts of pesticide exposure came from honey bees, at least partially because they were the only model species required for environmental risk assessments (ERAs) for insect pollinators. Recently, there has been a surge in research activity focusing on pesticide exposure and effects for non-Apis bees, including other social bees (bumble bees and stingless bees) and solitary bees. These taxa vary substantially from honey bees and one another in several important ecological traits, including spatial and temporal activity patterns, foraging and nesting requirements, and degree of sociality. In this article, we review the current evidence base about pesticide exposure pathways and the consequences of exposure for non-Apis bees. We find that the insights into non-Apis bee pesticide exposure and resulting impacts across biological organizations, landscapes, mixtures, and multiple stressors are still in their infancy. The good news is that there are many promising approaches that could be used to advance our understanding, with priority given to informing exposure pathways, extrapolating effects, and determining how well our current insights (limited to very few species and mostly neonicotinoid insecticides under unrealistic conditions) can be generalized to the diversity of species and lifestyles in the global bee community. We conclude that future research to expand our knowledge would also be beneficial for ERAs and wider policy decisions concerning pollinator conservation and pesticide regulation.
Collapse
Affiliation(s)
- Nigel E Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada;
| | - Maj Rundlöf
- Department of Biology, Lund University, Lund, Sweden;
| |
Collapse
|
2
|
Adriaanse P, Arce A, Focks A, Ingels B, Jölli D, Lambin S, Rundlöf M, Süßenbach D, Del Aguila M, Ercolano V, Ferilli F, Ippolito A, Szentes C, Neri FM, Padovani L, Rortais A, Wassenberg J, Auteri D. Revised guidance on the risk assessment of plant protection products on bees ( Apis mellifera, Bombus spp. and solitary bees). EFSA J 2023; 21:e07989. [PMID: 37179655 PMCID: PMC10173852 DOI: 10.2903/j.efsa.2023.7989] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023] Open
Abstract
The European Commission asked EFSA to revise the risk assessment for honey bees, bumble bees and solitary bees. This guidance document describes how to perform risk assessment for bees from plant protection products, in accordance with Regulation (EU) 1107/2009. It is a review of EFSA's existing guidance document, which was published in 2013. The guidance document outlines a tiered approach for exposure estimation in different scenarios and tiers. It includes hazard characterisation and provides risk assessment methodology covering dietary and contact exposure. The document also provides recommendations for higher tier studies, risk from metabolites and plant protection products as mixture.
Collapse
|
3
|
Kaila L, Antinoja A, Toivonen M, Jalli M, Loukola OJ. Oral exposure to thiacloprid-based pesticide (Calypso SC480) causes physical poisoning symptoms and impairs the cognitive abilities of bumble bees. BMC Ecol Evol 2023; 23:9. [PMID: 37020270 PMCID: PMC10077645 DOI: 10.1186/s12862-023-02111-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
BACKGROUND Pesticides are identified as one of the major reasons for the global pollinator decline. However, the sublethal effects of pesticide residue levels found in pollen and nectar on pollinators have been studied little. The aim of our research was to study whether oral exposure to the thiacloprid levels found in pollen and nectar affect the learning and long-term memory of bumble bees. We tested the effects of two exposure levels of thiacloprid-based pesticide (Calypso SC480) on buff-tailed bumble bee (Bombus terrestris) in laboratory utilizing a learning performance and memory tasks designed to be difficult enough to reveal large variations across the individuals. RESULTS The lower exposure level of the thiacloprid-based pesticide impaired the bees' learning performance but not long-term memory compared to the untreated controls. The higher exposure level caused severe acute symptoms, due to which we were not able to test the learning and memory. CONCLUSIONS Our results show that oral exposure to a thiacloprid-based pesticide, calculated based on residue levels found in pollen and nectar, not only causes sublethal effects but also acute lethal effects on bumble bees. Our study underlines an urgent demand for better understanding of pesticide residues in the environment, and of the effects of those residue levels on pollinators. These findings fill the gap in the existing knowledge and help the scientific community and policymakers to enhance the sustainable use of pesticides.
Collapse
Affiliation(s)
- Lotta Kaila
- Department of Agricultural Sciences, University of Helsinki, P.O. Box 27, 00014 Helsinki, Finland
- Natural Resources Institute Finland (Luke), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Anna Antinoja
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Biology Centre of the Czech Academy of Sciences, Inst of Entomology, and Univ. of South Bohemia, Faculty of Science, Ceske Budejovice, Czech Republic
| | - Marjaana Toivonen
- Finnish Environment Institute (SYKE), Biodiversity Centre, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Marja Jalli
- Natural Resources Institute Finland (Luke), Tietotie 4, 31600 Jokioinen, Finland
| | - Olli J. Loukola
- Ecology and Genetics Research Unit, University of Oulu, PO Box 3000, 90014 Oulu, Finland
- Biodiversity Unit, University of Oulu, University of Oulu, PO Box 3000, 90014 Oulu, Finland
| |
Collapse
|
4
|
Verbeke S, Boeraeve M, Carpentier S, Jacquemyn H, Pozo MI. The impact of plant diversity and vegetation composition on bumblebee colony fitness. OIKOS 2023. [DOI: 10.1111/oik.09790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Affiliation(s)
- Sebastiaan Verbeke
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| | - Margaux Boeraeve
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| | - Sebastien Carpentier
- Division of Crop Biotechnics, Dept of Biosystems, KU Leuven Leuven Belgium
- SYBIOMA: Facility for Systems Biology Mass Spectrometry Leuven Belgium
| | - Hans Jacquemyn
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| | - María I. Pozo
- Ecology, Evolution and Biodiversity Conservation, KU Leuven Leuven Belgium
| |
Collapse
|
5
|
Möllmann JS, Colgan TJ. Genomic architecture and sexually dimorphic expression underlying immunity in the red mason bee, Osmia bicornis. INSECT MOLECULAR BIOLOGY 2022; 31:686-700. [PMID: 35716016 DOI: 10.1111/imb.12796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Insect pollinators provide crucial ecosystem services yet face increasing environmental pressures. The challenges posed by novel and reemerging pathogens on bee health means we need to improve our understanding of the immune system, an important barrier to infections and disease. Despite the importance of solitary bees, which are ecologically relevant, our understanding of the genomic basis and molecular mechanisms underlying their immune potential, and how intrinsic and extrinsic factors may influence it is limited. To improve our understanding of the genomic architecture underlying immunity of a key solitary bee pollinator, we characterized putative immune genes of the red mason bee, Osmia bicornis. In addition, we used publicly available RNA-seq datasets to determine how sexes differ in immune gene expression and splicing but also how pesticide exposure may affect immune gene expression in females. Through comparative genomics, we reveal an evolutionarily conserved set of more than 500 putative immune-related genes. We found genome-wide patterns of sex-biased gene expression, with greater enrichment of immune-related processes among genes with higher constitutive expression in males than females. Our results also suggest an up-regulation of immune-related genes in response to exposure to two common neonicotinoids, thiacloprid and imidacloprid. Collectively, our study provides important insights into the gene repertoire, regulation and expression differences in the sexes of O. bicornis, as well as providing additional support for how neonicotinoids can affect immune gene expression, which may affect the capacity of solitary bees to respond to pathogenic threats.
Collapse
Affiliation(s)
- Jannik S Möllmann
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Thomas J Colgan
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
6
|
Bertram MG, Martin JM, McCallum ES, Alton LA, Brand JA, Brooks BW, Cerveny D, Fick J, Ford AT, Hellström G, Michelangeli M, Nakagawa S, Polverino G, Saaristo M, Sih A, Tan H, Tyler CR, Wong BB, Brodin T. Frontiers in quantifying wildlife behavioural responses to chemical pollution. Biol Rev Camb Philos Soc 2022; 97:1346-1364. [PMID: 35233915 PMCID: PMC9543409 DOI: 10.1111/brv.12844] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Animal behaviour is remarkably sensitive to disruption by chemical pollution, with widespread implications for ecological and evolutionary processes in contaminated wildlife populations. However, conventional approaches applied to study the impacts of chemical pollutants on wildlife behaviour seldom address the complexity of natural environments in which contamination occurs. The aim of this review is to guide the rapidly developing field of behavioural ecotoxicology towards increased environmental realism, ecological complexity, and mechanistic understanding. We identify research areas in ecology that to date have been largely overlooked within behavioural ecotoxicology but which promise to yield valuable insights, including within- and among-individual variation, social networks and collective behaviour, and multi-stressor interactions. Further, we feature methodological and technological innovations that enable the collection of data on pollutant-induced behavioural changes at an unprecedented resolution and scale in the laboratory and the field. In an era of rapid environmental change, there is an urgent need to advance our understanding of the real-world impacts of chemical pollution on wildlife behaviour. This review therefore provides a roadmap of the major outstanding questions in behavioural ecotoxicology and highlights the need for increased cross-talk with other disciplines in order to find the answers.
