1
|
Wang L, Liu K, Song Z, Do H, Yang L, Wu J, Jiang L, Yu H. Influence of coordination number and ionic radius on metal ion preference and activity of lanthanide-dependent alcohol dehydrogenase: Insights from mutational studies and density functional theory. Colloids Surf B Biointerfaces 2025; 251:114596. [PMID: 40031112 DOI: 10.1016/j.colsurfb.2025.114596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 02/18/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Lanthanide (Ln) elements form a cofactor complex with pyrroloquinoline quinone (PQQ) in bacterial alcohol dehydrogenases (Ln3 +-ADH). The lanthanide elements did not support Ln3+-ADH activity equally, with only early lanthanides (La3+-Gd3+) promoting high enzyme activity. However, the early lanthanides did not promote the activity equally and the detailed mechanism of Ln3+-ADH exhibiting different activity in the presence of different light Lns remains obscure. To uncover the role of lanthanides in promoting Ln3+-ADH activity, we systemically characterized the activity of an Ln3+-ADH from Pseudomonas putida KT2440 (PedH) in the presence of various Ln3+ ions. In the results, enzyme activity displayed a bell-shaped trend along with the lanthanide series, with Nd3+ providing the highest activity. Active site mutation analysis revealed that modifying the number of coordinating ligands shifted the metal preference of the enzyme. DFT calculation revealed that the HOMO-LUMO gap, substrate interaction energy and metal ions binding distances were critical for the lanthanides in promoting enzyme activity. This work shed light on the critical role of metal ions in Ln3+-ADH catalysis, providing insights for future exploration and engineering of Ln-dependent proteins.
Collapse
Affiliation(s)
- Lun Wang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Ke Liu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Zhongdi Song
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Hainam Do
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; New Materials Institute, University of Nottingham Ningbo China, Ningbo 315042, China; Key Laboratory of Carbonaceous Waste Processing and Process Intensification Research of Zhejiang Province, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Lirong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Jianping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China
| | - Ling Jiang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China.
| | - Haoran Yu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Centre, Hangzhou, Zhejiang 311200, China.
| |
Collapse
|
2
|
Guo Z, Smutok O, Ronacher C, Aguiar Rocha R, Walden P, Mureev S, Cui Z, Katz E, Scott C, Alexandrov K. Lanthanide-Controlled Protein Switches: Development and In Vitro and In Vivo Applications. Angew Chem Int Ed Engl 2025; 64:e202411584. [PMID: 39856018 PMCID: PMC11848957 DOI: 10.1002/anie.202411584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 01/27/2025]
Abstract
Lanthanides, which are part of the rare earth elements group have numerous applications in electronics, medicine and energy storage. However, our ability to extract them is not meeting the rapidly increasing demand. The discovery of the bacterial periplasmic lanthanide-binding protein lanmodulin spurred significant interest in developing biotechnological routes for lanthanide detection and extraction. Here we report the construction of β-lactamase-lanmodulin chimeras that function as lanthanide-controlled enzymatic switches. Optimized switches demonstrated dynamic ranges approaching 3000-fold and could accurately quantify lanthanide ions in simple colorimetric or electrochemical assays. E.coli cells expressing such chimeras grow on β-lactam antibiotics only in the presence of lanthanide ions. The developed lanthanide-controlled protein switches represent a novel platform for engineering metal-binding proteins for biosensing and microbial engineering.
Collapse
Affiliation(s)
- Zhong Guo
- ARC Centre of Excellence in Synthetic BiologyAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Oleh Smutok
- Department of Chemistry and Biomolecular ScienceClarkson University8 Clarkson Ave.PotsdamNY13699USA
| | - Chantal Ronacher
- School of Engineering Sciences in ChemistryBiotechnology and HealthKTH Royal Institute of Technology100 44StockholmSweden
| | - Raquel Aguiar Rocha
- ARC Centre of Excellence in Synthetic BiologyAustralia
- CSIRO Advanced Engineering Biology Future Science PlatformBlack Mountain Research & Innovation ParkClunies Ross RoadCanberraACT2601Australia
| | - Patricia Walden
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Sergey Mureev
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Zhenling Cui
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular ScienceClarkson University8 Clarkson Ave.PotsdamNY13699USA
| | - Colin Scott
- ARC Centre of Excellence in Synthetic BiologyAustralia
- CSIRO Advanced Engineering Biology Future Science PlatformBlack Mountain Research & Innovation ParkClunies Ross RoadCanberraACT2601Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic BiologyAustralia
- Centre for Agriculture and the BioeconomyQueensland University of TechnologyBrisbaneQLD4001Australia
- School of Biology and Environmental ScienceQueensland University of TechnologyBrisbaneQLD4001Australia
| |
Collapse
|
3
|
Wait EE, Riley CR, Manginell MM, Peretti A, Spoerke ED, Bachand GD, Rempe SB, Ren P. QM Investigation of Rare Earth Ion Interactions with First Hydration Shell Waters and Protein-Based Coordination Models. J Phys Chem B 2025; 129:1529-1543. [PMID: 39847513 DOI: 10.1021/acs.jpcb.4c07361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Conventional methods for extracting rare earth metals (REMs) from mined mineral ores are inefficient, expensive, and environmentally damaging. Recent discovery of lanmodulin (LanM), a protein that coordinates REMs with high-affinity and selectivity over competing ions, provides inspiration for new REM refinement methods. Here, we used quantum mechanical (QM) methods to investigate trivalent lanthanide cation (Ln3+) interactions with coordination systems representing bulk solvent water and protein binding sites. Energy decomposition analysis (EDA) showed differences in the energetic components of Ln3+ interaction with representatives of solvent (water, H2O) and protein binding sites (acetate, CH3COO-), highlighting the importance of accurate description of electrostatics and polarization in computational modeling of REM interactions with biological and bioinspired molecules. Relative binding free energies were obtained for Ln3+ with coordination complexes originating from binding sites in PDB structures of a lanthanum binding peptide (PDB entry 7CCO) and LanM, with explicit consideration of the first hydration shell waters, according to quasi-chemical theory (QCT). Beyond the first shell, the bulk solvent environment was represented with an implicit continuum model. Ln3+ interactions with (H2O)9 and both binding site models became more favorable, moving down the periodic series. This trend was more pronounced with the protein binding site models than with water, resulting in affinity increasing with periodic number, except for the last REM, Lu3+, which bound less favorably than the preceding element, Yb3+. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln3+ relative binding free energies for the whole 7CCO peptide were reproduced. Conversely, the previously reported experimental data for LanM show a preference for the earlier lanthanides; this is likely due to longer-range interactions and cooperative effects, which are not represented by the reduced models. Using the truncated 7CCO binding site model, the magnitude and trend of the experimental Ln3+ relative binding free energies for the whole 7CCO peptide were reproduced. In contrast to the previously reported experimental data for LanM, the peptide preferentially binds the earlier lanthanides. This difference likely arises due to longer-range interactions and cooperative effects not represented by the peptide. Further investigation of Ln3+ interactions with whole proteins using polarizable molecular mechanics models with explicit solvent is warranted to understand the influence of longer-ranged interactions, cooperativity, and bulk solvent. Nevertheless, the present work provides new insights into Ln3+ interactions with biomolecules and presents an effective computational platform for designing specific single-site REM binding peptides more efficiently.
Collapse
Affiliation(s)
- Elizabeth E Wait
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher R Riley
- Ceramics and Materials Physics, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Monica M Manginell
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Amanda Peretti
- Ceramics and Materials Physics, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Erik D Spoerke
- Energy Storage Technology and Systems, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - George D Bachand
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Susan B Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Prejanò M, Tonazzi A, Giangregorio N, Indiveri C, Marino T. Lanthanides Gd and Tm Can Inhibit Carnitine/Acylcarnitine Transporter: Insights from All-Atoms Simulations. Chembiochem 2025:e202401018. [PMID: 39906981 DOI: 10.1002/cbic.202401018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Recent experimental evidence highlighted the inhibition of carnitine/acylcarnitine carrier (CAC), an important mitochondrial transmembrane protein for living organisms, by the early lanthanide Pr3+. A possible explanation of such a behaviour was found in the preference of the cation for amino acids like aspartate and glutamate containing a carboxylate in the side chain, laying in the inter-membrane space. Interaction of the cation with these residues can cause halt the transfer of the protein's substrates between the matrix and cytoplasm thus opening to new scenarios concerning the CAC-metal interactions and its relative inhibition. In the present work, the panel of metals binding the CAC protein is predictively expanded including Gd3+ and Tm3+, selected as representative species of middle and late lanthanides, respectively. A more realistic membrane-containing model of the protein was built and the comparative analysis of the molecular dynamics (MD) simulations of CAC apo-form with its complexed systems, named CAC-Pr, CAC-Gd and CAC-Tm, was performed. The analysis of the trajectories revealed that the inhibition is caused by the coordination of D132 and E179 to the cations and that such interactions generate a reorganization of important salt-bridges inside the framework of CAC. In detail, MD simulations highlighted that a spontaneous conformational change from cytoplasmatic-state (c-state) to matrix-state (m-state) induced by cations and that, in this condition, the protein channel is occluded, thus explaining the inhibition.
Collapse
Affiliation(s)
- Mario Prejanò
- Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 14/C, 87036, Arcavacata di Rende, CS, Italy
| | - Annamaria Tonazzi
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - Nicola Giangregorio
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
| | - Cesare Indiveri
- National Research Council (CNR), Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Via Amendola 122/O, 70126, Bari, Italy
- Laboratory of Biochemistry, Molecular Biotechnology and Molecular Biology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via Bucci 4 C, 87036, Arcavacata di Rende, Italy
| | - Tiziana Marino
- Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 14/C, 87036, Arcavacata di Rende, CS, Italy
| |
Collapse
|
5
|
Magrini C, Verga F, Bassani I, Pirri CF, Abdel Azim A. A Microbial-Centric View of Mobile Phones: Enhancing the Technological Feasibility of Biotechnological Recovery of Critical Metals. Bioengineering (Basel) 2025; 12:101. [PMID: 40001621 PMCID: PMC11852156 DOI: 10.3390/bioengineering12020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
End-of-life (EoL) mobile phones represent a valuable reservoir of critical raw materials at higher concentrations compared to primary ores. This review emphasizes the critical need to transition from single-material recovery approaches to comprehensive, holistic strategies for recycling EoL mobile phones. In response to the call for sustainable techniques with reduced energy consumption and pollutant emissions, biohydrometallurgy emerges as a promising solution. The present work intends to review the most relevant studies focusing on the exploitation of microbial consortia in bioleaching and biorecovery processes. All living organisms need macro- and micronutrients for their metabolic functionalities, including some of the elements contained in mobile phones. By exploring the interactions between microbial communities and the diverse elements found in mobile phones, this paper establishes a microbial-centric perspective by connecting each element of each layer to their role in the microbial cell system. A special focus is dedicated to the concepts of ecodesign and modularity as key requirements in electronics to potentially increase selectivity of microbial consortia in the bioleaching process. By bridging microbial science with sustainable design, this review proposes an innovative roadmap to optimize metal recovery, aligning with the principles of the circular economy and advancing scalable biotechnological solutions for electronic waste management.
Collapse
Affiliation(s)
- Chiara Magrini
- Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), 10129 Turin, Italy; (C.M.); (F.V.)
