1
|
Kim N, Shin HY. Deciphering the Potential Role of Specialized Pro-Resolving Mediators in Obesity-Associated Metabolic Disorders. Int J Mol Sci 2024; 25:9598. [PMID: 39273541 PMCID: PMC11395256 DOI: 10.3390/ijms25179598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
Obesity-related metabolic disorders, including diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular disease, increasingly threaten global health. Uncontrolled inflammation is a key pathophysiological factor in many of these conditions. In the human body, inflammatory responses generate specialized pro-resolving mediators (SPMs), which are crucial for resolving inflammation and restoring tissue balance. SPMs derived from omega-3 polyunsaturated fatty acids (n-3 PUFAs) such as resolvins, protectins, and maresins hold promise in attenuating the chronic inflammatory diseases associated with lipid metabolism disorders. Recent research has highlighted the therapeutic potential of n-3 PUFA-derived metabolites in addressing these metabolic disorders. However, the understanding of the pharmacological aspects of SPMs, particularly in obesity-related metabolic disorders, remains limited. This review comprehensively summarizes recent advances in understanding the role of SPMs in resolving metabolic disorders, based on studies in animal models and humans. These studies indicate that SPMs have potential as therapeutic targets for combating obesity, as well as offering insights into their mechanisms of action.
Collapse
Affiliation(s)
- Nahyun Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ha Youn Shin
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
2
|
Liu X, Tang Y, Luo Y, Gao Y, He L. Role and mechanism of specialized pro-resolving mediators in obesity-associated insulin resistance. Lipids Health Dis 2024; 23:234. [PMID: 39080624 PMCID: PMC11290132 DOI: 10.1186/s12944-024-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/07/2024] [Indexed: 08/02/2024] Open
Abstract
With the changing times, obesity has become a characteristic epidemic in the context of the current era. Insulin resistance (IR) is most commonly caused by obesity, and IR is a common basis of the pathogenesis of many diseases such as cardiovascular disease, nonalcoholic fatty liver disease, and type 2 diabetes, which seriously threaten human life, as well as health. A major pathogenetic mechanism of obesity-associated IR has been found to be chronic low-grade inflammation in adipose tissue. Specialized pro-resolving mediators (SPMs) are novel lipid mediators that both function as "stop signals" for inflammatory reaction and promote inflammation to subside. In this article, we summarize the pathogenesis of obesity-associated IR and its treatments and outline the classification and biosynthesis of SPMs and their mechanisms and roles in the treatment of obesity-associated IR in order to explore the potential of SPMs for treating metabolic diseases linked with obesity-associated IR.
Collapse
Affiliation(s)
- Xinru Liu
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Tang
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuanyuan Luo
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongxiang Gao
- College of International Education, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Lisha He
- College of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| |
Collapse
|
3
|
Elhoseeny MM, Abdulaziz BA, Mohamed MA, Elsharaby RM, Rashad GM, Othman AAA. Fetuin-A: a relevant novel serum biomarker for non-invasive diagnosis of metabolic dysfunction-associated steatotic liver disease (MASLD): a retrospective case-control study. BMC Gastroenterol 2024; 24:226. [PMID: 39026172 PMCID: PMC11264617 DOI: 10.1186/s12876-024-03310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
OBJECTIVES To determine how fetuin-A contributes to diagnosing and assessing MASLD severity. METHODS Fifty MASLD patients and fifty healthy control participants were involved in this retrospective case-control research. Abdominal ultrasonography, fibroscan with controlled attenuated parameter scan (CAP scan), laboratory investigation (including fetuin-A assessment), clinical examination, and history-taking were performed on every case. RESULTS Fetuin-A level was considerably higher in the Cases group (1154.85 ± 629.89) than in the Control group (505.29 ± 150.4) (p < 0.001). Fetuin-A had significant validity in the prediction of MASLD at a cut-off > 702.5 with 82% sensitivity, 90% specificity, and 86% overall accuracy. CONCLUSION One possible marker for MASLD diagnosis could be fetuin-A. Furthermore, a substantial association between such marker and the severity of the disease as it revealed a significant correlation with ultrasound grading and fibroscan with controlled attenuated parameters. Trial registration 1- Pan African Clinical Trial Registry. Unique Identifying number/registration ID: PACTR202309644280965. URL: https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=26860 . Registration Approval date: 21/09/2023. 2- ClinicalTrials.gov. Unique Identifying number /registration ID: NCT06097039. URL: https://clinicaltrials.gov/study/NCT06097039?cond=NCT06097039&rank=1 . Registration Approval date: 25/10/2023.