Collapse
Affiliation(s)
- Michael G. Bertram
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Jake M. Martin
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Erin S. McCallum
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Lesley A. Alton
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Jack A. Brand
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Bryan W. Brooks
- Department of Environmental ScienceBaylor UniversityOne Bear PlaceWacoTexas76798‐7266U.S.A.
| | - Daniel Cerveny
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in Ceske BudejoviceZátiší 728/IIVodnany389 25Czech Republic
| | - Jerker Fick
- Department of ChemistryUmeå UniversityLinnaeus väg 10UmeåVästerbottenSE‐907 36Sweden
| | - Alex T. Ford
- Institute of Marine SciencesUniversity of PortsmouthWinston Churchill Avenue, PortsmouthHampshirePO1 2UPU.K.
| | - Gustav Hellström
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| | - Marcus Michelangeli
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Shinichi Nakagawa
- Evolution & Ecology Research Centre, School of Biological, Earth and Environmental SciencesUniversity of New South Wales, Biological Sciences West (D26)SydneyNSW2052Australia
| | - Giovanni Polverino
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
- Centre for Evolutionary Biology, School of Biological SciencesUniversity of Western Australia35 Stirling HighwayPerthWA6009Australia
- Department of Ecological and Biological SciencesTuscia UniversityVia S.M. in Gradi n.4ViterboLazio01100Italy
| | - Minna Saaristo
- Environment Protection Authority VictoriaEPA Science2 Terrace WayMacleodVictoria3085Australia
| | - Andrew Sih
- Department of Environmental Science and PolicyUniversity of California350 E Quad, DavisCaliforniaCA95616U.S.A.
| | - Hung Tan
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Charles R. Tyler
- Biosciences, College of Life and Environmental SciencesUniversity of ExeterStocker RoadExeterDevonEX4 4QDU.K.
| | - Bob B.M. Wong
- School of Biological SciencesMonash University25 Rainforest WalkMelbourneVictoria3800Australia
| | - Tomas Brodin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural SciencesSkogsmarksgränd 17UmeåVästerbottenSE‐907 36Sweden
| |
Collapse
|
7
|
Yordanova M, Evison SEF, Gill RJ, Graystock P. The threat of pesticide and disease co-exposure to managed and wild bee larvae. Int J Parasitol Parasites Wildl 2022; 17:319-326. [PMID: 35342713 PMCID: PMC8943340 DOI: 10.1016/j.ijppaw.2022.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 11/18/2022]
Abstract
Brood diseases and pesticides can reduce the survival of bee larvae, reduce bee populations, and negatively influence ecosystem biodiversity. However, major gaps persist in our knowledge regarding the routes and implications of co-exposure to these stressors in managed and wild bee brood. In this review, we evaluate the likelihood for co-exposure to brood pathogen and pesticide stressors by examining the routes of potential co-exposure and the possibility for pollen and nectar contaminated with pathogens and pesticides to become integrated into brood food. Furthermore, we highlight ways in which pesticides may increase brood disease morbidity directly, through manipulating host immunity, and indirectly through disrupting microbial communities in the guts of larvae, or compromising brood care provided by adult bees. Lastly, we quantify the brood research bias towards Apis species and discuss the implications the bias has on brood disease and pesticide risk assessment in wild bee communities. We advise that future studies should place a higher emphasis on evaluating bee brood afflictions and their interactions with commonly encountered stressors, especially in wild bee species. Brood exposure to pathogens and pesticides may occur frequently and in combination during the consumption of pollen and nectar. Brood pathogen virulence can be directly increased due to pesticide-mediated manipulation of larvae immune responses. Pesticides may indirectly increase brood disease morbidity by affecting larval gut microbial compositionand adult bee health. Research bias towards Apis species skews our understanding and management of brood disease and pesticide risks in wild bees.
Collapse
Affiliation(s)
- Monika Yordanova
- Imperial College London, Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| | - Sophie E F Evison
- School of Life Sciences, University Park, Nottingham, NG7 2TQ, United Kingdom
| | - Richard J Gill
- Imperial College London, Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| | - Peter Graystock
- Imperial College London, Silwood Park, Buckhurst Road, Berks, SL5 7PY, UK
| |
Collapse
|
8
|
Straub L, Minnameyer A, Camenzind D, Kalbermatten I, Tosi S, Van Oystaeyen A, Wäckers F, Neumann P, Strobl V. Thiamethoxam as an inadvertent anti-aphrodisiac in male bees. Toxicol Rep 2022; 9:36-45. [PMID: 34987978 PMCID: PMC8693414 DOI: 10.1016/j.toxrep.2021.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
There is consensus that neonicotinoids can impact non-target animal fertility. Thiamethoxam reduced both mating success and sperm physiology in bumblebees. Queens mated by exposed males had 50% less total living sperm in their spermatheca. Thiamethoxam may act as anti-aphrodisiac, thereby limiting conservation efforts.
Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g−1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | | | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
9
|
Watrobska CM, Ramos Rodrigues A, Arce AN, Clarke J, Gill RJ. Pollen Source Richness May Be a Poor Predictor of Bumblebee ( Bombus terrestris) Colony Growth. FRONTIERS IN INSECT SCIENCE 2021; 1:741349. [PMID: 38468876 PMCID: PMC10926443 DOI: 10.3389/finsc.2021.741349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 10/27/2021] [Indexed: 03/13/2024]
Abstract
Agricultural intensification has drastically altered foraging landscapes for bees, with large-scale crop monocultures associated with floral diversity loss. Research on bumblebees and honeybees has shown individuals feeding on pollen from a low richness of floral sources can experience negative impacts on health and longevity relative to higher pollen source richness of similar protein concentrations. Florally rich landscapes are thus generally assumed to better support social bees. Yet, little is known about whether the effects of reduced pollen source richness can be mitigated by feeding on pollen with higher crude protein concentration, and importantly how variation in diet affects whole colony growth, rearing decisions and sexual production. Studying queen-right bumblebee (Bombus terrestris) colonies, we monitored colony development under a polyfloral pollen diet or a monofloral pollen diet with 1.5-1.8 times higher crude protein concentration. Over 6 weeks, we found monofloral colonies performed better for all measures, with no apparent long-term effects on colony mass or worker production, and a higher number of pupae in monofloral colonies at the end of the experiment. Unexpectedly, polyfloral colonies showed higher mortality, and little evidence of any strategy to counteract the effects of reduced protein; with fewer and lower mass workers being reared, and males showing a similar trend. Our findings (i) provide well-needed daily growth dynamics of queenright colonies under varied diets, and (ii) support the view that pollen protein content in the foraging landscape rather than floral species richness per se is likely a key driver of colony health and success.
Collapse
Affiliation(s)
| | | | | | | | - Richard J. Gill
- Department of Life Sciences, Imperial College London, Silwood Park Campus, London, United Kingdom
| |
Collapse
|
10
|
Minnameyer A, Strobl V, Bruckner S, Camenzind DW, Van Oystaeyen A, Wäckers F, Williams GR, Yañez O, Neumann P, Straub L. Eusocial insect declines: Insecticide impairs sperm and feeding glands in bumblebees. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:146955. [PMID: 33957580 DOI: 10.1016/j.scitotenv.2021.146955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Insecticides are contributing to global insect declines, thereby creating demand to understand the mechanisms underlying reduced fitness. In the eusocial Hymenoptera, inclusive fitness depends on successful mating of male sexuals (drones) and efficient collaborative brood care by female workers. Therefore, sublethal insecticide effects on sperm and glands used in larval feeding (hypopharyngeal glands (HPG)) would provide key mechanisms for population declines in eusocial insects. However, while negative impacts for bumblebee colony fitness have been documented, the effects of insecticide exposure on individual physiology are less well understood. Here, we show that field-realistic concentrations (4.5-40 ng ml-1) of the neonicotinoid insecticide thiamethoxam significantly impair Bombus terrestris sperm and HPGs, thereby providing plausible mechanisms underlying bumblebee population decline. In the laboratory, drones and workers were exposed to five thiamethoxam concentrations (4.5 to 1000 ng ml-1). Then, survival, food consumption, body mass, HPG development, sperm quantity and viability were assessed. At all concentrations, drones were more exposed than workers due to higher food consumption. Increased body mass was observed in drones starting at 20 ng ml-1 and in workers at 100 ng ml-1. Furthermore, environmentally realistic concentrations (4.5-40 ng ml-1) did not significantly affect survival or consumption for either sex. However, thiamethoxam exposure significantly negatively affected both sperm viability and HPG development at all tested concentrations. Therefore, the results indicate a trade-off between survival and fitness components, possibly due to costly detoxification. Since sperm and HPG are corner stones of colony fitness, the data offer plausible mechanisms for bumblebee population declines. To adequately mitigate ongoing biodiversity declines for the eusocial insects, this study suggests it is essential to evaluate the impact of insecticides on fitness parameters of both sexuals and workers.
