1
|
Sharma VM, Valsaraj TV, Venkataramana Sudeep H, Raj A, Kodimule S, Jacob J. Preparation, characterization, in vitro and in vivo studies of liposomal berberine using novel natural Fiber Interlaced Liposomal technology. Eur J Pharm Biopharm 2024; 203:114431. [PMID: 39094668 DOI: 10.1016/j.ejpb.2024.114431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/02/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Berberine hydrochloride (BBR), used in various traditional medicinal practices, has a variety of pharmacological effects. It is a plant-derived quaternary isoquinoline alkaloid with a low water solubility and can be used in the treatment of various conditions. However, the therapeutic use of BBR has been compromised because of its hydrophobic characteristics, in addition to its low stability and poor bioavailability. To overcome these drawbacks of BBR's oral bioavailability, technologies like liposomal delivery systems have been developed to ensure enhanced absorption. But conventional liposomes have low physical and chemical stability due to delicate liposomal membranes, peroxidation and rapid clearance from the bloodstream. Surface modification of liposomes could be a solution and creating a liposome with plant-based fibers as surface material will provide enhanced stability, aqueous solubility and protection against degradation. Consequently, the aim of this study is to create and describe a Fiber Interlaced Liposome™ (FIL) as a vehicle for an enhanced bioavailability platform for BBR and other biomolecules. This optimised FIL-BBR formulation was analysed for its structural and surface morphological characteristics by using FTIR, SEM, TEM, XRD, zeta potential and DSC. Encapsulation efficiency, stability, and sustained release studies using an in vitro digestion model with simulated gastric and intestinal fluids were also examined. FIL formulation showed a sustained release of BBR at 59.03 % as compared to the unformulated control (46.73 %) after 8 h of dialysis. Furthermore, the FIL-BBR demonstrated enhanced stability in the simulated gastric fluid (SGF) in addition to a more sustained release in the simulated intestinal fluid (SIF). The efficacy of FIL-BBR were further anlaysed by an in vivo bioavailability study using male Wistar rats and it demonstrated a 3.37-fold higher relative oral bioavailability compared to the unformulated BBR. The AUC 0-t for BBR in FIL-BBR was 1.38 ng.h/mL, significantly greater than the unformulated BBR (0.41 ng.h/mL). Similarly, the Cmax for BBR in FIL-BBR (50.98 ng/mL) was discovered to be far greater than unformulated BBR (15.54 ng/mL) after the oral administration. These findings imply that fruit fiber based liposomal encapsulation improves the stability and slows down BBR release, which could be advantageous for applications requiring a higher bioavailability and a more sustained release.
Collapse
Affiliation(s)
- Vedashree M Sharma
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | - T V Valsaraj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | | | - Amritha Raj
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India
| | | | - Joby Jacob
- R&D Center for Excellence, Vidya Herbs Pvt Ltd., Bangalore 560105, India.
| |
Collapse
|
2
|
Gao R, Lu Y, Zhang W, Zhang Z. The Application of Berberine in Fibrosis and the Related Diseases. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:753-773. [PMID: 38716621 DOI: 10.1142/s0192415x24500307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The formation of fibrotic tissue, characterized by the excessive accumulation of extracellular matrix (ECM) components such as collagen and fibronectin, is a normal and crucial stage of tissue repair in all organs. The over-synthesis, deposition, and remodeling of ECM components lead to organ dysfunction, posing a significant medical burden. Berberine, an isoquinoline alkaloid, is commonly used in the treatment of gastrointestinal diseases. With the deepening of scientific research, it has been gradually discovered that berberine also plays an important role in fibrotic diseases. In this review, we systematically introduce the effective role of berberine in fibrosis-related diseases. Specifically, this paper aims to provide a comprehensive review of the therapeutic role of berberine in treating fibrosis in organs such as the heart, liver, lungs, and kidneys. By summarizing its various pathways and mechanisms of action, including the inhibition of the transforming growth factor-[Formula: see text]/Smad signaling pathway, PI3K/Akt signaling pathway, MAPK signaling pathway, RhoA/ROCK signaling, and mTOR/p70S6K signaling pathway, as well as its activation of the Nrf2-ARE signaling pathway, AMPK signaling pathway, phosphorylated Smad 2/3 and Smad 7, and other signaling pathways, this review offers additional evidence to support the treatment of fibrotic diseases.
Collapse
Affiliation(s)
- Rongmao Gao
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Yuanyu Lu
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| | - Wei Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu 610057, P. R. China
| | - Zhao Zhang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, P. R. China
| |
Collapse
|
3
|
Tian E, Sharma G, Dai C. Neuroprotective Properties of Berberine: Molecular Mechanisms and Clinical Implications. Antioxidants (Basel) 2023; 12:1883. [PMID: 37891961 PMCID: PMC10604532 DOI: 10.3390/antiox12101883] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Berberine (BBR), an isoquinoline alkaloid natural product, is isolated primarily from Coptis chinensis and other Berberis plants. BBR possesses various bioactivities, including antioxidant, anti-inflammation, anticancer, immune-regulation, and antimicrobial activities. Growing scientific evidence underscores BBR's substantial neuroprotective potential, prompting increased interest and scrutiny. In this comprehensive review, we elucidate the neuroprotective attributes of BBR, delineate the underlying molecular mechanisms, and assess its clinical safety and efficacy. The multifaceted molecular mechanisms responsible for BBR's neuroprotection encompass the attenuation of oxidative stress, mitigation of inflammatory responses, inhibition of apoptotic pathways, facilitation of autophagic processes, and modulation of CYP450 enzyme activities, neurotransmitter levels, and gut microbiota composition. Furthermore, BBR engages numerous signaling pathways, including the PI3K/Akt, NF-κB, AMPK, CREB, Nrf2, and MAPK pathways, to confer its neuroprotective effects. This comprehensive review aims to provide a substantial knowledge base, stimulate broader scientific discourse, and facilitate advancements in the application of BBR for neuroprotection.
Collapse
Affiliation(s)
- Erjie Tian
- College of Animal Science and Technology, Henan University of Science and Technology, Kaiyuan Avenue 263, Luoyang 471000, China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery and Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75230, USA
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Key Biology Laboratory of Chinese Veterinary Medicine, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| |
Collapse
|
4
|
Niknam M, Maleki MH, Khakshournia S, Rasouli M, Vakili O, Shafiee SM. Bilirubin, an endogenous antioxidant that affects p53 protein and its downstream apoptosis/autophagy-related genes in LS180 and SW480 cell culture models of colorectal cancer. Biochem Biophys Res Commun 2023; 672:161-167. [PMID: 37354609 DOI: 10.1016/j.bbrc.2023.06.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/01/2023] [Accepted: 06/15/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND Colorectal cancer (CRC) is one of the commonest neoplasms worldwide, which its pathogenesis is strongly correlated with p53 mutations. Antioxidants are believed to decelerate the CRC progression, possibly through interfering with p53 and its downstream target genes and mechanisms. Regarding the potential antioxidant effects of bilirubin, as an incredible endogenous antioxidant, we sought to investigate how bilirubin affected the expression levels of p53 protein and its downstream target genes, including Mdm2, Bcl-2, BECN1 and LC3, in LS180 and SW480 cell culture models of CRC. METHODS AND RESULTS Using the MTT (3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl-2H-tetrazolium bromide) assay, 50 and 100 μM concentrations of bilirubin were determined to be non-toxic for both LS180 and SW480 cell lines. Western blot analysis was employed to evaluate the protein expression levels of p53. The results revealed that p53 protein levels were higher in LS180 cells treated with bilirubin compared to the control group. Notwithstanding, in SW480 cells, no considerable changes were observed in p53 protein levels of treated cells compared to the control ones. The quantitative reverse transcriptase-polymerase chain reaction (q RT-PCR) method was used to measure the mRNA expression levels of the apoptosis/autophagy-related genes, Mdm2, Bcl-2, BECN1, and LC3 , as the p53's downstream target genes. Consequently, the expression of Bcl-2 and Mdm2 genes were affected by p53, while BECN1 and LC3 expression levels were decreased in both cell lines. CONCLUSION Bilirubin is an endogenous antioxidant with significant anti-tumor effects in the studied CRC cell lines, probably through the regulation of p53 protein expression levels and subsequent control of apoptosis and autophagy, as two key processes involved in cell survival and progression of tumor cells.
Collapse
Affiliation(s)
- Maryam Niknam
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Hasan Maleki
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Sara Khakshournia
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Maryam Rasouli
- Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Omid Vakili
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Sayed Mohammad Shafiee
- Autophagy Research Center, Department of Clinical Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Zhu K, Yao Y, Wang K, Shao F, Zhu Z, Song Y, Zhou Z, Jiang D, Lan X, Qin C. Berberin sustained-release nanoparticles were enriched in infarcted rat myocardium and resolved inflammation. J Nanobiotechnology 2023; 21:33. [PMID: 36709291 PMCID: PMC9883926 DOI: 10.1186/s12951-023-01790-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/20/2023] [Indexed: 01/29/2023] Open
Abstract
Inflammatory regulation induced by macrophage polarization is essential for cardiac repair after myocardial infarction (MI). Berberin (BBR) is an isoquinoline tetrasystemic alkaloid extracted from plants. This study analyzes the most likely mechanism of BBR in MI treatment determined via network pharmacology, showing that BBR acts mainly through inflammatory responses. Because platelets (PLTs) can be enriched in the infarcted myocardium, PLT membrane-coated polylactic-co-glycolic acid (PLGA) nanoparticles (BBR@PLGA@PLT NPs) are used, which show enrichment in the infarcted myocardium to deliver BBR sustainably. Compared with PLGA nanoparticles, BBR@PLGA@PLT NPs are more enriched in the infarcted myocardium and exhibit less uptake in the liver. On day three after MI, BBR@PLGA@PLT NPs administration significantly increases the number of repaired macrophages and decreases the number of inflammatory macrophages and apoptotic cells in infarcted rat myocardium. On the 28th day after MI, the BBR@PLGA@PLT group exhibits a protective effect on cardiac function, reduced cardiac collagen deposition, improved scar tissue stiffness, and an excellent angiogenesis effect. In addition, BBR@PLGA@PLT group has no significant impact on major organs either histologically or enzymologically. In summary, the therapeutic effect of BBR@PLGA@PLT NPs on MI is presented in detail from the perspective of the resolution of inflammation, and a new solution for MI treatment is proposed.
