1
|
Pozarycki C, Seaton KM, C Vincent E, Novak Sanders C, Nuñez N, Castillo M, Ingall E, Klempay B, Pontefract A, Fisher LA, Paris ER, Buessecker S, Alansson NB, Carr CE, Doran PT, Bowman JS, Schmidt BE, Stockton AM. Biosignature Molecules Accumulate and Persist in Evaporitic Brines: Implications for Planetary Exploration. ASTROBIOLOGY 2024; 24:795-812. [PMID: 39159437 DOI: 10.1089/ast.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl2-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects. Bioluminescence assays show that adenosine triphosphate (ATP) concentrations are higher in NaCl-rich, low water activity (aw) samples (<0.85) from SBSW. This is consistent with the accumulation and preservation of ATP at low aw as described in past laboratory studies. The water-soluble small organic molecule inventory was determined by using microchip capillary electrophoresis paired with high-resolution mass spectrometry (µCE-HRMS). We analyzed the relative distribution of proteinogenic amino acids with a recently developed quantitative method using CE-separation and laser-induced fluorescence (LIF) detection of amino acids in hypersaline brines. Salinity trends for dissolved free amino acids were consistent with amino acid residue abundance determined from the proteome of the microbial community predicted from metagenomic data. This highlights a tangible connection up and down the "-omics" ladder across changing geochemical conditions. The detection of water-soluble organic compounds, specifically proteinogenic amino acids at high abundance (>7 mM) in concentrated brines, demonstrates that potential organic biomarkers accumulate at hypersaline sites and suggests the possibility of long-term preservation. The detection of such molecules in high abundance when using diverse analytical tools appropriate for spacecraft suggests that life detection within hypersaline environments, such as evaporates on Mars and the surface or subsurface brines of ocean world Europa, is plausible and argues such environments should be a high priority for future exploration. Key Words: Salts-Analytical chemistry-Amino acids-Biosignatures-Capillary electrophoresis-Preservation. Astrobiology 24, 795-812.
Collapse
Affiliation(s)
- Chad Pozarycki
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Kenneth M Seaton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Emily C Vincent
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Carlie Novak Sanders
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Nickie Nuñez
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Mariah Castillo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Ellery Ingall
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Benjamin Klempay
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | | | - Luke A Fisher
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Emily R Paris
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, California, USA
| | - Nikolas B Alansson
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Peter T Doran
- Geology and Geophysics, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Jeff S Bowman
- Scripps Institution of Oceanography, University of California San Diego, San Diego, California, USA
| | - Britney E Schmidt
- Departments of Astronomy and Earth & Atmospheric Sciences, Cornell University, Ithaca, New York, USA
| | - Amanda M Stockton
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Chmykh Y, Nadeau JL. The use of fluorescence lifetime imaging (FLIM) for in situ microbial detection in complex mineral substrates. J Microsc 2024; 294:36-51. [PMID: 38230460 DOI: 10.1111/jmi.13264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/16/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024]
Abstract
The utility of fluorescence lifetime imaging microscopy (FLIM) for identifying bacteria in complex mineral matrices was investigated. Baseline signals from unlabelled Bacillus subtilis and Euglena gracilis, and Bacillus subtilis labelled with SYTO 9 were obtained using two-photon excitation at 730, 750 and 800 nm, identifying characteristic lifetimes of photosynthetic pigments, unpigmented cellular autofluorescence, and SYTO 9. Labelled and unlabelled B. subtilis were seeded onto marble and gypsum samples containing endolithic photosynthetic cyanobacteria and the ability to distinguish cells from mineral autofluorescence and nonspecific dye staining was examined in parallel with ordinary multichannel confocal imaging. It was found that FLIM enabled discrimination of SYTO 9 labelled cells from background, but that the lifetime of SYTO 9 was shorter in cells on minerals than in pure culture under our conditions. Photosynthetic microorganisms were easily observed using both FLIM and confocal. Unlabelled, nonpigmented bacteria showed weak signals that were difficult to distinguish from background when minerals were present, though cellular autofluorescence consistent with NAD(P)H could be seen in pure cultures, and phasor analysis permitted detection on rocks. Gypsum and marble samples showed similar autofluorescence profiles, with little autofluorescence in the yellow-to-red range. Lifetime or time-gated imaging may prove a useful tool for environmental microbiology. LAY DESCRIPTION: The standard method of bacterial enumeration is to label the cells with a fluorescent dye and count them under high-power fluorescence microscopy. However, this can be difficult when the cells are embedded in soil and rock due to fluorescence from the surrounding minerals and dye binding to ambiguous features of the substrate. The use of fluorescence lifetime imaging (FLIM) can disambiguate these signals and allow for improved detection of bacteria in environmental samples.
Collapse
Affiliation(s)
- Yekaterina Chmykh
- Department of Physics, Portland State University, Portland, Oregon, USA
| | - Jay L Nadeau
- Department of Physics, Portland State University, Portland, Oregon, USA
| |
Collapse
|
3
|
Ben Abdallah M, Chamkha M, Karray F, Sayadi S. Microbial diversity in polyextreme salt flats and their potential applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11371-11405. [PMID: 38180652 DOI: 10.1007/s11356-023-31644-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/17/2023] [Indexed: 01/06/2024]
Abstract
Recent geological, hydrochemical, and mineralogical studies performed on hypersaline salt flats have given insights into similar geo-morphologic features on Mars. These salt-encrusted depressions are widely spread across the Earth, where they are characterized by high salt concentrations, intense UV radiation, high evaporation, and low precipitation. Their surfaces are completely dry in summer; intermittent flooding occurs in winter turning them into transitory hypersaline lakes. Thanks to new approaches such as culture-dependent, culture-independent, and metagenomic-based methods, it is important to study microbial life under polyextreme conditions and understand what lives in these dynamic ecosystems and how they function. Regarding these particular features, new halophilic microorganisms have been isolated from some salt flats and identified as excellent producers of primary and secondary metabolites and granules such as halocins, enzymes, carotenoids, polyhydroxyalkanoates, and exopolysaccharides. Additionally, halophilic microorganisms are implemented in heavy metal bioremediation and hypersaline wastewater treatment. As a result, there is a growing interest in the distribution of halophilic microorganisms around the world that can be looked upon as good models to develop sustainable biotechnological processes for all fields. This review provides insights into diversity, ecology, metabolism, and genomics of halophiles in hypersaline salt flats worldwide as well as their potential uses in biotechnology.
Collapse
Affiliation(s)
- Manel Ben Abdallah
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia.
| | - Mohamed Chamkha
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Fatma Karray
- Laboratory of Environmental Bioprocesses, Centre of Biotechnology of Sfax, BP 1177, 3018, Sfax, Tunisia
| | - Sami Sayadi
- Biotechnology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, 2713, Doha, Qatar
| |
Collapse
|
4
|
Glass B, Bergman D, Parro V, Kobayashi L, Stoker C, Quinn R, Davila A, Willis P, Brinckerhoff W, Warren-Rhodes K, Wilhelm M, Caceres L, DiRuggiero J, Zacny K, Moreno-Paz M, Dave A, Seitz S, Grubisic A, Castillo M, Bonaccorsi R. The Atacama Rover Astrobiology Drilling Studies (ARADS) Project. ASTROBIOLOGY 2023; 23:1245-1258. [PMID: 38054949 PMCID: PMC10750311 DOI: 10.1089/ast.2022.0126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/01/2023] [Indexed: 12/07/2023]
Abstract
With advances in commercial space launch capabilities and reduced costs to orbit, humans may arrive on Mars within a decade. Both to preserve any signs of past (and extant) martian life and to protect the health of human crews (and Earth's biosphere), it will be necessary to assess the risk of cross-contamination on the surface, in blown dust, and into the near-subsurface (where exploration and resource-harvesting can be reasonably anticipated). Thus, evaluating for the presence of life and biosignatures may become a critical-path Mars exploration precursor in the not-so-far future, circa 2030. This Special Collection of papers from the Atacama Rover Astrobiology Drilling Studies (ARADS) project describes many of the scientific, technological, and operational issues associated with searching for and identifying biosignatures in an extreme hyperarid region in Chile's Atacama Desert, a well-studied terrestrial Mars analog environment. This paper provides an overview of the ARADS project and discusses in context the five other papers in the ARADS Special Collection, as well as prior ARADS project results.
Collapse
Affiliation(s)
- B. Glass
- NASA Ames Research Center, Moffett Field, California, USA
| | - D. Bergman
- Honeybee Robotics, Pasadena, California, USA
| | - V. Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejon de Ardoz, Spain
| | - L. Kobayashi
- NASA Ames Research Center, Moffett Field, California, USA
| | - C. Stoker
- NASA Ames Research Center, Moffett Field, California, USA
| | - R. Quinn
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. Davila
- NASA Ames Research Center, Moffett Field, California, USA
| | - P. Willis
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
| | | | - K. Warren-Rhodes
- NASA Ames Research Center, Moffett Field, California, USA
- SETI Institute, Carl Sagan Center, Mountain View, California, USA
| | - M.B. Wilhelm
- NASA Ames Research Center, Moffett Field, California, USA
| | - L. Caceres
- University of Antofagasta, Antofagasta, Chile
| | | | - K. Zacny
- Honeybee Robotics, Pasadena, California, USA
| | - M. Moreno-Paz
- Centro de Astrobiología (CAB), CSIC-INTA, Torrejon de Ardoz, Spain
| | - A. Dave
- NASA Ames Research Center, Moffett Field, California, USA
| | - S. Seitz
- NASA Ames Research Center, Moffett Field, California, USA
| | - A. Grubisic
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - M. Castillo
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - R. Bonaccorsi
- NASA Ames Research Center, Moffett Field, California, USA
- SETI Institute, Carl Sagan Center, Mountain View, California, USA
| |
Collapse
|
5
|
Hakobyan A, Velte S, Sickel W, Quandt D, Stoll A, Knief C. Tillandsia landbeckii phyllosphere and laimosphere as refugia for bacterial life in a hyperarid desert environment. MICROBIOME 2023; 11:246. [PMID: 37936139 PMCID: PMC10631034 DOI: 10.1186/s40168-023-01684-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND The lack of water is a major constraint for microbial life in hyperarid deserts. Consequently, the abundance and diversity of microorganisms in common habitats such as soil are strongly reduced, and colonization occurs primarily by specifically adapted microorganisms that thrive in particular refugia to escape the harsh conditions that prevail in these deserts. We suggest that plants provide another refugium for microbial life in hyperarid deserts. We studied the bacterial colonization of Tillandsia landbeckii (Bromeliaceae) plants, which occur in the hyperarid regions of the Atacama Desert in Chile, one of the driest and oldest deserts on Earth. RESULTS We detected clear differences between the bacterial communities being plant associated to those of the bare soil surface (PERMANOVA, R2 = 0.187, p = 0.001), indicating that Tillandsia plants host a specific bacterial community, not only dust-deposited cells. Moreover, the bacterial communities in the phyllosphere were distinct from those in the laimosphere, i.e., on buried shoots (R2 = 0.108, p = 0.001), indicating further habitat differentiation within plant individuals. The bacterial taxa detected in the phyllosphere are partly well-known phyllosphere colonizers, but in addition, some rather unusual taxa (subgroup2 Acidobacteriae, Acidiphilum) and insect endosymbionts (Wolbachia, "Candidatus Uzinura") were found. The laimosphere hosted phyllosphere-associated as well as soil-derived taxa. The phyllosphere bacterial communities showed biogeographic patterns across the desert (R2 = 0.331, p = 0.001). These patterns were different and even more pronounced in the laimosphere (R2 = 0.467, p = 0.001), indicating that different factors determine community assembly in the two plant compartments. Furthermore, the phyllosphere microbiota underwent temporal changes (R2 = 0.064, p = 0.001). CONCLUSIONS Our data demonstrate that T. landbeckii plants host specific bacterial communities in the phyllosphere as well as in the laimosphere. Therewith, these plants provide compartment-specific refugia for microbial life in hyperarid desert environments. The bacterial communities show biogeographic patterns and temporal variation, as known from other plant microbiomes, demonstrating environmental responsiveness and suggesting that bacteria inhabit these plants as viable microorganisms. Video Abstract.