Collapse
Affiliation(s)
- Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Selina Bruckner
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Domenic W Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | | | - Geoffrey R Williams
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Orlando Yañez
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland; Agroscope, Swiss Bee Research Centre, Bern, Switzerland.
| |
Collapse
|
11
|
Powner MB, Priestley G, Hogg C, Jeffery G. Improved mitochondrial function corrects immunodeficiency and impaired respiration in neonicotinoid exposed bumblebees. PLoS One 2021; 16:e0256581. [PMID: 34437613 PMCID: PMC8389381 DOI: 10.1371/journal.pone.0256581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Neonicotinoid pesticides undermine pollinating insects including bumblebees. However, we have previously shown that mitochondrial damage induced by neonicotinoids can be corrected by 670nm light exposure. But we do not know if this protection extends to immunity or what the minimum effective level of 670nm light exposure is necessary for protection. We use whole body bee respiration in vivo as a metric of neonicotinoid damage and assess the amount of light exposure needed to correct it. We reveal that only 1 min of 670nm exposure is sufficient to correct respiratory deficits induced by pesticide and that this also completely repairs damaged immunocompetence measured by haemocyte counts and the antibacterial action of hemolymph. Further, this single 1 min exposure remains effective for 3–6 days. Longer exposures were not more effective. Such data are key for development of protective light strategies that can be delivered by relatively small economic devices placed in hives.
Collapse
Affiliation(s)
- Michael Barry Powner
- Centre for Applied Vision Research, City University of London, London, United Kingdom
| | | | - Chris Hogg
- Institute of Ophthalmology, University College London, London, United Kingdom
| | - Glen Jeffery
- Institute of Ophthalmology, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Kenna D, Pawar S, Gill RJ. Thermal flight performance reveals impact of warming on bumblebee foraging potential. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13887] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Daniel Kenna
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Samraat Pawar
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| | - Richard J. Gill
- Department of Life Sciences Imperial College LondonSilwood Park Campus Ascot UK
| |
Collapse
|
13
|
Ingwell LL, Ternest JJ, Pecenka JR, Kaplan I. Supplemental forage ameliorates the negative impact of insecticides on bumblebees in a pollinator-dependent crop. Proc Biol Sci 2021; 288:20210785. [PMID: 34187195 PMCID: PMC8242826 DOI: 10.1098/rspb.2021.0785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Insecticide use and insufficient forage are two of the leading stressors to pollinators in agroecosystems. While these factors have been well studied individually, the experimental designs do not reflect real-world conditions where insecticide exposure and lack of forage occur simultaneously and could interactively suppress pollinator health. Using outdoor enclosures, we tested the effects of insecticides (imidacloprid + lambda-cyhalothrin) and non-crop forage (clover) in a factorial design, measuring the survival, behaviour and performance of bumblebees (Bombus impatiens), as well as pollination of the focal crop, watermelon. Colony survival was synergistically reduced to 17% in watermelon alone + insecticides (survival was 100% in all other treatments). However, behavioural shifts in foraging were mainly owing to insecticides (e.g. 95% reduced visitation rate to watermelon flowers), while impacts on hive performance were primarily driven by clover presence (e.g. 374% increase in the number of live eggs). Insecticide-mediated reductions in foraging decreased crop pollination (fruit set) by 32%. Altogether, these data indicate that both insecticides and non-crop forage play integral roles in shaping pollinator health in agricultural landscapes, but the relative importance and interaction of these two factors depend on which aspect of ‘health’ is being considered.
Collapse
Affiliation(s)
- Laura L Ingwell
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN, USA
| | - John J Ternest
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN, USA.,Department of Entomology and Nematology, University of Florida, 1881 Natural Area Drive, Gainesville, FL, USA
| | - Jacob R Pecenka
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN, USA
| | - Ian Kaplan
- Department of Entomology, Purdue University, 901 West State Street, West Lafayette, IN, USA
| |
Collapse
|
14
|
Pisa L, Goulson D, Yang EC, Gibbons D, Sánchez-Bayo F, Mitchell E, Aebi A, van der Sluijs J, MacQuarrie CJK, Giorio C, Long EY, McField M, Bijleveld van Lexmond M, Bonmatin JM. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides. Part 2: impacts on organisms and ecosystems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:11749-11797. [PMID: 29124633 PMCID: PMC7921077 DOI: 10.1007/s11356-017-0341-3] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/25/2017] [Indexed: 05/15/2023]
Abstract
New information on the lethal and sublethal effects of neonicotinoids and fipronil on organisms is presented in this review, complementing the previous Worldwide Integrated Assessment (WIA) in 2015. The high toxicity of these systemic insecticides to invertebrates has been confirmed and expanded to include more species and compounds. Most of the recent research has focused on bees and the sublethal and ecological impacts these insecticides have on pollinators. Toxic effects on other invertebrate taxa also covered predatory and parasitoid natural enemies and aquatic arthropods. Little new information has been gathered on soil organisms. The impact on marine and coastal ecosystems is still largely uncharted. The chronic lethality of neonicotinoids to insects and crustaceans, and the strengthened evidence that these chemicals also impair the immune system and reproduction, highlights the dangers of this particular insecticidal class (neonicotinoids and fipronil), with the potential to greatly decrease populations of arthropods in both terrestrial and aquatic environments. Sublethal effects on fish, reptiles, frogs, birds, and mammals are also reported, showing a better understanding of the mechanisms of toxicity of these insecticides in vertebrates and their deleterious impacts on growth, reproduction, and neurobehaviour of most of the species tested. This review concludes with a summary of impacts on the ecosystem services and functioning, particularly on pollination, soil biota, and aquatic invertebrate communities, thus reinforcing the previous WIA conclusions (van der Sluijs et al. 2015).
Collapse
Affiliation(s)
| | - Dave Goulson
- School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - En-Cheng Yang
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - David Gibbons
- RSPB Centre for Conservation of Science, The Lodge, Sandy, Bedfordshire, SG19 2DL, UK
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, 1 Central Avenue, Eveleigh, NSW, 2015, Australia
| | - Edward Mitchell
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
| | - Alexandre Aebi
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000, Neuchâtel, Switzerland
- Anthropology Institute, University of Neuchâtel, Rue Saint-Nicolas 4, 2000, Neuchâtel, Switzerland
| | - Jeroen van der Sluijs
- Centre for the Study of the Sciences and the Humanities, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Department of Chemistry, University of Bergen, Postboks 7805, 5020, Bergen, Norway
- Copernicus Institute of Sustainable Development, Environmental Sciences, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, The Netherlands
| | - Chris J K MacQuarrie
- Natural Resources Canada, Canadian Forest Service, 1219 Queen St. East, Sault Ste. Marie, ON, P6A 2E5, Canada
| | | | - Elizabeth Yim Long
- Department of Entomology, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Melanie McField
- Smithsonian Institution, 701 Seaway Drive Fort Pierce, Florida, 34949, USA
| | | | - Jean-Marc Bonmatin
- Centre National de la Recherche Scientifique (CNRS), Centre de Biophysique Moléculaire, Rue Charles Sadron, 45071, Orléans, France.
| |
Collapse
|
15
|
Klaus F, Tscharntke T, Bischoff G, Grass I. Floral resource diversification promotes solitary bee reproduction and may offset insecticide effects - evidence from a semi-field experiment. Ecol Lett 2021; 24:668-675. [PMID: 33524201 DOI: 10.1111/ele.13683] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 12/19/2020] [Indexed: 01/11/2023]
Abstract
Pollinator declines in agricultural landscapes are driven by multiple stressors, but potential interactions of these remain poorly studied. Using a highly replicated semi-field study with 56 mesocosms of varying wild plant diversity (2-16 species) and oilseed rape treated with a neonicotinoid, we tested the interacting effects of resource diversity and insecticides on reproduction of a solitary wild bee. Compared to mesocosms with oilseed rape monocultures, availability of resources from wild plants complementing oilseed rape doubled brood cell production. In addition, bee reproduction increased due to plant diversity and identity effects. Exposure to neonicotinoid-treated oilseed rape reduced bee larval to adult development by 69%, but only in mesocosms with oilseed rape monocultures. Availability of complementary flower resources can thus offset negative effects of neonicotinoid-treated oilseed rape on wild bee reproduction. Policy should encourage the implementation of diverse floral resources mitigating negative effects of crop monocultures and insecticides, thereby sustaining solitary bee populations in agricultural landscapes.