Collapse
Affiliation(s)
- Ke Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Yu Yao
- grid.33199.310000 0004 0368 7223Department of Ultrasound, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei China
| | - Kun Wang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.24516.340000000123704535Department of Nuclear Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fuqiang Shao
- Department of Nuclear Medicine, The First People’s Hospital of Zigong, Zigong, Sichuan China
| | - Ziyang Zhu
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Yangmeihui Song
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Zhangyongxue Zhou
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China
| | - Dawei Jiang
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Xiaoli Lan
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| | - Chunxia Qin
- grid.33199.310000 0004 0368 7223Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Ave, Wuhan, 430022 Hubei China ,grid.412839.50000 0004 1771 3250Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022 Hubei China ,grid.419897.a0000 0004 0369 313XKey Laboratory of Biological Targeted Therapy, The Ministry of Education, Wuhan, 430022 Hubei China
| |
Collapse
|
6
|
Liu X, Wang L, Tan S, Chen Z, Wu B, Wu X. Therapeutic Effects of Berberine on Liver Fibrosis are associated With Lipid Metabolism and Intestinal Flora. Front Pharmacol 2022; 13:814871. [PMID: 35308208 PMCID: PMC8924518 DOI: 10.3389/fphar.2022.814871] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/28/2022] [Indexed: 12/12/2022] Open
Abstract
Liver cirrhosis is a form of liver fibrosis resulting from chronic hepatitis caused by various liver diseases, such as viral hepatitis, alcoholic liver damage, nonalcoholic steatohepatitis, autoimmune liver disease, and by parasitic diseases such as schistosomiasis. Liver fibrosis is the common pathological base and precursors of cirrhosis. Inflammation and disorders of lipid metabolism are key drivers in liver fibrosis. Studies have determined that parts of the arachidonic acid pathway, such as its metabolic enzymes and biologically active products, are hallmarks of inflammation, and that aberrant peroxisome proliferator-activated receptor gamma (PPARγ)-mediated regulation causes disorders of lipid metabolism. However, despite the ongoing research focus on delineating the mechanisms of liver fibrosis that underpin various chronic liver diseases, effective clinical treatments have yet to be developed. Berberine (BBR) is an isoquinoline alkaloid with multiple biological activities, such as anti-inflammatory, anti-bacterial, anti-cancer, and anti-hyperlipidemic activities. Many studies have also found that BBR acts via multiple pathways to alleviate liver fibrosis. Furthermore, the absorption of BBR is increased by nitroreductase-containing intestinal flora, and is strengthened via crosstalk with bile acid metabolism. This improves the oral bioavailability of BBR, thereby enhancing its clinical utility. The production of butyrate by intestinal anaerobic bacteria is dramatically increased by BBR, thereby amplifying butyrate-mediated alleviation of liver fibrosis. In this review, we discuss the effects of BBR on liver fibrosis and lipid metabolism, particularly the metabolism of arachidonic acid, and highlight the potential mechanisms by which BBR relieves liver fibrosis through lipid metabolism related and intestinal flora related pathways. We hope that this review will provide insights on the BBR-based treatment of liver cirrhosis and related research in this area, and we encourage further studies that increase the ability of BBR to enhance liver health.
Collapse
Affiliation(s)
- Xianzhi Liu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Lifu Wang
- KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China
| | - Siwei Tan
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Zebin Chen
- Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Bin Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| | - Xiaoying Wu
- Department of Gastroenterology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, China.,Department of Laboratory Medicine, The Third Affiliated Hospital of Sun Yat-sen University, Guangdong, China
| |
Collapse
|
7
|
Cao RY, Zheng Y, Zhang Y, Jiang L, Li Q, Sun W, Gu W, Cao W, Zhou L, Zheng H, Yang J. Berberine on the Prevention and Management of Cardiometabolic Disease: Clinical Applications and Mechanisms of Action. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1645-1666. [PMID: 34488551 DOI: 10.1142/s0192415x21500762] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Berberine is an alkaloid from several medicinal plants originally used to treat diarrhea and dysentery as a traditional Chinese herbal medicine. In recent years, berberine has been discovered to exhibit a wide spectrum of biological activities in the treatment of diverse diseases ranging from cancer and neurological dysfunctions to metabolic disorders and heart diseases. This review article summarizes the clinical practice and laboratory exploration of berberine for the treatment of cardiometabolic and heart diseases, with a focus on the novel insights and recent advances of the underlying mechanisms recognized in the past decade. Berberine was found to display pleiotropic therapeutic effects against dyslipidemia, hyperglycemia, hypertension, arrhythmia, and heart failure. The mechanisms of berberine for the treatment of cardiometabolic disease involve combating inflammation and oxidative stress such as inhibiting proprotein convertase subtilisin/kexin 9 (PCSK9) activation, regulating electrical signals and ionic channels such as targeting human ether-a-go-go related gene (hERG) currents, promoting energy metabolism such as activating adenosine monophosphate-activated protein kinase (AMPK) signaling pathway, modifying gut microbiota to promote transforming of berberine into its intestine-absorbable form, and interacting with non-coding RNAs via targeting multiple signaling pathways such as AMPK, mechanistic target of rapamycin (mTOR), etc. Collectively, berberine appears to be safe and well-tolerated in clinical practice, especially for those who are intolerant to statins. Knowledge from this field may pave the way for future development of more effective pharmaceutical approaches for managing cardiometabolic risk factors and preventing heart diseases.
Collapse
Affiliation(s)
- Richard Y Cao
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Yuntao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China.,CVD Collaborative Program of Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P. R. China
| | - Ying Zhang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Lingling Jiang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Qing Li
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wanqun Sun
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Wenqin Gu
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Weifeng Cao
- Department of Rehabilitation, Shanghai Xuhui Fengling Community Healthcare Service Center, Shanghai 200032, P. R. China
| | - Linyan Zhou
- Department of Rehabilitation, Shanghai Xuhui Caohejing Community Healthcare Service Center, Shanghai 200235, P. R. China
| | - Hongchao Zheng
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| | - Jian Yang
- CVD Collaborative Program of Shanghai Xuhui Central Hospital, Fudan University, Shanghai 200031, P. R. China
| |
Collapse
|
8
|
Pillai SC, Borah A, Jacob EM, Kumar DS. Nanotechnological approach to delivering nutraceuticals as promising drug candidates for the treatment of atherosclerosis. Drug Deliv 2021; 28:550-568. [PMID: 33703990 PMCID: PMC7954496 DOI: 10.1080/10717544.2021.1892241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022] Open
Abstract
Atherosclerosis is Caesar's sword, which poses a huge risk to the present generation. Understanding the atherosclerotic disease cycle would allow ensuring improved diagnosis, better care, and treatment. Unfortunately, a highly effective and safe way of treating atherosclerosis in the medical community remains a continuous challenge. Conventional treatments have shown considerable success, but have some adverse effects on the human body. Natural derived medications or nutraceuticals have gained immense popularity in the treatment of atherosclerosis due to their decreased side effects and toxicity-related issues. In hindsight, the contribution of nutraceuticals in imparting enhanced clinical efficacy against atherosclerosis warrants more experimental evidence. On the other hand, nanotechnology and drug delivery systems (DDS) have revolutionized the way therapeutics are performed and researchers have been constantly exploring the positive effects that DDS brings to the field of therapeutic techniques. It could be as exciting as ever to apply nano-mediated delivery of nutraceuticals as an additional strategy to target the atherosclerotic sites boasting high therapeutic efficiency of the nutraceuticals and fewer side effects.
Collapse
Affiliation(s)
- Sindhu C. Pillai
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Ankita Borah
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - Eden Mariam Jacob
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| | - D. Sakthi Kumar
- Bio-Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama, Japan
| |
Collapse
|
9
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
10
|
Li Q, Gao Y, Zhu J, Jia Q. MiR-101 Attenuates Myocardial Infarction-induced Injury by Targeting DDIT4 to Regulate Autophagy. Curr Neurovasc Res 2021; 17:123-130. [PMID: 32072912 DOI: 10.2174/1567202617666200211113016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/06/2020] [Accepted: 01/11/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Myocardial Infarction (MI), a kind of heart deficiency, is the main cause of death and disability. Autophagy, a metabolic process for the degradation of damaged proteins or organelles, is important for cardiac functions and regulated by several miRNAs including miRNA- 101. The aim of this research was to investigate the effects of miR-101 in myocardial infarctioninduced injury and the related mechanisms. METHODS MI model was induced by ligation of the left coronary artery. The in vitro model was established by hypoxia-induced H9c2 cells (rat myocardial cells). The overexpression of miR-101 was achieved by transfection. The expression of associated proteins was analyzed by Western blotting. The level of miR-101 was analyzed by reverse transcription-polymerase chain reaction (RTPCR). The target genes for miR-101 and the target sites were analyzed by TargetScan. RESULTS The results showed that miR-101 was decreased in MI mice (P<0.01). Autophagy and apoptosis were increased in MI-induced injury (in vivo) and in hypoxia treated myocardial cells (in vitro) (P<0.01). miR-101 overexpression inhibited the increase of autophagy and apoptosis in mice and myocardial cells (P<0.01). DDIT4 was a target gene of miR-101 and expressed increasingly in MI-induced injury mice and hypoxia treated myocardial cells. miR-101 could negatively regulate the expression of DDIT4. CONCLUSION This research suggested that miR-101 attenuated- MI-induced injury by targeting DDIT4 to regulate autophagy, which indicated that miR-101 or DDIT4 may be potential therapeutic targets for heart injury.
Collapse
Affiliation(s)
- Qiulan Li
- Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Yanping Gao
- Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Jie Zhu
- Department of Anesthesiology, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang City, Jiangsu Province, 215600, China
| | - Qingzhe Jia
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing City, Jiangsu Province, 210029, China
| |
Collapse
|
11
|
Raj SD, Fann DY, Wong E, Kennedy BK. Natural products as geroprotectors: An autophagy perspective. Med Res Rev 2021; 41:3118-3155. [PMID: 33973253 DOI: 10.1002/med.21815] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past decade, significant attention has been given to repurposing Food and Drug Administration approved drugs to treat age-related diseases. In contrast, less consideration has been given to natural bioactive compounds. Consequently, there have been limited attempts to translate these compounds. Autophagy is a fundamental biological pathway linked to aging, and numerous strategies to enhance autophagy have been shown to extend lifespan. Interestingly, there are a number of natural products that are reported to modulate autophagy, and here we describe a number of them that activate autophagy through diverse molecular and cellular mechanisms. Among these, Urolithin A, Spermidine, Resveratrol, Fatty Acids and Phospholipids, Trehalose and Lithium are featured in detail. Finally, we outline possible strategies to optimise and increase the translatability of natural products, with the overall aim of delaying the ageing process and improving human healthspan.