Collapse
Affiliation(s)
- Anna Hakobyan
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Stefanie Velte
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
| | - Wiebke Sickel
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany
- Institute of Biodiversity, Johann Heinrich Von Thünen Institute, Brunswick, Germany
| | - Dietmar Quandt
- Nees Institute for Biodiversity of Plants, University of Bonn, Bonn, Germany
| | - Alexandra Stoll
- Centro de Estudios Avanzados en Zonas Áridas Ceaza, La Serena, Chile
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, La Serena, Chile
| | - Claudia Knief
- Molecular Biology of the Rhizosphere, Institute for Crop Science and Resource Conservation (INRES), University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Cowan DA, Cary SC, DiRuggiero J, Eckardt F, Ferrari B, Hopkins DW, Lebre PH, Maggs-Kölling G, Pointing SB, Ramond JB, Tribbia D, Warren-Rhodes K. 'Follow the Water': Microbial Water Acquisition in Desert Soils. Microorganisms 2023; 11:1670. [PMID: 37512843 PMCID: PMC10386458 DOI: 10.3390/microorganisms11071670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/30/2023] Open
Abstract
Water availability is the dominant driver of microbial community structure and function in desert soils. However, these habitats typically only receive very infrequent large-scale water inputs (e.g., from precipitation and/or run-off). In light of recent studies, the paradigm that desert soil microorganisms are largely dormant under xeric conditions is questionable. Gene expression profiling of microbial communities in desert soils suggests that many microbial taxa retain some metabolic functionality, even under severely xeric conditions. It, therefore, follows that other, less obvious sources of water may sustain the microbial cellular and community functionality in desert soil niches. Such sources include a range of precipitation and condensation processes, including rainfall, snow, dew, fog, and nocturnal distillation, all of which may vary quantitatively depending on the location and geomorphological characteristics of the desert ecosystem. Other more obscure sources of bioavailable water may include groundwater-derived water vapour, hydrated minerals, and metabolic hydro-genesis. Here, we explore the possible sources of bioavailable water in the context of microbial survival and function in xeric desert soils. With global climate change projected to have profound effects on both hot and cold deserts, we also explore the potential impacts of climate-induced changes in water availability on soil microbiomes in these extreme environments.
Collapse
Affiliation(s)
- Don A Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | - S Craig Cary
- School of Biological Sciences, University of Waikato, Hamilton 3216, New Zealand
| | - Jocelyne DiRuggiero
- Departments of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Departments of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Frank Eckardt
- Department of Environmental and Geographical Science, University of Cape Town, Cape Town 7701, South Africa
| | - Belinda Ferrari
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - David W Hopkins
- Scotland's Rural College, West Mains Road, Edinburgh EH9 3JG, UK
| | - Pedro H Lebre
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
| | | | - Stephen B Pointing
- Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Jean-Baptiste Ramond
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0002, South Africa
- Departamento Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Dana Tribbia
- School of Biotechnology and Biological Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
7
|
Najjari A, Boussetta A, Youssef N, Linares-Pastén JA, Mahjoubi M, Belloum R, Sghaier H, Cherif A, Ouzari HI. Physiological and genomic insights into abiotic stress of halophilic archaeon Natrinema altunense 4.1R isolated from a saline ecosystem of Tunisian desert. Genetica 2023; 151:133-152. [PMID: 36795306 PMCID: PMC9995536 DOI: 10.1007/s10709-023-00182-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
Halophilic archaea are polyextremophiles with the ability to withstand fluctuations in salinity, high levels of ultraviolet radiation, and oxidative stress, allowing them to survive in a wide range of environments and making them an excellent model for astrobiological research. Natrinema altunense 4.1R is a halophilic archaeon isolated from the endorheic saline lake systems, Sebkhas, located in arid and semi-arid regions of Tunisia. It is an ecosystem characterized by periodic flooding from subsurface groundwater and fluctuating salinities. Here, we assess the physiological responses and genomic characterization of N. altunense 4.1R to UV-C radiation, as well as osmotic and oxidative stresses. Results showed that the 4.1R strain is able to survive up to 36% of salinity, up to 180 J/m2 to UV-C radiation, and at 50 mM of H2O2, a resistance profile similar to Halobacterium salinarum, a strain often used as UV-C resistant model. In order to understand the genetic determinants of N. altunense 4.1R survival strategy, we sequenced and analyzed its genome. Results showed multiple gene copies of osmotic stress, oxidative stress, and DNA repair response mechanisms supporting its survivability at extreme salinities and radiations. Indeed, the 3D molecular structures of seven proteins related to responses to UV-C radiation (excinucleases UvrA, UvrB, and UvrC, and photolyase), saline stress (trehalose-6-phosphate synthase OtsA and trehalose-phosphatase OtsB), and oxidative stress (superoxide dismutase SOD) were constructed by homology modeling. This study extends the abiotic stress range for the species N. altunense and adds to the repertoire of UV and oxidative stress resistance genes generally known from haloarchaeon.
Collapse
Affiliation(s)
- Afef Najjari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Ayoub Boussetta
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Noha Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Javier A Linares-Pastén
- Department of Biotechnology, Faculty of Engineering, Lunds Tekniska Högskola (LTH), Lund University, P. O. Box 124, 22100, Lund, Sweden.
| | - Mouna Mahjoubi
- University of Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Rahma Belloum
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| | - Haitham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Ariana, Tunisia
| | - Ameur Cherif
- University of Manouba, ISBST, LR11-ES31 BVBGR, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia
| | - Hadda Imene Ouzari
- Faculté des Sciences de Tunis, LR03ES03 Laboratoire de Microbiologie et Biomolécules Actives, Université Tunis El Manar, 2092, Tunis, Tunisie
| |
Collapse
|
8
|
Perez-Fernandez CA, Wilburn P, Davila A, DiRuggiero J. Adaptations of endolithic communities to abrupt environmental changes in a hyper-arid desert. Sci Rep 2022; 12:20022. [PMID: 36414646 PMCID: PMC9681764 DOI: 10.1038/s41598-022-23437-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
The adaptation mechanisms of microbial communities to natural perturbations remain unexplored, particularly in extreme environments. The extremophilic communities of halite (NaCl) nodules from the hyper-arid core of the Atacama Desert are self-sustained and represent a unique opportunity to study functional adaptations and community dynamics with changing environmental conditions. We transplanted halite nodules to different sites in the desert and investigated how their taxonomic, cellular, and biochemical changes correlated with water availability, using environmental data modeling and metagenomic analyses. Salt-in strategists, mainly represented by haloarchaea, significantly increased in relative abundance at sites characterized by extreme dryness, multiple wet/dry cycles, and colder conditions. The functional analysis of metagenome-assembled genomes (MAGs) revealed site-specific enrichments in archaeal MAGs encoding for the uptake of various compatible solutes and for glycerol utilization. These findings suggest that opportunistic salt-in strategists took over the halite communities at the driest sites. They most likely benefited from compounds newly released in the environment by the death of microorganisms least adapted to the new conditions. The observed changes were consistent with the need to maximize cellular bioenergetics when confronted with lower water availability and higher salinity, providing valuable information on microbial community adaptations and resilience to climate change.
Collapse
Affiliation(s)
- Cesar A. Perez-Fernandez
- grid.21107.350000 0001 2171 9311Department of Biology, The Johns Hopkins University, Baltimore, MD USA
| | - Paul Wilburn
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center-Exobiology Branch MS 239-4, Moffett Field, CA USA
| | - Alfonso Davila
- grid.419075.e0000 0001 1955 7990NASA Ames Research Center-Exobiology Branch MS 239-4, Moffett Field, CA USA
| | - Jocelyne DiRuggiero
- grid.21107.350000 0001 2171 9311Department of Biology, The Johns Hopkins University, Baltimore, MD USA ,grid.21107.350000 0001 2171 9311Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
9
|
Busse L, Tisza M, DiRuggiero J. Viruses Ubiquity and Diversity in Atacama Desert Endolithic Communities. Viruses 2022; 14:1983. [PMID: 36146789 PMCID: PMC9500819 DOI: 10.3390/v14091983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Viruses are key players in the environment, and recent metagenomic studies have revealed their diversity and genetic complexity. Despite progress in understanding the ecology of viruses in extreme environments, viruses' dynamics and functional roles in dryland ecosystems, which cover about 45% of the Earth's land surfaces, remain largely unexplored. This study characterizes virus sequences in the metagenomes of endolithic (within rock) microbial communities ubiquitously found in hyper-arid deserts. Taxonomic classification and network construction revealed the presence of novel and diverse viruses in communities inhabiting calcite, gypsum, and ignimbrite rocks. Viral genome maps show a high level of protein diversity within and across endolithic communities and the presence of virus-encoded auxiliary metabolic genes. Phage-host relationships were predicted by matching tRNA, CRISPR spacer, and protein sequences in the viral and microbial metagenomes. Primary producers and heterotrophic bacteria were found to be putative hosts to some viruses. Intriguingly, viral diversity was not correlated with microbial diversity across rock substrates.
Collapse
Affiliation(s)
- Leora Busse
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mike Tisza
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
10
|
Salty Twins: Salt-Tolerance of Terrestrial Cyanocohniella Strains (Cyanobacteria) and Description of C. rudolphia sp. nov. Point towards a Marine Origin of the Genus and Terrestrial Long Distance Dispersal Patterns. Microorganisms 2022; 10:microorganisms10050968. [PMID: 35630411 PMCID: PMC9144741 DOI: 10.3390/microorganisms10050968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 11/30/2022] Open
Abstract
The ability to adapt to wide ranges of environmental conditions coupled with their long evolution has allowed cyanobacteria to colonize almost every habitat on Earth. Modern taxonomy tries to track not only this diversification process but also to assign individual cyanobacteria to specific niches. It was our aim to work out a potential niche concept for the genus Cyanocohniella in terms of salt tolerance. We used a strain based on the description of C. rudolphia sp. nov. isolated from a potash tailing pile (Germany) and for comparison C. crotaloides that was isolated from sandy beaches (The Netherlands). The taxonomic position of C. rudolphia sp. nov. was evaluated by phylogenetic analysis and morphological descriptions of its life cycle. Salt tolerance of C. rudolphia sp. nov. and C. crotaloides was monitored with cultivation assays in liquid medium and on sand under salt concentrations ranging from 0% to 12% (1500 mM) NaCl. Optimum growth conditions were detected for both strains at 4% (500 mM) NaCl based on morpho-anatomical and physiological criteria such as photosynthetic yield by chlorophyll a fluorescence measurements. Taking into consideration that all known strains of this genus colonize salty habitats supports our assumption that the genus might have a marine origin but also expands colonization to salty terrestrial habitats. This aspect is further discussed, including the ecological and biotechnological relevance of the data presented.
Collapse
|
11
|
Segal-Kischinevzky C, Romero-Aguilar L, Alcaraz LD, López-Ortiz G, Martínez-Castillo B, Torres-Ramírez N, Sandoval G, González J. Yeasts Inhabiting Extreme Environments and Their Biotechnological Applications. Microorganisms 2022; 10:794. [PMID: 35456844 PMCID: PMC9028089 DOI: 10.3390/microorganisms10040794] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 11/17/2022] Open
Abstract
Yeasts are microscopic fungi inhabiting all Earth environments, including those inhospitable for most life forms, considered extreme environments. According to their habitats, yeasts could be extremotolerant or extremophiles. Some are polyextremophiles, depending on their growth capacity, tolerance, and survival in the face of their habitat's physical and chemical constitution. The extreme yeasts are relevant for the industrial production of value-added compounds, such as biofuels, lipids, carotenoids, recombinant proteins, enzymes, among others. This review calls attention to the importance of yeasts inhabiting extreme environments, including metabolic and adaptive aspects to tolerate conditions of cold, heat, water availability, pH, salinity, osmolarity, UV radiation, and metal toxicity, which are relevant for biotechnological applications. We explore the habitats of extreme yeasts, highlighting key species, physiology, adaptations, and molecular identification. Finally, we summarize several findings related to the industrially-important extremophilic yeasts and describe current trends in biotechnological applications that will impact the bioeconomy.