Collapse
Affiliation(s)
- Mohamed M Elhoseeny
- Department of Internal Medicine, Faculty of Medicine, Suez University, Suez, Egypt
| | - Badawy A Abdulaziz
- Department of Hepatology, Gastroenterology, and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed A Mohamed
- Department of Hepatology, Gastroenterology, and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Radwa M Elsharaby
- Department of Clinical Pathology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ghadeer M Rashad
- Department of Hepatology, Gastroenterology, and Infectious Diseases, Faculty of Medicine, Benha University, Benha, Egypt
| | - Amira A A Othman
- Department of Internal Medicine, Faculty of Medicine, Suez University, Suez, Egypt.
| |
Collapse
|
4
|
Berberine mitigates hepatic insulin resistance by enhancing mitochondrial architecture via the SIRT1/Opa1 signalling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1464-1475. [PMID: 36269134 PMCID: PMC9827808 DOI: 10.3724/abbs.2022146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The aberrant changes of fussion/fission-related proteins can trigger mitochondrial dynamics imbalance, which cause mitochondrial dysfunctions and result insulin resistance (IR). However, the relationship between the inner mitochondrial membrane fusion protein optic atrophy 1 (Opa1) and hepatic IR as well as the specific molecular mechanisms of signal transduction has not been fully elucidated. In this study, we explore whether abnormalities in the Opa1 cause hepatic IR and whether berberine (BBR) can prevent hepatic IR through the SIRT1/Opa1 signalling pathway. High-fat diet (HFD)-fed mice and db/db mice are used as animal models to study hepatic IR in vivo. IR, morphological changes, and mitochondrial injury of the liver are examined to explore the effects of BBR. SIRT1/Opa1 protein expression is determined to confirm whether the signalling pathway is damaged in the model animals and is involved in BBR treatment-mediated mitigation of hepatic IR. A palmitate (PA)-induced hepatocyte IR model is established in HepG2 cells in vitro. Opa1 silencing and SIRT1 overexpression are induced to verify whether Opa1 deficiency causes hepatocyte IR and whether SIRT1 improves this dysfunction. BBR treatment and SIRT1 silencing are employed to confirm that BBR can prevent hepatic IR by activating the SIRT1/Opa1 signalling pathway. Western blot analysis and JC-1 fluorescent staining results show that Opa1 deficiency causes an imbalance in mitochondrial fusion/fission and impairs insulin signalling in HepG2 cells. SIRT1 and BBR overexpression ameliorates PA-induced IR, increases Opa1, and improves mitochondrial function. SIRT1 silencing partly reverses the effects of BBR on HepG2 cells. SIRT1 and Opa1 expressions are downregulated in the animal models. BBR attenuates hepatic IR and enhances SIRT1/Opa1 signalling in db/db mice. In summary, Opa1 silencing-mediated mitochondrial fusion/fission imbalance could lead to hepatocyte IR. BBR may improve hepatic IR by regulating the SIRT1/Opa1 signalling pathway, and thus, it may be used to treat type-2 diabetes.
Collapse
|
5
|
Yu R, Wang Z, Ma M, Xu P, Liu L, Tinkov AA, Lei XG, Zhou JC. Associations between Circulating SELENOP Level and Disorders of Glucose and Lipid Metabolism: A Meta-Analysis. Antioxidants (Basel) 2022; 11:1263. [PMID: 35883754 PMCID: PMC9311835 DOI: 10.3390/antiox11071263] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 02/01/2023] Open
Abstract
Selenoprotein P (SELENOP) is an extracellular antioxidant, selenium transporter, and hepatokine interfering with glucose and lipid metabolism. To study the association between the circulating SELENOP concentration and glucose and lipid metabolic diseases (GLMDs), including gestational diabetes (GD), metabolic syndrome (MetS), non-alcoholic fatty liver disease, obesity, and type 2 diabetes, as well as the individual markers, a meta-analysis was conducted by searching multiple databases from their establishment through March 2022 and including 27 articles published between October 2010 and May 2021, involving 4033 participants. Participants with GLMDs had higher levels of SELENOP than those without GLMDs (standardized mean difference = 0.84, 95% CI: 0.16 to 1.51), and the SELENOP levels were positively correlated with the markers of GLMDs (pooled effect size = 0.09, 95% CI: 0.02 to 0.15). Subgroup analyses showed that the SELENOP concentrations were higher in women with GD and lower in individuals with MetS than their counterparts, respectively. Moreover, SELENOP was positively correlated with low-density lipoprotein cholesterol, but not with the other markers of GLMDs. Thus, the heterogenicity derived from diseases or disease markers should be carefully considered while interpreting the overall positive association between SELENOP and GLMDs. Studies with a larger sample size and advanced design are warranted to confirm these findings.