Collapse
Affiliation(s)
- Stephen D Raj
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
12
|
Tampieri A, Sandri M, Iafisco M, Panseri S, Montesi M, Adamiano A, Dapporto M, Campodoni E, Dozio SM, Degli Esposti L, Sprio S. Nanotechnological approach and bio-inspired materials to face degenerative diseases in aging. Aging Clin Exp Res 2021; 33:805-821. [PMID: 31595428 DOI: 10.1007/s40520-019-01365-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 09/21/2019] [Indexed: 12/22/2022]
Abstract
The aging of the world population is increasingly claimed as an alarming situation, since an ever-raising number of persons in advanced age but still physically active is expected to suffer from invalidating and degenerative diseases. The impairment of the endogenous healing potential provoked by the aging requires the development of more effective and personalized therapies, based on new biomaterials and devices able to direct the cell fate to stimulate and sustain the regrowth of damaged or diseased tissues. To obtain satisfactory results, also in cases where the cell senescence, typical of the elderly, makes the regeneration process harder and longer, the new solutions have to possess excellent ability to mimic the physiological extracellular environment and thus exert biomimetic stimuli on stem cells. To this purpose, the "biomimetic concept" is today recognized as elective to fabricate bioactive and bioresorbable devices such as hybrid osteochondral scaffolds and bioactive bone cements closely resembling the natural hard tissues and with enhanced regenerative ability. The review will illustrate some recent results related to these new biomimetic materials developed for application in different districts of the musculoskeletal system, namely bony, osteochondral and periodontal regions, and the spine. Further, it will be shown how new bioactive and superparamagnetic calcium phosphate nanoparticles can give enhanced results in cardiac regeneration and cancer therapy. Since tissue regeneration will be a major demand in the incoming decades, the high potential of biomimetic materials and devices is promising to significantly increase the healing rate and improve the clinical outcomes even in aged patients.
Collapse
Affiliation(s)
- Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Alessio Adamiano
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Massimiliano Dapporto
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Samuele M Dozio
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Lorenzo Degli Esposti
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Via Granarolo 64, 48018, Faenza, RA, Italy.
| |
Collapse
|
13
|
Efficacy of Alkaloids in Alleviating Myocardial Ischemia-Reperfusion Injury in Rats: A Meta-Analysis of Animal Studies. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6661526. [PMID: 33791371 PMCID: PMC7997772 DOI: 10.1155/2021/6661526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 03/09/2021] [Indexed: 12/09/2022]
Abstract
Background Animal models are well established for studying the effects of alkaloids in preventing myocardial ischemia-reperfusion injury. However, few studies have investigated the therapeutic effects of alkaloids in humans. This meta-analysis and systematic review assessed the efficacy of alkaloids in attenuating infarct size in rats with myocardial ischemia-reperfusion injury. Methods An integrated literature search including the PubMed, Embase, and Cochrane Library databases was performed to identify studies that evaluated the therapeutic effects of alkaloids on myocardial ischemia-reperfusion injury in rats. The main outcome was infarct size, and SYRCLE's risk of bias tool was used to assess the quality of the studies. Results 22 studies were brought into the meta-analysis. Compared with the effects of vehicle, alkaloids significantly reduced infarct size (standardized mean difference (SMD) = -0.45; 95% confidence interval (CI) = -0.64 to - 0.26). In subgroup analyses, isoquinoline alkaloids (SMD = -0.43; 95%CI = -0.70 to - 0.16) significantly reduced infarct size versus the control. Conclusion Isoquinoline alkaloids can potentially alleviate myocardial ischemia-reperfusion injury. This meta-analysis and systematic review supply a reference for research programs aiming to develop alkaloid-based clinical drugs. This trial is registered with CRD42019135489.
Collapse
|
14
|
Guo Q, Li B, Bao C, Li Y, Cao Y, Wang C, Wu W. Bletilla striata
Polysaccharides Improve Hemostatic, Antiinflammatory Efficacy, and Platelet Aggregation in Gingivitis Rat Model. STARCH-STARKE 2020. [DOI: 10.1002/star.202000185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Qing Guo
- Department of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Bailei Li
- Department of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Chunling Bao
- Shanghai Sixth People's Hospital East Campus Shanghai 201306 China
| | - Yixia Li
- Nanjing Baiyun Chemical Environmental Monitoring Co., Ltd. Jiangsu 210047 China
| | - Yuling Cao
- Department of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Chunxiao Wang
- Department of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| | - Wenhui Wu
- Department of Food Science and Technology Shanghai Ocean University Shanghai 201306 China
| |
Collapse
|
15
|
Liu WL, Chiang FT, Kao JTW, Chiou SH, Lin HL. GSK3 modulation in acute lung injury, myocarditis and polycystic kidney disease-related aneurysm. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118798. [PMID: 32693109 PMCID: PMC7368652 DOI: 10.1016/j.bbamcr.2020.118798] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 12/17/2022]
Abstract
GSK3 are involved in different physical and pathological conditions and inflammatory regulated by macrophages contribute to significant mechanism. Infection stimuli may modulate GSK3 activity and influence host cell adaption, immune cells infiltration or cytokine expressions. To further address the role of GSK3 modulation in macrophages, the signal transduction of three major organs challenged by endotoxin, virus and genetic inherited factors are briefly introduced (lung injury, myocarditis and autosomal dominant polycystic kidney disease). As a result of pro-inflammatory and anti-inflammatory functions of GSK3 in different microenvironments and stages of macrophages (M1/M2), the rational resolution should be considered by adequately GSK3.
Collapse
Affiliation(s)
- Wei-Lun Liu
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Critical Care Medicine, Department of Emergency and Critical Care Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan,Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan
| | - Juliana Tze-Wah Kao
- Division of Nephrology, Department of Internal Medicine, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei, Taiwan,Division of Nephrology, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan,Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan,Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Heng-Liang Lin
- Center For Innovation, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan; Division of Fund Managing, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
16
|
Wu X, Liu Z, Yu XY, Xu S, Luo J. Autophagy and cardiac diseases: Therapeutic potential of natural products. Med Res Rev 2020; 41:314-341. [PMID: 32969064 DOI: 10.1002/med.21733] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/28/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
The global incidence of cardiac diseases is expected to increase in the coming years, imposing a substantial socioeconomic burden on healthcare systems. Autophagy is a tightly regulated lysosomal degradation mechanism important for cell survival, homeostasis, and function. Accumulating pieces of evidence have indicated a major role of autophagy in the regulation of cardiac homeostasis and function. It is well established that dysregulation of autophagy in cardiomyocytes is involved in cardiac hypertrophy, myocardial infarction, diabetic cardiomyopathy, and heart failure. In this sense, autophagy seems to be an attractive therapeutic target for cardiac diseases. Recently, multiple natural products/phytochemicals, such as resveratrol, berberine, and curcumin have been shown to regulate cardiomyocyte autophagy via different pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in various cardiac diseases and the pharmacological basis and therapeutic potential of reported natural products in cardiac diseases by modifying autophagic processes.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zumei Liu
- Department of Central Laboratory, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong, China
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Suowen Xu
- Department of Endocrinology and Metabolism, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Jiandong Luo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Preconditioning Effect of High-Intensity Interval Training (HIIT) and Berberine Supplementation on the Gene Expression of Angiogenesis Regulators and Caspase-3 Protein in the Rats with Myocardial Ischemia-Reperfusion (IR) Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4104965. [PMID: 32964031 PMCID: PMC7492950 DOI: 10.1155/2020/4104965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
Objective It has been shown that angiogenesis is a desirable treatment for patients with ischemic heart disease. We set out to investigate the impact of high-intensity interval training (HIIT) and berberine supplementation on the gene expression of angiogenesis-related factors and caspase-3 protein in rats suffering from myocardial ischemic-reperfusion injury. Methods Fifty rats were divided into the following groups: (1) trained, (2) berberine supplemented, (3) combined, and (4) IR. Each cohort underwent five sessions of HIIT per week for a duration of 8 weeks followed by induction of ischemia. Seven days after completion of reperfusion, changes in the gene expression of angiogenesis-related factors and caspase-3 protein were evaluated in the heart tissue. Results We observed a significant difference between four groups in the transcript levels of vascular endothelial cell growth factor (VEGF), fibroblast growth factor-2 (FGF2), and thrombospondin-1(TSP-1) (p ≤ 0.05). However, the difference in endostatin (ENDO) levels was not significant among the groups despite a discernible reduction (p ≥ 0.05). Moreover, caspase-3 protein and infarct size were significantly reduced in the intervention groups (p ≤ 0.05), and cardiac function increased in response to these interventions. Conclusion The treatments exert their effect, likely, by reducing caspase-3 protein and increasing the expression of angiogenesis-promoting factors, concomitant with a reduction in inhibitors of the process.
Collapse
|
18
|
The effect of nutraceuticals on multiple signaling pathways in cardiac fibrosis injury and repair. Heart Fail Rev 2020; 27:321-336. [PMID: 32495263 DOI: 10.1007/s10741-020-09980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Cardiac fibrosis is one of the most common pathological conditions caused by different heart diseases, including myocardial infarction and diabetic cardiomyopathy. Cardiovascular disease is one of the major causes of mortality worldwide. Cardiac fibrosis is caused by different processes, including inflammatory reactions and oxidative stress. The process of fibrosis begins by changing the balance between production and destruction of extracellular matrix components and stimulating the proliferation and differentiation of cardiac fibroblasts. Many studies have focused on finding drugs with less adverse effects for the treatment of cardiovascular disease. Some studies show that nutraceuticals are effective in preventing and treating diseases, including cardiovascular disease, and that they can reduce the risk. However, big clinical studies to prove the therapeutic properties of all these substances and their adverse effects are lacking so far. Therefore, in this review, we tried to summarize the knowledge on pathways and mechanisms of several nutraceuticals which have shown their usefulness in the prevention of cardiac fibrosis.
Collapse
|
19
|
Ebadi N, Ghafouri-Fard S, Taheri M, Arsang-Jang S, Parsa SA, Omrani MD. Dysregulation of autophagy-related lncRNAs in peripheral blood of coronary artery disease patients. Eur J Pharmacol 2019; 867:172852. [PMID: 31836534 DOI: 10.1016/j.ejphar.2019.172852] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/26/2022]
Abstract
Coronary artery disease (CAD) as a major cause of death has been associated with dysregulation of several processes among them is autophagy. In the current study, we assessed expression of autophagy related gene 5 (ATG5) and three ATG5-associated long non-coding RNAs (lncRNAs Chast, HULC and DICER1-AS1) in the peripheral blood of patients with premature CAD and healthy subjects. Expression levels of ATG5, Chast, HULC and DICER1-AS1 were significantly lower in peripheral blood of CAD cases compared with healthy subjects. Receiver Operating Characteristic (ROC) curve analysis showed that HULC and DICER1-AS1 can properly differentiate CAD patients from healthy subjects (area under curve (AUC) values of 0.90 and 0.87, respectively). Expression levels of ATG5 and Chast were inversely correlated with FBS levels (r = -0.41, P < 0.0001 and r = -0.38, P < 0.0001 respectively) but no other biochemical factors. Expression of DICER1-AS1 was inversely correlated with FBS (r = -0.54, P < 0.0001), TG (r = -0.29, P < 0.0001) and TG/HDL ratio (r = -0.27, P < 0.0001). Expression of HULC was inversely correlated with age (r = -0.24, P < 0.0001), FBS (r = -0.62, P < 0.0001) and TG (r = -0.31, P < 0.0001). There were significant pairwise correlations between expression levels of all genes. The most robust correlations were detected ATG5 and Chast (r = 0.81, P < 0.0001) and between DICER1-AS1 and HULC (r = 0.75, P < 0.0001). The current study further verified associations between dysregulation of autophagy and CAD. Moreover, our results indicate appropriateness of two autophagy-related lncRNAs for differentiation of CAD status.