Collapse
Affiliation(s)
- Claudia Segal-Kischinevzky
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Lucero Romero-Aguilar
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Luis D. Alcaraz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Geovani López-Ortiz
- Subdivisión de Medicina Familiar, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico;
| | - Blanca Martínez-Castillo
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Nayeli Torres-Ramírez
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| | - Georgina Sandoval
- Laboratorio de Innovación en Bioenergéticos y Bioprocesos Avanzados (LIBBA), Unidad de Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco AC (CIATEJ), Av. Normalistas No. 800 Col. Colinas de la Normal, Guadalajara 44270, Mexico;
| | - James González
- Departamento de Biología Celular, Facultad de Ciencias, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Coyoacán, Mexico City 04510, Mexico; (C.S.-K.); (L.D.A.); (B.M.-C.); (N.T.-R.)
| |
Collapse
|
12
|
Gómez-Silva B, Batista-García RA. The Atacama Desert: A Biodiversity Hotspot and Not Just a Mineral-Rich Region. Front Microbiol 2022; 13:812842. [PMID: 35222336 PMCID: PMC8865075 DOI: 10.3389/fmicb.2022.812842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Benito Gómez-Silva
- Laboratory of Biochemistry, Biomedical Department, Health Sciences Faculty and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| |
Collapse
|
13
|
Medina-Chávez NO, Travisano M. Archaeal Communities: The Microbial Phylogenomic Frontier. Front Genet 2022; 12:693193. [PMID: 35154237 PMCID: PMC8826477 DOI: 10.3389/fgene.2021.693193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 11/22/2021] [Indexed: 11/17/2022] Open
Abstract
Archaea are a unique system for investigating the diversity of life. There are the most diverse group of organisms with the longest evolutionary history of life on Earth. Phylogenomic investigations reveal the complex evolutionary history of Archaea, overturning longstanding views of the history of life. They exist in the harshest environments and benign conditions, providing a system to investigate the basis for living in extreme environments. They are frequently members of microbial communities, albeit generally rare. Archaea were central in the evolution of Eukaryotes and can be used as a proxy for studying life on other planets. Future advances will depend not only upon phylogenomic studies but also on a better understanding of isolation and cultivation techniques.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Michael Travisano
- Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States.,BioTechnology Institute, University of Minnesota, St. Paul, MN, United States.,Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Rossi C, Ruß-Popa G, Mattiangeli V, McDaid F, Hare AJ, Davoudi H, Laleh H, Lorzadeh Z, Khazaeli R, Fathi H, Teasdale MD, A'ali A, Stöllner T, Mashkour M, Daly KG. Exceptional ancient DNA preservation and fibre remains of a Sasanian saltmine sheep mummy in Chehrābād, Iran. Biol Lett 2021; 17:20210222. [PMID: 34256582 PMCID: PMC8278039 DOI: 10.1098/rsbl.2021.0222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/29/2022] Open
Abstract
Mummified remains have long attracted interest as a potential source of ancient DNA. However, mummification is a rare process that requires an anhydrous environment to rapidly dehydrate and preserve tissue before complete decomposition occurs. We present the whole-genome sequences (3.94 X) of an approximately 1600-year-old naturally mummified sheep recovered from Chehrābād, a salt mine in northwestern Iran. Comparative analyses of published ancient sequences revealed the remarkable DNA integrity of this mummy. Hallmarks of postmortem damage, fragmentation and hydrolytic deamination are substantially reduced, likely owing to the high salinity of this taphonomic environment. Metagenomic analyses reflect the profound influence of high-salt content on decomposition; its microbial profile is predominated by halophilic archaea and bacteria, possibly contributing to the remarkable preservation of the sample. Applying population genomic analyses, we find clustering of this sheep with Southwest Asian modern breeds, suggesting ancestry continuity. Genotyping of a locus influencing the woolly phenotype showed the presence of an ancestral 'hairy' allele, consistent with hair fibre imaging. This, along with derived alleles associated with the fat-tail phenotype, provides genetic evidence that Sasanian-period Iranians maintained specialized sheep flocks for different uses, with the 'hairy', 'fat-tailed'-genotyped sheep likely kept by the rural community of Chehrābād's miners.
Collapse
Affiliation(s)
- Conor Rossi
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Gabriela Ruß-Popa
- Austrian Academy of Sciences, Austrian Archaeological Institute, Archaeological Sciences, Hollandstraße 11-13, 1020 Vienna, Austria
| | - Valeria Mattiangeli
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Fionnuala McDaid
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Andrew J. Hare
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| | - Hossein Davoudi
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Haeedeh Laleh
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
- Faculty of Humanities, Department of Archaeology, University of Tehran, 1417935840 Tehran, Iran
| | - Zahra Lorzadeh
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Roya Khazaeli
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Homa Fathi
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
| | - Matthew D. Teasdale
- McDonald Institute for Archaeological Research, Dept. of Archaeology, University of Cambridge, Cambridge CB2 3ER, UK
| | - Abolfazl A'ali
- Zanjan Cultural Heritage Centre, Archaeological Museum of Zanjan, Emaarate Zolfaghari, Taleghani St., Zanjan, Iran
| | - Thomas Stöllner
- Research Department, Haus der Archäologien, Ruhr University Bochum, Institute for Archaeological Studies and Deutsches Bergbau-Museum Bochum, Am Bergbaumuseum 31, D-44791 Bochum, Germany
| | - Marjan Mashkour
- Central Laboratory, Bioarchaeology Laboratory, University of Tehran, 1417634934 Tehran, Iran
- Archéozoologie, Archéobotanique, Sociétés, Pratiques et Environnements (AASPE), Muséum national d'Histoire naturelle, Sorbonne Université, CNRS, CP 56, 55 rue Buffon, 75005 Paris, France
| | - Kevin G. Daly
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin 2, D02 VF25, Ireland
| |
Collapse
|
15
|
Schulze-Makuch D, Lipus D, Arens FL, Baqué M, Bornemann TLV, de Vera JP, Flury M, Frösler J, Heinz J, Hwang Y, Kounaves SP, Mangelsdorf K, Meckenstock RU, Pannekens M, Probst AJ, Sáenz JS, Schirmack J, Schloter M, Schmitt-Kopplin P, Schneider B, Uhl J, Vestergaard G, Valenzuela B, Zamorano P, Wagner D. Microbial Hotspots in Lithic Microhabitats Inferred from DNA Fractionation and Metagenomics in the Atacama Desert. Microorganisms 2021; 9:microorganisms9051038. [PMID: 34065975 PMCID: PMC8151210 DOI: 10.3390/microorganisms9051038] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 01/04/2023] Open
Abstract
The existence of microbial activity hotspots in temperate regions of Earth is driven by soil heterogeneities, especially the temporal and spatial availability of nutrients. Here we investigate whether microbial activity hotspots also exist in lithic microhabitats in one of the most arid regions of the world, the Atacama Desert in Chile. While previous studies evaluated the total DNA fraction to elucidate the microbial communities, we here for the first time use a DNA separation approach on lithic microhabitats, together with metagenomics and other analysis methods (i.e., ATP, PLFA, and metabolite analysis) to specifically gain insights on the living and potentially active microbial community. Our results show that hypolith colonized rocks are microbial hotspots in the desert environment. In contrast, our data do not support such a conclusion for gypsum crust and salt rock environments, because only limited microbial activity could be observed. The hypolith community is dominated by phototrophs, mostly Cyanobacteria and Chloroflexi, at both study sites. The gypsum crusts are dominated by methylotrophs and heterotrophic phototrophs, mostly Chloroflexi, and the salt rocks (halite nodules) by phototrophic and halotolerant endoliths, mostly Cyanobacteria and Archaea. The major environmental constraints in the organic-poor arid and hyperarid Atacama Desert are water availability and UV irradiation, allowing phototrophs and other extremophiles to play a key role in desert ecology.
Collapse
Affiliation(s)
- Dirk Schulze-Makuch
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Department of Experimental Limnology, 16775 Stechlin, Germany
- School of the Environment, Washington State University, Pullman, WA 99163, USA
- Correspondence: (D.S.-M.); (D.W.); Tel.: +49-(30)-314-23736 (D.S.-M.); +49-(331)-288-28800 (D.W.)
| | - Daniel Lipus
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
| | - Felix L. Arens
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Mickael Baqué
- German Aerospace Center (DLR), Institute of Planetary Research, 12489 Berlin, Germany;
| | - Till L. V. Bornemann
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Jean-Pierre de Vera
- German Aerospace Center (DLR), Microgravity User Support Center (MUSC), 51147 Cologne, Germany;
| | - Markus Flury
- Department of Crop and Soil Science, Washington State University, Pullman, WA 99164, USA;
- Department of Crop and Soil Science, Washington State University, Puyallup, WA 98371, USA
| | - Jan Frösler
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Jacob Heinz
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Yunha Hwang
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Samuel P. Kounaves
- Department of Chemistry, Tufts University, Boston, MA 02155, USA;
- Department of Earth Science & Engineering, Imperial College London, London SW7 2AZ, UK
| | - Kai Mangelsdorf
- GFZ German Research Centre for Geosciences, Section Organic Geochemistry, 14473 Potsdam, Germany;
| | - Rainer U. Meckenstock
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Mark Pannekens
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Alexander J. Probst
- Environmental Microbiology and Biotechnology, Department of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany; (T.L.V.B.); (J.F.); (R.U.M.); (M.P.); (A.J.P.)
| | - Johan S. Sáenz
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (J.S.S.); (M.S.)
| | - Janosch Schirmack
- Center for Astronomy and Astrophysics, Technische Universität Berlin, 10623 Berlin, Germany; (F.L.A.); (J.H.); (Y.H.); (J.S.)
| | - Michael Schloter
- Research Unit for Comparative Microbiome Analysis, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (J.S.S.); (M.S.)
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (P.-S.K.); (J.U.)
| | - Beate Schneider
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
- Federal Institute for Materials Research and Testing (BAM), 12205 Berlin, Germany
| | - Jenny Uhl
- Research Unit Analytical BioGeoChemistry, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764 Neuherberg, Germany; (P.-S.K.); (J.U.)
| | - Gisle Vestergaard
- Department of Health Technology, Technical University of Denmark, 2800 Lyngby, Denmark;
| | - Bernardita Valenzuela
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile; (B.V.); (P.Z.)
| | - Pedro Zamorano
- Laboratorio de Microorganismos Extremófilos, Instituto Antofagasta, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile; (B.V.); (P.Z.)
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; (D.L.); (B.S.)
- Institute of Geosciences, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
- Correspondence: (D.S.-M.); (D.W.); Tel.: +49-(30)-314-23736 (D.S.-M.); +49-(331)-288-28800 (D.W.)
| |
Collapse
|
16
|
The Novel Halovirus Hardycor1, and the Presence of Active (Induced) Proviruses in Four Haloarchaea. Genes (Basel) 2021; 12:genes12020149. [PMID: 33498646 PMCID: PMC7911831 DOI: 10.3390/genes12020149] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/15/2022] Open
Abstract
The virus Hardycor1 was isolated in 1998 and infects the haloarchaeon Halorubrum coriense. DNA from a frozen stock (HC1) was sequenced and the viral genome found to be 45,142 bp of dsDNA, probably having redundant, circularly permuted termini. The genome showed little similarity (BLASTn) to known viruses. Only twenty-two of the 53 (41%) predicted proteins were significantly similar to sequences in the NCBI nr protein database (E-value ≤ 10-15). Six caudovirus-like proteins were encoded, including large subunit terminase (TerL), major capsid protein (Mcp) and tape measure protein (Tmp). Hardycor1 was predicted to be a siphovirus (VIRFAM). No close relationship to other viruses was found using phylogenetic tree reconstructions based on TerL and Mcp. Unexpectedly, the sequenced virus stock HC1 also revealed two induced proviruses of the host: a siphovirus (Humcor1) and a pleolipovirus (Humcor2). A re-examination of other similarly sequenced, archival virus stocks revealed induced proviruses of Haloferax volcanii, Haloferax gibbonsii and Haloarcula hispanica, three of which were pleolipoviruses. One provirus (Halfvol2) of Hfx. volcanii showed little similarity (BLASTn) to known viruses and probably represents a novel virus group. The attP sequences of many pleolipoproviruses were found to be embedded in a newly detected coding sequence, split in the provirus state, that spans between genes for integrase and a downstream CxxC-motif protein. This gene might play an important role in regulation of the temperate state.
Collapse
|
17
|
Casero MC, Ascaso C, Quesada A, Mazur-Marzec H, Wierzchos J. Response of Endolithic Chroococcidiopsis Strains From the Polyextreme Atacama Desert to Light Radiation. Front Microbiol 2021; 11:614875. [PMID: 33537015 PMCID: PMC7848079 DOI: 10.3389/fmicb.2020.614875] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/28/2020] [Indexed: 01/09/2023] Open
Abstract
Cyanobacteria exposed to high solar radiation make use of a series of defense mechanisms, including avoidance, antioxidant systems, and the production of photoprotective compounds such as scytonemin. Two cyanobacterial strains of the genus Chroococcidiopsis from the Atacama Desert - which has one of the highest solar radiation levels on Earth- were examined to determine their capacity to protect themselves from direct photosynthetically active (PAR) and ultraviolet radiation (UVR): the UAM813 strain, originally isolated from a cryptoendolithic microhabitat within halite (NaCl), and UAM816 strain originally isolated from a chasmoendolithic microhabitat within calcite (CaCO3). The oxidative stress induced by exposure to PAR or UVR + PAR was determined to observe their short-term response, as were the long-term scytonemin production, changes in metabolic activity and ultrastructural damage induced. Both strains showed oxidative stress to both types of light radiation. The UAM813 strain showed a lower acclimation capacity than the UAM816 strain, showing an ever-increasing accumulation of reactive oxygen species (ROS) and a smaller accumulation of scytonemin. This would appear to reflect differences in the adaptation strategies followed to meet the demands of their different microhabitats.