Collapse
Affiliation(s)
- Ruirui Yu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Zhoutian Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Miaomiao Ma
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
| | - Ping Xu
- Shenzhen Health Development Research and Data Management Center, Shenzhen 518028, China;
| | - Longjian Liu
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA 19104, USA;
| | - Alexey A. Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University, 119146 Moscow, Russia;
- Laboratory of Ecobiomonitoring and Quality Control, Yaroslavl State University, 150003 Yaroslavl, Russia
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY 14853, USA;
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (R.Y.); (Z.W.); (M.M.)
- Guangdong Province Engineering Laboratory for Nutrition Translation, Guangzhou 510080, China
| |
Collapse
|
6
|
Al-Shaer AE, Pal A, Shi Q, Carson MS, Regan J, Behee M, Buddenbaum N, Drawdy C, Davis T, Virk R, Shaikh SR. Modeling human heterogeneity of obesity with diversity outbred mice reveals a fat mass-dependent therapeutic window for resolvin E1. FASEB J 2022; 36:e22354. [PMID: 35616343 PMCID: PMC10027372 DOI: 10.1096/fj.202200350r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/27/2022] [Accepted: 05/06/2022] [Indexed: 11/11/2022]
Abstract
Resolvin E1 (RvE1), a specialized pro-resolving mediator (SPM), improves glucose homeostasis in inbred mouse models of obesity. However, an impediment toward translation is that obesity is a highly heterogenous disease in which individuals will respond very differently to interventions such as RvE1. Thus, there is a need to study SPMs in the context of modeling the heterogeneity of obesity that is observed in humans. We investigated how RvE1 controls the concentration of key circulating metabolic biomarkers using diversity outbred (DO) mice, which mimic human heterogeneity. We first demonstrate that weights of DO mice can be classified into distinct distributions of fat mass (i.e., modeling differing classes of obesity) in response to a high-fat diet and in the human population when examining body composition. Next, we show RvE1 administration based on body weight for four consecutive days after giving mice a high-fat diet led to approximately half of the mice responding positively for serum total gastric inhibitory polypeptide (GIP), glucagon, insulin, glucose, leptin, and resistin. Interestingly, RvE1 improved hyperleptinemia most effectively in the lowest class of fat mass despite adjusting the dose of RvE1 with increasing adiposity. Furthermore, leptin levels after RvE1 treatment were the lowest in those mice that were also RvE1 positive responders for insulin and resistin. Collectively, these results suggest a therapeutic fat mass-dependent window for RvE1, which should be considered in future clinical trials. Moreover, the data underscore the importance of studying SPMs with heterogenous mice as a step toward precision SPM administration in humans.
Collapse
Affiliation(s)
- Abrar E Al-Shaer
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Anandita Pal
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Meredith S Carson
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Regan
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Madeline Behee
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nicole Buddenbaum
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Catie Drawdy
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Traci Davis
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Rafia Virk
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Saame Raza Shaikh
- Department of Nutrition, Gillings School of Global Public Health and School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Sardana O, Goyal R, Bedi O. Molecular and pathobiological involvement of fetuin-A in the pathogenesis of NAFLD. Inflammopharmacology 2021; 29:1061-1074. [PMID: 34185201 DOI: 10.1007/s10787-021-00837-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023]
Abstract
The liver acts as a manufacturing unit for the production of fetuin-A, which is essential for various physiological characteristics. Scientific research has shown that a moderate upward push in fetuin-A serum levels is associated with a confirmed non-alcoholic fatty liver disease (NAFLD) diagnosis. Fetuin-A modulation is associated with a number of pathophysiological variables that cause liver problems, including insulin receptor signaling deficiencies, adipocyte dysfunction, hepatic inflammation, fibrosis, triacylglycerol production, macrophage invasion, and TLR4 activation. The focus of the present review is on the various molecular pathways, and genetic relevance of mRNA expression of fetuin-A which is correlated with progression of NAFLD. The other major area of exploration in the present review is based on the new targets for the modulation of fetuin-A, like calorie restriction and novel pharmacological agents, such as rosuvastatin, metformin, and pioglitazone which are successfully implicated in the management of various liver-related complications.