Collapse
Affiliation(s)
- Nader Ebadi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Arsang-Jang
- Department of Epidemiology and Biostatistics, Cellular and Molecular Research Center, Faculty of Health, Qom University of Medical Sciences, Qom, Iran
| | - Saeed Alipour Parsa
- Department of Cardiology, Cardiovascular Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir Davood Omrani
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Berberine Ameliorates Doxorubicin-Induced Cardiotoxicity via a SIRT1/p66Shc-Mediated Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2150394. [PMID: 31885776 PMCID: PMC6918936 DOI: 10.1155/2019/2150394] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/19/2019] [Accepted: 10/18/2019] [Indexed: 12/24/2022]
Abstract
Doxorubicin- (DOX-) induced cardiotoxicity is associated with oxidative stress and cardiomyocyte apoptosis. The adaptor protein p66Shc regulates the cellular redox status and determines cell susceptibility to apoptosis. This study is aimed at investigating the involvement of sirtuin 1- (SIRT1-) mediated p66Shc inhibition in DOX-induced redox signalling and exploring the possible protective mechanisms of berberine (Ber) against DOX-triggered cardiac injury in rats and a cultured H9c2 cell line. Our results showed that the Ber pretreatment markedly increased CAT, SOD, and GSH-PX activities, decreased the levels of MDA, and improved the electrocardiogram and histopathological changes in the myocardium in DOX-treated rats (in vivo). Furthermore, Ber significantly ameliorated the DOX-induced oxidative insult and mitochondrial damage by adjusting the levels of intracellular ROS, ΔΨm, and [Ca2+]m in H9c2 cells (in vitro). Importantly, the Ber pretreatment increased SIRT1 expression following DOX exposure but downregulated p66Shc. Consistent with the results demonstrating the SIRT1-mediated inhibition of p66Shc expression, the Ber pretreatment inhibited DOX-triggered cardiomyocyte apoptosis and mitochondrial dysfunction. After exposing H9c2 cells to DOX, the increased SIRT1 expression induced by Ber was abrogated by a SIRT1-specific inhibitor (EX527) or the use of siRNA against SIRT1. Accordingly, SIRT1 inhibition significantly abrogated the suppression of p66Shc expression and protection of Ber against DOX-induced oxidative stress and apoptosis. These results suggest that Ber protects the heart from DOX injury through SIRT1-mediated p66Shc suppression, offering a novel mechanism responsible for the protection of Ber against DOX-induced cardiomyopathy.
Collapse
|
21
|
Che Y, Shen DF, Wang ZP, Jin YG, Wu QQ, Wang SS, Yuan Y. Protective role of berberine in isoprenaline-induced cardiac fibrosis in rats. BMC Cardiovasc Disord 2019; 19:219. [PMID: 31615408 PMCID: PMC6792193 DOI: 10.1186/s12872-019-1198-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Cardiac fibrosis is a crucial aspect of cardiac remodeling that can severely affect cardiac function. Cardiac fibroblasts surely influence this process. Besides, macrophage plays an essential role in cardiac remodeling after heart injury. However, whether macrophage influence fibroblasts remain a question worth exploring. This study aimed to define the role of berberine (BBR) on isoprenaline (ISO)-induced cardiac fibrosis in an in vivo rat model and try to figure out the mechanism in vitro study. METHODS The Sprague-Dawley rats were divided into five groups: control group, ISO-treated group, and ISO + BBR (10 mg/kg/d, 30 mg/kg/d, and 60 mg/kg/d orally)-pretreatment groups. Fibrosis was induced by ISO administration (5 mg/kg/d subcutaneously) for 10 days. One day after the last injection, all of the rats were sacrificed. Using picrosirius red (PSR) straining, immunohistochemistry, immunofluorescence, flow cytometry, western blot, RT-qPCR and cell co-culture, we explored the influence of pretreatment by BBR on ISO-induced cardiac fibrosis. RESULTS Our results showed that BBR pretreatment greatly limited ISO-induced cardiac fibrosis and dysfunction. Moreover, BBR administration reduced macrophage infiltration into the myocardium of ISO-treated rats and inhibited transforming growth factor (TGF)-β1/smads signaling pathways in comparison to that seen in the ISO group. Besides, in vitro study showed that BBR-pretreatment reduced ISO-induced TGF-β1 mRNA expression in macrophages and ISO stimulation of macrophages significantly increased the expression of fibrotic markers in fibroblasts, but BBR-pretreatment blocked this increase. CONCLUSION Our results showed that BBR may have a protective role to cardiac injury via reducing of macrophage infiltration and forbidding fibroblasts transdifferent into an 'activated' secretory phenotype, myofibroblasts.
Collapse
Affiliation(s)
- Yan Che
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Di-Fei Shen
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Zhao-Peng Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Ya-Ge Jin
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Qing-Qing Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Sha-Sha Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China.,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China
| | - Yuan Yuan
- Department of Cardiology, Renmin Hospital of Wuhan University, Jiefang Rd 238, Wuhan, 430060, China. .,Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, China.
| |
Collapse
|
22
|
Gu M, He P, Lyu C, Liu X, Xu Y, Cheng S, Gu Y, Jia Y. Spinosin and 6'''‑Feruloylspinosin protect the heart against acute myocardial ischemia and reperfusion in rats. Mol Med Rep 2019; 20:4253-4261. [PMID: 31545438 PMCID: PMC6797956 DOI: 10.3892/mmr.2019.10686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/30/2019] [Indexed: 11/23/2022] Open
Abstract
Investigating active compounds from Chinese herbal medicine that can rescue myocardial cells is a good approach to preserve cardiac function. Several herbal formulae that containing Semen Ziziphi Spinosae (SZS), also called Suanzaoren in Chinese, are clinically effective in the treatment of patients with acute myocardial infarction (AMI). The present study aimed to investigate the cardioprotective effects of spinosin and 6‴-feruloylspinosin, two flavonoid glycosides from SZS, in a rat model of myocardial ischemia and reperfusion. The left anterior descending artery (LAD) was occluded to induce myocardial ischemia. Spinosin or 6‴-feruloylspinosin (5 mg/kg) was intraperitoneally injected into rats 30 min before LAD ligation. The protein levels of myocardial enzymes in the serum, the extent of tissue injury and the rate of apoptosis were examined after AMI in rats with or without pretreatment with spinosin or 6‴-feruloylspinosin. Western blotting was performed to investigate the potential mechanisms underlying the function of these two flavonoid glycosides. The present results suggested that pretreatment with spinosin or 6‴-feruloylspinosin significantly attenuated myocardial tissue injury, and reduced myocardial enzyme release and cell apoptosis in AMI rats. In addition, spinosin treatment increased light chain 3B-II and 6‴-feruloylspinosin, and reduced p62, indicating that autophagy was promoted after drug treatments. Treatments of spinosin and 6‴-feruloylspinosin led to the reduction of glycogen synthase kinase-3β (GSK3β) phosphorylation at Tyr216, and the increase of peroxisome proliferator-activated receptor γ coactivator (PGC)-1α and its downstream signaling proteins, including nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and hemeoxygenase1 (HO-1). The present data suggested that SZS flavonoids could protect myocardial cells against acute heart ischemia-reperfusion, probably via the inhibition of GSK3β, which increased autophagy and the activity of the PGC-1α/Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Minhua Gu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Peikun He
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Chenfei Lyu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Xiaoyu Liu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuling Xu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Saibo Cheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yong Gu
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| | - Yuhua Jia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, P.R. China
| |
Collapse
|
23
|
Mohammadinejad R, Ahmadi Z, Tavakol S, Ashrafizadeh M. Berberine as a potential autophagy modulator. J Cell Physiol 2019; 234:14914-14926. [PMID: 30770555 DOI: 10.1002/jcp.28325] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Today, pharmacognosy is considered a valuable science in the prevention and treatment of diseases. Among herbals, Berberine is an isoquinoline alkaloid found in the Berberis species. Surprisingly, it shows antimicrobial, antiviral, antidiarrheal, antipyretic, and anti-inflammatory potential. Furthermore, it diminishes drug resistance in cancer therapy and enhances tumor suppression in part through autophagy and cell cycle arrest mechanisms. In the present review, we discuss the effect of berberine on diverse cellular pathways and describe how berberine acts as an autophagy modulator to adjust physiologic and pathologic conditions and diminishes drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Reza Mohammadinejad
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, Shushtar, Khuzestan, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| |
Collapse
|
24
|
Wu D, Zhang K, Hu P. The Role of Autophagy in Acute Myocardial Infarction. Front Pharmacol 2019; 10:551. [PMID: 31214022 PMCID: PMC6554699 DOI: 10.3389/fphar.2019.00551] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/01/2019] [Indexed: 12/14/2022] Open
Abstract
Acute myocardial infarction refers to a sudden death of cardiomyocytes, which leads to a large mortality worldwide. To attenuate acute myocardial infarction, strategies should be made to increase cardiomyocyte survival, improve postinfarcted cardiac function, and reverse the process of cardiac remodeling. Autophagy, a pivotal cellular response, has been widely studied and is known to be involved in various kinds of diseases. In the recent few years, the role of autophagy in diseases has been drawn increasing attention to by researchers. Here in this review, we mainly focus on the discussion of the effect of autophagy on the pathogenesis and progression of acute myocardial infarction under ischemic and ischemia/reperfusion injuries. Furthermore, several popular therapeutic agents and strategies taking advantage of autophagy will be described.