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
| | - Francesca Verga
- Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering (DIATI), 10129 Turin, Italy; (C.M.); (F.V.)
| | - Ilaria Bassani
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
| | - Candido Fabrizio Pirri
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), 10129 Turin, Italy
| | - Annalisa Abdel Azim
- Centre for Sustainable Future Technologies, Fondazione Istituto Italiano di Tecnologia, 10144 Turin, Italy; (I.B.); (C.F.P.)
- Politecnico di Torino, Department of Applied Science and Technology (DISAT), 10129 Turin, Italy
| |
Collapse
|
6
|
Kulyashov MA, Hamilton R, Afshin Y, Kolmykov SK, Sokolova TS, Khlebodarova TM, Kalyuzhnaya MG, Akberdin IR. Modification and analysis of context-specific genome-scale metabolic models: methane-utilizing microbial chassis as a case study. mSystems 2025; 10:e0110524. [PMID: 39699184 PMCID: PMC11748545 DOI: 10.1128/msystems.01105-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
Context-specific genome-scale model (CS-GSM) reconstruction is becoming an efficient strategy for integrating and cross-comparing experimental multi-scale data to explore the relationship between cellular genotypes, facilitating fundamental or applied research discoveries. However, the application of CS modeling for non-conventional microbes is still challenging. Here, we present a graphical user interface that integrates COBRApy, EscherPy, and RIPTiDe, Python-based tools within the BioUML platform, and streamlines the reconstruction and interrogation of the CS genome-scale metabolic frameworks via Jupyter Notebook. The approach was tested using -omics data collected for Methylotuvimicrobium alcaliphilum 20ZR, a prominent microbial chassis for methane capturing and valorization. We optimized the previously reconstructed whole genome-scale metabolic network by adjusting the flux distribution using gene expression data. The outputs of the automatically reconstructed CS metabolic network were comparable to manually optimized iIA409 models for Ca-growth conditions. However, the CS model questions the reversibility of the phosphoketolase pathway and suggests higher flux via primary oxidation pathways. The model also highlighted unresolved carbon partitioning between assimilatory and catabolic pathways at the formaldehyde-formate node. Only a very few genes and only one enzyme with a predicted function in C1 metabolism, a homolog of the formaldehyde oxidation enzyme (fae1-2), showed a significant change in expression in La-growth conditions. The CS-GSM predictions agreed with the experimental measurements under the assumption that the Fae1-2 is a part of the tetrahydrofolate-linked pathway. The cellular roles of the tungsten (W)-dependent formate dehydrogenase (fdhAB) and fae homologs (fae1-2 and fae3) were investigated via mutagenesis. The phenotype of the fdhAB mutant followed the model prediction. Furthermore, a more significant reduction of the biomass yield was observed during growth in La-supplemented media, confirming a higher flux through formate. M. alcaliphilum 20ZR mutants lacking fae1-2 did not display any significant defects in methane or methanol-dependent growth. However, contrary to fae1, the fae1-2 homolog failed to restore the formaldehyde-activating enzyme function in complementation tests. Overall, the presented data suggest that the developed computational workflow supports the reconstruction and validation of CS-GSM networks of non-model microbes. IMPORTANCE The interrogation of various types of data is a routine strategy to explore the relationship between genotype and phenotype. An efficient approach for integrating and cross-comparing experimental multi-scale data in the context of whole-genome-based metabolic network reconstruction becomes a powerful tool that facilitates fundamental and applied research discoveries. The present study describes the reconstruction of a context-specific (CS) model for the methane-utilizing bacterium, Methylotuvimicrobium alcaliphilum 20ZR. M. alcaliphilum 20ZR is becoming an attractive microbial platform for the production of biofuels, chemicals, pharmaceuticals, and bio-sorbents for capturing atmospheric methane. We demonstrate that this pipeline can help reconstruct metabolic models that are similar to manually curated networks. Furthermore, the model is able to highlight previously overlooked pathways, thus advancing fundamental knowledge of non-model microbial systems or promoting their development toward biotechnological or environmental implementations.
Collapse
Affiliation(s)
- M. A. Kulyashov
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - R. Hamilton
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA
| | - Y. Afshin
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA
| | - S. K. Kolmykov
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - T. S. Sokolova
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - T. M. Khlebodarova
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - M. G. Kalyuzhnaya
- Department of Biology and Viral Information Institute, San Diego State University, San Diego, California, USA
| | - I. R. Akberdin
- Department of Computational Biology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
7
|
Yang W, Wu K, Chen H, Huang J, Yu Z. Emerging role of rare earth elements in biomolecular functions. THE ISME JOURNAL 2025; 19:wrae241. [PMID: 39657633 PMCID: PMC11845868 DOI: 10.1093/ismejo/wrae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The importance of rare earth elements is increasingly recognized due to the increased demand for their mining and separation. This demand is driving research on the biology of rare earth elements. Biomolecules associated with rare earth elements include rare earth element-dependent enzymes (methanol dehydrogenase XoxF, ethanol dehydrogenase ExaF/PedH), rare earth element-binding proteins, and the relevant metallophores. Traditional (chemical) separation methods for rare earth elements harvesting and separation are typically inefficient, while causing environmental problems, whereas bioharvesting, potentially, offers more efficient, more green platforms. Here, we review the current state of research on the biological functions of rare earth element-dependent biomolecules, and the characteristics of the relevant proteins, including the specific amino acids involved in rare earth metal binding. We also provide an outlook at strategies for further understanding of biological processes and the potential applications of rare earth element-dependent enzymes and other biomolecules.
Collapse
Affiliation(s)
- Wenyu Yang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Kaijuan Wu
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hao Chen
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
8
|
Constantin M, Chioncel MF, Petrescu L, Vrancianu CO, Paun M, Cristian RE, Sidoroff M, Dionisie MV, Chifiriuc MC. From rock to living systems: Lanthanides toxicity and biological interactions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117494. [PMID: 39647373 DOI: 10.1016/j.ecoenv.2024.117494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 11/27/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Since the discovery of lanthanides, the expanding range of applications and the growing demand for lanthanides in different aspects of life have escalated their dispersion in the environment, raising concerns about their impact on the living world. This review explores the interaction between lanthanides and different groups of living organisms (bacteria, algae, lichens, plants, invertebrates, and low vertebrates), reflecting the current state of scientific knowledge. We have aimed to provide a comprehensive overview of relevant studies, highlight existing gaps, and suggest potential areas for future research to enhance the understanding of this topic.
Collapse
Affiliation(s)
- Marian Constantin
- Institute of Biology of Romanian Academy, Bucharest 060031, Romania; The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania.
| | - Mariana F Chioncel
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Department of Analytical and Physical Chemistry, Faculty of Chemistry, University of Bucharest, Bucharest, Romania
| | - Livia Petrescu
- Department of Anatomy, Animal Physiology and Biophysics, DAFAB, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania.
| | - Corneliu Ovidiu Vrancianu
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Doctoral School, Carol Davila University of Medicine and Pharmacy, Eroii Sanitari, District 5, Bucharest, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania.
| | - Mihaela Paun
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Faculty of Administration and Business, University of Bucharest, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania; Romanian Society of Bioengineering and Biotechnology, Gheorghe Polizu, District 1, Bucharest, Romania; Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| | - Manuela Sidoroff
- National Institute of Research and Development for Biological Sciences, 296 Splaiul Independentei, District 6, Bucharest 060031, Romania
| | | | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest, ICUB, Bucharest, Romania; Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, Bucharest 050095, Romania
| |
Collapse
|
9
|
Song A, Si Z, Xu D, Wei B, Wang E, Chong F, Fan F. Lanthanum and cerium added to soil influence microbial carbon and nitrogen cycling genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123509. [PMID: 39626398 DOI: 10.1016/j.jenvman.2024.123509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 11/17/2024] [Accepted: 11/27/2024] [Indexed: 01/15/2025]
Abstract
The soil microbiome plays an important role in carbon (C) and nitrogen (N) processing and storage and is influenced by rare earth elements (REEs), which can have both direct and indirect effects on plant metabolic processes. Using conventional physicochemical methods and metagenomic-based analyses, we investigated REEs effects on soil respiration, soil mineral N, soil microbial community structure and functional genes related to C and N metabolism. High doses of cerium (0.16 and 0.32 mmol kg-1 soil) increased CO2 net production rate by 59 and 42%, and N2O net production rate by 255 and 609%, respectively, compared to no REEs. Similarly, high doses of lanthanum (0.16 and 0.32 mmol kg-1 soil) increased CO2 net production rate by 47 and 39%, and N2O net production rate by 105 and 187%, respectively. Increased soil respiration from altered relative abundances of key soil microorganisms associated with soil N cycling and organic matter degradation and functional genes encoding enzymes involved in C and N metabolism, accelerated N mineralization. Elevated REEs levels substantially increased the relative abundances of functional genes related to cellulose, chitin, glucans, hemicellulose, lignin, and peptidoglycan degradation. REEs also influenced multiple functional genes associated with the N cycle. The abundance of genes responsible for organic N degradation and synthesis, such as asnB, gdh_K15371, glsA, and gs, increased with elevated cerium and lanthanum concentrations. Similarly, the abundances of denitrification genes, including narl, narJ, narZ, and nosZ, also rose with increasing amounts of cerium and lanthanum. However, the decrease in narB and nirB gene abundance with increasing REE concentrations was attributed to the reduction of nitrate to amino groups. Our findings highlight the influence of REEs on key soil microorganisms associated with soil N cycling and organic matter degradation and key functional genes in soil C and N metabolism, with implications for agriculture, environmental protection, and human health.
Collapse
Affiliation(s)
- Alin Song
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhiyuan Si
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Duanyang Xu
- Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China
| | - Buqing Wei
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Enzhao Wang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fayao Chong
- China North Rare Earth Hi Tech Co., Ltd, Baotou, 014030, China
| | - Fenliang Fan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Valdés JJ, Petrash DA, Konhauser KO. A novel in-silico model explores LanM homologs among Hyphomicrobium spp. Commun Biol 2024; 7:1539. [PMID: 39562649 PMCID: PMC11576760 DOI: 10.1038/s42003-024-07258-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 11/12/2024] [Indexed: 11/21/2024] Open
Abstract
Investigating microorganisms in metal-enriched environments holds the potential to revolutionize the sustainable recovery of critical metals such as lanthanides (Ln3+). We observe Hyphomicrobium spp. as part of a Fe2+/Mn2+-oxidizing consortia native to the ferruginous bottom waters of a Ln3+-enriched lake in Czechia. Notably, one species shows similarities to recently discovered bacteria expressing proteins with picomolar Ln3+ affinity. This finding was substantiated by developing an in-silico ionic competition model and recombinant expression of a homolog protein (Hm-LanM) from Hyphomicrobium methylovorum. Biochemical assays validate Hm-LanM preference for lighter Ln3+ ions (from lanthanum to gadolinium). This is comparable to established prototypes. Bioinformatics analyses further uncover additional H. methylovorum metabolic biomolecules in genomic proximity to Hm-LanM analogously dependent on Ln3+, including an outer membrane receptor that binds Ln3+-chelating siderophores. These combined observations underscore the remarkable strategy of Hyphomicrobium spp. for thriving in relatively Ln3+ enriched zones of metal-polluted environments.
Collapse
Affiliation(s)
- James J Valdés
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
- Centre Algatech, Institute of Microbiology, Czech Academy of Sciences, Třeboň, Czechia.
| | - Daniel A Petrash
- Department of Environmental Geochemistry and Biogeochemistry, Czech Geological Survey, Prague 5, Czechia.