Collapse
Affiliation(s)
- Ojus Sardana
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Ravi Goyal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Onkar Bedi
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India.
| |
Collapse
|
8
|
Duan J, Song Y, Zhang X, Wang C. Effect of ω-3 Polyunsaturated Fatty Acids-Derived Bioactive Lipids on Metabolic Disorders. Front Physiol 2021; 12:646491. [PMID: 34113260 PMCID: PMC8185290 DOI: 10.3389/fphys.2021.646491] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/26/2021] [Indexed: 12/23/2022] Open
Abstract
Arachidonic acid (ARA) is an important ω-6 polyunsaturated fatty acid (PUFA), and docosahexaenoic acid (DHA), eicosapentaenoic acid (EPA) and n-3 docosapentaenoic acid (n-3 DPA) are three well-known ω-3 PUFAs. These fatty acids can be metabolized into a number of bioactive lipids. Eicosanoids derived from ARA have drawn great attention because of their important and complex biofunctions. Although EPA, DHA and n-3 DPA have also shown powerful biofunctions, we have fewer studies of metabolites derived from them than those from ARA. Recently, growing research has focused on the bioaction of ω-3 PUFA-derived metabolites, which indicates their great potential for treating metabolic disorders. Most of the functional studies of these bioactive lipids focused on their anti-inflammatory effects. However, several studies elucidated their direct effects on pancreatic β cells, hepatocytes, adipocytes, skeletal muscle cells, and endothelial cells. These researches revealed the importance of studying the functions of metabolites derived from ω-3 polyunsaturated fatty acids other than themselves. The current review summarizes research into the effects of ω-3 PUFA-derived oxylipins on metabolic disorders, including diabetes, non-alcoholic fatty liver disease, adipose tissue dysfunction, and atherosclerosis.
Collapse
Affiliation(s)
- Jinjie Duan
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yayue Song
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xu Zhang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Jung TW, Pyun DH, Kim TJ, Lee HJ, Park ES, Abd El-Aty A, Hwang EJ, Shin YK, Jeong JH. Meteorin-like protein (METRNL)/IL-41 improves LPS-induced inflammatory responses via AMPK or PPARδ-mediated signaling pathways. Adv Med Sci 2021; 66:155-161. [PMID: 33592358 DOI: 10.1016/j.advms.2021.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/12/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE Meteorin-like protein (METRNL) (also known as IL-41), recently identified as a myokine, is released in response to muscle contraction. It improves the skeletal muscle insulin sensitivity through exerting a beneficial anti-inflammatory effect. However, no independent studies have been published to verify the effects of METRNL on human umbilical vein endothelial cells (HUVECs) and THP-1 human monocytes. MATERIALS AND METHODS The levels of NFκB and IκB phosphorylation as well as the expression of adhesion molecules were assessed by Western blotting analysis. Cell adhesion assay demonstrated the interactions between HUVEC and THP-1 cells. We used enzyme-linked immunosorbent assay (ELISA) to measure the levels of TNFα and MCP-1 in culture medium. RESULTS Treatment with METRNL suppressed the secretion of TNFα and MCP-1 as well as NFκB and IκB phosphorylation and inflammatory markers in lipopolysaccharide (LPS)-treated HUVECs and THP-1 cells. Furthermore, treatment with METRNL ameliorated LPS-induced attachment of THP-1 monocytes to HUVECs via inhibition of adhesion molecule expression and apoptosis. Treatment of HUVEC and THP-1 cells with METRNL enhanced AMPK phosphorylation and PPARδ expression in a dose-dependent manner. Small interference (si) RNA-mediated suppression of AMPK or PPARδ restored all these changes. CONCLUSIONS It has therefore been shown that METRNL ameliorates inflammatory responses through AMPK and PPARδ-dependent pathways in LPS-treated HUVEC. In sum, the current study may suggest the suppressive potential of METRNL against endothelial inflammation.