Collapse
Affiliation(s)
- María Cristina Casero
- Grupo de Ecología y Geomicrobiología del Sustrato Lítico, Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Carmen Ascaso
- Grupo de Ecología y Geomicrobiología del Sustrato Lítico, Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - Antonio Quesada
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Jacek Wierzchos
- Grupo de Ecología y Geomicrobiología del Sustrato Lítico, Departamento de Biogeoquímica y Ecología Microbiana, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| |
Collapse
|
18
|
Ertekin E, Meslier V, Browning A, Treadgold J, DiRuggiero J. Rock structure drives the taxonomic and functional diversity of endolithic microbial communities in extreme environments. Environ Microbiol 2020; 23:3937-3956. [PMID: 33078515 DOI: 10.1111/1462-2920.15287] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 10/07/2020] [Accepted: 10/18/2020] [Indexed: 11/29/2022]
Abstract
Endolithic (rock-dwelling) microbial communities are ubiquitous in hyper-arid deserts around the world and the last resort for life under extreme aridity. These communities are excellent models to explore biotic and abiotic drivers of diversity because they are of low complexity. Using high-throughput amplicon and metagenome sequencing, combined with X-ray computed tomography, we investigated how water availability and substrate architecture modulated the taxonomic and functional composition of gypsum endolithic communities in the Atacama Desert, Chile. We found that communities inhabiting gypsum rocks with a more fragmented substrate architecture had higher taxonomic and functional diversity, despite having less water available. This effect was tightly linked with community connectedness and likely the result of niche differentiation. Gypsum communities were functionally similar, yet adapted to their unique micro-habitats by modulating their carbon and energy acquisition strategies and their growth modalities. Reconstructed population genomes showed that these endolithic microbial populations encoded potential pathways for anoxygenic phototrophy and atmospheric hydrogen oxidation as supplemental energy sources.
Collapse
Affiliation(s)
- Emine Ertekin
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Victoria Meslier
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,MetaGenoPolis, Jouy-en-Josas, France
| | | | | | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA.,Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Azua-Bustos A, Fairén AG, Silva CG, Carrizo D, Fernández-Martínez MÁ, Arenas-Fajardo C, Fernández-Sampedro M, Gil-Lozano C, Sánchez-García L, Ascaso C, Wierzchos J, Rampe EB. Inhabited subsurface wet smectites in the hyperarid core of the Atacama Desert as an analog for the search for life on Mars. Sci Rep 2020; 10:19183. [PMID: 33154541 PMCID: PMC7645800 DOI: 10.1038/s41598-020-76302-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 10/16/2020] [Indexed: 01/21/2023] Open
Abstract
The modern Martian surface is unlikely to be habitable due to its extreme aridity among other environmental factors. This is the reason why the hyperarid core of the Atacama Desert has been studied as an analog for the habitability of Mars for more than 50 years. Here we report a layer enriched in smectites located just 30 cm below the surface of the hyperarid core of the Atacama. We discovered the clay-rich layer to be wet (a phenomenon never observed before in this region), keeping a high and constant relative humidity of 78% (aw 0.780), and completely isolated from the changing and extremely dry subaerial conditions characteristic of the Atacama. The smectite-rich layer is inhabited by at least 30 halophilic species of metabolically active bacteria and archaea, unveiling a previously unreported habitat for microbial life under the surface of the driest place on Earth. The discovery of a diverse microbial community in smectite-rich subsurface layers in the hyperarid core of the Atacama, and the collection of biosignatures we have identified within the clays, suggest that similar shallow clay deposits on Mars may contain biosignatures easily reachable by current rovers and landers.
Collapse
Affiliation(s)
- Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - Alberto G Fairén
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain.
- Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA.
| | | | - Daniel Carrizo
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | - Carolina Gil-Lozano
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
- Laboratory of Planetology and Geodynamics, Université de Nantes, 44322, Nantes, France
| | | | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - Elizabeth B Rampe
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| |
Collapse
|
20
|
UV-A Irradiation Increases Scytonemin Biosynthesis in Cyanobacteria Inhabiting Halites at Salar Grande, Atacama Desert. Microorganisms 2020; 8:microorganisms8111690. [PMID: 33142998 PMCID: PMC7692114 DOI: 10.3390/microorganisms8111690] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/05/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023] Open
Abstract
Microbial consortia inhabiting evaporitic salt nodules at the Atacama Desert are dominated by unculturable cyanobacteria from the genus Halothece. Halite nodules provide transparency to photosynthetically active radiation and diminish photochemically damaging UV light. Atacama cyanobacteria synthesize scytonemin, a heterocyclic dimer, lipid soluble, UV-filtering pigment (in vivo absorption maximum at 370 nm) that accumulates at the extracellular sheath. Our goal was to demonstrate if UV-A irradiations modulate scytonemin biosynthesis in ground halites containing uncultured Halothece sp. cyanobacteria. Pulverized halite nodules with endolithic colonization were incubated under continuous UV-A radiation (3.6 W/m2) for 96 h, at 67% relative humidity, mimicking their natural habitat. Scytonemin content and relative transcription levels of scyB gene (a key gene in the biosynthesis of scytonemin) were evaluated by spectrophotometry and quantitative RT-PCR, respectively. After 48 h under these experimental conditions, the ratio scytonemin/chlorophyll a and the transcription of scyB gene increased to a maximal 1.7-fold value. Therefore, endolithic Halothece cyanobacteria in halites are metabolically active and UV radiation is an environmental stressor with a positive influence on scyB gene transcription and scytonemin biosynthesis. Endolithobiontic cyanobacteria in Atacama show a resilient evolutive and adaptive strategy to survive in one of the most extreme environments on Earth.
Collapse
|
21
|
Uritskiy G, Munn A, Dailey M, Gelsinger DR, Getsin S, Davila A, McCullough PR, Taylor J, DiRuggiero J. Environmental Factors Driving Spatial Heterogeneity in Desert Halophile Microbial Communities. Front Microbiol 2020; 11:578669. [PMID: 33193201 PMCID: PMC7606970 DOI: 10.3389/fmicb.2020.578669] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/24/2020] [Indexed: 12/22/2022] Open
Abstract
Spatial heterogeneity in microbial communities is observed in all natural ecosystems and can stem from both adaptations to local environmental conditions as well as stochastic processes. Extremophile microbial communities inhabiting evaporitic halite nodules (salt rocks) in the Atacama Desert, Chile, are a good model ecosystem for investigating factors leading to microbiome heterogeneity, due to their diverse taxonomic composition and the spatial segregation of individual nodules. We investigated the abiotic factors governing microbiome composition across different spatial scales, allowing for insight into the factors that govern halite colonization from regional desert-wide scales to micro-scales within individual nodules. We found that water availability and community drift account for microbiome assembly differently at different distance scales, with higher rates of cell dispersion at the smaller scales resulting in a more homogenous composition. This trend likely applies to other endoliths, and to non-desert communities, where dispersion between communities is limited. At the intra-nodule scales, a light availability gradient was most important in determining the distribution of microbial taxa despite intermixing by water displacement via capillary action.
Collapse
Affiliation(s)
- Gherman Uritskiy
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Adam Munn
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Micah Dailey
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Diego R. Gelsinger
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Samantha Getsin
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Alfonso Davila
- NASA Ames Research Center, Moffett Field, CA, United States
| | - P. R. McCullough
- Department of Physics and Astronomy, Johns Hopkins University, and Space Telescope Science Institute, Baltimore, MD, United States
| | - James Taylor
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States
| | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
- Department of Earth & Planetary Sciences, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
22
|
Identification, biochemical composition and phycobiliproteins production of Chroococcidiopsis sp. from arid environment. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Cycil LM, DasSarma S, Pecher W, McDonald R, AbdulSalam M, Hasan F. Metagenomic Insights Into the Diversity of Halophilic Microorganisms Indigenous to the Karak Salt Mine, Pakistan. Front Microbiol 2020; 11:1567. [PMID: 32793134 PMCID: PMC7386132 DOI: 10.3389/fmicb.2020.01567] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 06/16/2020] [Indexed: 11/13/2022] Open
Abstract
Hypersaline regions are terrestrial analogs of the Earth’s primitive ecosystem and extraterrestrial environment. The salt range in Pakistan is considered among a few of the ancient salt deposits in the subcontinent. Karak salt mine is situated at the Northwest end in Pakistan. Despite the fact that halophiles initiated the formation of terrestrial ecosystems, their products and identities remain hidden. Some preliminary studies limited to culture-dependent isolations have been reported. Characterizing the microbiome that spans over centuries of ecosystem development is crucial, given their role in shaping landscape succession and biogeochemical cycles. Here, we used metagenomics techniques to explore the microbial diversity of the Karak salt mine. We used 16S rRNA Illumina amplicon sequencing to characterize the halophilic communities entrapped in Karak mine. The results were interpreted using Illumina Basespace, QIIME, and Cytoscape. Cultures were isolated at 16–25% salinity. Metagenomics data was consistent with our preliminary culturing data, indicating remarkable species to strain-level diversity of unique halophiles. A total of 107,099 (brine) and 122,679 (salt) reads were obtained. 16S rRNA based sequencing revealed a microbiome with bacteria (66% brine and 72% salt) dominated by Bacteroidetes and Proteobacteria with a strikingly high abundance of Archaea (18% brine and 13% salt). Alpha diversity has higher values in salt than in the brine. The study of the halophiles in the Karak salt mine provides clues for species contributing to the maintenance of biogeochemical cycles of the ecosystem. This is the first report of a metagenomic study of any hypersaline region of Pakistan.
Collapse
Affiliation(s)
- Leena Mavis Cycil
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan.,Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Shiladitya DasSarma
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Wolf Pecher
- Institute of Marine and Environmental Technology, Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, United States.,Yale Gordon College of Arts and Sciences, University of Baltimore, Baltimore, MD, United States
| | - Ryan McDonald
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland, Baltimore County, Baltimore, MD, United States
| | - Maria AbdulSalam
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Applied Environmental and Geomicrobiology Laboratory, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
24
|
Uritskiy G, Tisza MJ, Gelsinger DR, Munn A, Taylor J, DiRuggiero J. Cellular life from the three domains and viruses are transcriptionally active in a hypersaline desert community. Environ Microbiol 2020; 23:3401-3417. [DOI: 10.1111/1462-2920.15023] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/12/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Gherman Uritskiy
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
| | - Michael J. Tisza
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Laboratory of Cellular Oncology NCI, NIH Bethesda MD 20892‐4263 USA
| | | | - Adam Munn
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
| | - James Taylor
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Department of Computer Science Johns Hopkins University Baltimore MD 21218 USA
| | - Jocelyne DiRuggiero
- Department of Biology Johns Hopkins University Baltimore MD 21218 USA
- Department of Earth and Planetary Sciences Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
25
|
Vítek P, Ascaso C, Artieda O, Casero MC, Wierzchos J. Raman imaging of microbial colonization in rock-some analytical aspects. Anal Bioanal Chem 2020; 412:3717-3726. [PMID: 32249342 DOI: 10.1007/s00216-020-02622-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 01/29/2023]
Abstract
Raman imaging allows one to obtain spatially resolved chemical information in a nondestructive manner. Herein, we present analytical aspects of effective in situ and in vivo Raman imaging of algae and cyanobacteria from within their native rock habitats. Specifically, gypsum and halite inhabited by endolithic communities from the hyperarid Atacama Desert were analyzed. Raman imaging of these phototrophic colonization reveals a pigment composition within the aggregates that helps in understanding some of their adaptation strategies to survive in this harsh polyextreme environment. The study is focused on methodical aspects of Raman imaging acquisition and subsequent data processing. Point imaging is compared with line imaging in terms of their image quality, spatial resolution, spectral signal-to-noise ratio, time requirements, and risk of laser-induced sample alteration. The roles of excitation wavelength, exposure time, and step size of the imaging grid on successful Raman imaging results are also discussed. Graphical abstract.