- Institute of Soil Biology and Biogeochemistry, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.
| | - Kurt O Konhauser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Larrinaga WB, Jung JJ, Lin CY, Boal AK, Cotruvo JA. Modulating metal-centered dimerization of a lanthanide chaperone protein for separation of light lanthanides. Proc Natl Acad Sci U S A 2024; 121:e2410926121. [PMID: 39467132 PMCID: PMC11551332 DOI: 10.1073/pnas.2410926121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 10/30/2024] Open
Abstract
Elucidating details of biology's selective uptake and trafficking of rare earth elements, particularly the lanthanides, has the potential to inspire sustainable biomolecular separations of these essential metals for myriad modern technologies. Here, we biochemically and structurally characterize Methylobacterium (Methylorubrum) extorquens LanD, a periplasmic protein from a bacterial gene cluster for lanthanide uptake. This protein provides only four ligands at its surface-exposed lanthanide-binding site, allowing for metal-centered protein dimerization that favors the largest lanthanide, LaIII. However, the monomer prefers NdIII and SmIII, which are disfavored lanthanides for cellular utilization. Structure-guided mutagenesis of a metal-ligand and an outer-sphere residue weakens metal binding to the LanD monomer and enhances dimerization for PrIII and NdIII by 100-fold. Selective dimerization enriches high-value PrIII and NdIII relative to low-value LaIII and CeIII in an all-aqueous process, achieving higher separation factors than lanmodulins and comparable or better separation factors than common industrial extractants. Finally, we show that LanD interacts with lanmodulin (LanM), a previously characterized periplasmic protein that shares LanD's preference for NdIII and SmIII. Our results suggest that LanD's unusual metal-binding site transfers less-desirable lanthanides to LanM to siphon them away from the pathway for cytosolic import. The properties of LanD show how relatively weak chelators can achieve high selectivity, and they form the basis for the design of protein dimers for separation of adjacent lanthanide pairs and other metal ions.
Collapse
Affiliation(s)
- Wyatt B. Larrinaga
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Jonathan J. Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| | - Amie K. Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA16802
| | - Joseph A. Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|
12
|
Chen Y, Su Y, Han J, Chen C, Fan H, Zhang C. Synthetic Mn 3Ce 2O 5-Cluster Mimicking the Oxygen-Evolving Center in Photosynthesis. CHEMSUSCHEM 2024; 17:e202401031. [PMID: 38829180 DOI: 10.1002/cssc.202401031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
The photosynthetic oxygen-evolving center (OEC) is a unique Mn4CaO5-cluster that catalyses water splitting into electrons, protons, and dioxygen. Precisely structural and functional mimicking of the OEC is a long-standing challenge and pressingly needed for understanding the structure-function relationship and catalytic mechanism of O-O bond formation. Herein we report two simple and robust artificial Mn3Ce2O5-complexes that display a remarkable structural similarity to the OEC in regarding of the ten-atom core (five metal ions and five oxygen bridges) and the alkyl carboxylate peripheral ligands. This Mn3Ce2O5-cluster can catalyse the water-splitting reaction on the surface of ITO electrode. These results clearly show that cerium can structurally and functionally replace both calcium and manganese in the cluster. Mass spectroscopic measurements demonstrate that the oxide bridges in the cluster are exchangeable and can be rapidly replaced by the isotopic oxygen of H2 18O in acetonitrile solution, which supports that the oxide bridge(s) may serve as the active site for the formation of O-O bond during the water-splitting reaction. These results would contribute to our understanding of the structure-reactivity relationship of both natural and artificial clusters and shed new light on the development of efficient water-splitting catalysts in artificial photosynthesis.
Collapse
Affiliation(s)
- Yang Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yao Su
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changhui Chen
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongjun Fan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Chunxi Zhang
- Beijing National Laboratory for Molecular Sciences and Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
13
|
Thompson PJ, Boggs DG, Wilson CA, Bruchs AT, Velidandla U, Bridwell-Rabb J, Olshansky L. Structure-driven development of a biomimetic rare earth artificial metalloprotein. Proc Natl Acad Sci U S A 2024; 121:e2405836121. [PMID: 39116128 PMCID: PMC11331073 DOI: 10.1073/pnas.2405836121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/05/2024] [Indexed: 08/10/2024] Open
Abstract
The 2011 discovery of the first rare earth-dependent enzyme in methylotrophic Methylobacterium extorquens AM1 prompted intensive research toward understanding the unique chemistry at play in these systems. This enzyme, an alcohol dehydrogenase (ADH), features a La3+ ion closely associated with redox-active coenzyme pyrroloquinoline quinone (PQQ) and is structurally homologous to the Ca2+-dependent ADH from the same organism. AM1 also produces a periplasmic PQQ-binding protein, PqqT, which we have now structurally characterized to 1.46-Å resolution by X-ray diffraction. This crystal structure reveals a Lys residue hydrogen-bonded to PQQ at the site analogously occupied by a Lewis acidic cation in ADH. Accordingly, we prepared K142A- and K142D-PqqT variants to assess the relevance of this site toward metal binding. Isothermal titration calorimetry experiments and titrations monitored by UV-Vis absorption and emission spectroscopies support that K142D-PqqT binds tightly (Kd = 0.6 ± 0.2 μM) to La3+ in the presence of bound PQQ and produces spectral signatures consistent with those of ADH enzymes. These spectral signatures are not observed for WT- or K142A-variants or upon addition of Ca2+ to PQQ ⸦ K142D-PqqT. Addition of benzyl alcohol to La3+-bound PQQ ⸦ K142D-PqqT (but not Ca2+-bound PQQ ⸦ K142D-PqqT, or La3+-bound PQQ ⸦ WT-PqqT) produces spectroscopic changes associated with PQQ reduction, and chemical trapping experiments reveal the production of benzaldehyde, supporting ADH activity. By creating a metal binding site that mimics native ADH enzymes, we present a rare earth-dependent artificial metalloenzyme primed for future mechanistic, biocatalytic, and biosensing applications.
Collapse
Affiliation(s)
- Peter J. Thompson
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
| | - David G. Boggs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Charles A. Wilson
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Austin T. Bruchs
- Department of Chemistry, University of Michigan, Ann Arbor, MI48109
| | - Uditha Velidandla
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Lisa Olshansky
- Center for Biophysics and Quantitative Biology, University of Illinois, Urbana-Champaign, Urbana, IL61801
- Department of Chemistry, Materials Research Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
14
|
Angius F, Cremers G, Frank J, Witkowski C, Pol A, van Alen TA, Jetten MSM, Op den Camp HJM, Berben T. Gene-centered metagenome analysis of Vulcano Island soil (Aeolian archipelago, Italy) reveals diverse microbial key players in methane, hydrogen and sulfur cycles. Antonie Van Leeuwenhoek 2024; 117:94. [PMID: 38954064 PMCID: PMC11219375 DOI: 10.1007/s10482-024-01995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.
Collapse
Affiliation(s)
- Federica Angius
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Geert Cremers
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Jeroen Frank
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Caitlyn Witkowski
- Department of Marine Microbiology and Biogeochemistry, NIOZ, P.O. Box 59, 1790 AB, Den Burg, Texel, The Netherlands
- School of Earth Sciences, Wills Memorial Building, University of Bristol, Queens Road, Clifton, BS8 1RJ, UK
| | - Arjan Pol
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Theo A van Alen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands.
| | - Tom Berben
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Faculty of Science, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Coimbra C, Branco R, da Silva PSP, Paixão JA, Martins JMF, Spadini L, Morais PV. Yttrium immobilization through biomineralization with phosphate by the resistant strain Mesorhizobium qingshengii J19. J Appl Microbiol 2024; 135:lxae156. [PMID: 38925658 DOI: 10.1093/jambio/lxae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/11/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
AIMS Yttrium (Y) holds significant industrial and economic importance, being listed as a critical element on the European list of critical elements, thus emphasizing the high priority for its recovery. Bacterial strategies play a crucial role in the biorecovery of metals, offering a promising and environmentally friendly approach. Therefore, gaining a comprehensive understanding of the underlying mechanisms behind bacterial resistance, as well as the processes of bioaccumulation and biotransformation, is of paramount importance. METHODS AND RESULTS A total of 207 Alphaproteobacteria strains from the University of Coimbra Bacteria Culture Collection were tested for Y-resistance. Among these, strain Mesorhizobium qingshengii J19 exhibited high resistance (up to 4 mM Y) and remarkable Y accumulation capacity, particularly in the cell membrane. Electron microscopy revealed Y-phosphate interactions, while X-ray diffraction identified Y(PO3)3·9H2O biocrystals produced by J19 cells. CONCLUSION This study elucidates Y immobilization through biomineralization within phosphate biocrystals using M. qingshengii J19 cells.
Collapse
Affiliation(s)
- Carina Coimbra
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Rita Branco
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, 3000-456 Coimbra, Portugal
| | - Pedro S P da Silva
- University of Coimbra, CFisUC, Department of Physics, 3004-516 Coimbra, Portugal
| | - José A Paixão
- University of Coimbra, CFisUC, Department of Physics, 3004-516 Coimbra, Portugal
| | - Jean M F Martins
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, France
| | - Lorenzo Spadini
- Univ. Grenoble Alpes, CNRS, IRD, Grenoble-INP, IGE, 38000 Grenoble, France
| | - Paula V Morais
- University of Coimbra, Centre for Mechanical Engineering, Materials and Processes, ARISE, Department of Life Sciences, 3000-456 Coimbra, Portugal
| |
Collapse
|
16
|
Samanta D, Rauniyar S, Saxena P, Sani RK. From genome to evolution: investigating type II methylotrophs using a pangenomic analysis. mSystems 2024; 9:e0024824. [PMID: 38695578 PMCID: PMC11237726 DOI: 10.1128/msystems.00248-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/04/2024] [Indexed: 06/19/2024] Open
Abstract
A comprehensive pangenomic approach was employed to analyze the genomes of 75 type II methylotrophs spanning various genera. Our investigation revealed 256 exact core gene families shared by all 75 organisms, emphasizing their crucial role in the survival and adaptability of these organisms. Additionally, we predicted the functionality of 12 hypothetical proteins. The analysis unveiled a diverse array of genes associated with key metabolic pathways, including methane, serine, glyoxylate, and ethylmalonyl-CoA (EMC) metabolic pathways. While all selected organisms possessed essential genes for the serine pathway, Methylooceanibacter marginalis lacked serine hydroxymethyltransferase (SHMT), and Methylobacterium variabile exhibited both isozymes of SHMT, suggesting its potential to utilize a broader range of carbon sources. Notably, Methylobrevis sp. displayed a unique serine-glyoxylate transaminase isozyme not found in other organisms. Only nine organisms featured anaplerotic enzymes (isocitrate lyase and malate synthase) for the glyoxylate pathway, with the rest following the EMC pathway. Methylovirgula sp. 4MZ18 stood out by acquiring genes from both glyoxylate and EMC pathways, and Methylocapsa sp. S129 featured an A-form malate synthase, unlike the G-form found in the remaining organisms. Our findings also revealed distinct phylogenetic relationships and clustering patterns among type II methylotrophs, leading to the proposal of a separate genus for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129. This pangenomic study unveils remarkable metabolic diversity, unique gene characteristics, and distinct clustering patterns of type II methylotrophs, providing valuable insights for future carbon sequestration and biotechnological applications. IMPORTANCE Methylotrophs have played a significant role in methane-based product production for many years. However, a comprehensive investigation into the diverse genetic architectures across different genera of methylotrophs has been lacking. This study fills this knowledge gap by enhancing our understanding of core hypothetical proteins and unique enzymes involved in methane oxidation, serine, glyoxylate, and ethylmalonyl-CoA pathways. These findings provide a valuable reference for researchers working with other methylotrophic species. Furthermore, this study not only unveils distinctive gene characteristics and phylogenetic relationships but also suggests a reclassification for Methylovirgula sp. 4M-Z18 and Methylocapsa sp. S129 into separate genera due to their unique attributes within their respective genus. Leveraging the synergies among various methylotrophic organisms, the scientific community can potentially optimize metabolite production, increasing the yield of desired end products and overall productivity.