Collapse
|
10
|
Hepatokines as a Molecular Transducer of Exercise. J Clin Med 2021; 10:jcm10030385. [PMID: 33498410 PMCID: PMC7864203 DOI: 10.3390/jcm10030385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/18/2021] [Indexed: 02/08/2023] Open
Abstract
Exercise has health benefits and prevents a range of chronic diseases caused by physiological and biological changes in the whole body. Generally, the metabolic regulation of skeletal muscle through exercise is known to have a protective effect on the pathogenesis of metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), type 2 diabetes (T2D), and cardiovascular disease (CVD). Besides this, the importance of the liver as an endocrine organ is a hot research topic. Hepatocytes also secrete many hepatokines in response to nutritional conditions and/or physical activity. In particular, certain hepatokines play a major role in the regulation of whole-body metabolic homeostasis. In this review, we summarize the recent research findings on the exercise-mediated regulation of hepatokines, including fibroblast growth factor 21, fetuin-A, angiopoietin-like protein 4, and follistatin. These hepatokines serve as molecular transducers of the metabolic benefits of physical activity in chronic metabolic diseases, including NAFLD, T2D, and CVDs, in various tissues.
Collapse
|
11
|
Poloczek J, Kazura W, Kwaśnicka E, Gumprecht J, Jochem J, Stygar D. Effects of Bariatric Surgeries on Fetuin-A, Selenoprotein P, Angiopoietin-Like Protein 6, and Fibroblast Growth Factor 21 Concentration. J Diabetes Res 2021; 2021:5527107. [PMID: 34414240 PMCID: PMC8369187 DOI: 10.1155/2021/5527107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/02/2021] [Indexed: 12/15/2022] Open
Abstract
Obesity is a civilization disease representing a global health problem. Excessive body weight significantly reduces the quality of life. It is also associated with the leading causes of death, including type 2 diabetes mellitus, cardiovascular diseases, and numerous types of cancer. The mainstay of therapy is a dietary treatment. However, in morbidly obese patients, dietary treatment is often insufficient. In these patients, the most effective procedure is bariatric surgery, but it is still difficult to predict its outcome and metabolic changes. Hepatokines are proteins secreted by hepatocytes. Many of them, including fetuin-A, selenoprotein P, angiopoietin-like protein 6, and fibroblast growth factor 21, have been linked to metabolic dysfunctions. In this context, hepatokines may prove helpful. This review investigates the possible changes in hepatokine profiles after selected bariatric surgery protocols. In this regard, Roux-en-Y gastric bypass is the most studied type of surgery. The overall analysis of published research identified fetuin-A as a potential marker of metabolic alternations in patients after bariatric surgery.
Collapse
Affiliation(s)
- Jakub Poloczek
- Department of Rehabilitation, 3rd Specialist Hospital in Rybnik, 44-200 Rybnik, Poland
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Wojciech Kazura
- Doctoral School of Medical University of Silesia, Department of Physiology, Faculty of Medical Sciences in Zabrze, 41-808 Zabrze, Poland
| | - Ewa Kwaśnicka
- Pediatric Ward, Municipal Hospital in Żory, 44-240 Żory, Poland
| | - Janusz Gumprecht
- Department of Internal Medicine, Diabetology, and Nephrology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Jerzy Jochem
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| | - Dominika Stygar
- Department of Physiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 41-808 Zabrze, Poland
| |
Collapse
|
12
|
Guichardant M, Chen P, Liu M, Lo Van A, Jouvène C, Bernoud-Hubac N, Véricel E, Lagarde M. Double lipoxygenation of polyunsaturated fatty acids of nutritional interest. Prostaglandins Leukot Essent Fatty Acids 2020; 162:102185. [PMID: 33038835 DOI: 10.1016/j.plefa.2020.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 10/23/2022]
Abstract
Double lipoxygenation of polyunsaturated fatty acids having at least three methylene-interrupted double bonds can be made by two lipoxygenases, e.g. 5- and 12-LOX, or 15-LOX only, followed by reduction of the hydroperoxide products through the glutathione peroxidase action. Several biological activities have been reported for such a double 15-LOX product of docosahexaenoic acid, called protectin DX to differentiate it from protectin D1, a stereo and geometric isomer described for its potent anti-inflammatory potential. The geometric characteristic of the double lipoxygenase products is the conjugated triene E,Z,E (trans,cis,trans), which appears crucial in their biological activities. A focus is also done on single lipoxygenation of mono-hydroxylated products first made by aspirin-treated cyclooxygenase-2. The resulting (R,S)-diOH, E,Z,E conjugated trienes, instead of the (S,S)-diOH isomer in case of double lipoxygenation, seem to be even more active for some biological effects, making biologically relevant the single lipoxygenation in aspirin-treated situations.