Collapse
Affiliation(s)
- Petr Vítek
- Global Change Research Institute of the Czech Academy of Sciences, Bělidla 986/4a, 603 00, Brno, Czech Republic.
| | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales, CSIC, c/ Serrano 115 dpdo., 28006, Madrid, Spain
| | - Octavio Artieda
- Departamento Biología Vegetal, Ecología y Ciencias de la Tierra, and IACYS, Universidad de Extremadura, 10600, Plasencia, Spain
| | - M Cristina Casero
- Museo Nacional de Ciencias Naturales, CSIC, c/ Serrano 115 dpdo., 28006, Madrid, Spain
| | - Jacek Wierzchos
- Museo Nacional de Ciencias Naturales, CSIC, c/ Serrano 115 dpdo., 28006, Madrid, Spain
| |
Collapse
|
26
|
Flores N, Hoyos S, Venegas M, Galetović A, Zúñiga LM, Fábrega F, Paredes B, Salazar-Ardiles C, Vilo C, Ascaso C, Wierzchos J, Souza-Egipsy V, Araya JE, Batista-García RA, Gómez-Silva B. Haloterrigena sp. Strain SGH1, a Bacterioruberin-Rich, Perchlorate-Tolerant Halophilic Archaeon Isolated From Halite Microbial Communities, Atacama Desert, Chile. Front Microbiol 2020; 11:324. [PMID: 32194531 PMCID: PMC7066086 DOI: 10.3389/fmicb.2020.00324] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/14/2020] [Indexed: 11/16/2022] Open
Abstract
An extreme halophilic archaeon, strain SGH1, is a novel microorganism isolated from endolithic microbial communities colonizing halites at Salar Grande, Atacama Desert, in northern Chile. Our study provides structural, biochemical, genomic, and physiological information on this new isolate living at the edge of the physical and chemical extremes at the Atacama Desert. SGH1 is a Gram-negative, red-pigmented, non-motile unicellular coccoid organism. Under the transmission electron microscope, strain SGH1 showed an abundant electro-dense material surrounding electron-lucent globular structures resembling gas vacuoles. Strain SGH1 showed a 16S rRNA gene sequence with a close phylogenetic relationship to the extreme halophilic archaea Haloterrigena turkmenica and Haloterrigena salina and has been denominated Haloterrigena sp. strain SGH1. Strain SGH1 grew at 20-40°C (optimum 37°C), at salinities between 15 and 30% (w/v) NaCl (optimum 25%) and growth was improved by addition of 50 mM KCl and 0.5% w/v casamino acids. Growth was severely restricted at salinities below 15% NaCl and cell lysis is avoided at a minimal 10% NaCl. Maximal concentrations of magnesium chloride and sodium or magnesium perchlorates that supported SGH1 growth were 0.5 and 0.15M, respectively. Haloterrigena sp. strain SGH1 accumulates bacterioruberin (BR), a C50 xanthophyll, as the major carotenoid. Total carotenoids in strain SGH1 amounted to nearly 400 μg BR per gram of dry biomass. Nearly 80% of total carotenoids accumulated as geometric isomers of BR: all-trans-BR (50%), 5-cis-BR (15%), 9-cis-BR (10%), 13-cis-BR (4%); other carotenoids were dehydrated derivatives of BR. Carotenogenesis in SGH1 was a reversible and salt-dependent process; transferring BR-rich cells grown in 25% (w/v) NaCl to 15% (w/v) NaCl medium resulted in depigmentation, and BR content was recovered after transference and growth of unpigmented cells to high salinity medium. Methanol extracts and purified BR isomers showed an 8-9-fold higher antioxidant activity than Trolox or β-carotene. Both, plasma membrane integrity and mitochondrial membrane potential measurements under acute 18-h assays showed that purified BR isomers were non-toxic to cultured human THP-1 cells.
Collapse
Affiliation(s)
- Nataly Flores
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Sebastián Hoyos
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Mauricio Venegas
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Alexandra Galetović
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Lidia M. Zúñiga
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Francisca Fábrega
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Bernardo Paredes
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Camila Salazar-Ardiles
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Claudia Vilo
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Carmen Ascaso
- Department Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences – Spanish National Research Council, Madrid, Spain
| | - Jacek Wierzchos
- Department Biogeochemistry and Microbial Ecology, National Museum of Natural Sciences – Spanish National Research Council, Madrid, Spain
| | - Virginia Souza-Egipsy
- Department of Macromolecular Physics, Institute of Material Structure – Spanish National Research Council, Madrid, Spain
| | - Jorge E. Araya
- Laboratory of Molecular Parasitology, Department of Medical Technology and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| | - Ramón Alberto Batista-García
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Benito Gómez-Silva
- Laboratory of Biochemistry, Biomedical Department and Centre for Biotechnology and Bioengineering, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
27
|
Gelsinger DR, Uritskiy G, Reddy R, Munn A, Farney K, DiRuggiero J. Regulatory Noncoding Small RNAs Are Diverse and Abundant in an Extremophilic Microbial Community. mSystems 2020; 5:e00584-19. [PMID: 32019831 PMCID: PMC7002113 DOI: 10.1128/msystems.00584-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/07/2020] [Indexed: 02/08/2023] Open
Abstract
Regulatory small RNAs (sRNAs) play large-scale and essential roles in many cellular processes across all domains of life. Microbial sRNAs have been extensively studied in model organisms, but very little is known about the dynamics of sRNA synthesis and their roles in the natural environment. In this study, we discovered hundreds of intergenic (itsRNAs) and antisense (asRNAs) sRNAs expressed in an extremophilic microbial community inhabiting halite nodules (salt rocks) in the Atacama Desert. For this, we built SnapT, a new sRNA annotation pipeline that can be applied to any microbial community. We found asRNAs with expression levels negatively correlated with that of their overlapping putative target and itsRNAs that were conserved and significantly differentially expressed between 2 sampling time points. We demonstrated that we could perform target prediction and correlate expression levels between sRNAs and predicted target mRNAs at the community level. Functions of putative mRNA targets reflected the environmental challenges members of the halite communities were subjected to, including osmotic adjustments to a major rain event and competition for nutrients.IMPORTANCE Microorganisms in the natural world are found in communities, communicating and interacting with each other; therefore, it is essential that microbial regulatory mechanisms, such as gene regulation affected by small RNAs (sRNAs), be investigated at the community level. This work demonstrates that metatranscriptomic field experiments can link environmental variation with changes in RNA pools and have the potential to provide new insights into environmental sensing and responses in natural microbial communities through noncoding RNA-mediated gene regulation.
Collapse
Affiliation(s)
- Diego R Gelsinger
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Gherman Uritskiy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Rahul Reddy
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Adam Munn
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Katie Farney
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Jocelyne DiRuggiero
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Qu EB, Omelon CR, Oren A, Meslier V, Cowan DA, Maggs-Kölling G, DiRuggiero J. Trophic Selective Pressures Organize the Composition of Endolithic Microbial Communities From Global Deserts. Front Microbiol 2020; 10:2952. [PMID: 31969867 PMCID: PMC6960110 DOI: 10.3389/fmicb.2019.02952] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/09/2019] [Indexed: 11/29/2022] Open
Abstract
Studies of microbial biogeography are often convoluted by extremely high diversity and differences in microenvironmental factors such as pH and nutrient availability. Desert endolithic (inside rock) communities are relatively simple ecosystems that can serve as a tractable model for investigating long-range biogeographic effects on microbial communities. We conducted a comprehensive survey of endolithic sandstones using high-throughput marker gene sequencing to characterize global patterns of diversity in endolithic microbial communities. We also tested a range of abiotic variables in order to investigate the factors that drive community assembly at various trophic levels. Macroclimate was found to be the primary driver of endolithic community composition, with the most striking difference witnessed between hot and polar deserts. This difference was largely attributable to the specialization of prokaryotic and eukaryotic primary producers to different climate conditions. On a regional scale, microclimate and properties of the rock substrate were found to influence community assembly, although to a lesser degree than global hot versus polar conditions. We found new evidence that the factors driving endolithic community assembly differ between trophic levels. While phototrophic taxa, mostly oxygenic photosynthesizers, were rigorously selected for among different sites, heterotrophic taxa were more cosmopolitan, suggesting that stochasticity plays a larger role in heterotroph assembly. This study is the first to uncover the global drivers of desert endolithic diversity using high-throughput sequencing. We demonstrate that phototrophs and heterotrophs in the endolithic community assemble under different stochastic and deterministic influences, emphasizing the need for studies of microorganisms in context of their functional niche in the community.
Collapse
Affiliation(s)
- Evan B. Qu
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Chris R. Omelon
- Department of Geography and Planning, Queen’s University, Kingston, ON, Canada
| | - Aharon Oren
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Victoria Meslier
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| | - Don A. Cowan
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | | | - Jocelyne DiRuggiero
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
29
|
Gómez-Silva B, Vilo-Muñoz C, Galetović A, Dong Q, Castelán-Sánchez HG, Pérez-Llano Y, Sánchez-Carbente MDR, Dávila-Ramos S, Cortés-López NG, Martínez-Ávila L, Dobson ADW, Batista-García RA. Metagenomics of Atacama Lithobiontic Extremophile Life Unveils Highlights on Fungal Communities, Biogeochemical Cycles and Carbohydrate-Active Enzymes. Microorganisms 2019; 7:E619. [PMID: 31783517 PMCID: PMC6956184 DOI: 10.3390/microorganisms7120619] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/20/2019] [Accepted: 11/22/2019] [Indexed: 12/30/2022] Open
Abstract
Halites, which are typically found in various Atacama locations, are evaporitic rocks that are considered as micro-scaled salterns. Both structural and functional metagenomic analyses of halite nodules were performed. Structural analyses indicated that the halite microbiota is mainly composed of NaCl-adapted microorganisms. In addition, halites appear to harbor a limited diversity of fungal families together with a biodiverse collection of protozoa. Functional analysis indicated that the halite microbiome possesses the capacity to make an extensive contribution to carbon, nitrogen, and sulfur cycles, but possess a limited capacity to fix nitrogen. The halite metagenome also contains a vast repertory of carbohydrate active enzymes (CAZY) with glycosyl transferases being the most abundant class present, followed by glycosyl hydrolases (GH). Amylases were also present in high abundance, with GH also being identified. Thus, the halite microbiota is a potential useful source of novel enzymes that could have biotechnological applicability. This is the first metagenomic report of fungi and protozoa as endolithobionts of halite nodules, as well as the first attempt to describe the repertoire of CAZY in this community. In addition, we present a comprehensive functional metagenomic analysis of the metabolic capacities of the halite microbiota, providing evidence for the first time on the sulfur cycle in Atacama halites.
Collapse
Affiliation(s)
- Benito Gómez-Silva
- Faculty of Health Sciences, Center for Biotechnology and Bioengineering, University of Antofagasta, Antofagasta 1271150, Chile; (B.G.-S.); (C.V.-M.); (A.G.)
| | - Claudia Vilo-Muñoz
- Faculty of Health Sciences, Center for Biotechnology and Bioengineering, University of Antofagasta, Antofagasta 1271150, Chile; (B.G.-S.); (C.V.-M.); (A.G.)
| | - Alexandra Galetović
- Faculty of Health Sciences, Center for Biotechnology and Bioengineering, University of Antofagasta, Antofagasta 1271150, Chile; (B.G.-S.); (C.V.-M.); (A.G.)
| | - Qunfeng Dong
- Center for Biomedical Informatics, Department of Medicine, Loyola University of Chicago Stritch School of Medicine, Maywood, IL 90270, USA;
| | - Hugo G. Castelán-Sánchez
- Research Center in Cell Dynamics, Research Institute in Basic and Applied Sciences, Autonomous University of the State of Morelos, Cuernavaca, Morelos 62209, Mexico; (H.G.C.-S.); (Y.P.-L.); (S.D.-R.); (L.M.-Á.)
| | - Yordanis Pérez-Llano
- Research Center in Cell Dynamics, Research Institute in Basic and Applied Sciences, Autonomous University of the State of Morelos, Cuernavaca, Morelos 62209, Mexico; (H.G.C.-S.); (Y.P.-L.); (S.D.-R.); (L.M.-Á.)