Collapse
Affiliation(s)
- Du Wu
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Kangfeng Zhang
- Department of Internal Medicine, The WuYun Mountain Sanatorium of Hangzhou, Hangzhou, China
| | - Pengfei Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
25
|
Cannabinoid receptor 2 deletion deteriorates myocardial infarction through the down-regulation of AMPK-mTOR-p70S6K signaling-mediated autophagy. Biosci Rep 2019; 39:BSR20180650. [PMID: 30923227 PMCID: PMC6487266 DOI: 10.1042/bsr20180650] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 03/23/2019] [Accepted: 03/26/2019] [Indexed: 12/13/2022] Open
Abstract
Cannabinoid receptor 2 (CB2R) has been reported to play an important role in the regulation of pathogenesis and progression of myocardial infarction (MI). Here we tried to investigate its potential mechanisms. The ratio of infarct size in heart issue was detected by TTC staining, and cardiac functions were calculated according to echocardiographic evaluation. Cell viability in cardiomyocytes was investigated by Cell Counting Kit-8 (CCK-8) and lactate dehydrogenase (LDH) release assays. Western blot was used to detect autophagy-related proteins including Beclin-1, LC3, p62, adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-mammalian target of rapamycin rabbit (mTOR)-p70 ribosomal protein S6 kinase (p70S6K) signaling-related proteins including AMPK, mTOR, p70S6K, and their phosphorylation formation. Rapamycin was used for the induction of autophagy. Cleaved caspase-3 and Bax were detected for analyzing apoptosis. TEM was used for the detection of autophagosomes. We found that CB2R deletion (CB2R KO) largely deteriorated the severity of MI and the cardiac function as well as cell viability of cardiomyocytes. Knocking out CB2R decreased the level of autophagy in heart issues from MI mice as well as cardiomyocytes under oxygen-glucose deprivation (OGD). Furthermore, CB2R dysfunction significantly attenuated the cardiac protective effects of rapamycin both in vivo and in vitro Finally, we found that CB2R-mediated autophagy was induced by AMPK-mTOR-p70S6K signaling pathway. Our current study demonstrated for the first time that CB2R deletion led to a detrimental effect of MI through the dysfunction of AMPK-mTOR-p70S6K signaling pathway, which might provide a novel insight in the treatment of MI.
Collapse
|
26
|
Giampieri F, Afrin S, Forbes-Hernandez TY, Gasparrini M, Cianciosi D, Reboredo-Rodriguez P, Varela-Lopez A, Quiles JL, Battino M. Autophagy in Human Health and Disease: Novel Therapeutic Opportunities. Antioxid Redox Signal 2019; 30:577-634. [PMID: 29943652 DOI: 10.1089/ars.2017.7234] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE In eukaryotes, autophagy represents a highly evolutionary conserved process, through which macromolecules and cytoplasmic material are degraded into lysosomes and recycled for biosynthetic or energetic purposes. Dysfunction of the autophagic process has been associated with the onset and development of many human chronic pathologies, such as cardiovascular, metabolic, and neurodegenerative diseases as well as cancer. Recent Advances: Currently, comprehensive research is being carried out to discover new therapeutic agents that are able to modulate the autophagic process in vivo. Recent evidence has shown that a large number of natural bioactive compounds are involved in the regulation of autophagy by modulating several transcriptional factors and signaling pathways. CRITICAL ISSUES Critical issues that deserve particular attention are the inadequate understanding of the complex role of autophagy in disease pathogenesis, the limited availability of therapeutic drugs, and the lack of clinical trials. In this context, the effects that natural bioactive compounds exert on autophagic modulation should be clearly highlighted, since they depend on the type and stage of the pathological conditions of diseases. FUTURE DIRECTIONS Research efforts should now focus on understanding the survival-supporting and death-promoting roles of autophagy, how natural compounds interact exactly with the autophagic targets so as to induce or inhibit autophagy and on the evaluation of their pharmacological effects in a more in-depth and mechanistic way. In addition, clinical studies on autophagy-inducing natural products are strongly encouraged, also to highlight some fundamental aspects, such as the dose, the duration, and the possible synergistic action of these compounds with conventional therapy.
Collapse
Affiliation(s)
- Francesca Giampieri
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Sadia Afrin
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Tamara Y Forbes-Hernandez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,2 Area de Nutricion y Salud, Universidad Internacional Iberoamericana , Campeche, Mexico
| | - Massimiliano Gasparrini
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Danila Cianciosi
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Patricia Reboredo-Rodriguez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,3 Departamento de Quimica Analıtica y Alimentaria, Grupo de Nutricion y Bromatologıa, Universidade Vigo , Ourense, Spain
| | - Alfonso Varela-Lopez
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy
| | - Jose L Quiles
- 4 Department of Physiology, Institute of Nutrition and Food Technology "Jose Mataix," Biomedical Research Centre, University of Granada , Granada, Spain
| | - Maurizio Battino
- 1 Dipartimento di Scienze Cliniche Specialistiche ed Odontostomatologiche-Sez. Biochimica , Facoltà di Medicina, Università Politecnica delle Marche , Ancona, Italy .,5 Centre for Nutrition and Health, Universidad Europea del Atlantico (UEA) , Santander, Spain
| |
Collapse
|
27
|
Fan D, Liu L, Wu Z, Cao M. Combating Neurodegenerative Diseases with the Plant Alkaloid Berberine: Molecular Mechanisms and Therapeutic Potential. Curr Neuropharmacol 2019; 17:563-579. [PMID: 29676231 PMCID: PMC6712296 DOI: 10.2174/1570159x16666180419141613] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/10/2018] [Accepted: 04/18/2018] [Indexed: 01/08/2023] Open
Abstract
Neurodegenerative diseases are among the most serious health problems affecting millions of people worldwide. Such diseases are characterized by a progressive degeneration and / or death of neurons in the central nervous system. Currently, there are no therapeutic approaches to cure or even halt the progression of neurodegenerative diseases. During the last two decades, much attention has been paid to the neuroprotective and anti-neurodegenerative activities of compounds isolated from natural products with high efficacy and low toxicity. Accumulating evidence indicates that berberine, an isoquinoline alkaloid isolated from traditional Chinese medicinal herbs, may act as a promising anti-neurodegenerative agent by inhibiting the activity of the most important pathogenic enzymes, ameliorating intracellular oxidative stress, attenuating neuroinflammation, triggering autophagy and protecting neurons against apoptotic cell death. This review attempts to summarize the current state of knowledge regarding the therapeutic potential of berberine against neurodegenerative diseases, with a focus on the molecular mechanisms that underlie its effects on Alzheimer's, Parkinson's and Huntington's diseases.
Collapse
Affiliation(s)
| | | | - Zhengzhi Wu
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| | - Meiqun Cao
- Address correspondence to these authors at the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China;, E-mail: and Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, China; E-mail:
| |
Collapse
|
28
|
Wang Y, Li Y, He C, Gou B, Song M. Mitochondrial regulation of cardiac aging. Biochim Biophys Acta Mol Basis Dis 2018; 1865:1853-1864. [PMID: 30593894 DOI: 10.1016/j.bbadis.2018.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 12/13/2022]
Abstract
Aging is associated with progressive decline in cardiac structure and function. Accumulating evidence in model organisms and humans links cardiac aging to mitochondrial regulation, encompassing a complex interplay of mitochondrial morphology, mitochondrial ROS, mitochondrial DNA mutations, mitochondrial unfolded protein response, nicotinamide adenine dinucleotide levels and sirtuins, as well as mitophagy. This review summarizes the recent discoveries on the mitochondrial regulation of cardiac aging and the possible molecular mechanisms underlying the anti-aging effects, as well as the potential interventions that alleviate aging-related cardiac diseases and attenuate cardiac aging via the regulation of mitochondria.
Collapse
Affiliation(s)
- Yuhan Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Forestry University, Beijing 100083, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Science and Technology of China, Anhui 230026, China
| | - Chuting He
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Gou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute of Stem cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Zhao Y, Tian X, Liu G, Wang K, Xie Y, Qiu Y. Berberine protects myocardial cells against anoxia-reoxygenation injury via p38 MAPK-mediated NF-κB signaling pathways. Exp Ther Med 2018; 17:230-236. [PMID: 30651787 PMCID: PMC6307361 DOI: 10.3892/etm.2018.6949] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 07/13/2018] [Indexed: 12/23/2022] Open
Abstract
Ischemic heart disease is a leading cause of mortality and occurs due to coronary arterial atherosclerosis, vascular cavity stenosis and occlusion. It has previously been demonstrated that berberine treatment may ameliorate and help to prevent cardiovascular diseases due to its anti-inflammatory and anti-apoptotic effects in myocardial cells. However, the potential signaling mechanisms mediated by berberine in the progression of myocardial injury remain to be elucidated. The aim of the present study was to investigate the therapeutic effects of berberine and its potential mechanism in a mouse model of myocardial cell injury. The results revealed that berberine treatment downregulated the serum expression of inflammatory factors, including interleukin (IL)-6, tumor necrosis factor-α, IL-10 and IL-17A in mice with anoxia-reoxygenation injury. Berberine treatment also decreased myocardial cell apoptosis following anoxia-reoxygenation injury via regulating the expression of apoptosis-associated genes. Histological analysis revealed that the area, circumference fragmentation and segmentation of myocardial cells were significantly decreased by berberine treatment compared with the control group. The body weight, blood lipid levels, blood pressure and heart rate were markedly improved in mice with anoxia-reoxygenation injury following berberine treatment compared with untreated mice. The expression of p38 mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB expression was downregulated in myocardial cells from in mice with anoxia-reoxygenation injury following berberine treatment compared with untreated mice. However, p38 MAPK overexpression ameliorated the berberine-induced decrease in NF-κB activity and expression, as well as the berberine-induced inhibition of myocardial apoptosis in myocardial cells isolated from experimental mice. In conclusion, the results of the present study indicate that berberine is able to decrease the expression of inflammatory cytokines expression and inhibit myocardial cell apoptosis via downregulating the p38 MAPK-mediated NF-κB signaling pathway. These results suggest that berberine may be an effective treatment for anoxia-reoxygenation injury.
Collapse
Affiliation(s)
- Yu Zhao
- Cadre Ward, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Xuefeng Tian
- Department of Cardiology, Heilongjiang Provincial Hospital, Harbin, Heilongjiang 150056, P.R. China
| | - Gengfeng Liu
- Cadre Ward, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Kuijing Wang
- Cadre Ward, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Yuanyuan Xie
- Cadre Ward, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| | - Yuxuan Qiu
- Cadre Ward, The First Hospital of Harbin, Harbin, Heilongjiang 150010, P.R. China
| |
Collapse
|
30
|
Zheng X, Wu F, Lin X, Shen L, Feng Y. Developments in drug delivery of bioactive alkaloids derived from traditional Chinese medicine. Drug Deliv 2018; 25:398-416. [PMID: 29378456 PMCID: PMC6058676 DOI: 10.1080/10717544.2018.1431980] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/13/2018] [Accepted: 01/20/2018] [Indexed: 12/19/2022] Open
Abstract
The bioactive alkaloids (e.g. vincristine, hydroxycamptothecin, ligustrazine, and so on) from traditional Chinese medicine (TCM) have exerted potent efficacies (e.g. anti-tumor, anti-inflammation, immunosuppression, etc.). However, a series of undesirable physicochemical properties (like low solubility and weak stability) and baneful pharmacokinetic (PK) profiles (e.g. low bioavailability, short half time, rapid clearance, etc.) have severely restricted their applications in clinic. In addition, some side effects (like cumulative toxicities caused by high-frequency administration and their own toxicities) have recently been reported and also confined their clinical uses. Therefore, developments in drug delivery of such alkaloids are of significance in improving their drug-like properties and, thus, treatment efficiencies in clinic. Strategies, including (i) specific delivery via liposomes; (ii) sustained delivery via nanoparticles, gels, and emulsions; and (iii) transdermal delivery via ethosomes, solid lipid nanoparticles, and penetrating enhancers, have been reported to improve the pharmacokinetic and physicochemical characters of problematic TCM alkaloids, decline their adverse effects, and thus, boost their curative efficacies. In this review, the recent reports in this field were comprehensively summarized with the aim of providing an informative reference for relevant readers.