Collapse
Affiliation(s)
- M Guichardant
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France
| | - P Chen
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France
| | - M Liu
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France
| | - A Lo Van
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France
| | - C Jouvène
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France
| | - N Bernoud-Hubac
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France
| | - E Véricel
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France
| | - M Lagarde
- Univ Lyon, UMR 1060 Inserm & 1397 Inrae (CarMeN laboratory), IMBL, INSA-Lyon, 69621 Villeurbanne Cedex, France.
| |
Collapse
|
13
|
Ruhanen H, Haridas PAN, Jauhiainen M, Olkkonen VM. Angiopoietin-like protein 3, an emerging cardiometabolic therapy target with systemic and cell-autonomous functions. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158791. [PMID: 32777482 DOI: 10.1016/j.bbalip.2020.158791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/23/2020] [Accepted: 08/03/2020] [Indexed: 12/13/2022]
Abstract
Angiopoietin like protein 3 (ANGPTL3) is best known for its function as an inhibitor of lipoprotein and endothelial lipases. Due to the capacity of genetic or pharmacologic ANGPTL3 suppression to markedly reduce circulating lipoproteins, and the documented cardioprotection upon such suppression, ANGPTL3 has become an emerging therapy target for which both antibody and antisense oligonucleotide (ASO) therapeutics are being clinically tested. While the antibody is relatively selective for circulating ANGPTL3, the ASO also depletes the intra-hepatocellular protein, and there is emerging evidence for cell-autonomous functions of ANGPTL3 in the liver. These include regulation of hepatocyte glucose and fatty acid uptake, insulin sensitivity, LDL/VLDL remnant uptake, VLDL assembly/secretion, polyunsaturated fatty acid (PUFA) and PUFA-derived lipid mediator content, and gene expression. In this review we elaborate on (i) why ANGPTL3 is considered one of the most promising new cardiometabolic therapy targets, and (ii) the present evidences for its intra-hepatocellular or cell-autonomous functions.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Finland
| | | | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
14
|
Pal A, Al‐Shaer AE, Guesdon W, Torres MJ, Armstrong M, Quinn K, Davis T, Reisdorph N, Neufer PD, Spangenburg EE, Carroll I, Bazinet RP, Halade GV, Clària J, Shaikh SR. Resolvin E1 derived from eicosapentaenoic acid prevents hyperinsulinemia and hyperglycemia in a host genetic manner. FASEB J 2020; 34:10640-10656. [PMID: 32579292 PMCID: PMC7497168 DOI: 10.1096/fj.202000830r] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/27/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022]
Abstract
Eicosapentaenoic acid (EPA) has garnered attention after the success of the REDUCE-IT trial, which contradicted previous conclusions on EPA for cardiovascular disease risk. Here we first investigated EPA's preventative role on hyperglycemia and hyperinsulinemia. EPA ethyl esters prevented obesity-induced glucose intolerance, hyperinsulinemia, and hyperglycemia in C57BL/6J mice. Supporting NHANES analyses showed that fasting glucose levels of obese adults were inversely related to EPA intake. We next investigated how EPA improved murine hyperinsulinemia and hyperglycemia. EPA overturned the obesity-driven decrement in the concentration of 18-hydroxyeicosapentaenoic acid (18-HEPE) in white adipose tissue and liver. Treatment of obese inbred mice with RvE1, the downstream immunoresolvant metabolite of 18-HEPE, but not 18-HEPE itself, reversed hyperinsulinemia and hyperglycemia through the G-protein coupled receptor ERV1/ChemR23. To translate the findings, we determined if the effects of RvE1 were dependent on host genetics. RvE1's effects on hyperinsulinemia and hyperglycemia were divergent in diversity outbred mice that model human genetic variation. Secondary SNP analyses further confirmed extensive genetic variation in human RvE1/EPA-metabolizing genes. Collectively, the data suggest EPA prevents hyperinsulinemia and hyperglycemia, in part, through RvE1's activation of ERV1/ChemR23 in a host genetic manner. The studies underscore the need for personalized administration of RvE1 based on genetic/metabolic enzyme profiles.