Collapse
Affiliation(s)
- Dipayan Samanta
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Shailabh Rauniyar
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- BuG ReMeDEE Consortium, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, South Dakota, USA
| |
Collapse
|
17
|
Rabbani M, Taqi Rabbani M, Muthoni F, Sun Y, Vahidi E. Advancing phytomining: Harnessing plant potential for sustainable rare earth element extraction. BIORESOURCE TECHNOLOGY 2024; 401:130751. [PMID: 38685517 DOI: 10.1016/j.biortech.2024.130751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Rare earth elements (REEs) are pivotal for advanced technologies, driving a surge in global demand. Import dependency on clean energy minerals raises concerns about supply chain vulnerabilities and geopolitical risks. Conventional REEs productionis resource-intensive and environmentally harmful, necessitating a sustainable supply approach. Phytomining (agromining) utilizes plants for eco-friendly REE extraction, contributing to the circular economy and exploiting untapped metal resources in enriched soils. Critical parameters like soil pH, Casparian strip, and REE valence influence soil and plant uptake bioavailability. Hyperaccumulator species efficiently accumulate REEs, serving as energy resources. Despite a lack of a comprehensive database, phytomining exhibits lower environmental impacts due to minimal chemical usage and CO2 absorption. This review proposes phytomining as a system for REEs extraction, remediating contaminated areas, and rehabilitating abandoned mines. The phytomining of REEs offers a promising avenue for sustainable REEs extraction but requires technological advancements to realize its full potential.
Collapse
Affiliation(s)
- Mohsen Rabbani
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA
| | | | - Frida Muthoni
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA
| | - Ying Sun
- The Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ehsan Vahidi
- Department of Mining and Metallurgical Engineering, Mackay School of Earth Sciences and Engineering, University of Nevada, Reno, USA.
| |
Collapse
|
18
|
Soleimanifar M, Rodriguez-Freire L. Cerium oxide and neodymium oxide phytoextraction by ryegrass in bioenhanced hydroponic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123978. [PMID: 38615839 DOI: 10.1016/j.envpol.2024.123978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/29/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Sustainable technologies for the recovery of rare earth elements (REE) from waste need to be developed to decrease the volume of ore mining extractions and its negative environmental consequences, while simultaneously restoring previously impacted lands. This is critical due to the extensive application of REE in everyday life from electronic devices to energy and medical technologies, and the dispersed distribution of REE resources in the world. REE recovery by plants has been previously studied but the feasibility of REE phytoextraction from a poorly soluble solid phase (i.e., nanoparticles) by different plant species has been rarely investigated. In this study, the effect of biostimulation and bioaugmentation on phytorecovery of REE nanoparticles (REE-NP) was investigated by exposing ryegrass seeds to REE-NP in hydroponic environments. This was studied in two sets of experiments: bioaugmentation (using CeO2 nanoparticles and Methylobacterium extorquens AM1 pure culture), and biostimulation (using CeO2 or Nd2O3 nanoparticles and endogenous microorganisms). Addition of M. extorquens AM1 in bioaugmentation experiment including 500 mg/L CeO2 nanoparticles could not promote the nanoparticles accumulation in both natural and surface-sterilized treatments. However, it enhanced the translocation of Ce from roots to shoots in sterile samples. Moreover, another REE-utilizing bacterium, Bacillus subtilis, was enriched more than M. extorquens in control samples (no M. extorquens AM1), and associated with 52% and 14% higher Ce extraction in both natural (165 μg/gdried-plant) and surface-sterilized samples (136 μg/gdried-plant), respectively; showing the superior effect of endogenous microorganisms' enrichment over bioaugmentation in this experiment. In the biostimulation experiments, up to 705 μg/gdried-plant Ce and 19,641 μg/gdried-plant Nd could be extracted when 500 mg/L REE-NP were added. Furthermore, SEM-EDS analysis of the surface and longitudinal cross-sections of roots in Nd2O3 treatments confirmed surface and intracellular accumulation of Nd2O3-NP. These results demonstrate stimulation of endogenous microbial community can lead to an enhanced REE phytoaccumulation.
Collapse
Affiliation(s)
- Maedeh Soleimanifar
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States; Now at Civil Engineering Department, The City College of New York, The City University of New York, 10031, New York, NY, United States.
| | - Lucia Rodriguez-Freire
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States; Now at Civil, Structural and Geospatial Engineering Department, School of Engineering, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
19
|
Ye Q, Wang D, Wei N. Engineering biomaterials for the recovery of rare earth elements. Trends Biotechnol 2024; 42:575-590. [PMID: 37985335 DOI: 10.1016/j.tibtech.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The escalating global demand for rare earth elements (REEs) and the overabundance of REE-containing waste require innovative technologies for REE recovery from waste to achieve a sustainable supply of REEs while reducing the environmental burden. Biosorption mediated by peptides or proteins has emerged as a promising approach for selective REE recovery. To date, multiple peptides and proteins with high REE-binding affinity and selectivity have been discovered, and various strategies are being exploited to engineer robust and reusable biosorptive materials for selective REE recovery. This review highlights recent advances in discovering and engineering peptides and proteins for REE recovery. Future research prospects and challenges are also discussed.
Collapse
Affiliation(s)
- Quanhui Ye
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Dong Wang
- School of Information Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Na Wei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
20
|
Breeze CW, Nakano Y, Campbell EC, Frkic RL, Lupton DW, Jackson CJ. Mononuclear binding and catalytic activity of europium(III) and gadolinium(III) at the active site of the model metalloenzyme phosphotriesterase. Acta Crystallogr D Struct Biol 2024; 80:289-298. [PMID: 38512071 PMCID: PMC10994177 DOI: 10.1107/s2059798324002316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/10/2024] [Indexed: 03/22/2024] Open
Abstract
Lanthanide ions have ideal chemical properties for catalysis, such as hard Lewis acidity, fast ligand-exchange kinetics, high coordination-number preferences and low geometric requirements for coordination. As a result, many small-molecule lanthanide catalysts have been described in the literature. Yet, despite the ability of enzymes to catalyse highly stereoselective reactions under gentle conditions, very few lanthanoenzymes have been investigated. In this work, the mononuclear binding of europium(III) and gadolinium(III) to the active site of a mutant of the model enzyme phosphotriesterase are described using X-ray crystallography at 1.78 and 1.61 Å resolution, respectively. It is also shown that despite coordinating a single non-natural metal cation, the PTE-R18 mutant is still able to maintain esterase activity.
Collapse
Affiliation(s)
- Callum W. Breeze
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Yuji Nakano
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Eleanor C. Campbell
- Australian Synchrotron, 800 Blackburn Road, Clayton, Melbourne, VIC 3168, Australia
| | - Rebecca L. Frkic
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - David W. Lupton
- School of Chemistry, Monash University, Clayton, Melbourne, VIC 3800, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
- Australian Research Council Centre of Excellence in Synthetic Biology, Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
21
|
Falandysz J, Kilanowicz A, Fernandes AR, Zhang J. Rare earth contamination of edible vegetation: Ce, La, and summed REE in fungi. Appl Microbiol Biotechnol 2024; 108:268. [PMID: 38506962 PMCID: PMC10954923 DOI: 10.1007/s00253-024-13087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024]
Abstract
The increasing and diversified use of rare earth elements (REE) is considered a potential source of pollution of environmental media including soils. This work documents critically overview data on the occurrence of REE in the fruiting bodies of wild and farmed species of edible and medicinal mushrooms, as this was identified as the largest published dataset of REE occurrence in foodstuff. Most of the literature reported occurrences of cerium (Ce) and lanthanum (La), but a number of studies lacked data on all lanthanides. The Ce, La, and summed REE occurrences were assessed through the criteria of environmental geochemistry, analytical chemistry, food toxicology, mushroom systematics, and ecology. Ce and La accumulate similarly in fruiting bodies and are not fractionated during uptake, maintaining the occurrence patterns of their growing substrates. Similarly, there is no credible evidence of variable REE uptake because the evaluated species data show natural, unfractionated patterns in accordance with the Oddo-Harkins' order of environmental lanthanide occurrence. Thus, lithosphere occurrence patterns of Ce and La as the first and the third most abundant lanthanides are reflected in wild and farmed mushrooms regardless of substrate and show that Ce is around twice more abundant than La. The current state of knowledge provides no evidence that mushroom consumption at these REE occurrence levels poses a health risk either by themselves or when included with other dietary exposure. Macromycetes appear to bio-exclude lanthanides because independently reported bioconcentration factors for different species and collection sites, typically range from < 1 to 0.001. This is reflected in fruiting body concentrations which are four to two orders of magnitude lower than growing substrates. KEY POINTS: •Original REE occurrence patterns in soils/substrates are reflected in mushrooms •No evidence for the fractionation of REE during uptake by fungi •Mushrooms bio-exclude REE in fruiting bodies.
Collapse
Affiliation(s)
- Jerzy Falandysz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland.
| | - Anna Kilanowicz
- Faculty of Pharmacy, Department of Toxicology, Medical University of Lodz, 1 Muszyńskiego Street, 90-151, Łódź, Poland
| | - Alwyn R Fernandes
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Ji Zhang
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, 2238 Beijing Road, Panlong District, Kunming, 650200, China
| |
Collapse
|
22
|
Jones E, Su Y, Sander C, Justman QA, Springer M, Silver PA. LanTERN: A Fluorescent Sensor That Specifically Responds to Lanthanides. ACS Synth Biol 2024; 13:958-962. [PMID: 38377571 PMCID: PMC10949232 DOI: 10.1021/acssynbio.3c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/22/2024]
Abstract
Lanthanides, a series of 15 f-block elements, are crucial in modern technology, and their purification by conventional chemical means comes at a significant environmental cost. Synthetic biology offers promising solutions. However, progress in developing synthetic biology approaches is bottlenecked because it is challenging to measure lanthanide binding with current biochemical tools. Here we introduce LanTERN, a lanthanide-responsive fluorescent protein. LanTERN was designed based on GCaMP, a genetically encoded calcium indicator that couples the ion binding of four EF hand motifs to increased GFP fluorescence. We engineered eight mutations across the parent construct's four EF hand motifs to switch specificity from calcium to lanthanides. The resulting protein, LanTERN, directly converts the binding of 10 measured lanthanides to 14-fold or greater increased fluorescence. LanTERN development opens new avenues for creating improved lanthanide-binding proteins and biosensing systems.