Collapse
Affiliation(s)
- Felix Klaus
- University of Göttingen, Agroecology, Göttingen, Germany
| | | | - Gabriela Bischoff
- Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Bee Protection, Berlin, Germany
| | - Ingo Grass
- University of Göttingen, Agroecology, Göttingen, Germany.,University of Hohenheim, Ecology of Tropical Agricultural Systems, Stuttgart, Germany
| |
Collapse
|
16
|
Camp AA, Lehmann DM. Impacts of Neonicotinoids on the Bumble Bees Bombus terrestris and Bombus impatiens Examined through the Lens of an Adverse Outcome Pathway Framework. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:309-322. [PMID: 33226673 PMCID: PMC8577289 DOI: 10.1002/etc.4939] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/05/2020] [Accepted: 11/18/2020] [Indexed: 05/26/2023]
Abstract
Bumble bees (Bombus sp.) are important pollinators for agricultural systems and natural landscapes and have faced population declines globally in recent decades. Neonicotinoid pesticides have been implicated as one of the reasons for the population reductions in bumble bees and other pollinators due to their widespread use, specificity to the invertebrate nervous system, and toxicity to bees. Adverse outcome pathways (AOPs) are used to describe the mechanism of action of a toxicant through sequential levels of biological organization to understand the key events that occur for a given adverse outcome. We used the AOP framework to organize and present the current literature available on the impacts of neonicotinoids on bumble bees. The present review focuses on Bombus terrestris and B. impatiens, the 2 most commonly studied bumble bees due to their commercial availability. Our review does not seek to describe an AOP for the molecular initiating event shared by neonicotinoids, but rather aims to summarize the current literature and determine data gaps for the Bombus research community to address. Overall, we highlight a great need for additional studies, especially those examining cellular and organ responses in bumble bees exposed to neonicotinoids. Environ Toxicol Chem 2021;40:309-322. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- A. A. Camp
- ORISE Researcher, Oak Ridge Associated Universities, Research Triangle Park, NC 27711, USA
| | - D. M. Lehmann
- Center for Public Health and Environmental Assessment (CPHEA), Public Health & Environmental Systems Division, Exposure Indicators Branch, US - Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
17
|
Siviter H, Muth F. Do novel insecticides pose a threat to beneficial insects? Proc Biol Sci 2020; 287:20201265. [PMID: 32993471 PMCID: PMC7542824 DOI: 10.1098/rspb.2020.1265] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022] Open
Abstract
Systemic insecticides, such as neonicotinoids, are a major contributor towards beneficial insect declines. This has led to bans and restrictions on neonicotinoid use globally, most noticeably in the European Union, where four commonly used neonicotinoids (imidacloprid, thiamethoxam, clothianidin and thiacloprid) are banned from outside agricultural use. While this might seem like a victory for conservation, restrictions on neonicotinoid use will only benefit insect populations if newly emerging insecticides do not have similar negative impacts on beneficial insects. Flupyradifurone and sulfoxaflor are two novel insecticides that have been registered for use globally, including within the European Union. These novel insecticides differ in their chemical class, but share the same mode of action as neonicotinoids, raising the question as to whether they have similar sub-lethal impacts on beneficial insects. Here, we conducted a systematic literature search of the potential sub-lethal impacts of these novel insecticides on beneficial insects, quantifying these effects with a meta-analysis. We demonstrate that both flupyradifurone and sulfoxaflor have significant sub-lethal impacts on beneficial insects at field-realistic levels of exposure. These results confirm that bans on neonicotinoid use will only protect beneficial insects if paired with significant changes to the agrochemical regulatory process. A failure to modify the regulatory process will result in a continued decline of beneficial insects and the ecosystem services on which global food production relies.
Collapse
Affiliation(s)
- Harry Siviter
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX 78712, USA
| | | |
Collapse
|
18
|
Siviter H, Folly AJ, Brown MJF, Leadbeater E. Individual and combined impacts of sulfoxaflor and Nosema bombi on bumblebee ( Bombus terrestris) larval growth. Proc Biol Sci 2020; 287:20200935. [PMID: 32752985 PMCID: PMC7575523 DOI: 10.1098/rspb.2020.0935] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/13/2020] [Indexed: 01/30/2023] Open
Abstract
Sulfoxaflor is a globally important novel insecticide that can have negative impacts on the reproductive output of bumblebee (Bombus terrestris) colonies. However, it remains unclear as to which life-history stage is critically affected by exposure. One hypothesis is that sulfoxaflor exposure early in the colony's life cycle can impair larval development, reducing the number of workers produced and ultimately lowering colony reproductive output. Here we assess the influence of sulfoxaflor exposure on bumblebee larval mortality and growth both when tested in insolation and when in combination with the common fungal parasite Nosema bombi, following a pre-registered design. We found no significant impact of sulfoxaflor (5 ppb) or N. bombi exposure (50 000 spores) on larval mortality when tested in isolation but found an additive, negative effect when larvae received both stressors in combination. Individually, sulfoxaflor and N. bombi exposure each impaired larval growth, although the impact of combined exposure fell significantly short of the predicted sum of the individual effects (i.e. they interacted antagonistically). Ultimately, our results suggest that colony-level consequences of sulfoxaflor exposure for bumblebees may be mediated through direct effects on larvae. As sulfoxaflor is licensed for use globally, our findings highlight the need to understand how novel insecticides impact non-target insects at various stages of their development.
Collapse
Affiliation(s)
- Harry Siviter
- Centre for Ecology, Evolution and Behaviour, Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey TW20 0EX, UK
| | | | | | | |
Collapse
|
19
|
Gervais A, Courtois È, Fournier V, Bélisle M. Landscape composition and local floral resources influence foraging behavior but not the size of Bombus impatiens Cresson (Hymenoptera: Apidae) workers. PLoS One 2020; 15:e0234498. [PMID: 32584843 PMCID: PMC7316238 DOI: 10.1371/journal.pone.0234498] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 05/27/2020] [Indexed: 11/19/2022] Open
Abstract
Bumble bee communities are strongly disrupted worldwide through the population decline of many species; a phenomenon that has been generally attributed to landscape modification, pesticide use, pathogens, and climate change. The mechanisms by which these causes act on bumble bee colonies are, however, likely to be complex and to involve many levels of organization spanning from the community down to the least understood individual level. Here, we assessed how the morphology, weight and foraging behavior of individual workers are affected by their surrounding landscape. We hypothesized that colonies established in landscapes showing high cover of intensive crops and low cover of flowering crops, as well as low amounts of local floral resources, would produce smaller workers, which would perform fewer foraging trips and collect pollen loads less constant in species composition. We tested these predictions with 80 colonies of commercially reared Bombus impatiens Cresson placed in 20 landscapes spanning a gradient of agricultural intensification in southern Québec, Canada. We estimated weekly rate at which workers entered and exited colonies and captured eight workers per colony over a period of 14 weeks during the spring and summer of 2016. Captured workers had their wing, thorax, head, tibia, and dry weight measured, as well as their pollen load extracted and identified to the lowest possible taxonomic level. We did not detect any effect of landscape habitat composition on worker morphology or body weight, but found that foraging activity decreased with intensive crops. Moreover, higher diversity of local floral resources led to lower pollen constancy in intensively cultivated landscapes. Finally, we found a negative correlation between the size of workers and the diversity of their pollen load. Our results provide additional evidence that conservation actions regarding pollinators in arable landscapes should be made at the landscape rather than at the farm level.