Collapse
Affiliation(s)
- Xiao Zheng
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Fei Wu
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Xiao Lin
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Lan Shen
- College of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| | - Yi Feng
- Engineering Research Center of Modern Preparation Technology of TCM of Ministry of Education, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China
| |
Collapse
|
31
|
Huang L, Zhang X, Ma X, Zhang D, Li D, Feng J, Pan X, Lü J, Wang X, Liu X. Berberine alleviates endothelial glycocalyx degradation and promotes glycocalyx restoration in LPS-induced ARDS. Int Immunopharmacol 2018; 65:96-107. [PMID: 30308440 DOI: 10.1016/j.intimp.2018.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/30/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
In the pathogenesis of acute respiratory distress syndrome (ARDS), an increase in vascular endothelial permeability may trigger pulmonary edema and ultimately lead to respiratory failure. Endothelial glycocalyx damage is an important factor that causes an increase in vascular endothelial permeability. Berberine (BBR) is an isoquinoline alkaloid extracted from Coptis chinensis, a plant used in traditional Chinese medicine that exerts multiple pharmacological effects. In this study, pretreatment with BBR inhibited the increase in vascular endothelial permeability in mice with lipopolysaccharide (LPS)-induced ARDS. BBR pretreatment inhibited the shedding of syndecan-1 (SDC-1) and heparan sulfate (HS), which are important components of the endothelial glycocalyx that lessen endothelial glycocalyx damage. BBR further significantly inhibited increases in important endothelial glycocalyx damage factors, including reactive oxygen species (ROS), heparanase (HPA), and matrix metalloproteinase 9 (MMP9) in LPS-induced ARDS mice and in LPS-stimulated human umbilical vein endothelial cells. BBR pretreatment also decreased the production of pro-inflammatory cytokines TNF-α, IL-1β, IL-6, and inhibited NF-κB signaling pathway activation in LPS-induced ARDS. In addition, BBR promoted the recovery of SDC-1 and HS content in injured endothelial glycocalyx after LPS treatment and accelerated its restoration. This is the first report of BBR maintaining the integrity of endothelial glycocalyx. These results provide a new theoretical basis for the use of BBR in the treatment of ARDS and other diseases related to endothelial glycocalyx damage.
Collapse
Affiliation(s)
- Lina Huang
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohua Zhang
- Department of Biotechnology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Xiaohong Ma
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dong Zhang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Dongxiao Li
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Jiali Feng
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xinjie Pan
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China
| | - Junhong Lü
- Division of Physical Biology and CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiaozhi Wang
- Department of Respirator Medicine, Affiliated Hospital of Binzhou Medical University Binzhou, Binzhou 256603, Shandong Province, China
| | - Xiangyong Liu
- Department of Cell Biology, Binzhou Medical University, Yantai 264003, Shandong Province, China.
| |
Collapse
|
32
|
Chandarana M, Curtis A, Hoskins C. The use of nanotechnology in cardiovascular disease. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0856-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
33
|
Tenzera L, Djindjic B, Mihajlovic-Elez O, Pulparampil BJ, Mahesh S, Vithoulkas G. Improvements in long standing cardiac pathologies by individualized homeopathic remedies: A case series. SAGE Open Med Case Rep 2018; 6:2050313X18792813. [PMID: 30116529 PMCID: PMC6088479 DOI: 10.1177/2050313x18792813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 07/11/2018] [Indexed: 12/26/2022] Open
Abstract
We present three cases of cardiac arrest at different stages of pathology. Acute myocardial infarction and resulting heart failure is emerging as the leading cause of mortality. In the long run, acute episodes and cardiac remodelling can cause considerable damage and result in heart failure. In these cases, individualized homeopathic therapy was instituted along with the conventional medicines and the results were encouraging. The changes in the laboratory diagnostic parameters (single-photon emission computed tomography, electrocardiograph, echocardiography and ejection fraction as the case may be) are demonstrated over time. The key result seen in all three cases was the preservation of general well-being while the haemodynamic states also improved. While the three cases provide evidence of positive outcomes for homeopathic therapy, more extensive studies are required in a hospital setting to establish the real extent to which this therapy may be employed.
Collapse
Affiliation(s)
- Lenka Tenzera
- Medical Office of Classical Homeopathy 'ALONA', Belgrade, Serbia
| | - Boris Djindjic
- Institute of Pathophysiology, Faculty of Medicine, University of Nis, Nis, Serbia.,Clinic of Cardiovascular Disease, Clinical Center Nis, Nis, Serbia
| | | | | | - Seema Mahesh
- Centre for Classical Homeopathy, Bangalore, India
| | - George Vithoulkas
- International Academy of Classical Homeopathy, University of the Aegean, Mytilene, Greece
| |
Collapse
|
34
|
Xu WN, Chen DH, Liu WB, Xu JX, Yang SS. Molecular characterization of microtubule-associated protein 1-light chain 3B in Megalobrama amblycephala fed with high fat/berberine diets. J Appl Genet 2018; 59:345-355. [DOI: 10.1007/s13353-018-0451-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 06/13/2018] [Accepted: 06/19/2018] [Indexed: 01/02/2023]
|
35
|
Anti-apoptosis in nonmyocytes and pro-autophagy in cardiomyocytes: two strategies against postinfarction heart failure through regulation of cell death/degeneration. Heart Fail Rev 2018; 23:759-772. [DOI: 10.1007/s10741-018-9708-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Li S, Ren J, Sun Q. The expression of microRNA-23a regulates acute myocardial infarction in patients and in vitro through targeting PTEN. Mol Med Rep 2018; 17:6866-6872. [PMID: 29488607 DOI: 10.3892/mmr.2018.8640] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/11/2017] [Indexed: 11/05/2022] Open
Abstract
Cardiovascular disease is responsible for one of the highest rates of fatality worldwide. The present study investigated the presence and influence of microRNA (miRNA)-23a in the regulation of acute myocardial infarction (AMI). A total of 6 patients with AMI and 6 normal volunteers without myocardial disease were included, and blood samples were taken to analyze the expression of miRNA‑23a by reverse transcription‑quantitative polymerase chain reaction. miRNA‑23a expression in patients with AMI was downregulated compared with the normal group. In H9C2 cells treated with H2O2, upregulation of miRNA‑23a expression increased the superoxide dismutase, glutathione and catalase activity levels, and suppressed the malonaldehyde activity level, as determined by ELISA. Western blot analysis and a caspase‑3 substrate assay demonstrated that upregulation of miRNA‑23a expression suppressed the Bcl‑2‑associated X (Bax)/Bcl‑2 protein expression ratio, caspase‑3 activity level and tumor suppressor p53 (p53) protein expression in H2O2‑induced H9C2 cells. Furthermore, downregulation of phosphatase and tensin homolog (PTEN), by the PTEN inhibitor bpV(HOpic), increased miRNA‑23a expression and suppressed the Bax/Bcl‑2 protein expression ratio, caspase‑3 activity level and p53 protein expression in H2O2‑induced H9C2 cells. Therefore, the results of the present study indicate that the expression of miRNA‑23a may regulate AMI through targeting PTEN in patients and in vitro, and PTEN/miRNA‑23a may therefore be potential targets for the clinical treatment of AMI.
Collapse
Affiliation(s)
- Shengli Li
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, P.R. China
| | - Jie Ren
- Department of Medical Cardiology, The First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an, Shaanxi 710061, P.R. China
| | - Qianmei Sun
- Department of Internal Medicine, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100022, P.R. China
| |
Collapse
|
37
|
Xiong C, Wu YZ, Zhang Y, Wu ZX, Chen XY, Jiang P, Guo HC, Xie KR, Wang KX, Su SW. Protective effect of berberine on acute cardiomyopathy associated with doxorubicin treatment. Oncol Lett 2018; 15:5721-5729. [PMID: 29552206 PMCID: PMC5840547 DOI: 10.3892/ol.2018.8020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/22/2017] [Indexed: 12/27/2022] Open
Abstract
Doxorubicin (DOX) is a potent and broad-spectrum anthracycline chemotherapeutic agent, but dose-dependent cardiotoxic side effects limit its clinical application. This toxicity is closely associated with the generation of reactive oxygen species (ROS) radical during DOX metabolism. The present study investigated the effects of Berberine (Ber) on DOX-induced acute cardiac injury in a rat model and analysed its mechanism in cardiomyocytes in vitro. Serum creatine kinase (CK), creatine kinase isoenzyme (CK-MB) and malondialdehyde (MDA) levels were significantly increased in the DOX group compared with the control group. This increase was accompanied by cardiac histopathological injury and a decrease in cardiomyocyte superoxide dismutase (SOD) and catalase (CAT). CK, CK-MB and MDA levels decreased and SOD and CAT levels increased in the Ber-treated group compared to the DOX group. Ber ameliorated the DOX-induced increase in cytosolic calcium concentration ([Ca2+]i), attenuated mitochondrial Ca2+ overload and restored the DOX-induced loss of mitochondrial membrane potential in vitro. These results demonstrated that Ber exhibited protective effects against DOX-induced heart tissue free radical injury, potentially via the inhibition of intracellular Ca2+ elevation and attenuation of mitochondrial dysfunction.