Collapse
Affiliation(s)
- Anandita Pal
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Abrar E. Al‐Shaer
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - William Guesdon
- Department of Biochemistry & Molecular BiologyBrody School of MedicineEast Carolina UniversityGreenvilleNCUSA
- Present address:
School of Immunology and Microbial SciencesKing's College LondonGuy's CampusLondonSE1 9RTUK
| | - Maria J. Torres
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
- Present address:
Duke Molecular Physiology InstituteDuke University300 North Duke StreetDurhamNC27701USA
| | - Michael Armstrong
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - Kevin Quinn
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - Traci Davis
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | - Nichole Reisdorph
- Department of Pharmaceutical SciencesUniversity of Colorado Denver Anschutz Medical CampusAuroraCOUSA
| | - P. Darrell Neufer
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Espen E. Spangenburg
- Department of PhysiologyEast Carolina Diabetes & Obesity InstituteEast Carolina UniversityGreenvilleNCUSA
| | - Ian Carroll
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| | | | - Ganesh V. Halade
- Division of Cardiovascular SciencesDepartment of MedicineThe University of South FloridaTampaFLUSA
| | - Joan Clària
- Department of Biochemistry and Molecular GeneticsUniversity of BarcelonaHospital ClínicBarcelonaSpain
| | - Saame Raza Shaikh
- Department of NutritionGillings School of Global Public Health and School of MedicineThe University of North Carolina at Chapel HillChapel HillNCUSA
| |
Collapse
|
15
|
Ruhanen H, Haridas PAN, Minicocci I, Taskinen JH, Palmas F, di Costanzo A, D'Erasmo L, Metso J, Partanen J, Dalli J, Zhou Y, Arca M, Jauhiainen M, Käkelä R, Olkkonen VM. ANGPTL3 deficiency alters the lipid profile and metabolism of cultured hepatocytes and human lipoproteins. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158679. [PMID: 32151767 DOI: 10.1016/j.bbalip.2020.158679] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 02/08/2023]
Abstract
Loss-of-function (LOF) mutations in ANGPTL3, an inhibitor of lipoprotein lipase (LPL), cause a drastic reduction of serum lipoproteins and protect against the development of atherosclerotic cardiovascular disease. Therefore, ANGPTL3 is a promising therapy target. We characterized the impacts of ANGPTL3 depletion on the immortalized human hepatocyte (IHH) transcriptome, lipidome and human plasma lipoprotein lipidome. The transcriptome of ANGPTL3 knock-down (KD) cells showed altered expression of several pathways related to lipid metabolism. Accordingly, ANGPTL3 depleted IHH displayed changes in cellular overall fatty acid (FA) composition and in the lipid species composition of several lipid classes, characterized by abundant n-6 and n-3 polyunsaturated FAs (PUFAs). This PUFA increase coincided with an elevation of lipid mediators, among which there were species relevant for resolution of inflammation, protection from lipotoxic and hypoxia-induced ER stress, hepatic steatosis and insulin resistance or for the recovery from cardiovascular events. Cholesterol esters were markedly reduced in ANGPTL3 KD IHH, coinciding with suppression of the SOAT1 mRNA and protein. ANGPTL3 LOF caused alterations in plasma lipoprotein FA and lipid species composition. All lipoprotein fractions of the ANGPTL3 LOF subjects displayed a marked drop of 18:2n-6, while several highly unsaturated triacylglycerol (TAG) species were enriched. The present work reveals distinct impacts of ANGPTL3 depletion on the hepatocellular lipidome, transcriptome and lipid mediators, as well as on the lipidome of lipoproteins isolated from plasma of ANGPTL3-deficient human subjects. It is important to consider these lipidomics and transcriptomics findings when targeting ANGPTL3 for therapy and translating it to the human context.
Collapse
Affiliation(s)
- Hanna Ruhanen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | | | - Ilenia Minicocci
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Juuso H Taskinen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Francesco Palmas
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Alessia di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Jari Metso
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | | | - Jesmond Dalli
- Lipid Mediator Unit, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom; Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, UK
| | - You Zhou
- Systems Immunity University Research Institute and Division of Infection & Immunity, Cardiff University, Cardiff, United Kingdom
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome, Italy
| | - Matti Jauhiainen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Reijo Käkelä
- Molecular and Integrative Biosciences, University of Helsinki, Helsinki, Finland; Helsinki University Lipidomics Unit (HiLIPID), Helsinki Institute for Life Science (HiLIFE), Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Helsinki, Finland; Department of Anatomy, University of Helsinki, Finland.
| |
Collapse
|