Collapse
Affiliation(s)
- Amélie Gervais
- Département de Phytologie, Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Canada
| | - Ève Courtois
- Département de Biologie, Centre d’Étude de la Forêt (CEF), Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Valérie Fournier
- Département de Phytologie, Centre de Recherche et d’Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Canada
| | - Marc Bélisle
- Département de Biologie, Centre d’Étude de la Forêt (CEF), Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
20
|
Crall JD, Brokaw J, Gagliardi SF, Mendenhall CD, Pierce NE, Combes SA. Wind drives temporal variation in pollinator visitation in a fragmented tropical forest. Biol Lett 2020; 16:20200103. [PMID: 32315595 DOI: 10.1098/rsbl.2020.0103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Wind is a critical factor in the ecology of pollinating insects such as bees. However, the role of wind in determining patterns of bee abundance and floral visitation rates across space and time is not well understood. Orchid bees are an important and diverse group of neotropical pollinators that harvest pollen, nectar and resin from plants. In addition, male orchid bees collect volatile scents that they store in special chambers in their hind legs, and for which the wind-based dispersal of odours may play a particularly crucial role. Here, we take advantage of this specialized scent foraging behaviour to study the effects of wind on orchid bee visitation at scent sources in a fragmented tropical forest ecosystem. Consistent with previous work, forest cover increased orchid bee visitation. In addition, we find that temporal changes in wind speed and turbulence increase visitation to scent stations within sites. These results suggest that the increased dispersal of attractive scents provided by wind and turbulence outweighs any biomechanical or energetic costs that might deter bees from foraging in these conditions. Overall, our results highlight the significance of wind in the ecology of these important pollinators in neotropical forests.
Collapse
Affiliation(s)
- James D Crall
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Julia Brokaw
- Department of Entomology, University of Minnesota, St Paul, MN, USA
| | - Susan F Gagliardi
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| | - Chase D Mendenhall
- Section of Birds, Carnegie Museum of Natural History, Pittsburgh, PA, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Stacey A Combes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, CA, USA
| |
Collapse
|
21
|
Phelps JD, Strang CG, Sherry DF. Imidacloprid impairs performance on a model flower handling task in bumblebees (Bombus impatiens). ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:359-374. [PMID: 32124147 DOI: 10.1007/s10646-020-02182-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Bumblebees exposed to neonicotinoid pesticides collect less pollen on foraging trips. Exposed bumblebees are also slower to learn to handle flowers, which may account for reduced pollen collection. It is unclear, however, why neonicotinoid exposure slows learning to handle flowers. We investigated the effect of imidacloprid, a neonicotinoid pesticide, on bumblebee motor learning using a lab model of flower handling. Bumblebees learned to invert inside a narrow tube and lift a petal-shaped barrier to reach a reward chamber. Imidacloprid-exposed bumblebees showed a dose-dependent delay to solve the task, which resulted from reduced switching between behavioural strategies and a subsequent delay in use of the successful strategy. This effect was consistent in colonies exposed at 10 but not 2.6 ppb, suggesting a variable effect on individuals at lower doses. These results help to explain why exposed bumblebees are slow to learn to handle flowers and collect less pollen on foraging trips.
Collapse
Affiliation(s)
- Jordan D Phelps
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada.
| | - Caroline G Strang
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Austin, TX, 78712, USA
| | - David F Sherry
- Department of Psychology, University of Western Ontario, London, ON, N6A 5C2, Canada
| |
Collapse
|
22
|
Greenop A, Mica-Hawkyard N, Walkington S, Wilby A, Cook SM, Pywell RF, Woodcock BA. Equivocal Evidence for Colony Level Stress Effects on Bumble Bee Pollination Services. INSECTS 2020; 11:E191. [PMID: 32197403 PMCID: PMC7142647 DOI: 10.3390/insects11030191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/06/2020] [Accepted: 03/13/2020] [Indexed: 12/14/2022]
Abstract
Climate change poses a threat to global food security with extreme heat events causing drought and direct damage to crop plants. However, by altering behavioural or physiological responses of insects, extreme heat events may also affect pollination services on which many crops are dependent. Such effects may potentially be exacerbated by other environmental stresses, such as exposure to widely used agro-chemicals. To determine whether environmental stressors interact to affect pollination services, we carried out field cage experiments on the buff-tailed bumble bee (Bombus terrestris). Using a Bayesian approach, we assessed whether heat stress (colonies maintained at an ambient temperature of 25 °C or 31 °C) and insecticide exposure (5 ng g-1 of the neonicotinoid insecticide clothianidin) could induce behavioural changes that affected pollination of faba bean (Vicia faba). Only the bumble bee colonies and not the plants were exposed to the environmental stress treatments. Bean plants exposed to heat-stressed bumble bee colonies (31 °C) had a lower proportional pod set compared to colonies maintained at 25 °C. There was also weak evidence that heat stressed colonies caused lower total bean weight. Bee exposure to clothianidin was found to have no clear effect on plant yields, either individually or as part of an interaction. We identified no effect of either colony stressor on bumble bee foraging behaviours. Our results suggest that extreme heat stress at the colony level may impact on pollination services. However, as the effect for other key yield parameters was weaker (e.g. bean yields), our results are not conclusive. Overall, our study highlights the need for further research on how environmental stress affects behavioural interactions in plant-pollinator systems that could impact on crop yields.
Collapse
Affiliation(s)
- Arran Greenop
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| | - Nevine Mica-Hawkyard
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| | - Sarah Walkington
- Core Research Laboratories, Natural History Museum, Cromwell Rd, Kensington, London SW7 5BD, UK;
| | - Andrew Wilby
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, UK;
| | - Samantha M Cook
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK;
| | - Richard F Pywell
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| | - Ben A Woodcock
- UK Centre for Ecology & Hydrology, Maclean Building, Crowmarsh Gifford, Wallingford, Oxfordshire OX10 8BB, UK (R.F.P.); (B.A.W.)
| |
Collapse
|
23
|
Smith DB, Arce AN, Ramos Rodrigues A, Bischoff PH, Burris D, Ahmed F, Gill RJ. Insecticide exposure during brood or early-adult development reduces brain growth and impairs adult learning in bumblebees. Proc Biol Sci 2020; 287:20192442. [PMID: 32126960 DOI: 10.1098/rspb.2019.2442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
For social bees, an understudied step in evaluating pesticide risk is how contaminated food entering colonies affects residing offspring development and maturation. For instance, neurotoxic insecticide compounds in food could affect central nervous system development predisposing individuals to become poorer task performers later-in-life. Studying bumblebee colonies provisioned with neonicotinoid spiked nectar substitute, we measured brain volume and learning behaviour of 3 or 12-day old adults that had experienced in-hive exposure during brood and/or early-stage adult development. Micro-computed tomography scanning and segmentation of multiple brain neuropils showed exposure during either of the developmental stages caused reduced mushroom body calycal growth relative to unexposed workers. Associated with this was a lower probability of responding to a sucrose reward and lower learning performance in an olfactory conditioning test. While calycal volume of control workers positively correlated with learning score, this relationship was absent for exposed workers indicating neuropil functional impairment. Comparison of 3- and 12-day adults exposed during brood development showed a similar degree of reduced calycal volume and impaired behaviour highlighting lasting and irrecoverable effects from exposure despite no adult exposure. Our findings help explain how the onset of pesticide exposure to whole colonies can lead to lag-effects on growth and resultant dysfunction.
Collapse
Affiliation(s)
- Dylan B Smith
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Philipp H Bischoff
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Daisy Burris
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| | - Farah Ahmed
- Core Research Laboratories, Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park, Buckhurst Road, Ascot, Berkshire SL5 7PY, UK
| |
Collapse
|
24
|
Feldhaar H, Otti O. Pollutants and Their Interaction with Diseases of Social Hymenoptera. INSECTS 2020; 11:insects11030153. [PMID: 32121502 PMCID: PMC7142568 DOI: 10.3390/insects11030153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/07/2022]
Abstract
Many insect species, including social insects, are currently declining in abundance and diversity. Pollutants such as pesticides, heavy metals, or airborne fine particulate matter from agricultural and industrial sources are among the factors driving this decline. While these pollutants can have direct detrimental effects, they can also result in negative interactive effects when social insects are simultaneously exposed to multiple stressors. For example, sublethal effects of pollutants can increase the disease susceptibility of social insects, and thereby jeopardize their survival. Here we review how pesticides, heavy metals, or airborne fine particulate matter interact with social insect physiology and especially the insects’ immune system. We then give an overview of the current knowledge of the interactive effects of these pollutants with pathogens or parasites. While the effects of pesticide exposure on social insects and their interactions with pathogens have been relatively well studied, the effects of other pollutants, such as heavy metals in soil or fine particulate matter from combustion, vehicular transport, agriculture, and coal mining are still largely unknown. We therefore provide an overview of urgently needed knowledge in order to mitigate the decline of social insects.