Collapse
Affiliation(s)
- Chen Xiong
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Yan-Zhao Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yu Zhang
- Center for Reproductive Medicine, Family Planning Scientific and Technical Institution of Hebei Province, Shijiazhuang, Hebei 050000, P.R. China
| | - Zi-Xiao Wu
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Xue-Yan Chen
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ping Jiang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Hui-Cai Guo
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ke-Rang Xie
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Ke-Xin Wang
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| | - Su-Wen Su
- Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China.,Key Laboratory of Pharmacology and Toxicology for New Drugs, Department of Pharmacology, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China
| |
Collapse
|
38
|
Li X, Huang W, He B, Zhou L, Huang X, Yao B. Role of blocking ADAM10 hydrolysis site on N-cadherin by single-chain antibody in ventricular remodeling. Exp Ther Med 2017; 14:4215-4223. [PMID: 29067106 PMCID: PMC5647691 DOI: 10.3892/etm.2017.5057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 06/02/2017] [Indexed: 11/15/2022] Open
Abstract
The present study aimed to investigate the roles of the hydrolytic process of N-cadherin by A disintegrin and metalloproteases 10 (ADAM10) in sustaining myocardial structure and integrity, and discuss the mechanisms of ventricular remodeling in dilated cardiomyopathy (DCM). Single chain variable fragment antibody (ScFv) with the ability to specifically block the ADAM10 hydrolysis site of N-cadherin was designed and constructed. Western blot analysis and flow cytometry were used to detect the expression of N-cadherin and its C-terminal fragment 1 (CTF1) on cardiomyocytes, and cells were also subjected to a cell adhesion assay. Furthermore, in a rat model of dilated cardiomyopathy (DCM), the effects of intracardiac injection of the recombinant adenovirus on cardiac structure and contractile function were observed by hematoxylin and eosin staining and color Doppler echocardiography. The recombinant ScFv-expressing adenoviral plasmid with the ability to block the ADAM10 hydrolysis site on N-cadherin was successfully constructed and efficiently transfected into H9C2 cells. After transfection, N-cadherin protein expression was significantly increased, CTF1 protein was significantly decreased and the adhesion capability of myocardial cells was significantly improved. In the in vivo experiment, N-cadherin expression was significantly increased in the treatment group compared with that in the model group, and the structure and function of the heart were significantly improved. In conclusion, blocking of the ADAM10 hydrolysis site on N-cadherin by ScFv increased N-cadherin expression and improved ventricular remodeling. The present study provided experimental evidence for a novel approach for the treatment and prevention of DCM.
Collapse
Affiliation(s)
- Xiaoou Li
- Department of Pediatrics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wei Huang
- Department of Preclinical Medicine, Wuhan Institute of Medical Sciences, Wuhan, Hubei 430014, P.R. China
| | - Bing He
- Department of Pediatrics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lirong Zhou
- Department of Preclinical Medicine, Wuhan Institute of Medical Sciences, Wuhan, Hubei 430014, P.R. China
| | - Xiaogang Huang
- Department of Preclinical Medicine, Wuhan Institute of Medical Sciences, Wuhan, Hubei 430014, P.R. China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital, Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
39
|
Wang D, Yu W, Liu Y, Zhong G, Zhao Z, Yan X, Liu Q. Roles of Autophagy in Ischemic Heart Diseases and the Modulatory Effects of Chinese Herbal Medicine. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:1401-1419. [PMID: 28946768 DOI: 10.1142/s0192415x17500768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Autophagy is an evolutionarily conserved degradation process which eliminates dysfunctional proteins and cytoplasmic components to maintain homeostasis for cell survival. Increasing evidence has demonstrated the modulatory role of autophagy in ischemic heart diseases (IHDs). Traditionally, this process has been recognized as having protective functions, such as inhibiting atherosclerosis progression and reducing cell death during the ischemic phase. However, recent studies have suggested its dual roles in myocardial ischemia/reperfusion (MIR) injury. Excessive autophagy may play a deleterious role in cardiac function, due to overwhelming clearance of cellular constituents and proteins. Hence modulation of autophagy to increase cardiomyocyte survival and improve cardiac function is meaningful for the treatment of IHD. Chinese herbal medicine, including extractive compounds and patented drugs, has shown its potential role in treating IHD by addressing autophagy-related mechanisms. This review summarizes the updated knowledge on the molecular basis and modulatory role of autophagy in IHD and the recent progress of Chinese herbal medicine in its treatment.
Collapse
Affiliation(s)
- Dawei Wang
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Weiqing Yu
- ‡ Department of Cardiology, Guangdong Second Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510095, China
| | - Yuntao Liu
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Guofu Zhong
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Zhen Zhao
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xia Yan
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,† Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510405, China
| | - Qing Liu
- * The Second Clinical School of Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.,§ Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
40
|
Berberine-induced cardioprotection and Sirt3 modulation in doxorubicin-treated H9c2 cardiomyoblasts. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2904-2923. [PMID: 28760703 DOI: 10.1016/j.bbadis.2017.07.030] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 07/18/2017] [Accepted: 07/27/2017] [Indexed: 12/22/2022]
Abstract
Doxorubicin (DOX) is one of the most widely used anti-neoplastic agents. However, treatment with DOX is associated with cumulative cardiotoxicity inducing progressive cardiomyocyte death. Sirtuin 3 (Sirt3), a mitochondrial deacetylase, regulates the activity of proteins involved in apoptosis, autophagy and metabolism. Our hypothesis is that pharmacological modulation by berberine (BER) pre-conditioning of Sirt3 protein levels decreases DOX-induced cardiotoxicity. Our results showed that DOX induces cell death in all experimental groups. Increase in Sirt3 content by transfection-mediated overexpression decreased DOX cytotoxicity, mostly by maintaining mitochondrial network integrity and reducing oxidative stress. p53 was upregulated by DOX, and appeared to be a direct target of Sirt3, suggesting that Sirt3-mediated protection against cell death could be related to this protein. BER pre-treatment increased Sirt3 and Sirt1 protein levels in the presence of DOX and inhibited DOX-induced caspase 9 and 3-like activation. Moreover, BER modulated autophagy in DOX-treated H9c2 cardiomyoblasts. Interestingly, mitochondrial biogenesis markers were upregulated in in BER/DOX-treated cells. Sirt3 over-expression contributes to decrease DOX cytotoxicity on H9c2 cardiomyoblasts, while BER can be used as a modulator of Sirtuin function and cell quality control pathways to decrease DOX toxicity.
Collapse
|
41
|
Wang Y, Wang S, Lei M, Boyett M, Tsui H, Liu W, Wang X. The p21-activated kinase 1 (Pak1) signalling pathway in cardiac disease: from mechanistic study to therapeutic exploration. Br J Pharmacol 2017; 175:1362-1374. [PMID: 28574147 DOI: 10.1111/bph.13872] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 01/01/2023] Open
Abstract
p21-activated kinase 1 (Pak1) is a member of the highly conserved family of serine/threonine protein kinases regulated by Ras-related small G-proteins, Cdc42/Rac1. It has been previously demonstrated to be involved in cardiac protection. Based on recent studies, this review provides an overview of the role of Pak1 in cardiac diseases including disrupted Ca2+ homoeostasis-related cardiac arrhythmias, adrenergic stress- and pressure overload-induced hypertrophy, and ischaemia/reperfusion injury. These findings demonstrate the important role of Pak1 mediated through the phosphorylation and transcriptional modification of hypertrophy and/or arrhythmia-related genes. This review also discusses the anti-arrhythmic and anti-hypertrophic, protective function of Pak1 and the beneficial effects of fingolimod (an FDA-approved sphingolipid drug), a Pak1 activator, and its ability to prevent arrhythmias and cardiac hypertrophy. These findings also highlight the therapeutic potential of Pak1 signalling in the treatment and prevention of cardiac diseases. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Yanwen Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Shunyao Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ming Lei
- Department of Pharmacology, The University of Oxford, Oxford, UK
| | - Mark Boyett
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Hoyee Tsui
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Wei Liu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Xin Wang
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
42
|
Hashemzaei M, Entezari Heravi R, Rezaee R, Roohbakhsh A, Karimi G. Regulation of autophagy by some natural products as a potential therapeutic strategy for cardiovascular disorders. Eur J Pharmacol 2017; 802:44-51. [PMID: 28238768 DOI: 10.1016/j.ejphar.2017.02.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 01/09/2023]
Abstract
Autophagy is a lysosomal degradation process through which long-lived and misfolded proteins and organelles are sequestered, degraded by lysosomes, and recycled. Autophagy is an essential part of cardiomyocyte homeostasis and increases the survival of cells following cellular stress and starvation. Recent studies made clear that dysregulation of autophagy in the cardiovascular system leads to heart hypertrophy and failure. In this manner, autophagy seems to be an attractive target in the new treatment of cardiovascular diseases. Although limited activation of autophagy is generally considered to be cardioprotective, excessive autophagy leads to cell death and cardiac atrophy. Natural products such as resveratrol, berberine, and curcumin that are present in our diet, can trigger autophagy via canonical (Beclin-1-dependent) and non-canonical (Beclin-1-independent) pathways. The autophagy-modifying capacity of these compounds should be taken into consideration for designing novel therapeutic agents. This review focuses on the role of autophagy in the cardioprotective effects of these compounds.
Collapse
Affiliation(s)
- Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Reza Entezari Heravi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
43
|
Allijn IE, Czarny BM, Wang X, Chong SY, Weiler M, da Silva AE, Metselaar JM, Lam CSP, Pastorin G, de Kleijn DP, Storm G, Wang JW, Schiffelers RM. Liposome encapsulated berberine treatment attenuates cardiac dysfunction after myocardial infarction. J Control Release 2017; 247:127-133. [DOI: 10.1016/j.jconrel.2016.12.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 12/30/2016] [Indexed: 11/27/2022]
|
44
|
Oleuropein attenuates the progression of heart failure in rats by antioxidant and antiinflammatory effects. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:245-252. [DOI: 10.1007/s00210-016-1323-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/21/2016] [Indexed: 01/16/2023]
|
45
|
Imenshahidi M, Hosseinzadeh H. Berberis Vulgaris and Berberine: An Update Review. Phytother Res 2016; 30:1745-1764. [PMID: 27528198 DOI: 10.1002/ptr.5693] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/04/2016] [Accepted: 07/16/2016] [Indexed: 01/30/2023]
Abstract
Berberine is an isoquinoline alkaloid present in several plants, including Coptis sp. and Berberis sp. Berberine is a customary component in Chinese medicine, and is characterized by a diversity of pharmacological effects. An extensive search in electronic databases (PubMed, Scopus, Ovid, Wiley, ProQuest, ISI, and Science Direct) were used to identify the pharmacological and clinical studies on Berberis vulgaris and berberine, during 2008 to 2015, using 'berberine' and 'Berberis vulgaris' as search words. We found more than 1200 new article studying the properties and clinical uses of berberine and B. vulgaris, for treating tumor, diabetes, cardiovascular disease, hyperlipidemia, inflammation, bacterial and viral infections, cerebral ischemia trauma, mental disease, Alzheimer disease, osteoporosis, and so on. In this article, we have updated the pharmacological effects of B. vulgaris and its active constituent, berberine. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Mohsen Imenshahidi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Lin C, Liu Z, Lu Y, Yao Y, Zhang Y, Ma Z, Kuai M, Sun X, Sun S, Jing Y, Yu L, Li Y, Zhang Q, Bian H. Cardioprotective effect of Salvianolic acid B on acute myocardial infarction by promoting autophagy and neovascularization and inhibiting apoptosis. ACTA ACUST UNITED AC 2016; 68:941-52. [PMID: 27139338 DOI: 10.1111/jphp.12567] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/10/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the cardioprotective effect of salvianolic acid B (Sal B) on acute myocardial infarction (AMI) in rats and its potential mechanisms. METHODS The AMI model was established in rats to study the effect of Sal B on AMI. Haematoxylin-eosin (HE) staining was used to evaluate the pathological change in AMI rats. Immunofluorescence and TUNEL staining were used to detect autophagy and apoptosis of myocardial cells in hearts of AMI rats, respectively. Protein expression of apoptosis-related, autophagy-related and angiogenesis-related proteins were examined by Western blot. KEY FINDINGS Sal B attenuated myocardial infarction significantly compared with that of the model group. Rats administered with Sal B showed higher inhibition rate of infarction and lower infarct size than those of the model group. Moreover, Sal B decreased the serum levels of creatine kinase, lactate dehydrogenase and malondialdehyde, while increased such level of superoxide dismutase significantly compared with those of the model group. Sal B inhibited the expression of Bax, cleaved caspase-9 and cleaved PARP, while promoted the expression of Bcl-2, LC3-II, Beclin1 and VEGF. CONCLUSIONS Sal B has cardioprotective effect on AMI and Sal B may be a promising candidate for AMI treatment.