- Research Center in Biotechnology, Autonomous University of the State of Morelos, Cuernavaca, Morelos 62209, Mexico;
| | | | - Sonia Dávila-Ramos
- Research Center in Cell Dynamics, Research Institute in Basic and Applied Sciences, Autonomous University of the State of Morelos, Cuernavaca, Morelos 62209, Mexico; (H.G.C.-S.); (Y.P.-L.); (S.D.-R.); (L.M.-Á.)
| | | | - Liliana Martínez-Ávila
- Research Center in Cell Dynamics, Research Institute in Basic and Applied Sciences, Autonomous University of the State of Morelos, Cuernavaca, Morelos 62209, Mexico; (H.G.C.-S.); (Y.P.-L.); (S.D.-R.); (L.M.-Á.)
| | - Alan D. W. Dobson
- School of Microbiology, University College Cork, Cork, Ireland;
- Environmental Research Institute, University College Cork, Cork, Ireland
| | - Ramón Alberto Batista-García
- Research Center in Cell Dynamics, Research Institute in Basic and Applied Sciences, Autonomous University of the State of Morelos, Cuernavaca, Morelos 62209, Mexico; (H.G.C.-S.); (Y.P.-L.); (S.D.-R.); (L.M.-Á.)
| |
Collapse
|
30
|
Ruginescu R, Purcărea C, Dorador C, Lavin P, Cojoc R, Neagu S, Lucaci I, Enache M. Exploring the hydrolytic potential of cultured halophilic bacteria isolated from the Atacama Desert. FEMS Microbiol Lett 2019; 366:5613365. [DOI: 10.1093/femsle/fnz224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 10/31/2019] [Indexed: 01/23/2023] Open
Abstract
ABSTRACTConsidering that most industrial processes are carried out under harsh physicochemical conditions, which would inactivate enzymes from commonly isolated mesophilic organisms, current studies are geared toward the identification of extremophilic microorganisms producing enzymes resistant to extreme salt concentrations, temperature and pH. Among the extremophiles, halophilic microorganisms are an important source of salt-tolerant enzymes that can be used in varying biotechnological applications. In this context, the aim of the present work was to isolate and identify halophiles producing hydrolases from the Atacama Desert, one of the harshest environments on Earth. Isolates were recovered from halite samples and screened for the presence of seven different hydrolase activities (amylase, caseinase, gelatinase, lipase, pectinase, cellulase and inulinase) using agar plate-based assays. From a total of 23 halophilic bacterial isolates, most showed lipolytic (19 strains) and pectinolytic (11 strains) activities. The molecular identification of eight selected isolates showed a strong similarity to members of the Halomonas and Idiomarina genera. Therefore, the present study represents a preliminary, but essential, step to identify novel biological sources of extremozymes in an environment once thought to be devoid of life.
Collapse
Affiliation(s)
- Robert Ruginescu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Cristina Purcărea
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, 601 Angamos Av., Antofagasta, 1240000, Chile
| | - Paris Lavin
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta, Universidad de Antofagasta, 601 Angamos Av., Antofagasta, 1240000, Chile
| | - Roxana Cojoc
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Simona Neagu
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Ioana Lucaci
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| | - Mădălin Enache
- Department of Microbiology, Institute of Biology Bucharest of the Romanian Academy, 296 Splaiul Independentei, Bucharest, 060031, Romania
| |
Collapse
|
31
|
Bachran M, Kluge S, Lopez-Fernandez M, Cherkouk A. Microbial Diversity in an Arid, Naturally Saline Environment. MICROBIAL ECOLOGY 2019; 78:494-505. [PMID: 30593603 DOI: 10.1007/s00248-018-1301-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
The Arava Valley in is a rock desert within the Great African Rift valley. Soil from this area is covered with a salt crust. Here, we report microbial diversity from arid, naturally saline samples collected near Ein Yahav from the Arava Valley by culture-independent as well as culture-dependent analysis. High-throughput sequencing of the hypervariable region V4 of the 16S rRNA gene revealed that the microbial community consists of halophiles from the domain Bacteria as well as Archaea. Bacterial diversity was mainly represented by the genus Salinimicrobium of the order Flavobacteriales within the phylum Bacteroidetes, from the gammaproteobacterial orders Alteromonadales and Oceanospirillales as well as representatives from the order Bacillales of the phylum Firmicutes. Archaeal diversity was dominated by euryarchaeal Halobacteria from the orders Halobacteriales, Haloferacales, and Natrialbales. But more than 40% of the sequences affiliated with Archaea were assigned to unknown or unclassified archaea. Even if taxonomic resolution of the 16S rRNA gene V4 region for Archaea is limited, this study indicates the need of further and more detailed studies of Archaea. By using culture-dependent analysis, bacteria of the order Bacillales as well as archaea from all three halobacterial orders Halobacteriales, Haloferacales, and Natrialbales including potentially novel species from the genera Halorubrum and Haloparvum were isolated.
Collapse
Affiliation(s)
- Madlen Bachran
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sindy Kluge
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Margarita Lopez-Fernandez
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Andrea Cherkouk
- Institute of Resource Ecology, Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstraße 400, 01328, Dresden, Germany.
| |
Collapse
|
32
|
Fernández-Martínez MÁ, dos Santos Severino R, Moreno-Paz M, Gallardo-Carreño I, Blanco Y, Warren-Rhodes K, García-Villadangos M, Ruiz-Bermejo M, Barberán A, Wettergreen D, Cabrol N, Parro V. Prokaryotic Community Structure and Metabolisms in Shallow Subsurface of Atacama Desert Playas and Alluvial Fans After Heavy Rains: Repairing and Preparing for Next Dry Period. Front Microbiol 2019; 10:1641. [PMID: 31396176 PMCID: PMC6668633 DOI: 10.3389/fmicb.2019.01641] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/02/2019] [Indexed: 11/13/2022] Open
Abstract
The Atacama Desert, the oldest and driest desert on Earth, displays significant rains only once per decade. To investigate how microbial communities take advantage of these sporadic wet events, we carried out a geomicrobiological study a few days after a heavy rain event in 2015. Different physicochemical and microbial community analyses were conducted on samples collected from playas and an alluvial fan from surface, 10, 20, 50, and 80 cm depth. Gravimetric moisture content peaks were measured in 10 and 20 cm depth samples (from 1.65 to 4.1% w/w maximum values) while, in general, main anions such as chloride, nitrate, and sulfate concentrations increased with depth, with maximum values of 13-1,125; 168-10,109; and 9,904-30,952 ppm, respectively. Small organic anions such as formate and acetate had maximum concentrations from 2.61 to 3.44 ppm and 6.73 to 28.75 ppm, respectively. Microbial diversity inferred from DNA analysis showed Actinobacteria and Alphaproteobacteria as the most abundant and widespread bacterial taxa among the samples, followed by Chloroflexi and Firmicutes at specific sites. Archaea were mainly dominated by Nitrososphaerales, Methanobacteria, with the detection of other groups such as Halobacteria. Metaproteomics showed a high and even distribution of proteins involved in primary metabolic processes such as energy production and biosynthetic pathways, and a limited but remarkable presence of proteins related to resistance to environmental stressors such as radiation, oxidation, or desiccation. The results indicated that extra humidity in the system allows the microbial community to repair, and prepare for the upcoming hyperarid period. Additionally, it supplies biomarkers to the medium whose preservation potential could be high under strong desiccation conditions and relevant for planetary exploration.
Collapse
Affiliation(s)
| | | | | | | | | | - Kimberley Warren-Rhodes
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | | | | | - Albert Barberán
- Department of Soil, Water, and Environmental Science, University of Arizona, Tucson, AZ, United States
| | - David Wettergreen
- Carnegie Mellon University, Robotics Institute, Pittsburgh, PA, United States
| | - Nathalie Cabrol
- Carl Sagan Center, SETI Institute, Mountain View, CA, United States
- NASA Ames Research Center, Moffett Field, Mountain View, CA, United States
| | - Víctor Parro
- Centro de Astrobiología (CAB, CSIC-INTA), Madrid, Spain
| |
Collapse
|
33
|
Halophilic microbial community compositional shift after a rare rainfall in the Atacama Desert. ISME JOURNAL 2019; 13:2737-2749. [PMID: 31273300 PMCID: PMC6794293 DOI: 10.1038/s41396-019-0468-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 05/29/2019] [Accepted: 06/12/2019] [Indexed: 12/13/2022]
Abstract
Understanding the mechanisms underlying microbial resistance and resilience to perturbations is essential to predict the impact of climate change on Earth’s ecosystems. However, the resilience and adaptation mechanisms of microbial communities to natural perturbations remain relatively unexplored, particularly in extreme environments. The response of an extremophile community inhabiting halite (salt rocks) in the Atacama Desert to a catastrophic rainfall provided the opportunity to characterize and de-convolute the temporal response of a highly specialized community to a major disturbance. With shotgun metagenomic sequencing, we investigated the halite microbiome taxonomic composition and functional potential over a 4-year longitudinal study, uncovering the dynamics of the initial response and of the recovery of the community after a rainfall event. The observed changes can be recapitulated by two general modes of community shifts—a rapid Type 1 shift and a more gradual Type 2 adjustment. In the initial response, the community entered an unstable intermediate state after stochastic niche re-colonization, resulting in broad predicted protein adaptations to increased water availability. In contrast, during recovery, the community returned to its former functional potential by a gradual shift in abundances of the newly acquired taxa. The general characterization and proposed quantitation of these two modes of community response could potentially be applied to other ecosystems, providing a theoretical framework for prediction of taxonomic and functional flux following environmental changes.
Collapse
|
34
|
Lee CJD, McMullan PE, O'Kane CJ, Stevenson A, Santos IC, Roy C, Ghosh W, Mancinelli RL, Mormile MR, McMullan G, Banciu HL, Fares MA, Benison KC, Oren A, Dyall-Smith ML, Hallsworth JE. NaCl-saturated brines are thermodynamically moderate, rather than extreme, microbial habitats. FEMS Microbiol Rev 2018; 42:672-693. [PMID: 29893835 DOI: 10.1093/femsre/fuy026] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/08/2018] [Indexed: 11/12/2022] Open
Abstract
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, ∼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, ∼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.
Collapse
Affiliation(s)
- Callum J D Lee
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Phillip E McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Callum J O'Kane
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Andrew Stevenson
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Inês C Santos
- Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, TX 76019, USA
| | - Chayan Roy
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Wriddhiman Ghosh
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Rocco L Mancinelli
- BAER Institute, Mail Stop 239-4, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Melanie R Mormile
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65401, USA
| | - Geoffrey McMullan
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| | - Horia L Banciu
- Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babes-Bolyai University, 400006 Cluj-Napoca, Romania
| | - Mario A Fares
- Department of Abiotic Stress, Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, Valencia 46022, Spain.,Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Científicas-Universitat de Valencia (CSIC-UV), Valencia, 46980, Spain.,Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College, Dublin 2, Dublin, Ireland
| | - Kathleen C Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506-6300, USA
| | - Aharon Oren
- Department of Plant & Environmental Sciences, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat-Ram, Jerusalem 9190401, Israel
| | - Mike L Dyall-Smith
- Faculty of Veterinary and Agricultural Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - John E Hallsworth
- Institute for Global Food Security, School of Biological Sciences, MBC, Queen's University Belfast, Belfast, BT9 7BL, Northern Ireland
| |
Collapse
|
35
|
Azua-Bustos A, Fairén AG, González-Silva C, Ascaso C, Carrizo D, Fernández-Martínez MÁ, Fernández-Sampedro M, García-Descalzo L, García-Villadangos M, Martin-Redondo MP, Sánchez-García L, Wierzchos J, Parro V. Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Sci Rep 2018; 8:16706. [PMID: 30420604 PMCID: PMC6232106 DOI: 10.1038/s41598-018-35051-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 10/30/2018] [Indexed: 11/09/2022] Open
Abstract
The hyperarid core of the Atacama Desert, the driest and oldest desert on Earth, has experienced a number of highly unusual rain events over the past three years, resulting in the formation of previously unrecorded hypersaline lagoons, which have lasted several months. We have systematically analyzed the evolution of the lagoons to provide quantitative field constraints of large-scale impacts of the rains on the local microbial communities. Here we show that the sudden and massive input of water in regions that have remained hyperarid for millions of years is harmful for most of the surface soil microbial species, which are exquisitely adapted to survive with meager amounts of liquid water, and quickly perish from osmotic shock when water becomes suddenly abundant. We found that only a handful of bacteria, remarkably a newly identified species of Halomonas, remain metabolically active and are still able to reproduce in the lagoons, while no archaea or eukaryotes were identified. Our results show that the already low microbial biodiversity of extreme arid regions greatly diminishes when water is supplied quickly and in great volumes. We conclude placing our findings in the context of the astrobiological exploration of Mars, a hyperarid planet that experienced catastrophic floodings in ancient times.