Collapse
|
25
|
Uhl P, Brühl CA. The Impact of Pesticides on Flower-Visiting Insects: A Review with Regard to European Risk Assessment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2355-2370. [PMID: 31408220 DOI: 10.1002/etc.4572] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 08/08/2019] [Indexed: 05/28/2023]
Abstract
Flower-visiting insects (FVIs) are an ecologically diverse group of mobile, flying species that should be protected from pesticide effects according to European policy. However, there is an ongoing decline of FVI species, partly caused by agricultural pesticide applications. Therefore, the risk assessment framework needs to be improved. We synthesized the peer-reviewed literature on FVI groups and their ecology, habitat, exposure to pesticides, and subsequent effects. The results show that FVIs are far more diverse than previously thought. Their habitat, the entire agricultural landscape, is potentially contaminated with pesticides through multiple pathways. Pesticide exposure of FVIs at environmentally realistic levels can cause population-relevant adverse effects. This knowledge was used to critically evaluate the European regulatory framework of exposure and effect assessment. The current risk assessment should be amended to incorporate specific ecological properties of FVIs, that is, traits. We present data-driven tools to improve future risk assessments by making use of trait information. There are major knowledge gaps concerning the general investigation of groups other than bees, the collection of comprehensive data on FVI groups and their ecology, linking habitat to FVI exposure, and study of previously neglected complex population effects. This is necessary to improve our understanding of FVIs and facilitate the development of a more protective FVI risk assessment. Environ Toxicol Chem 2019;38:2355-2370. © 2019 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.
Collapse
Affiliation(s)
- Philipp Uhl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| | - Carsten A Brühl
- iES Landau, Institute for Environmental Sciences, University of Koblenz-Landau, Landau, Germany
| |
Collapse
|
26
|
Siviter H, Scott A, Pasquier G, Pull CD, Brown MJ, Leadbeater E. No evidence for negative impacts of acute sulfoxaflor exposure on bee olfactory conditioning or working memory. PeerJ 2019; 7:e7208. [PMID: 31423353 PMCID: PMC6694785 DOI: 10.7717/peerj.7208] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/29/2019] [Indexed: 01/23/2023] Open
Abstract
Systemic insecticides such as neonicotinoids and sulfoximines can be present in the nectar and pollen of treated crops, through which foraging bees can become acutely exposed. Research has shown that acute, field realistic dosages of neonicotinoids can negatively influence bee learning and memory, with potential consequences for bee behaviour. As legislative reassessment of neonicotinoid use occurs globally, there is an urgent need to understand the potential risk of other systemic insecticides. Sulfoxaflor, the first branded sulfoximine-based insecticide, has the same mode of action as neonicotinoids, and may potentially replace them over large geographical ranges. Here we assessed the impact of acute sulfoxaflor exposure on performance in two paradigms that have previously been used to illustrate negative impacts of neonicotinoid pesticides on bee learning and memory. We assayed whether acute sulfoxaflor exposure influences (a) olfactory conditioning performance in both bumblebees (Bombus terrestris) and honeybees (Apis mellifera), using a proboscis extension reflex assay, and (b) working memory performance of bumblebees, using a radial-arm maze. We found no evidence to suggest that sulfoxaflor influenced performance in either paradigm. Our results suggest that despite a shared mode of action between sulfoxaflor and neonicotinoid-based insecticides, widely-documented effects of neonicotinoids on bee cognition may not be observed with sulfoxaflor, at least at acute exposure regimes.
Collapse
Affiliation(s)
- Harry Siviter
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Alfie Scott
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Grégoire Pasquier
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Christopher D. Pull
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Mark J.F. Brown
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | - Ellouise Leadbeater
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| |
Collapse
|
27
|
Dietzsch AC, Kunz N, Wirtz IP, Stähler M, Heimbach U, Pistorius J. Does winter oilseed rape grown from clothianidin-coated seeds affect experimental populations of mason bees and bumblebees? A semi-field and field study. J Verbrauch Lebensm 2019. [DOI: 10.1007/s00003-019-01225-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Kenna D, Cooley H, Pretelli I, Ramos Rodrigues A, Gill SD, Gill RJ. Pesticide exposure affects flight dynamics and reduces flight endurance in bumblebees. Ecol Evol 2019; 9:5637-5650. [PMID: 31160987 PMCID: PMC6540668 DOI: 10.1002/ece3.5143] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/13/2019] [Accepted: 03/15/2019] [Indexed: 11/18/2022] Open
Abstract
The emergence of agricultural land use change creates a number of challenges that insect pollinators, such as eusocial bees, must overcome. Resultant fragmentation and loss of suitable foraging habitats, combined with pesticide exposure, may increase demands on foraging, specifically the ability to collect or reach sufficient resources under such stress. Understanding effects that pesticides have on flight performance is therefore vital if we are to assess colony success in these changing landscapes. Neonicotinoids are one of the most widely used classes of pesticide across the globe, and exposure to bees has been associated with reduced foraging efficiency and homing ability. One explanation for these effects could be that elements of flight are being affected, but apart from a couple of studies on the honeybee (Apis mellifera), this has scarcely been tested. Here, we used flight mills to investigate how exposure to a field realistic (10 ppb) acute dose of imidacloprid affected flight performance of a wild insect pollinator-the bumblebee, Bombus terrestris audax. Intriguingly, observations showed exposed workers flew at a significantly higher velocity over the first ¾ km of flight. This apparent hyperactivity, however, may have a cost because exposed workers showed reduced flight distance and duration to around a third of what control workers were capable of achieving. Given that bumblebees are central place foragers, impairment to flight endurance could translate to a decline in potential forage area, decreasing the abundance, diversity, and nutritional quality of available food, while potentially diminishing pollination service capabilities.
Collapse
Affiliation(s)
- Daniel Kenna
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Hazel Cooley
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Ilaria Pretelli
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
- Dipartimento di BiologiaUniversità di PadovaPadovaItaly
- Department of Human Behaviour, Ecology, and CultureMax Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Ana Ramos Rodrigues
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Steve D. Gill
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| | - Richard J. Gill
- Department of Life SciencesImperial College LondonSilwood ParkAscotBerkshireUK
| |
Collapse
|
29
|
Toivonen M, Herzon I, Rajanen H, Toikkanen J, Kuussaari M. Late flowering time enhances insect pollination of turnip rape. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Marjaana Toivonen
- Biodiversity CentreFinnish Environment Institute (SYKE) Helsinki Finland
| | - Irina Herzon
- Department of Agricultural SciencesUniversity of Helsinki Helsinki Finland
| | - Hanne Rajanen
- Department of BiosciencesUniversity of Helsinki Helsinki Finland
| | - Jenni Toikkanen
- Biodiversity CentreFinnish Environment Institute (SYKE) Helsinki Finland
| | - Mikko Kuussaari
- Biodiversity CentreFinnish Environment Institute (SYKE) Helsinki Finland
| |
Collapse
|
30
|
Pufal G, Memmert J, Leonhardt SD, Minden V. Negative bottom-up effects of sulfadiazine, but not penicillin and tetracycline, in soil substitute on plants and higher trophic levels. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:531-544. [PMID: 30466072 DOI: 10.1016/j.envpol.2018.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/05/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Veterinary antibiotics are widely used in livestock production and can be released to the environment via manure, affecting non-target organisms. Recent studies provide evidence that antibiotics can adversely affect both plants and insects but whether antibiotics in soil also affect trophic interactions is unknown. We tested whether antibiotics grown in sand as soil substitute with environmentally relevant concentrations of penicillin, sulfadiazine and tetracycline affect the survival of aphids feeding on plants (two crop and one non-crop plant species). Apera spica-venti, Brassica napus, and Triticum aestivum individuals were infested with aphids that were monitored over four weeks. We did not observe effects of penicillin or tetracycline on plants or aphids. However, sulfadiazine treatments reduced plant growth and increased mortality in the two tested grass species, but not in B. napus. Sulfadiazine subsequently decreased aphid density indirectly through reduced host plant biomass. We thus show that an antibiotic at realistic concentrations in a soil substitute can affect several trophic levels, i.e. plants and herbivores. This study contributes to the environmental risk assessment of veterinary antibiotics as it implies that their use potentially affects plant-insect interactions at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Gesine Pufal
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany.