Collapse
Affiliation(s)
- Ethan
M. Jones
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Yang Su
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Chris Sander
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Quincey A. Justman
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Michael Springer
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| | - Pamela A. Silver
- Department
of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, United States
- Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
23
|
Phi MT, Singer H, Zäh F, Haisch C, Schneider S, Op den Camp HJM, Daumann LJ. Assessing Lanthanide-Dependent Methanol Dehydrogenase Activity: The Assay Matters. Chembiochem 2024; 25:e202300811. [PMID: 38269599 DOI: 10.1002/cbic.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Artificial dye-coupled assays have been widely adopted as a rapid and convenient method to assess the activity of methanol dehydrogenases (MDH). Lanthanide(Ln)-dependent XoxF-MDHs are able to incorporate different lanthanides (Lns) in their active site. Dye-coupled assays showed that the earlier Lns exhibit a higher enzyme activity than the late Lns. Despite widespread use, there are limitations: oftentimes a pH of 9 and activators are required for the assay. Moreover, Ln-MDH variants are not obtained by isolation from the cells grown with the respective Ln, but by incubation of an apo-MDH with the Ln. Herein, we report the cultivation of Ln-dependent methanotroph Methylacidiphilum fumariolicum SolV with nine different Lns, the isolation of the respective MDHs and the assessment of the enzyme activity using the dye-coupled assay. We compare these results with a protein-coupled assay using its physiological electron acceptor cytochrome cGJ (cyt cGJ ). Depending on the assay, two distinct trends are observed among the Ln series. The specific enzyme activity of La-, Ce- and Pr-MDH, as measured by the protein-coupled assay, exceeds that measured by the dye-coupled assay. This suggests that early Lns also have a positive effect on the interaction between XoxF-MDH and its cyt cGJ thereby increasing functional efficiency.
Collapse
Affiliation(s)
- Manh Tri Phi
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Helena Singer
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Felix Zäh
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Christoph Haisch
- Faculty of Chemistry, Technical University of Munich, Lichtenbergstr. 4, 85748, Garching, Germany
| | - Sabine Schneider
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
| | - Huub J M Op den Camp
- Department of Microbiology, Research Institute for Biological and Environmental Sciences, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ, Nijmegen, The Netherlands
| | - Lena J Daumann
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377, München, Germany
- Chair of Bioinorganic Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| |
Collapse
|
24
|
Barrat JA, Bayon G. Practical guidelines for representing and interpreting rare earth abundances in environmental and biological studies. CHEMOSPHERE 2024; 352:141487. [PMID: 38373443 DOI: 10.1016/j.chemosphere.2024.141487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/20/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
This paper summarizes the main guidelines for representing rare earth element (REE) abundance patterns, along with a review of the common mistakes or omissions that can alter REE plots and bias interpretations. It is specifically designed for ecotoxicologists and biologists, for whom the study of these elements has become an important field of research in recent years. Prior to applying REE diagrams to the study of living organisms, it is important to understand the rationale that led geochemists and cosmochemists to develop them. Used with the practical recommendations described here, these diagrams have the capacity to highlight fundamental processes taking place in the biosphere.
Collapse
Affiliation(s)
- Jean-Alix Barrat
- Univ Brest, CNRS, Ifremer, IRD, LEMAR, Institut Universitaire Européen de la Mer (IUEM), Place Nicolas Copernic, 29280, Plouzané, France; Institut Universitaire de France, Paris, France.
| | - Germain Bayon
- Univ Brest, CNRS, Ifremer, Geo-Ocean, F-29280, Plouzané, France
| |
Collapse
|
25
|
Voutsinos MY, West-Roberts JA, Sachdeva R, Moreau JW, Banfield JF. Weathered granites and soils harbour microbes with lanthanide-dependent methylotrophic enzymes. BMC Biol 2024; 22:41. [PMID: 38369453 PMCID: PMC10875860 DOI: 10.1186/s12915-024-01841-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 02/07/2024] [Indexed: 02/20/2024] Open
Abstract
BACKGROUND Prior to soil formation, phosphate liberated by rock weathering is often sequestered into highly insoluble lanthanide phosphate minerals. Dissolution of these minerals releases phosphate and lanthanides to the biosphere. Currently, the microorganisms involved in phosphate mineral dissolution and the role of lanthanides in microbial metabolism are poorly understood. RESULTS Although there have been many studies of soil microbiology, very little research has investigated microbiomes of weathered rock. Here, we sampled weathered granite and associated soil to identify the zones of lanthanide phosphate mineral solubilisation and genomically define the organisms implicated in lanthanide utilisation. We reconstructed 136 genomes from 11 bacterial phyla and found that gene clusters implicated in lanthanide-based metabolism of methanol (primarily xoxF3 and xoxF5) are surprisingly common in microbial communities in moderately weathered granite. Notably, xoxF3 systems were found in Verrucomicrobia for the first time, and in Acidobacteria, Gemmatimonadetes and Alphaproteobacteria. The xoxF-containing gene clusters are shared by diverse Acidobacteria and Gemmatimonadetes, and include conserved hypothetical proteins and transporters not associated with the few well studied xoxF systems. Given that siderophore-like molecules that strongly bind lanthanides may be required to solubilise lanthanide phosphates, it is notable that candidate metallophore biosynthesis systems were most prevalent in bacteria in moderately weathered rock, especially in Acidobacteria with lanthanide-based systems. CONCLUSIONS Phosphate mineral dissolution, putative metallophore production and lanthanide utilisation by enzymes involved in methanol oxidation linked to carbonic acid production co-occur in the zone of moderate granite weathering. In combination, these microbial processes likely accelerate the conversion of granitic rock to soil.
Collapse
Affiliation(s)
- Marcos Y Voutsinos
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Jacob A West-Roberts
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Rohan Sachdeva
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | - John W Moreau
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Jillian F Banfield
- School of Geography, Earth and Atmospheric Sciences, The University of Melbourne, Melbourne, VIC, Australia.
- Department of Microbiology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia.
- Department of Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
26
|
Tucci FJ, Rosenzweig AC. Direct Methane Oxidation by Copper- and Iron-Dependent Methane Monooxygenases. Chem Rev 2024; 124:1288-1320. [PMID: 38305159 PMCID: PMC10923174 DOI: 10.1021/acs.chemrev.3c00727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Methane is a potent greenhouse gas that contributes significantly to climate change and is primarily regulated in Nature by methanotrophic bacteria, which consume methane gas as their source of energy and carbon, first by oxidizing it to methanol. The direct oxidation of methane to methanol is a chemically difficult transformation, accomplished in methanotrophs by complex methane monooxygenase (MMO) enzyme systems. These enzymes use iron or copper metallocofactors and have been the subject of detailed investigation. While the structure, function, and active site architecture of the copper-dependent particulate methane monooxygenase (pMMO) have been investigated extensively, its putative quaternary interactions, regulation, requisite cofactors, and mechanism remain enigmatic. The iron-dependent soluble methane monooxygenase (sMMO) has been characterized biochemically, structurally, spectroscopically, and, for the most part, mechanistically. Here, we review the history of MMO research, focusing on recent developments and providing an outlook for future directions of the field. Engineered biological catalysis systems and bioinspired synthetic catalysts may continue to emerge along with a deeper understanding of the molecular mechanisms of biological methane oxidation. Harnessing the power of these enzymes will necessitate combined efforts in biochemistry, structural biology, inorganic chemistry, microbiology, computational biology, and engineering.
Collapse
Affiliation(s)
- Frank J Tucci
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Amy C Rosenzweig
- Departments of Molecular Biosciences and of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
27
|
Lim J, Wehmeyer H, Heffner T, Aeppli M, Gu W, Kim PJ, Horn MA, Ho A. Resilience of aerobic methanotrophs in soils; spotlight on the methane sink under agriculture. FEMS Microbiol Ecol 2024; 100:fiae008. [PMID: 38327184 PMCID: PMC10872700 DOI: 10.1093/femsec/fiae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/19/2024] [Accepted: 02/06/2024] [Indexed: 02/09/2024] Open
Abstract
Aerobic methanotrophs are a specialized microbial group, catalyzing the oxidation of methane. Disturbance-induced loss of methanotroph diversity/abundance, thus results in the loss of this biological methane sink. Here, we synthesized and conceptualized the resilience of the methanotrophs to sporadic, recurring, and compounded disturbances in soils. The methanotrophs showed remarkable resilience to sporadic disturbances, recovering in activity and population size. However, activity was severely compromised when disturbance persisted or reoccurred at increasing frequency, and was significantly impaired following change in land use. Next, we consolidated the impact of agricultural practices after land conversion on the soil methane sink. The effects of key interventions (tillage, organic matter input, and cover cropping) where much knowledge has been gathered were considered. Pairwise comparisons of these interventions to nontreated agricultural soils indicate that the agriculture-induced impact on the methane sink depends on the cropping system, which can be associated to the physiology of the methanotrophs. The impact of agriculture is more evident in upland soils, where the methanotrophs play a more prominent role than the methanogens in modulating overall methane flux. Although resilient to sporadic disturbances, the methanotrophs are vulnerable to compounded disturbances induced by anthropogenic activities, significantly affecting the methane sink function.
Collapse
Affiliation(s)
- Jiyeon Lim
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Helena Wehmeyer
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| | - Tanja Heffner
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Meret Aeppli
- Environmental Engineering Institute IIE-ENAC, Laboratory SOIL, Ecole Polytechnique Fédérale de Lausanne (EPFL), Valais Wallis, CH 1950 Sion, Switzerland
| | - Wenyu Gu
- Environmental Engineering Institute IIE-ENAC, Laboratory MICROBE, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne, Switzerland
| | - Pil Joo Kim
- Division of Applied Life Science, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Marcus A Horn
- Institute for Microbiology, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Adrian Ho
- Nestlè Research, Route du Jorat 57, CH 1000 Lausanne 26, Switzerland
| |
Collapse
|
28
|
Qian X, Ma C, Zhang H, Liu K. Bioseparation of rare earth elements and high value-added biomaterials applications. Bioorg Chem 2024; 143:107040. [PMID: 38141331 DOI: 10.1016/j.bioorg.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.
Collapse
Affiliation(s)
- Xining Qian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China.
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
29
|
Bakhti A, Shokouhi Z, Mohammadipanah F. Modulation of proteins by rare earth elements as a biotechnological tool. Int J Biol Macromol 2024; 258:129072. [PMID: 38163500 DOI: 10.1016/j.ijbiomac.2023.129072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Although rare earth element (REE) complexes are often utilized in bioimaging due to their photo- and redox stability, magnetic and optical characteristics, they are also applied for pharmaceutical applications due to their interaction with macromolecules namely proteins. The possible implications induced by REEs through modification in the function or regulatory activity of the proteins trigger a variety of applications for these elements in biomedicine and biotechnology. Lanthanide complexes have particularly been applied as anti-biofilm agents, cancer inhibitors, potential inflammation inhibitors, metabolic elicitors, and helper agents in the cultivation of unculturable strains, drug delivery, tissue engineering, photodynamic, and radiation therapy. This paper overviews emerging applications of REEs in biotechnology, especially in biomedical imaging, tumor diagnosis, and treatment along with their potential toxic effects. Although significant advances in applying REEs have been made, there is a lack of comprehensive studies to identify the potential of all REEs in biotechnology since only four elements, Eu, Ce, Gd, and La, among 17 REEs have been mostly investigated. However, in depth research on ecotoxicology, environmental behavior, and biological functions of REEs in the health and disease status of living organisms is required to fill the vital gaps in our understanding of REEs applications.