Collapse
Affiliation(s)
- Chao Lin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhaoguo Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ying Lu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuan Yao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yayun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhi Ma
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meiyu Kuai
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xin Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shuaijun Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yi Jing
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lizhen Yu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Li
- Department of Preclinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, Nanjing, China
| | - Huimin Bian
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Key Laboratory for Pharmacolgy and Safety Evaluation of Chinese Materia Medica, Nanjing, China
| |
Collapse
|
47
|
Geng FH, Li GH, Zhang X, Zhang P, Dong MQ, Zhao ZJ, Zhang Y, Dong L, Gao F. Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. Br J Pharmacol 2016; 173:1569-79. [PMID: 26914282 DOI: 10.1111/bph.13466] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 01/25/2016] [Accepted: 02/11/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND AND PURPOSE Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose and regulating lipid metabolism. Recent clinical studies have shown that berberine reduces blood pressure and increases systemic insulin sensitivity in patients with metabolic syndrome; however, the underlying mechanism is still unclear. Here, we investigated the mechanism by which berberine improves vascular insulin sensitivity in diabetic rats. EXPERIMENTAL APPROACH Diabetes was induced in male Sprague–Dawley rats by feeding a high-fat diet and administration of a low dose of streptozotocin. These diabetic rats were treated with berberine (200 mg·kg(−1)·day(−1), gavage) for 4 weeks. Vascular dilation was determined in isolated mesenteric artery rings. Effects of berberine on insulin signalling were also studied in human artery endothelial cells cultured in high glucose (25 mmol·L(−1)) and palmitate (500 μmol·L(−1)). KEY RESULTS Berberine treatment for 4 weeks significantly restored the impaired ACh- and insulin-induced vasodilatation of mesenteric arteries from diabetic rats. In isolated mesenteric artery rings, berberine (2.5–10 μmol·L(−1)) elicited dose-dependent vasodilatation and significantly enhanced insulin-induced vasodilatation. Mechanistically, berberine up-regulated phosphorylation of the insulin receptor and its downstream signalling molecules AMPK, Akt and eNOS, and increased cell viability and autophagy in cultured endothelial cells. Moreover, down-regulating insulin receptors with specific siRNA significantly attenuated berberine-induced phosphorylation of AMPK. CONCLUSIONS AND IMPLICATIONS Berberine improves diabetic vascular insulin sensitivity and mesenteric vasodilatation by up-regulating insulin receptor-mediated signalling in diabetic rats. These findings suggest berberine has potential as a preventive or adjunctive treatment of diabetic vascular complications. LINKED ARTICLES This article is part of a themed section on Chinese Innovation in Cardiovascular Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-23.
Collapse
Affiliation(s)
- Feng-Hao Geng
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Guo-Hua Li
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xing Zhang
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Peng Zhang
- Department of Orthopedic Surgery, Urumqi General Hospital, Urumqi, China
| | - Ming-Qing Dong
- Department of Pathophysiology, The Fourth Military Medical University, Xi'an, China
| | - Zhi-Jing Zhao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Ling Dong
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
48
|
Pretreatment with a combination of ligustrazine and berberine improves cardiac function in rats with coronary microembolization. Acta Pharmacol Sin 2016; 37:463-72. [PMID: 26924290 DOI: 10.1038/aps.2015.147] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 12/15/2015] [Indexed: 12/27/2022] Open
Abstract
AIM We have shown that a combination of ligustrazine and berberine produces more effective inhibition on platelet activation and inflammatory reactions in rat acute myocardial infarction compared with either agent alone. In this study we evaluated the beneficial effects of a combination of ligustrazine and berberine in a rat model of coronary microembolization (CME). METHODS SD rats were treated with ligustrazine, berberine, ligustrazine+berberine, or clopidogrel for 2 weeks. When the treatment completed, CME was induced by injection of sodium laurate into the left ventricular, while obstructing the ascending aorta. All rats were intubated for hemodynamic measurements. Blood samples were collected for biochemical analyses, flow cytometry, and ELISAs. Heart tissues were isolated for histopathology and subsequent protein analyses. RESULTS Pretreatment with the combination of ligustrazine (27 mg·kg(-1)·d(-1)) and berberine (90 mg·kg(-1)·d(-1)) significantly improved cardiac function, and decreased myocardial necrosis, inflammatory cell infiltration, microthrombosis and serum CK-MB levels in CME rats. In addition, this combination significantly decreased plasma ET-1 levels and von Willebrand factor, inhibited ADP-induced platelet activation, and reduced TNFα, IL-1β, ICAM-1 and RANTES levels in serum and heart tissues. The protective effects of this combination were more prominent than those of ligustrazine or berberine alone, but comparable to those of a positive control clopidogrel (6.75 mg·kg(-1)·d(-1)). CONCLUSION The combination of ligustrazine and berberine significantly improved cardiac function in rat CME model via a mechanism involving antiplatelet and anti-inflammatory effects.
Collapse
|
49
|
Geng FH, Li GH, Zhang X, Zhang P, Dong MQ, Zhao ZJ, Zhang Y, Dong L, Gao F. Berberine improves mesenteric artery insulin sensitivity through up-regulating insulin receptor-mediated signalling in diabetic rats. Br J Pharmacol 2016. [PMID: 26914282 DOI: 10.1111/bph.2015.172.issue-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Berberine, a small molecule derived from Coptidis rhizome, has been found to be potent at lowering blood glucose and regulating lipid metabolism. Recent clinical studies have shown that berberine reduces blood pressure and increases systemic insulin sensitivity in patients with metabolic syndrome; however, the underlying mechanism is still unclear. Here, we investigated the mechanism by which berberine improves vascular insulin sensitivity in diabetic rats. EXPERIMENTAL APPROACH Diabetes was induced in male Sprague–Dawley rats by feeding a high-fat diet and administration of a low dose of streptozotocin. These diabetic rats were treated with berberine (200 mg·kg(−1)·day(−1), gavage) for 4 weeks. Vascular dilation was determined in isolated mesenteric artery rings. Effects of berberine on insulin signalling were also studied in human artery endothelial cells cultured in high glucose (25 mmol·L(−1)) and palmitate (500 μmol·L(−1)). KEY RESULTS Berberine treatment for 4 weeks significantly restored the impaired ACh- and insulin-induced vasodilatation of mesenteric arteries from diabetic rats. In isolated mesenteric artery rings, berberine (2.5–10 μmol·L(−1)) elicited dose-dependent vasodilatation and significantly enhanced insulin-induced vasodilatation. Mechanistically, berberine up-regulated phosphorylation of the insulin receptor and its downstream signalling molecules AMPK, Akt and eNOS, and increased cell viability and autophagy in cultured endothelial cells. Moreover, down-regulating insulin receptors with specific siRNA significantly attenuated berberine-induced phosphorylation of AMPK. CONCLUSIONS AND IMPLICATIONS Berberine improves diabetic vascular insulin sensitivity and mesenteric vasodilatation by up-regulating insulin receptor-mediated signalling in diabetic rats. These findings suggest berberine has potential as a preventive or adjunctive treatment of diabetic vascular complications. LINKED ARTICLES This article is part of a themed section on Chinese Innovation in Cardiovascular Drug Discovery. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-23.
Collapse
Affiliation(s)
- Feng-Hao Geng
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Guo-Hua Li
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Xing Zhang
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Peng Zhang
- Department of Orthopedic Surgery, Urumqi General Hospital, Urumqi, China
| | - Ming-Qing Dong
- Department of Pathophysiology, The Fourth Military Medical University, Xi'an, China
| | - Zhi-Jing Zhao
- Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Yuan Zhang
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Ling Dong
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China
| | - Feng Gao
- School of Aerospace Medicine, The Fourth Military Medical University, Xi'an, China.,Department of Cardiology, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
50
|
AMPK in cardiac fibrosis and repair: Actions beyond metabolic regulation. J Mol Cell Cardiol 2016; 91:188-200. [PMID: 26772531 DOI: 10.1016/j.yjmcc.2016.01.001] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 02/06/2023]
Abstract
Fibrosis is a general term encompassing a plethora of pathologies that span all systems and is marked by increased deposition of collagen. Injury of variable etiology gives rise to complex cascades involving several cell-types and molecular signals, leading to the excessive accumulation of extracellular matrix that promotes fibrosis and eventually leads to organ failure. Cardiac fibrosis is a dynamic process associated notably with ischemia, hypertrophy, volume- and pressure-overload, aging and diabetes mellitus. It has profoundly deleterious consequences on the normal architecture and functioning of the myocardium and is associated with considerable mortality and morbidity. The AMP-activated protein kinase (AMPK) is a ubiquitously expressed cellular energy sensor and an essential component of the adaptive response to cardiomyocyte stress that occurs during ischemia. Nevertheless, its actions extend well beyond its energy-regulating role and it appears to possess an essential role in regulating fibrosis of the myocardium. In this review paper, we will summarize the main elements and crucial players of cardiac fibrosis. In addition, we will provide an overview of the diverse roles of AMPK in the heart and discuss in detail its implication in cardiac fibrosis. Lastly, we will highlight the recently published literature concerning AMPK-targeting current therapy and novel strategies aiming to attenuate fibrosis.
Collapse
|