| | - Jörg Memmert
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University of Freiburg, 79106, Freiburg, Germany
| | - Sara Diana Leonhardt
- Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074, Würzburg, Germany
| | - Vanessa Minden
- Landscape Ecology Group, Institute of Biology and Environmental Sciences, University of Oldenburg, 26111, Oldenburg, Germany; Department of Biology, Ecology and Biodiversity, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
31
|
Scott C, Bilsborrow PE. The impact of the EU neonicotinoid seed-dressing ban on oilseed rape production in England. PEST MANAGEMENT SCIENCE 2019; 75:125-133. [PMID: 30152140 DOI: 10.1002/ps.5189] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 07/26/2018] [Accepted: 08/23/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Neonicotinoid seed dressings on oilseed rape were banned in the European Union (EU) from December 2013. A survey of > 200 farms was conducted in England in the 2014/15 and 2015/16 seasons to assess the impact of the ban on changes in crop area, crop losses to cabbage stem flea beetle (CSFB), insecticide use and the economics of oilseed rape production. RESULTS The area of oilseed rape grown fell in both seasons, with CSFB identified as the third most important reason for the decrease. Crop losses to CSFB were 3% and 5% in the respective seasons, with clear variation by county. There were clear differences in the crop area treated (1.14 vs 0.77 million ha) and the number of insecticide applications per crop (2.0 vs 1.4) to combat CSFB in 2014/15 and 2015/16, respectively. Within the derogation area counties there was a clear reduction in the number of applications per crop when neonicotinoid-treated vs non-treated seed was used (1.0 vs 1.9), respectively. CONCLUSION Increasing resistance to pyrethroid insecticides in combination with the neonicotinoid seed dressing ban is likely to have significant impacts on the viability of growing oilseed rape in England particularly where CSFB activity/risk is high. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Charles Scott
- Farm Business Survey, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul E Bilsborrow
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
32
|
Non-target toxicity of novel insecticides. Arh Hig Rada Toksikol 2018; 69:86-102. [PMID: 29990301 DOI: 10.2478/aiht-2018-69-3111] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 01/04/2023] Open
Abstract
Humans have used insecticides since ancient times. The spectrum and potency of available insecticidal substances has greatly expanded since the industrial revolution, resulting in widespread use and unforeseen levels of synthetic chemicals in the environment. Concerns about the toxic effects of these new chemicals on non-target species became public soon after their appearance, which eventually led to the restrictions of use. At the same time, new, more environmentally-friendly insecticides have been developed, based on naturally occurring chemicals, such as pyrethroids (derivatives of pyrethrin), neonicotinoids (derivatives of nicotine), and insecticides based on the neem tree vegetable oil (Azadirachta indica), predominantly azadirachtin. Although these new substances are more selective toward pest insects, they can still target other organisms. Neonicotinoids, for example, have been implicated in the decline of the bee population worldwide. This review summarises recent literature published on non-target toxicity of neonicotinoids, pyrethroids, and neem-based insecticidal substances, with a special emphasis on neonicotinoid toxicity in honeybees. We also touch upon the effects of pesticide combinations and documented human exposure to these substances.
Collapse
|
33
|
Affiliation(s)
- Nigel E. Raine
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
34
|
Crall JD, Switzer CM, Oppenheimer RL, Ford Versypt AN, Dey B, Brown A, Eyster M, Guérin C, Pierce NE, Combes SA, de Bivort BL. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 2018; 362:683-686. [DOI: 10.1126/science.aat1598] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 09/26/2018] [Indexed: 11/02/2022]
Abstract
Neonicotinoid pesticides can negatively affect bee colonies, but the behavioral mechanisms by which these compounds impair colony growth remain unclear. Here, we investigate imidacloprid’s effects on bumblebee worker behavior within the nest, using an automated, robotic platform for continuous, multicolony monitoring of uniquely identified workers. We find that exposure to field-realistic levels of imidacloprid impairs nursing and alters social and spatial dynamics within nests, but that these effects vary substantially with time of day. In the field, imidacloprid impairs colony thermoregulation, including the construction of an insulating wax canopy. Our results show that neonicotinoids induce widespread disruption of within-nest worker behavior that may contribute to impaired growth, highlighting the potential of automated techniques for characterizing the multifaceted, dynamic impacts of stressors on behavior in bee colonies.
Collapse
Affiliation(s)
- James D. Crall
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Planetary Health Alliance, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Callin M. Switzer
- eScience Institute, University of Washington, Seattle, WA, USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | | | - Ashlee N. Ford Versypt
- School of Chemical Engineering, Oklahoma State University, Stillwater, OK, USA
- Interdisciplinary Toxicology Program, Oklahoma State University, Stillwater, OK, USA
| | - Biswadip Dey
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA
| | - Andrea Brown
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mackay Eyster
- Biology Department, University of Massachusetts Amherst, Amherst, MA, USA
| | - Claire Guérin
- Department of Ecology and Evolution, Université de Lausanne, Lausanne, Switzerland
| | - Naomi E. Pierce
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Stacey A. Combes
- Department of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA, USA
| | - Benjamin L. de Bivort
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
35
|
Mobley MW, Gegear RJ. One size does not fit all: Caste and sex differences in the response of bumblebees (Bombus impatiens) to chronic oral neonicotinoid exposure. PLoS One 2018; 13:e0200041. [PMID: 30296261 PMCID: PMC6175506 DOI: 10.1371/journal.pone.0200041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022] Open
Abstract
Neonicotinoid insecticides have been implicated in the rapid global decline of bumblebees over recent years, particularly in agricultural and urban areas. While there is much known about neonicotinoid toxicity effects at the colony stage of the bumblebee annual cycle, far less is known about such effects at other stages critical for the maintenance of wild populations. In the present work, individual-based feeding assays were used to show that chronic consumption of the widely used neonicotinoid clothianidin at a field-realistic average rate of 3.6 and 4.0 ng/g·bee/day reduces survival of queen and male bumblebees, respectively, within a 7-day period. In contrast, worker survival was unaffected at a similar consumption rate of 3.9 ng/g·bee/day. To test the hypothesis that males have a lower tolerance for oral clothianidin exposure than workers due to their haploid genetic status, RNAseq analysis was used to compare the transcriptomic responses of workers and males to chronic intake of clothianidin at a sub-lethal dose of 0.37ng/bee/day for 5 days. Surprisingly, clothianidin consumption only altered the expression of 19 putative detoxification genes in a sex-specific manner, with 11/19 genes showing increased expression in workers. Sub-lethal clothianidin exposure also altered the expression of 40 genes associated with other major biological functions, including locomotion, reproduction, and immunity. Collectively, these results suggest that chronic oral toxicity effects of neonicotinoids are greatest during mating and nest establishment phases of the bumblebee life cycle. Chronic oral toxicity testing on males and queens is therefore required in order to fully assess the impact of neonicotinoids on wild bumblebee populations.
Collapse
Affiliation(s)
- Melissa W. Mobley
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
| | - Robert J. Gegear
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Arce AN, Ramos Rodrigues A, Yu J, Colgan TJ, Wurm Y, Gill RJ. Foraging bumblebees acquire a preference for neonicotinoid-treated food with prolonged exposure. Proc Biol Sci 2018; 285:rspb.2018.0655. [PMID: 30158303 PMCID: PMC6125916 DOI: 10.1098/rspb.2018.0655] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 08/07/2018] [Indexed: 12/23/2022] Open
Abstract
Social bees represent an important group of pollinating insects that can be exposed to potentially harmful pesticides when foraging on treated or contaminated flowering plants. To investigate if such exposure is detrimental to bees, many studies have exclusively fed individuals with pesticide-spiked food, informing us about the hazard but not necessarily the risk of exposure. While such studies are important to establish the physiological and behavioural effects on individuals, they do not consider the possibility that the risk of exposure may change over time. For example, many pesticide assays exclude potential behavioural adaptations to novel toxins, such as rejection of harmful compounds by choosing to feed on an uncontaminated food source, thus behaviourally lowering the risk of exposure. In this paper, we conducted an experiment over 10 days in which bumblebees could forage on an array of sucrose feeders containing 0, 2 and 11 parts per billion of the neonicotinoid pesticide thiamethoxam. This more closely mimics pesticide exposure in the wild by allowing foraging bees to (i) experience a field realistic range of pesticide concentrations across a chronic exposure period, (ii) have repeated interactions with the pesticide in their environment, and (iii) retain the social cues associated with foraging by using whole colonies. We found that the proportion of visits to pesticide-laced feeders increased over time, resulting in greater consumption of pesticide-laced sucrose relative to untreated sucrose. After changing the spatial position of each feeder, foragers continued to preferentially visit the pesticide-laced feeders which indicates that workers can detect thiamethoxam and alter their behaviour to continue feeding on it. The increasing preference for consuming the neonicotinoid-treated food therefore increases the risk of exposure for the colony during prolonged pesticide exposure. Our results highlight the need to incorporate attractiveness of pesticides to foraging bees (and potentially other insect pollinators) in addition to simply considering the proportion of pesticide-contaminated floral resources within the foraging landscape.