Collapse
Affiliation(s)
- Azam Bakhti
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Zahra Shokouhi
- Department of Microbial Biotechnology, Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455 Tehran, Iran.
| |
Collapse
|
30
|
Behrsing T, Blair VL, Jaroschik F, Deacon GB, Junk PC. Rare Earths-The Answer to Everything. Molecules 2024; 29:688. [PMID: 38338432 PMCID: PMC10856286 DOI: 10.3390/molecules29030688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
Rare earths, scandium, yttrium, and the fifteen lanthanoids from lanthanum to lutetium, are classified as critical metals because of their ubiquity in daily life. They are present in magnets in cars, especially electric cars; green electricity generating systems and computers; in steel manufacturing; in glass and light emission materials especially for safety lighting and lasers; in exhaust emission catalysts and supports; catalysts in artificial rubber production; in agriculture and animal husbandry; in health and especially cancer diagnosis and treatment; and in a variety of materials and electronic products essential to modern living. They have the potential to replace toxic chromates for corrosion inhibition, in magnetic refrigeration, a variety of new materials, and their role in agriculture may expand. This review examines their role in sustainability, the environment, recycling, corrosion inhibition, crop production, animal feedstocks, catalysis, health, and materials, as well as considering future uses.
Collapse
Affiliation(s)
- Thomas Behrsing
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Victoria L. Blair
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | | | - Glen B. Deacon
- School of Chemistry, Monash University, Melbourne, VIC 3800, Australia; (T.B.); (V.L.B.); (G.B.D.)
| | - Peter C. Junk
- College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia
| |
Collapse
|
31
|
Liu R, Wei Z, Dong W, Wang R, Adams JM, Yang L, Krause SMB. Unraveling the impact of lanthanum on methane consuming microbial communities in rice field soils. Front Microbiol 2024; 15:1298154. [PMID: 38322316 PMCID: PMC10844099 DOI: 10.3389/fmicb.2024.1298154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024] Open
Abstract
The discovery of the lanthanide requiring enzymes in microbes was a significant scientific discovery that opened a whole new avenue of biotechnological research of this important group of metals. However, the ecological impact of lanthanides on microbial communities utilizing methane (CH4) remains largely unexplored. In this study, a laboratory microcosm model experiment was performed using rice field soils with different pH origins (5.76, 7.2, and 8.36) and different concentrations of La3+ in the form of lanthanum chloride (LaCl3). Results clearly showed that CH4 consumption was inhibited by the addition of La3+ but that the response depended on the soil origin and pH. 16S rRNA gene sequencing revealed the genus Methylobacter, Methylosarcina, and Methylocystis as key players in CH4 consumption under La3+ addition. We suggest that the soil microbiome involved in CH4 consumption can generally tolerate addition of high concentrations of La3+, and adjustments in community composition ensured ecosystem functionality over time. As La3+ concentrations increase, the way that the soil microbiome reacts may not only differ within the same environment but also vary when comparing different environments, underscoring the need for further research into this subject.
Collapse
Affiliation(s)
- Ruyan Liu
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Ziting Wei
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wanying Dong
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Rui Wang
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jonathan M. Adams
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Lin Yang
- School of Geographic and Oceanographic Sciences, Nanjing University, Nanjing, China
| | - Sascha M. B. Krause
- School of Ecology and Environmental Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
32
|
Larrinaga WB, Cotruvo JA, Worrell BT, Eaton SS, Eaton GR. Electron Paramagnetic Resonance, Electronic Ground State, and Electron Spin Relaxation of Seven Lanthanide Ions Bound to Lanmodulin and the Bioinspired Chelator, 3,4,3-LI(1,2-HOPO). Chemistry 2023; 29:e202303215. [PMID: 37802965 DOI: 10.1002/chem.202303215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/08/2023]
Abstract
The electron paramagnetic resonance (EPR) spectra of lanthanide(III) ions besides Gd3+ , bound to small-molecule and protein chelators, are uncharacterized. Here, the EPR properties of 7 lanthanide(III) ions bound to the natural lanthanide-binding protein, lanmodulin (LanM), and the synthetic small-molecule chelator, 3,4,3-LI(1,2-HOPO) ("HOPO"), were systematically investigated. Echo-detected pulsed EPR spectra reveal intense signals from ions for which the normal continuous-wave first-derivative spectra are negligibly different from zero. Spectra of Kramers lanthanide ions Ce3+ , Nd3+ , Sm3+ , Er3+ , and Yb3+ , and non-Kramers Tb3+ and Tm3+ , bound to LanM are more similar to the ions in dilute aqueous:ethanol solution than to those coordinated with HOPO. Lanmodulins from two bacteria, with distinct metal-binding sites, had similar spectra for Tb3+ but different spectra for Nd3+ . Spin echo dephasing rates (1/Tm ) are faster for lanthanides than for most transition metals and limited detection of echoes to temperatures below ~6 to 12 K. Dephasing rates were environment dependent and decreased in the order water:ethanol>LanM>HOPO, which is attributed to decreasing librational motion. These results demonstrate that the EPR spectra and relaxation times of lanthanide(III) ions are sensitive to coordination environment, motivating wider application of these methods for characterization of both small-molecule and biomolecule interactions with lanthanides.
Collapse
Affiliation(s)
- Wyatt B Larrinaga
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Brady T Worrell
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80208, United States
| | - Sandra S Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80208, United States
| | - Gareth R Eaton
- Department of Chemistry and Biochemistry, University of Denver, Denver, Colorado, 80208, United States
| |
Collapse
|
33
|
Deblonde GJP, Morrison K, Mattocks JA, Cotruvo JA, Zavarin M, Kersting AB. Impact of a Biological Chelator, Lanmodulin, on Minor Actinide Aqueous Speciation and Transport in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20830-20843. [PMID: 37897703 DOI: 10.1021/acs.est.3c06033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2023]
Abstract
Minor actinides are major contributors to the long-term radiotoxicity of nuclear fuels and other radioactive wastes. In this context, understanding their interactions with natural chelators and minerals is key to evaluating their transport behavior in the environment. The lanmodulin family of metalloproteins is produced by ubiquitous bacteria and Methylorubrum extorquens lanmodulin (LanM) was recently identified as one of nature's most selective chelators for trivalent f-elements. Herein, we investigated the behavior of neptunium, americium, and curium in the presence of LanM, carbonate ions, and common minerals (calcite, montmorillonite, quartz, and kaolinite). We show that LanM's aqueous complexes with Am(III) and Cm(III) remain stable in carbonate-bicarbonate solutions. Furthermore, the sorption of Am(III) to these minerals is strongly impacted by LanM, while Np(V) sorption is not. With calcite, even a submicromolar concentration of LanM leads to a significant reduction in the Am(III) distribution coefficient (Kd, from >104 to ∼102 mL/g at pH 8.5), rendering it even more mobile than Np(V). Thus, LanM-type chelators can potentially increase the mobility of trivalent actinides and lanthanide fission products under environmentally relevant conditions. Monitoring biological chelators, including metalloproteins, and their biogenerators should therefore be considered during the evaluation of radioactive waste repository sites and the risk assessment of contaminated sites.
Collapse
Affiliation(s)
- Gauthier J-P Deblonde
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Keith Morrison
- Physical and Life Sciences Directorate, Nuclear and Chemical Sciences Division, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Mavrik Zavarin
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Annie B Kersting
- Glenn T. Seaborg Institute, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
34
|
Newton SL, Franke A, Zahl A, Molinaro G, Kenwright A, Smith DJ, Ivanovic-Burmazovic I, Britton MM, Peacock AFA. Understanding the mechanism by which Gd(III) coiled coils achieve magnetic resonance relaxivity - a study into the water coordination chemistry. Dalton Trans 2023; 52:15665-15668. [PMID: 37882137 DOI: 10.1039/d3dt02909c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
A class of Gd(III) coiled coils achieve high MRI relaxivity, in part due to their slow rotational correlation time. However, extending their length is unable to further enhance performance, as the mechanism by which relaxivity is achieved is dominated by the presence of three inner sphere waters in rapid exchange, through an associative mechanism.
Collapse
Affiliation(s)
- S L Newton
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK.
- PSIBS, School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK
| | - A Franke
- Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - A Zahl
- Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
| | - G Molinaro
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - A Kenwright
- School of Chemistry, Durham University, Durham, DH1 3LE, UK
| | - D J Smith
- School of Mathematics, University of Birmingham, Edgbaston, B15 2TT, UK
| | - I Ivanovic-Burmazovic
- Department Chemie und Pharmazie, Universität Erlangen-Nürnberg, D-91058, Erlangen, Germany
- Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13, 81377 München, Germany
| | - M M Britton
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK.
| | - A F A Peacock
- School of Chemistry, University of Birmingham, Edgbaston, B15 2TT, UK.
| |
Collapse
|
35
|
|
36
|
Awala SI, Gwak JH, Kim Y, Seo C, Strazzulli A, Kim SG, Rhee SK. Methylacidiphilum caldifontis gen. nov., sp. nov., a thermoacidophilic methane-oxidizing bacterium from an acidic geothermal environment, and descriptions of the family Methylacidiphilaceae fam. nov. and order Methylacidiphilales ord. nov. Int J Syst Evol Microbiol 2023; 73. [PMID: 37791995 DOI: 10.1099/ijsem.0.006085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Strain IT6T, a thermoacidophilic and facultative methane-oxidizing bacterium, was isolated from a mud-water mixture collected from Pisciarelli hot spring in Pozzuoli, Italy. The novel strain is white when grown in liquid or solid media and forms Gram-negative rod-shaped, non-flagellated, non-motile cells. It conserves energy by aerobically oxidizing methane and hydrogen while deriving carbon from carbon dioxide fixation. Strain IT6T had three complete pmoCAB operons encoding particulate methane monooxygenase and genes encoding group 1d and 3b [NiFe] hydrogenases. Simple carbon-carbon substrates such as ethanol, 2-propanol, acetone, acetol and propane-1,2-diol were used as alternative electron donors and carbon sources. Optimal growth occurred at 50-55°C and between pH 2.0-3.0. The major fatty acids were C18 : 0, C15 : 0 anteiso, C14 : 0 iso, C16 : 0 and C14 : 0, and the main polar lipids were phosphatidylethanolamine, aminophospholipid, phosphatidylglycerol, diphosphatidylglycerol, some unidentified phospholipids and glycolipids, and other unknown polar lipids. Strain IT6T has a genome size of 2.19 Mbp and a G+C content of 40.70 mol%. Relative evolutionary divergence using 120 conserved single-copy marker genes (bac120) and phylogenetic analyses based on bac120 and 16S rRNA gene sequences showed that strain IT6T is affiliated with members of the proposed order 'Methylacidiphilales' of the class Verrucomicrobiia in the phylum Verrucomicrobiota. It shared a 16S rRNA gene sequence identity of >96 % with cultivated isolates in the genus 'Methylacidiphilum' of the family 'Methylacidiphilaceae', which are thermoacidophilic methane-oxidizing bacteria. 'Methylacidiphilum sp.' Phi (100 %), 'Methylacidiphilum infernorum' V4 (99.02 %) and 'Methylacidiphilum sp.' RTK17.1 (99.02 %) were its closest relatives. Its physiological and genomic properties were consistent with those of other isolated 'Methylacidiphilum' species. Based on these results, we propose the name Methylacidiphilum caldifontis gen. nov., sp. nov. to accommodate strain IT6T (=KCTC 92103T=JCM 39288T). We also formally propose that the names Methylacidiphilaceae fam. nov. and Methylacidiphilales ord. nov. to accommodate the genus Methylacidiphilum gen. nov.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Yongman Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Chanmee Seo
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Song-Gun Kim
- University of Science and Technology, Yuseong-gu, Daejeon 305-850, Republic of Korea
- Biological Resource Center/ Korean Collection for Type Culture (KCTC), Korea Research Institute of Bioscience and Biotechnology, 181 Ipsingil, Jeongeup-si, Jeollabuk-do, 56212, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju 28644, Republic of Korea
| |
Collapse
|
37
|
Quiton-Tapia S, Balboa S, Omil F, Garrido JM, Suarez S. How efficiently does a metabolically enhanced system with denitrifying anaerobic methane oxidizing microorganisms remove antibiotics? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122033. [PMID: 37348697 DOI: 10.1016/j.envpol.2023.122033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/26/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
In this work, the novel N-damo (Nitrite dependent anaerobic methane oxidation) process was investigated at high biomass activities for its potential to remove simultaneously nitrite and methane, as well as selected antibiotics commonly found in sewage in trace amounts. For this purpose, two MBRs were operated at three high nitrite loading rates (NLRs), namely 76 ± 9.9, 161.5 ± 11.4 and 215.2 ± 24.2 mg N-NO⁻2 L-1 d-1, at long-term operation. The MBRs performance achieved a significantly high nitrite removal activity for an N-damo process (specific denitrifying activity of up to 540 mg N-NO⁻2 g-1 VSS d-1), even comparable to heterotrophic denitrification values. In this study, we have implemented a novel operational strategy that sets our work apart from previous studies with similar bioreactors. Specifically, we have introduced Cerium as a trace element in the feeding medium, which serves as a key differentiating factor. It allowed maintaining a stable reactor operation at high NLRs. Microbial community composition evidenced that both MBRs were dominated with N-damo bacteria (67-87% relative abundance in period III and I, respectively). However, a decrease in functional N-damo bacteria (Candidatus Methylomirabilis) abundance was observed during the increase in biomass activity and concentration, concomitantly with an increase of the other minor families (Hypomicrobiaceae and Xanthobacteraceae). Most of the selected antibiotics showed high biotransformation such as sulfamethoxazole, trimethoprim, cefalexin and azithromycin, whereas others such as roxithromycin and clarithromycin were only partially degraded (20-35%). On the contrary, ciprofloxacin showed almost no removal. Despite the metabolic enhancement, no apparent increase on the antibiotic removal was observed throughout the operation, suggesting that microbiological composition was of greater influence than its primary metabolic activity on the removal of antibiotics.