Collapse
Affiliation(s)
- A Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain. .,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile.
| | - A G Fairén
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain. .,Department of Astronomy, Cornell University, Ithaca, 14853, NY, USA.
| | | | - C Ascaso
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - D Carrizo
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| | | | | | | | | | | | | | - J Wierzchos
- Museo Nacional de Ciencias Naturales (CSIC), 28006, Madrid, Spain
| | - V Parro
- Centro de Astrobiología (CSIC-INTA), 28850, Madrid, Spain
| |
Collapse
|
36
|
Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R, Rojas C, Seeger M. Living at the Frontiers of Life: Extremophiles in Chile and Their Potential for Bioremediation. Front Microbiol 2018; 9:2309. [PMID: 30425685 PMCID: PMC6218600 DOI: 10.3389/fmicb.2018.02309] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022] Open
Abstract
Extremophiles are organisms capable of adjust, survive or thrive in hostile habitats that were previously thought to be adverse or lethal for life. Chile gathers a wide range of extreme environments: salars, geothermal springs, and geysers located at Altiplano and Atacama Desert, salars and cold mountains in Central Chile, and ice fields, cold lakes and fjords, and geothermal sites in Patagonia and Antarctica. The aims of this review are to describe extremophiles that inhabit main extreme biotopes in Chile, and their molecular and physiological capabilities that may be advantageous for bioremediation processes. After briefly describing the main ecological niches of extremophiles along Chilean territory, this review is focused on the microbial diversity and composition of these biotopes microbiomes. Extremophiles have been isolated in diverse zones in Chile that possess extreme conditions such as Altiplano, Atacama Desert, Central Chile, Patagonia, and Antarctica. Interesting extremophiles from Chile with potential biotechnological applications include thermophiles (e.g., Methanofollis tationis from Tatio Geyser), acidophiles (e.g., Acidithiobacillus ferrooxidans, Leptospirillum ferriphilum from Atacama Desert and Central Chile copper ores), halophiles (e.g., Shewanella sp. Asc-3 from Altiplano, Streptomyces sp. HKF-8 from Patagonia), alkaliphiles (Exiguobacterium sp. SH31 from Altiplano), xerotolerant bacteria (S. atacamensis from Atacama Desert), UV- and Gamma-resistant bacteria (Deinococcus peraridilitoris from Atacama Desert) and psychrophiles (e.g., Pseudomonas putida ATH-43 from Antarctica). The molecular and physiological properties of diverse extremophiles from Chile and their application in bioremediation or waste treatments are further discussed. Interestingly, the remarkable adaptative capabilities of extremophiles convert them into an attractive source of catalysts for bioremediation and industrial processes.
Collapse
Affiliation(s)
- Roberto Orellana
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| | - Constanza Macaya
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Guillermo Bravo
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Flavia Dorochesi
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Claudia Rojas
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso, Chile
| |
Collapse
|
37
|
Huang T, Wang R, Xiao L, Wang H, Martínez JM, Escudero C, Amils R, Cheng Z, Xu Y. Dalangtan Playa (Qaidam Basin, NW China): Its microbial life and physicochemical characteristics and their astrobiological implications. PLoS One 2018; 13:e0200949. [PMID: 30067805 PMCID: PMC6070256 DOI: 10.1371/journal.pone.0200949] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 07/04/2018] [Indexed: 01/29/2023] Open
Abstract
Dalangtan Playa is the second largest salt playa in the Qaidam Basin, north-western China. The hyper saline deposition, extremely arid climate and high UV radiation make Dalangtan a Mars analogue both for geomorphology and life preservation. To better understand microbial life at Dalangtan, both culture-dependent and culture-independent methods were examined and simultaneously, environment conditions and the evaporitic mineral assemblages were investigated. Ten and thirteen subsurface samples were collected along a 595-cm deep profile (P1) and a 685-cm deep profile (P2) respectively, and seven samples were gathered from surface sediments. These samples are composed of salt minerals, minor silicate mineral fragments and clays. The total bacterial cell numbers are (1.54±0.49) ×10(5) g-1 for P1 and (3.22±0.95) ×10(5) g-1 for P2 as indicated by the CAtalyzed Reporter Deposition- Fluorescent in situ Hybridization (CARD-FISH). 76.6% and 75.7% of the bacteria belong to Firmicutes phylum respectively from P1 and P2. In total, 47 bacteria and 6 fungi were isolated from 22 subsurface samples. In contrast, only 3 bacteria and 1 fungus were isolated from 3 surface samples. The isolated bacteria show high homology (≥97%) with members of the Firmicutes phylum (47 strains, 8 genera) and the Actinobacteria phylum (3 strains, 2 genera), which agrees with the result of CARD-FISH. Isolated fungi showed ≥98% ITS1 homology with members of the phylum Ascomycota. Moisture content and TOC values may control the sediments colonization. Given the deliquescence of salts, evaporites may provide refuge for microbial life, which merits further investigation. Halotolerant and spore-forming microorganisms are the dominant microbial groups capable of surviving under extreme conditions. Our results offer brand-new information on microbial biomass in Dalangtan Playa and shed light on understanding the potential microbial life in the dried playa or paleo-lakes on Mars.
Collapse
Affiliation(s)
- Ting Huang
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Ruicheng Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
| | - Long Xiao
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
- Space Science Institute, Macau University of Science and Technology, Macau, China
- * E-mail: (LX); (HW)
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, Hubei, China
- * E-mail: (LX); (HW)
| | - José M. Martínez
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Cristina Escudero
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
| | - Ricardo Amils
- Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), Madrid, Spain
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
| | - Ziye Cheng
- State Key Laboratory of Geological Process and Mineral Resources, Planetary Science Institute, China University of Geosciences, Wuhan, Hubei, China
| | - Yi Xu
- Space Science Institute, Macau University of Science and Technology, Macau, China
| |
Collapse
|
38
|
Solon AJ, Vimercati L, Darcy JL, Arán P, Porazinska D, Dorador C, Farías ME, Schmidt SK. Microbial Communities of High-Elevation Fumaroles, Penitentes, and Dry Tephra "Soils" of the Puna de Atacama Volcanic Zone. MICROBIAL ECOLOGY 2018; 76:340-351. [PMID: 29305629 DOI: 10.1007/s00248-017-1129-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to understand the spatial distribution of microbial communities (18S and 16S rRNA genes) across one of the harshest terrestrial landscapes on Earth. We carried out Illumina sequencing using samples from two expeditions to the high slopes (up to 6050 m.a.s.l.) of Volcán Socompa and Llullaillaco to describe the microbial communities associated with the extremely dry tephra compared to areas that receive water from fumaroles and ice fields made up of nieves penitentes. There were strong spatial patterns relative to these landscape features with the most diverse (alpha diversity) communities being associated with fumaroles. Penitentes did not significantly increase alpha diversity compared to dry tephra at the same elevation (5825 m.a.s.l.) on Volcán Socompa, but the structure of the 18S community (beta diversity) was significantly affected by the presence of penitentes on both Socompa and Llullaillaco. In addition, the 18S community was significantly different in tephra wetted by penitentes versus dry tephra sites across many elevations on Llullaillaco. Traditional phototrophs (algae and cyanobacteria) were abundant in wetter tephra associated with fumaroles, and algae (but not cyanobacteria) were common in tephra associated with penitentes. Dry tephra had neither algae nor cyanobacteria but did host potential phototrophs in the Rhodospirillales on Volcán Llullaillaco, but not on Socompa. These results provide new insights into the distribution of microbes across one of the most extreme terrestrial environments on Earth and provide the first ever glimpse of life associated with nieves penitentes, spire-shaped ice structures that are widespread across the mostly unexplored high-elevation Andean Central Volcanic Zone.
Collapse
Affiliation(s)
- Adam J Solon
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - J L Darcy
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Pablo Arán
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Dorota Porazinska
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - C Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - M E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, PROIMI, Tucumán, Argentina
| | - S K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
39
|
Meslier V, Casero MC, Dailey M, Wierzchos J, Ascaso C, Artieda O, McCullough PR, DiRuggiero J. Fundamental drivers for endolithic microbial community assemblies in the hyperarid Atacama Desert. Environ Microbiol 2018; 20:1765-1781. [DOI: 10.1111/1462-2920.14106] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Affiliation(s)
- Victoria Meslier
- Department of BiologyThe Johns Hopkins UniversityBaltimore MD USA
| | | | - Micah Dailey
- Department of BiologyThe Johns Hopkins UniversityBaltimore MD USA
| | | | - Carmen Ascaso
- Museo Nacional de Ciencias Naturales, CSICMadrid Spain
| | - Octavio Artieda
- Departamento Biologica Vegetal, Ecologia y ciencias de la TierraUniversidad de ExtremaduraPlasencia Spain
| | - P. R. McCullough
- Department of Physics and AstronomyThe Johns Hopkins UniversityBaltimore MD USA
| | | |
Collapse
|
40
|
Transcriptional Landscape and Regulatory Roles of Small Noncoding RNAs in the Oxidative Stress Response of the Haloarchaeon Haloferax volcanii. J Bacteriol 2018; 200:JB.00779-17. [PMID: 29463600 PMCID: PMC5892119 DOI: 10.1128/jb.00779-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/02/2018] [Indexed: 01/08/2023] Open
Abstract
Haloarchaea in their natural environment are exposed to hypersalinity, intense solar radiation, and desiccation, all of which generate high levels of oxidative stress. Previous work has shown that haloarchaea are an order of magnitude more resistant to oxidative stress than most mesophilic organisms. Despite this resistance, the pathways haloarchaea use to respond to oxidative stress damage are similar to those of nonresistant organisms, suggesting that regulatory processes might be key to their robustness. Recently, small regulatory noncoding RNAs (sRNAs) were discovered in Archaea under a variety of environmental conditions. We report here the transcriptional landscape and functional roles of sRNAs in the regulation of the oxidative stress response of the model haloarchaeon Haloferax volcanii. Thousands of sRNAs, both intergenic and antisense, were discovered using strand-specific sRNA sequencing (sRNA-seq), comprising 25 to 30% of the total transcriptome under no-challenge and oxidative stress conditions, respectively. We identified hundreds of differentially expressed sRNAs in response to hydrogen peroxide-induced oxidative stress in H. volcanii. The targets of a group of antisense sRNAs decreased in expression when these sRNAs were upregulated, suggesting that sRNAs are potentially playing a negative regulatory role on mRNA targets at the transcript level. Target enrichment of these antisense sRNAs included mRNAs involved in transposon mobility, chemotaxis signaling, peptidase activity, and transcription factors. IMPORTANCE While a substantial body of experimental work has been done to uncover the functions of small regulatory noncoding RNAs (sRNAs) in gene regulation in Bacteria and Eukarya, the functional roles of sRNAs in Archaea are still poorly understood. This study is the first to establish the regulatory effects of sRNAs on mRNAs during the oxidative stress response in the haloarchaeon Haloferax volcanii. Our work demonstrates that common principles for the response to a major cellular stress exist across the 3 domains of life while uncovering pathways that might be specific to the Archaea. This work also underscores the relevance of sRNAs in adaptation to extreme environmental conditions.
Collapse
|
41
|
|
42
|
Abstract
It has remained an unresolved question whether microorganisms recovered from the most arid environments on Earth are thriving under such extreme conditions or are just dead or dying vestiges of viable cells fortuitously deposited by atmospheric processes. Based on multiple lines of evidence, we show that indigenous microbial communities are present and temporally active even in the hyperarid soils of the Atacama Desert (Chile). Following extremely rare precipitation events in the driest parts of this desert, where rainfall often occurs only once per decade, we were able to detect episodic incidences of biological activity. Our findings expand the range of hyperarid environments temporarily habitable for terrestrial life, which by extension also applies to other planetary bodies like Mars. Traces of life are nearly ubiquitous on Earth. However, a central unresolved question is whether these traces always indicate an active microbial community or whether, in extreme environments, such as hyperarid deserts, they instead reflect just dormant or dead cells. Although microbial biomass and diversity decrease with increasing aridity in the Atacama Desert, we provide multiple lines of evidence for the presence of an at times metabolically active, microbial community in one of the driest places on Earth. We base this observation on four major lines of evidence: (i) a physico-chemical characterization of the soil habitability after an exceptional rain event, (ii) identified biomolecules indicative of potentially active cells [e.g., presence of ATP, phospholipid fatty acids (PLFAs), metabolites, and enzymatic activity], (iii) measurements of in situ replication rates of genomes of uncultivated bacteria reconstructed from selected samples, and (iv) microbial community patterns specific to soil parameters and depths. We infer that the microbial populations have undergone selection and adaptation in response to their specific soil microenvironment and in particular to the degree of aridity. Collectively, our results highlight that even the hyperarid Atacama Desert can provide a habitable environment for microorganisms that allows them to become metabolically active following an episodic increase in moisture and that once it decreases, so does the activity of the microbiota. These results have implications for the prospect of life on other planets such as Mars, which has transitioned from an earlier wetter environment to today’s extreme hyperaridity.