Collapse
Affiliation(s)
- Andres N Arce
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Ana Ramos Rodrigues
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Jiajun Yu
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| | - Thomas J Colgan
- Department of Organismal Biology, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Yannick Wurm
- Department of Organismal Biology, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Richard J Gill
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot SL5 7PY, UK
| |
Collapse
|
37
|
Siviter H, Koricheva J, Brown MJF, Leadbeater E. Quantifying the impact of pesticides on learning and memory in bees. J Appl Ecol 2018; 55:2812-2821. [PMID: 30449899 PMCID: PMC6221055 DOI: 10.1111/1365-2664.13193] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/04/2018] [Indexed: 01/06/2023]
Abstract
Most insecticides are insect neurotoxins. Evidence is emerging that sublethal doses of these neurotoxins are affecting the learning and memory of both wild and managed bee colonies, exacerbating the negative effects of pesticide exposure and reducing individual foraging efficiency. Variation in methodologies and interpretation of results across studies has precluded the quantitative evaluation of these impacts that is needed to make recommendations for policy change. It is not clear whether robust effects occur under acute exposure regimes (often argued to be more field‐realistic than the chronic regimes upon which many studies are based), for field‐realistic dosages, and for pesticides other than neonicotinoids. Here we use meta‐analysis to examine the impact of pesticides on bee performance in proboscis extension‐based learning assays, the paradigm most commonly used to assess learning and memory in bees. We draw together 104 (learning) and 167 (memory) estimated effect sizes across a diverse range of studies. We detected significant negative effects of pesticides on learning and memory (i) at field realistic dosages, (ii) under both chronic and acute application, and (iii) for both neonicotinoid and non‐neonicotinoid pesticides groups. We also expose key gaps in the literature that include a critical lack of studies on non‐Apis bees, on larval exposure (potentially one of the major exposure routes), and on performance in alternative learning paradigms. Policy implications. Procedures for the registration of new pesticides within EU member states now typically require assessment of risks to pollinators if potential target crops are attractive to bees. However, our results provide robust quantitative evidence for subtle, sublethal effects, the consequences of which are unlikely to be detected within small‐scale prelicensing laboratory or field trials, but can be critical when pesticides are used at a landscape scale. Our findings highlight the need for long‐term postlicensing environmental safety monitoring as a requirement within licensing policy for plant protection products.
Collapse
Affiliation(s)
- Harry Siviter
- School of Biological Sciences Royal Holloway University of London Surrey UK
| | - Julia Koricheva
- School of Biological Sciences Royal Holloway University of London Surrey UK
| | - Mark J F Brown
- School of Biological Sciences Royal Holloway University of London Surrey UK
| | | |
Collapse
|
38
|
Mitchell EAD, Mulhauser B, Mulot M, Mutabazi A, Glauser G, Aebi A. A worldwide survey of neonicotinoids in honey. Science 2017; 358:109-111. [DOI: 10.1126/science.aan3684] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/06/2017] [Indexed: 01/04/2023]
Abstract
Growing evidence for global pollinator decline is causing concern for biodiversity conservation and ecosystem services maintenance. Neonicotinoid pesticides have been identified or suspected as a key factor responsible for this decline. We assessed the global exposure of pollinators to neonicotinoids by analyzing 198 honey samples from across the world. We found at least one of five tested compounds (acetamiprid, clothianidin, imidacloprid, thiacloprid, and thiamethoxam) in 75% of all samples, 45% of samples contained two or more of these compounds, and 10% contained four or five. Our results confirm the exposure of bees to neonicotinoids in their food throughout the world. The coexistence of neonicotinoids and other pesticides may increase harm to pollinators. However, the concentrations detected are below the maximum residue level authorized for human consumption (average ± standard error for positive samples: 1.8 ± 0.56 nanograms per gram).
Collapse
|
39
|
Neonicotinoids act like endocrine disrupting chemicals in newly-emerged bees and winter bees. Sci Rep 2017; 7:10979. [PMID: 28887455 PMCID: PMC5591280 DOI: 10.1038/s41598-017-10489-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/12/2017] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence suggests that neonicotinoids may have long-term adverse effects on bee health, yet our understanding of how this could occur is incomplete. Pesticides can act as endocrine disrupting chemicals (EDCs) in animals providing characteristic multiphasic dose-response curves and non-lethal endpoints in toxicity studies. However, it is not known if neonicotinoids act as EDCs in bees. To address this issue, we performed oral acute and chronic toxicity studies including concentrations recorded in nectar and pollen, applying acetamiprid, clothianidin, imidacloprid, and thiamethoxam to bumble bees, honey bees and leafcutter bees, the three most common bee species managed for pollination. In acute toxicity studies, late-onset symptoms, such as ataxia, were recorded as non-lethal endpoints for all three bee species. Clothianidin and thiamethoxam produced biphasic dose-response curves for all three bee species. Clothianidin and thiamethoxam were extremely toxic to winter worker honey bees prior to brood production in spring, making this the most sensitive bee stage identified to date. Chronic exposure to field-realistic levels of neonicotinoids reduced bee survival and caused significant late-onset symptoms for all three bee species. Given these findings, neonicotinoid risk should be reevaluated to address the EDC-like behavior and the sensitivity of winter worker honey bees.
Collapse
|
40
|
Stanley DA, Raine NE. Bumblebee colony development following chronic exposure to field-realistic levels of the neonicotinoid pesticide thiamethoxam under laboratory conditions. Sci Rep 2017; 7:8005. [PMID: 28808317 PMCID: PMC5556064 DOI: 10.1038/s41598-017-08752-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/18/2017] [Indexed: 01/10/2023] Open
Abstract
Neonicotinoid pesticides are used in agriculture to reduce damage from crop pests. However, beneficial insects such as bees can come into contact with these pesticides when foraging in treated areas, with potential consequences for bee declines and pollination service delivery. Honeybees are typically used as a model organism to investigate insecticide impacts on bees, but relatively little is known about impacts on other taxa such as bumblebees. In this experiment, we chronically exposed whole mature bumblebee (Bombus terrestris) colonies to field-realistic levels of the neonicotinoid thiamethoxam (2.4ppb & 10ppb) over four weeks, and compared colony growth under laboratory conditions. We found no impact of insecticide exposure on colony weight gain, or the number or mass of sexuals produced, although colonies exposed to 2.4ppb produced larger males. As previous studies have reported pesticide effects on bumblebee colony growth, this may suggest that impacts on bumblebee colonies are more pronounced for colonies at an earlier stage in the reproductive cycle. Alternatively, it may also indicate that thiamethoxam differs in toxicity compared to previously tested neonicotinoids in terms of reproductive effects. In either case, assessing bumblebee colony development under field conditions is likely more informative for real world scenarios than tests conducted in laboratory conditions.
Collapse
Affiliation(s)
- Dara A Stanley
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK.
- Botany and Plant Science, School of Natural Sciences and Ryan Institute, National University of Ireland Galway, Galway, Ireland.
| | - Nigel E Raine
- School of Biological Sciences, Royal Holloway University of London, Egham, TW20 0EX, UK
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| |
Collapse
|
41
|
Wood TJ, Goulson D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:17285-17325. [PMID: 28593544 PMCID: PMC5533829 DOI: 10.1007/s11356-017-9240-x] [Citation(s) in RCA: 333] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/09/2017] [Indexed: 05/20/2023]
Abstract
Neonicotinoid pesticides were first introduced in the mid-1990s, and since then, their use has grown rapidly. They are now the most widely used class of insecticides in the world, with the majority of applications coming from seed dressings. Neonicotinoids are water-soluble, and so can be taken up by a developing plant and can be found inside vascular tissues and foliage, providing protection against herbivorous insects. However, only approximately 5% of the neonicotinoid active ingredient is taken up by crop plants and most instead disperses into the wider environment. Since the mid-2000s, several studies raised concerns that neonicotinoids may be having a negative effect on non-target organisms, in particular on honeybees and bumblebees. In response to these studies, the European Food Safety Authority (EFSA) was commissioned to produce risk assessments for the use of clothianidin, imidacloprid and thiamethoxam and their impact on bees. These risk assessments concluded that the use of these compounds on certain flowering crops poses a high risk to bees. On the basis of these findings, the European Union adopted a partial ban on these substances in May 2013. The purpose of the present paper is to collate and summarise scientific evidence published since 2013 that investigates the impact of neonicotinoids on non-target organisms. Whilst much of the recent work has focused on the impact of neonicotinoids on bees, a growing body of evidence demonstrates that persistent, low levels of neonicotinoids can have negative impacts on a wide range of free-living organisms.
Collapse
Affiliation(s)
- Thomas James Wood
- Department of Entomology, Michigan State University, East Lansing, MI, 48824, USA.
| | - Dave Goulson
- School of Life Sciences, The University of Sussex, Falmer, East Sussex, BN1 9QG, UK
| |
Collapse
|