Collapse
Affiliation(s)
- Silvana Quiton-Tapia
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Sabela Balboa
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Francisco Omil
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Juan Manuel Garrido
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| | - Sonia Suarez
- CRETUS Institute. Department of Chemical Engineering, School of Engineering, Universidade de Santiago de Compostela, Rúa Lope Gómez de Marzoa, E-15782, Santiago de Compostela, Spain.
| |
Collapse
|
38
|
Dedysh SN. Describing difficult-to-culture bacteria: Taking a shortcut or investing time to discover something new? Syst Appl Microbiol 2023; 46:126439. [PMID: 37413783 DOI: 10.1016/j.syapm.2023.126439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/17/2023] [Accepted: 06/29/2023] [Indexed: 07/08/2023]
Abstract
Despite the growing interest in isolating representatives of poorly studied and as-yet-uncultivated bacterial phylogenetic groups, these microorganisms remain difficult objects for taxonomic studies. The time required for describing one of these fastidious bacteria is commonly measured in several years. What is even more problematic, many routine laboratory tests, which were originally developed for fast-growing and fast-responding microorganisms, are not fully suitable for many environmentally relevant, slow-growing bacteria. Standard techniques used in chemotaxonomic analyses do not identify unique lipids produced by these bacteria. A common practice of preparing taxonomic descriptions that report a minimal set of features to name a newly isolated organism deepens a gap between microbial ecologists and taxonomists. By contrast, investing time in detailed analysis of cell biology and experimental verification of genome-encoded capabilities of newly isolated microorganisms opens a window for novel, unexpected findings, which may shape our ideas about the functional role of these microbes in the environment.
Collapse
Affiliation(s)
- Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia.
| |
Collapse
|
39
|
Ratnadevi CM, Erikstad HA, Kruse T, Birkeland NK. Methylacidiphilum kamchatkense gen. nov., sp. nov., an extremely acidophilic and moderately thermophilic methanotroph belonging to the phylum Verrucomicrobiota. Int J Syst Evol Microbiol 2023; 73. [PMID: 37755432 DOI: 10.1099/ijsem.0.006060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023] Open
Abstract
The thermo-acidophilic aerobic methanotrophic Verrucomicrobia bacterium, designated strain Kam1T was isolated from an acidic geothermal mud spring in Kamchatka, Russia. Kam1T is Gram-stain-negative, with non-motile cells and non-spore-forming rods, and a diameter of 0.45-0.65 µm and length of 0.8-1.0 µm. Its growth is optimal at the temperature of 55 °C (range, 37-60 °C) and pH of 2.5 (range, pH 1-6), and its maximal growth rate is ~0.11 h-1 (doubling time ~6.3 h). Its cell wall contains peptidoglycan with meso-diaminopimelic acid. In addition to growing on methane and methanol, strain Kam1T grows on acetone and 2-propanol. Phylogenetically, it forms a distinct group together with other Methylacidiphilum strains and with the candidate genus Methylacidimicrobium as a sister group. These findings support the classification of the strain Kam1T as a representative of a novel species and genus of the phylum Verrucomicrobiota. For this strain, we propose the name Methylacidiphilum kamchatkense sp. nov. as the type species within Methylacidiphilum gen. nov. Strain Kam1T (JCM 30608T=KCTC 4682T) is the type strain.
Collapse
Affiliation(s)
| | - Helge-André Erikstad
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
| | - Thomas Kruse
- Department of Biological Sciences, University of Bergen, P.O. Box 7803, NO-5020 Bergen, Norway
- Present address: NORCE, Industrial biotechnology, Prof. Olav Hanssensvei 15, 4021 Stavanger, Norway
| | | |
Collapse
|
40
|
Houghton KM, Carere CR, Stott MB, McDonald IR. Thermophilic methane oxidation is widespread in Aotearoa-New Zealand geothermal fields. Front Microbiol 2023; 14:1253773. [PMID: 37720161 PMCID: PMC10502179 DOI: 10.3389/fmicb.2023.1253773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Geothermal areas represent substantial point sources for greenhouse gas emissions such as methane. While it is known that methanotrophic microorganisms act as a biofilter, decreasing the efflux of methane in most soils to the atmosphere, the diversity and the extent to which methane is consumed by thermophilic microorganisms in geothermal ecosystems has not been widely explored. To determine the extent of biologically mediated methane oxidation at elevated temperatures, we set up 57 microcosms using soils from 14 Aotearoa-New Zealand geothermal fields and show that moderately thermophilic (>40°C) and thermophilic (>60°C) methane oxidation is common across the region. Methane oxidation was detected in 54% (n = 31) of the geothermal soil microcosms tested at temperatures up to 75°C (pH 1.5-8.1), with oxidation rates ranging from 0.5 to 17.4 μmol g-1 d-1 wet weight. The abundance of known aerobic methanotrophs (up to 60.7% Methylacidiphilum and 11.2% Methylothermus) and putative anaerobic methanotrophs (up to 76.7% Bathyarchaeota) provides some explanation for the rapid rates of methane oxidation observed in microcosms. However, not all methane oxidation was attributable to known taxa; in some methane-consuming microcosms we detected methanotroph taxa in conditions outside of their known temperature range for growth, and in other examples, we observed methane oxidation in the absence of known methanotrophs through 16S rRNA gene sequencing. Both of these observations suggest unidentified methane oxidizing microorganisms or undescribed methanotrophic syntrophic associations may also be present. Subsequent enrichment cultures from microcosms yielded communities not predicted by the original diversity studies and showed rates inconsistent with microcosms (≤24.5 μmol d-1), highlighting difficulties in culturing representative thermophilic methanotrophs. Finally, to determine the active methane oxidation processes, we attempted to elucidate metabolic pathways from two enrichment cultures actively oxidizing methane using metatranscriptomics. The most highly expressed genes in both enrichments (methane monooxygenases, methanol dehydrogenases and PqqA precursor peptides) were related to methanotrophs from Methylococcaceae, Methylocystaceae and Methylothermaceae. This is the first example of using metatranscriptomics to investigate methanotrophs from geothermal environments and gives insight into the metabolic pathways involved in thermophilic methanotrophy.
Collapse
Affiliation(s)
- Karen M. Houghton
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| | - Carlo R. Carere
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Tari Pūhanga Tukanga Matū | Department of Chemical and Process Engineering, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Matthew B. Stott
- Te Pū Ao | GNS Science, Wairakei Research Centre, Taupō, New Zealand
- Te Kura Pūtaiao Koiora | School of Biological Sciences, Te Whare Wānanga o Waitaha | University of Canterbury, Christchurch, New Zealand
| | - Ian R. McDonald
- Te Aka Mātuatua | School of Science, Te Whare Wānanga o Waikato | University of Waikato, Hamilton, New Zealand
| |
Collapse
|
41
|
Sweeney KJ, Han X, Müller UF. A ribozyme that uses lanthanides as cofactor. Nucleic Acids Res 2023; 51:7163-7173. [PMID: 37326001 PMCID: PMC10415125 DOI: 10.1093/nar/gkad513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/10/2023] [Accepted: 06/13/2023] [Indexed: 06/17/2023] Open
Abstract
To explore how an early, RNA-based life form could have functioned, in vitro selection experiments have been used to develop catalytic RNAs (ribozymes) with relevant functions. We previously identified ribozymes that use the prebiotically plausible energy source cyclic trimetaphosphate (cTmp) to convert their 5'-hydroxyl group to a 5'-triphosphate. While these ribozymes were developed in the presence of Mg2+, we tested here whether lanthanides could also serve as catalytic cofactors because lanthanides are ideal catalytic cations for this reaction. After an in vitro selection in the presence of Yb3+, several active sequences were isolated, and the most active RNA was analyzed in more detail. This ribozyme required lanthanides for activity, with highest activity at a 10:1 molar ratio of cTmp : Yb3+. Only the four heaviest lanthanides gave detectable signals, indicating a high sensitivity of ribozyme catalysis to the lanthanide ion radius. Potassium and Magnesium did not facilitate catalysis alone but they increased the lanthanide-mediated kOBS by at least 100-fold, with both K+ and Mg2+ modulating the ribozyme's secondary structure. Together, these findings show that RNA is able to use the unique properties of lanthanides as catalytic cofactor. The results are discussed in the context of early life forms.
Collapse
Affiliation(s)
- Kevin J Sweeney
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Xu Han
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Ulrich F Müller
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
42
|
Peres FV, Paula FS, Bendia AG, Gontijo JB, de Mahiques MM, Pellizari VH. Assessment of prokaryotic communities in Southwestern Atlantic deep-sea sediments reveals prevalent methanol-oxidising Methylomirabilales. Sci Rep 2023; 13:12782. [PMID: 37550336 PMCID: PMC10406867 DOI: 10.1038/s41598-023-39415-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/25/2023] [Indexed: 08/09/2023] Open
Abstract
Continental slopes can play a significant contribution to marine productivity and carbon cycling. These regions can harbour distinct geological features, such as salt diapirs and pockmarks, in which their depressions may serve as natural sediment traps where different compounds can accumulate. We investigated the prokaryotic communities in surface (0-2 cm) and subsurface (18-20 or 22-24 cm) sediments from a salt diapir and pockmark field in Santos Basin, Southwest Atlantic Ocean. Metabarcoding of 16 samples revealed that surface sediments were dominated by the archaeal class Nitrososphaeria, while the bacterial class Dehalococcoidia was the most prevalent in subsurface samples. Sediment strata were found to be a significant factor explaining 27% of the variability in community composition. However, no significant difference was observed among geomorphological features. We also performed a metagenomic analysis of three surface samples and analysed the highest quality metagenome-assembled genome retrieved, which belonged to the family CSP1-5, phylum Methylomirabilota. This non-methanotrophic methylotroph contains genes encoding for methanol oxidation and Calvin Cycle pathways, along with diverse functions that may contribute to its adaptation to deep-sea habitats and to oscillating environmental conditions. By integrating metabarcoding and metagenomic approaches, we reported that CSP1-5 is prevalent in the sediment samples from Santos Basin slope, indicating the potential importance of methanol metabolism in this region. Finally, using a phylogenetic approach integrating 16S rRNA sequences assigned to Methylomirabilota in this study with those from a public database, we argued that CSP1-5 public sequences might be misclassified as Methylomirabilaceae (the methanotrophic clade) and, therefore, the role of these organisms and the methanol cycling could also be neglected in other environments.