Collapse
|
43
|
Ostapenko T, Schwarzendahl FJ, Böddeker TJ, Kreis CT, Cammann J, Mazza MG, Bäumchen O. Curvature-Guided Motility of Microalgae in Geometric Confinement. PHYSICAL REVIEW LETTERS 2018; 120:068002. [PMID: 29481277 DOI: 10.1103/physrevlett.120.068002] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Indexed: 06/08/2023]
Abstract
Microorganisms, such as bacteria and microalgae, often live in habitats consisting of a liquid phase and a plethora of interfaces. The precise ways in which these motile microbes behave in their confined environment remain unclear. Using experiments and Brownian dynamics simulations, we study the motility of a single Chlamydomonas microalga in an isolated microhabitat with controlled geometric properties. We demonstrate how the geometry of the habitat controls the cell's navigation in confinement. The probability of finding the cell swimming near the boundary increases with the wall curvature, as seen for both circular and elliptical chambers. The theory, utilizing an asymmetric dumbbell model of the cell and steric wall interactions, captures this curvature-guided navigation quantitatively with no free parameters.
Collapse
Affiliation(s)
- Tanya Ostapenko
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Fabian Jan Schwarzendahl
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Thomas J Böddeker
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Christian Titus Kreis
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
- Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jan Cammann
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Marco G Mazza
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| | - Oliver Bäumchen
- Max Planck Institute for Dynamics and Self-Organization (MPIDS), Am Faßberg 17, D-37077 Göttingen, Germany
| |
Collapse
|
44
|
Wierzchos J, Casero MC, Artieda O, Ascaso C. Endolithic microbial habitats as refuges for life in polyextreme environment of the Atacama Desert. Curr Opin Microbiol 2018; 43:124-131. [PMID: 29414443 DOI: 10.1016/j.mib.2018.01.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/28/2017] [Accepted: 01/08/2018] [Indexed: 11/29/2022]
Abstract
The extremely harsh conditions of hyperarid deserts are a true challenge for microbial life. Microorganisms thriving in such polyextreme environments are fascinating as they can tell us more about life, its strategies and its boundaries than other groups of organisms. The Atacama Desert (North Chile) holds two world records of extreme environmental characteristics: the lowest rainfall and greatest surface ultraviolet radiation and total solar irradiance ever measured on Earth. Despite these limiting conditions for life, we recently identified several remarkable examples of endolithic habitats colonized by phototrophic and heterotrophic microorganisms in the hyperarid core of the Atacama Desert.
Collapse
Affiliation(s)
- Jacek Wierzchos
- Department Biogeoquímica y Ecología Microbiana Museo Nacional de Ciencias Naturales, CSIC c/ Serrano 115 dpdo, 28006 Madrid, Spain.
| | - M Cristina Casero
- Department Biogeoquímica y Ecología Microbiana Museo Nacional de Ciencias Naturales, CSIC c/ Serrano 115 dpdo, 28006 Madrid, Spain
| | - Octavio Artieda
- Dpto. Biología Vegetal, Ecología y Ciencias de la Tierra, Universidad de Extremadura Avda, Virgen del Puerto, 2, 10600 Plasencia, Spain
| | - Carmen Ascaso
- Department Biogeoquímica y Ecología Microbiana Museo Nacional de Ciencias Naturales, CSIC c/ Serrano 115 dpdo, 28006 Madrid, Spain
| |
Collapse
|
45
|
Gómez-Silva B. Lithobiontic life: "Atacama rocks are well and alive". Antonie Van Leeuwenhoek 2018; 111:1333-1343. [PMID: 29392527 DOI: 10.1007/s10482-018-1033-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/28/2018] [Indexed: 11/29/2022]
Abstract
Our knowledge on the Microbiology of the Atacama Desert has increased steadily and substantially during the last two decades. This information now supports a paradigmatic change on the Atacama Desert from a sterile, uninhabitable territory to a hyperarid region colonized by a rich microbiota that includes extremophiles and extreme-tolerant microorganisms. Also, extensive reports are available on the prevalent physical and chemical environmental conditions, ecological niches and, the abundance, diversity and organization of the microbial life in the Atacama Desert. This territory is a highly desiccated environment due to the absence of regular rain events. Liquid water scarcity is the most serious environmental factor affecting the Atacama Desert microorganisms. The intense solar irradiation in this region contributes, in a synergistic fashion with desiccation, to limit the survival and growth of the microbial life. In order to overcome these two extreme conditions, successful microorganisms, organized as microbial consortia, take advantage of (a) the physical characteristics of lithic habitats, which provide sites for colonization on, within or below the rock substrate, the attenuation and filtration of the intense solar irradiation and, the collection of liquid water from incoming fog formations and by water vapour condensation and deliquescence on or within their surfaces, and (b) the biological adaptations of members of the microbial communities that allow them to synthesize hydrophilic macromolecules, antioxidants and UV-light absorbents. Lithic habitats have been considered specialized shelters where life forms can reach protection at environments subjected to extremes of desiccation and solar irradiation, here on Earth or elsewhere. This review is an overview of part of the scientific information collected on lithobionts from the Atacama Desert, their rock substrates and their strategies to cope with extremes of desiccation and intense photosynthetic active radiation and UV irradiations.
Collapse
Affiliation(s)
- Benito Gómez-Silva
- Laboratory of Biochemistry, Biomedical Department, Faculty of Health Sciences, and Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, 601 Angamos Ave., Antofagasta, Chile.
| |
Collapse
|
46
|
Knabe N, Gorbushina AA. Territories of Rock-Inhabiting Fungi: Survival on and Alteration of Solid Air-Exposed Surfaces. J Microbiol Methods 2018. [DOI: 10.1016/bs.mim.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Discovery of carotenoid red-shift in endolithic cyanobacteria from the Atacama Desert. Sci Rep 2017; 7:11116. [PMID: 28894222 PMCID: PMC5593868 DOI: 10.1038/s41598-017-11581-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022] Open
Abstract
The biochemical responses of rock-inhabiting cyanobacteria towards native environmental stresses were observed in vivo in one of the Earth’s most challenging extreme climatic environments. The cryptoendolithic cyanobacterial colonization, dominated by Chroococcidiopsis sp., was studied in an ignimbrite at a high altitude volcanic area in the Atacama Desert, Chile. Change in the carotenoid composition (red-shift) within a transect through the cyanobacteria dominant microbial community (average thickness ~1 mm) was unambiguously revealed in their natural endolithic microhabitat. The amount of red shifted carotenoid, observed for the first time in a natural microbial ecosystem, is depth dependent, and increased with increasing proximity to the rock surface, as proven by resonance Raman imaging and point resonance Raman profiling. It is attributed to a light-dependent change in carotenoid conjugation, associated with the light-adaptation strategy of cyanobacteria. A hypothesis is proposed for the possible role of an orange carotenoid protein (OCP) mediated non-photochemical quenching (NPQ) mechanism that influences the observed spectral behavior. Simultaneously, information about the distribution of scytonemin and phycobiliproteins was obtained. Scytonemin was detected in the uppermost cyanobacteria aggregates. A reverse signal intensity gradient of phycobiliproteins was registered, increasing with deeper positions as a response of the cyanobacterial light harvesting complex to low-light conditions.
Collapse
|
48
|
Finstad KM, Probst AJ, Thomas BC, Andersen GL, Demergasso C, Echeverría A, Amundson RG, Banfield JF. Microbial Community Structure and the Persistence of Cyanobacterial Populations in Salt Crusts of the Hyperarid Atacama Desert from Genome-Resolved Metagenomics. Front Microbiol 2017; 8:1435. [PMID: 28804480 PMCID: PMC5532433 DOI: 10.3389/fmicb.2017.01435] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/14/2017] [Indexed: 12/22/2022] Open
Abstract
Although once thought to be devoid of biology, recent studies have identified salt deposits as oases for life in the hyperarid Atacama Desert. To examine spatial patterns of microbial species and key nutrient sources, we genomically characterized 26 salt crusts from three sites along a fog gradient. The communities are dominated by a large variety of Halobacteriales and Bacteroidetes, plus a few algal and Cyanobacterial species. CRISPR locus analysis suggests the distribution of a single Cyanobacterial population among all sites. This is in stark contrast to the extremely high sample specificity of most other community members. Only present at the highest moisture site is a genomically characterized Thermoplasmatales archaeon (Marine Group II) and six Nanohaloarchaea, one of which is represented by a complete genome. Parcubacteria (OD1) and Saccharibacteria (TM7), not previously reported from hypersaline environments, were found at low abundances. We found no indication of a N2 fixation pathway in the communities, suggesting acquisition of bioavailable nitrogen from atmospherically derived nitrate. Samples cluster by site based on bacterial and archaeal abundance patterns and photosynthetic capacity decreases with increasing distance from the ocean. We conclude that moisture level, controlled by coastal fog intensity, is the strongest driver of community membership.
Collapse
Affiliation(s)
- Kari M. Finstad
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, BerkeleyCA, United States
| | - Alexander J. Probst
- Department of Earth and Planetary Sciences, University of California, Berkeley, BerkeleyCA, United States
| | - Brian C. Thomas
- Department of Earth and Planetary Sciences, University of California, Berkeley, BerkeleyCA, United States
| | - Gary L. Andersen
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, BerkeleyCA, United States
- Ecology Department, Earth Sciences Division, Lawrence Berkeley National Laboratory, BerkeleyCA, United States
| | - Cecilia Demergasso
- Centro de Biotecnología, Universidad Católica del NorteAntofagasta, Chile
| | - Alex Echeverría
- Centro de Biotecnología, Universidad Católica del NorteAntofagasta, Chile
| | - Ronald G. Amundson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, BerkeleyCA, United States
| | - Jillian F. Banfield
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, BerkeleyCA, United States
- Department of Earth and Planetary Sciences, University of California, Berkeley, BerkeleyCA, United States
| |
Collapse
|
49
|
Azua-Bustos A, González-Silva C, Corsini G. The Hyperarid Core of the Atacama Desert, an Extremely Dry and Carbon Deprived Habitat of Potential Interest for the Field of Carbon Science. Front Microbiol 2017. [PMID: 28642741 PMCID: PMC5463503 DOI: 10.3389/fmicb.2017.00993] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The Atacama Desert in Chile is the driest and oldest desert on Earth, also considered one of the best Mars analog models. Here, several heterotrophic microbial communities have been discovered in its driest regions, with the ones present in the soil subsurface being one of the most interesting due to its existence in a habitat with almost no water available and almost undetectable organic carbon sources. Our recent discovery of the driest site of the Atacama known to date (and the heterotrophic microbial species that are able to survive in this site) reaffirms the opportunity to better characterize the physiological and molecular mechanisms that these species use to detect, mobilize, incorporate and use carbon under these extremely harsh conditions. Here we summarize what has been reported up to date on the organic carbon concentrations in different sites of the hyperarid core of the Atacama Desert, proposing that due to the meager amounts of carbon and extremely dry conditions, the microbial communities of the hyperarid core of the Atacama Desert may be of interest for the field of carbon science.
Collapse
Affiliation(s)
- Armando Azua-Bustos
- Centro de Astrobiología (Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial)Madrid, Spain.,Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile
| | | | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de ChileSantiago, Chile
| |
Collapse
|
50
|
Crits-Christoph A, Gelsinger DR, Ma B, Wierzchos J, Ravel J, Davila A, Casero MC, DiRuggiero J. Functional interactions of archaea, bacteria and viruses in a hypersaline endolithic community. Environ Microbiol 2016; 18:2064-77. [DOI: 10.1111/1462-2920.13259] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/08/2016] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore MD USA
| | - Jacek Wierzchos
- Department of Biochemistry and Microbial Ecology; Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas; Madrid Spain
| | - Jacques Ravel
- Institute for Genome Sciences, University of Maryland School of Medicine; Baltimore MD USA
| | | | - M. Cristina Casero
- Department of Biochemistry and Microbial Ecology; Museo Nacional de Ciencias Naturales - Consejo Superior de Investigaciones Científicas; Madrid Spain
| | | |
Collapse
|