Collapse
Affiliation(s)
- Francielli V Peres
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil
| | - Fabiana S Paula
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil.
| | - Amanda G Bendia
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil
| | - Júlia B Gontijo
- Cell and Molecular Biology Laboratory, Centre for Nuclear Energy in Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Michel M de Mahiques
- Department of Physical, Chemical and Geological Oceanography, Oceanographic Institute, University of São Paulo, São Paulo, Brazil
| | - Vivian H Pellizari
- Department of Biological Oceanography, Oceanographic Institute, University of São Paulo, Praça do Oceanográfico, 191, São Paulo, CEP: 05508-120, Brazil
| |
Collapse
|
43
|
Iguchi S, Tokunaga T, Kamon E, Takenaka Y, Koshimizu S, Watanabe M, Ishimizu T. Lanthanum Supplementation Alleviates Tomato Root Growth Suppression under Low Light Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2663. [PMID: 37514277 PMCID: PMC10384870 DOI: 10.3390/plants12142663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Supplementation with rare earth elements (REEs) such as lanthanum and cerium has been shown to promote plant elongation and/or increase crop yields. On the other hand, there are reports that REE supplementation of plants has no such effect. The appropriate modes for REE utilization and the underlying mechanism are not fully understood. In this study, we investigated how REE supplementation of plants under low light stress affects plant growth and gene expression. Under low light stress conditions, tomato root elongation was observed to be reduced by about half. This suppression of root elongation was found to be considerably alleviated by 20 mM lanthanum ion supplementation. This effect was plant-species-dependent and nutrient-condition-dependent. Under low light stress, the expression of the genes for phytochrome-interacting factor, which induces auxin synthesis, and several auxin-synthesis-related proteins were markedly upregulated by lanthanum ion supplementation. Thus, we speculate that REE supplementation of plants results in auxin-induced cell elongation and alleviates growth suppression under stress conditions.
Collapse
Affiliation(s)
- Syo Iguchi
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Tatsuya Tokunaga
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Eri Kamon
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Yuto Takenaka
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | | | - Masao Watanabe
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Takeshi Ishimizu
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
44
|
Soleimanifar M, Rodriguez-Freire L. Biointeraction of cerium oxide and neodymium oxide nanoparticles with pure culture methylobacterium extorquens AM1. CHEMOSPHERE 2023:139113. [PMID: 37270036 DOI: 10.1016/j.chemosphere.2023.139113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/05/2023]
Abstract
Rare earth elements (REE) are valuable raw materials in our modern life. Extensive REE application from electronic devices to medical instruments and wind turbines, and non-uniform distribution of these resources around the world, make them strategically and economically important for countries. Current REE physical and chemical mining and recycling methods could have negative environmental consequences, and biologically-mediated techniques could be applied to overcome this issue. In this study, the bioextraction of cerium oxide and neodymium oxide nanoparticles (REE-NP) by a pure culture Methylobacterium extorquens AM1 (ATCC®14718™) was investigated in batch experiments. Results show that adding up to 1000 ppm CeO2 or Nd2O3 nanoparticles (REE-NP) did not seem to affect the bacterial growth over 14-days contact time. Effect of methylamine hydrochloride as an essential electron donor and carbon source for microbial oxidation and growth was also observed inasmuch as there was approximately no growth when it does not exist in the medium. Although very low concentrations of cerium and neodymium in the liquid phase were measured, concentrations of 45 μg/gcell Ce and 154 μg/gcell Nd could be extracted by M. extorquens AM1. Furthermore, SEM-EDS and STEM-EDS confirmed surface and intracellular accumulation of nanoparticles. These results confirmed the ability of M. extorquens to accumulate REE nanoparticles.
Collapse
Affiliation(s)
- Maedeh Soleimanifar
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States.
| | - Lucia Rodriguez-Freire
- John A. Reif, Jr. Department of Civil & Environmental Engineering, New Jersey Institute of Technology, 07102, Newark, NJ, United States
| |
Collapse
|
45
|
Banta S. How a protein differentiates between rare-earth elements. Nature 2023; 618:35-36. [PMID: 37259005 DOI: 10.1038/d41586-023-01739-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
46
|
Mattocks JA, Jung JJ, Lin CY, Dong Z, Yennawar NH, Featherston ER, Kang-Yun CS, Hamilton TA, Park DM, Boal AK, Cotruvo JA. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature 2023; 618:87-93. [PMID: 37259003 PMCID: PMC10232371 DOI: 10.1038/s41586-023-05945-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1-3. The natural lanthanide-binding protein lanmodulin (LanM)4,5 is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.
Collapse
Affiliation(s)
- Joseph A Mattocks
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Jonathan J Jung
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Chi-Yun Lin
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Ziye Dong
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Neela H Yennawar
- The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Emily R Featherston
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Christina S Kang-Yun
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Timothy A Hamilton
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Dan M Park
- Critical Materials Institute, Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | - Amie K Boal
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA.
| | - Joseph A Cotruvo
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
47
|
Prejanò M, Toscano M, Marino T. Periodicity of the Affinity of Lanmodulin for Trivalent Lanthanides and Actinides: Structural and Electronic Insights from Quantum Chemical Calculations. Inorg Chem 2023; 62:7461-7470. [PMID: 37128767 DOI: 10.1021/acs.inorgchem.3c00754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Lanmodulin (LanM) is the first identified macrochelator that has naturally evolved to sequester ions of rare earth elements (REEs) such as Y and all lanthanides, reversibly. This natural protein showed a 106 times better affinity for lanthanide cations than for Ca, which is a naturally abundant and biologically relevant element. Recent experiments have shown that its metal ion binding activity can be further extended to some actinides, like Np, Pu, and Am. For this reason, it was thought that LanM could be adopted for the separation of REE ions and actinides, thus increasing the interest in its potential use for industry-oriented applications. In this work, a systematic study of the affinity of LanM for lanthanides and actinides has been carried out, taking into account all trivalent ions belonging to the 4f (from La to Lu) and 5f (from Ac to Lr) series, starting from their chemistry in solution. On the basis of a recently published nuclear magnetic resonance structure, a model of the LanM-binding site was built and a detailed structural and electronic description of initial aquo- and LanM-metal ion complexes was provided. The obtained binding energies are in agreement with the available experimental data. A possible reason that could explain the origin of the affinity of LanM for these metal ions is also discussed.
Collapse
Affiliation(s)
- Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Marirosa Toscano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, Via P. Bucci, 87036 Rende, Italy
| |
Collapse
|
48
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
49
|
Firsova YE, Mustakhimov II, Torgonskaya ML. Compartment-related aspects of XoxF protein functionality in Methylorubrum extorquens DM4 analysed using its cytoplasmic targeting. Antonie Van Leeuwenhoek 2023; 116:393-413. [PMID: 36719530 DOI: 10.1007/s10482-023-01811-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/01/2023]
Abstract
The impact of periplasmic localisation on the functioning of the XoxF protein was evaluated in the well-studied dichloromethane-utilising methylotroph Methylorubrum extorquens DM4, which harbors only one paralogue of the xoxF gene. It was found that the cytoplasmic targeting of XoxF by expression of the corresponding gene without the sequence encoding the N-terminal signal peptide does not impair the activation and lanthanide-dependent regulation of the MxaFI-methanol dehydrogenase genes. Analysis of the viability of ΔxoxF cells complemented with the full-length and truncated xoxF gene also showed that the expression of cytoplasmically targeted XoxF even increases the resistance to acids. These results contradict the proposed function of the XoxF protein as an extracytoplasmic signal sensor. At the same time, the observed dynamics of growth with methanol, as well as with dichloromethane of strains expressing cytoplasmic-targeted XoxF, indicate the probable enzymatic activity of lanthanide-dependent methanol dehydrogenase in this compartment. Herewith, the only available substrate for this enzyme in cells growing with dichloromethane was formaldehyde, which is produced during the primary metabolism of the mentioned halogenated toxicant directly in the cytosol. These findings suggest that the maturation of XoxF-methanol dehydrogenase may occur already in the cytoplasm, while the factors changing affinity of this enzyme for formaldehyde are apparently absent there. Together with the demonstrated functioning of an enhancer-like upstream activating sequence in the promoter region of the xoxF gene in M. extorquens DM4, the obtained information enriches our understanding of the regulation, synthesis and role of the XoxF protein.
Collapse
Affiliation(s)
- Yulia E Firsova
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Ildar I Mustakhimov
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, 142290, Pushchino, Russia
| | - Maria L Torgonskaya
- Laboratory of Radioactive Isotopes, G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, FRC Pushchino Center for Biological Research of Russian Academy of Sciences, 142290, Pushchino, Russia
| |
Collapse
|
50
|
Wait EE, Gourary J, Liu C, Spoerke ED, Rempe SB, Ren P. Development of AMOEBA Polarizable Force Field for Rare-Earth La 3+ Interaction with Bioinspired Ligands. J Phys Chem B 2023; 127:1367-1375. [PMID: 36735638 PMCID: PMC9957963 DOI: 10.1021/acs.jpcb.2c07237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Rare-earth metals (REMs) are crucial for many important industries, such as power generation and storage, in addition to cancer treatment and medical imaging. One promising new REM refinement approach involves mimicking the highly selective and efficient binding of REMs observed in relatively recently discovered proteins. However, realizing any such bioinspired approach requires an understanding of the biological recognition mechanisms. Here, we developed a new classical polarizable force field based on the AMOEBA framework for modeling a lanthanum ion (La3+) interacting with water, acetate, and acetamide, which have been found to coordinate the ion in proteins. The parameters were derived by comparing to high-level ab initio quantum mechanical (QM) calculations that include relativistic effects. The AMOEBA model, with advanced atomic multipoles and electronic polarization, is successful in capturing both the QM distance-dependent La3+-ligand interaction energies and experimental hydration free energy. A new scheme for pairwise polarization damping (POLPAIR) was developed to describe the polarization energy in La3+ interactions with both charged and neutral ligands. Simulations of La3+ in water showed water coordination numbers and ion-water distances consistent with previous experimental and theoretical findings. Water residence time analysis revealed both fast and slow kinetics in water exchange around the ion. This new model will allow investigation of fully solvated lanthanum ion-protein systems using GPU-accelerated dynamics simulations to gain insights on binding selectivity, which may be applied to the design of synthetic analogues.
Collapse
Affiliation(s)
- Elizabeth E. Wait
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Justin Gourary
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Chengwen Liu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| | - Erik D. Spoerke
- Electronic, Optical, and Nano Materials Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Susan B. Rempe
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, NM 87185, USA
| | - Pengyu Ren
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|