1
|
Afzal I, Kuznetsova A, Foght J, Ulrich A, Siddique T. Crystalline iron oxide mineral (magnetite) accelerates methane production from petroleum hydrocarbon biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125065. [PMID: 39366444 DOI: 10.1016/j.envpol.2024.125065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/17/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Methane (CH4) emissions are a factor in climate change; in addition, CH4 production may affect reclamation of fluid fine tailings (FFT) in tailings ponds, and end-pit lakes (EPLs). In laboratory cultures, we investigated the effect of crystalline iron mineral (magnetite) on CH4 production from the biodegradation of hydrocarbons added to FFT collected from methanogenically more and less active sites in a demonstration EPL. Magnetite enhanced CH4 production from both sites, having a greater effect in more active FFT, where it increased the CH4 production rate as much as 48% (from 6.67 μmol d-1 to 9.87 μmol d-1) compared to FFT without magnetite. Correspondingly, magnetite hastened biodegradation of hydrocarbons (monoaromatics, n-alkanes and iso-alkanes), with a pronounced effect on o-xylene, ethylbenzene, m/p-xylenes, n-octane, n-nonane, and 2-methyloctane, where biodegradation rates increased by 46, 117, 11, 45, 28 and 37%, respectively, compared to FFT without magnetite. Little FeII was produced, suggesting that magnetite is not being used as an electron acceptor but rather functions as a conduit for electron transfer. Thus, magnetite may be a suitable amendment to enhance bioremediation of anaerobic environments contaminated with hydrocarbons. Importantly, our observations imply that magnetite may increase CH4 emissions from terrestrial ecosystems, thus affecting carbon budget estimations.
Collapse
Affiliation(s)
- Iram Afzal
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, T6G 1H9, Canada
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada.
| |
Collapse
|
2
|
Mohamad Shahimin MF, Siddique T. Uncovering Anaerobic Hydrocarbon Biodegradation Pathways in Oil Sands Tailings from Two Different Tailings Ponds via Metabolite and Functional Gene Analyses. Appl Biochem Biotechnol 2024:10.1007/s12010-024-04855-0. [PMID: 38376742 DOI: 10.1007/s12010-024-04855-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/21/2024]
Abstract
Oil sands tailings, a slurry of alkaline water, silt, clay, unrecovered bitumen, and residual hydrocarbons generated during bitumen extraction, are contained in ponds. Indigenous microbes metabolize hydrocarbons and emit greenhouse gases from the tailings. Metabolism of hydrocarbons in tailings ponds of two operators, namely, Canadian Natural Upgrading Limited (CNUL) and Canadian Natural Resources Limited (CNRL), has not been comprehensively investigated. Previous reports have revealed sequential and preferential hydrocarbon degradation of alkanes in primary cultures established from CNUL and CNRL tailings amended separately with mixtures of hydrocarbons (n-alkanes, iso-alkanes, paraffinic solvent, or naphtha). In this study, activation pathway of hydrocarbon biodegradation in these primary cultures was investigated. The functional gene analysis revealed that fumarate addition was potentially the primary activation pathway of alkanes in all cultures. However, the metabolite analysis only detected transient succinylated 2-methylpentane and 2-methylbutane metabolites during initial methanogenic biodegradation of iso-alkanes and paraffinic solvent in all CNUL and CNRL cultures amended with iso-alkanes and paraffinic solvent. Under sulfidogenic conditions (prepared only with CNUL tailings amended with iso-alkanes), succinylated 2-methylpentane persisted throughout incubation period of ~ 1100 days, implying dead-end nature of the metabolite. Though no metabolite was detected in n-alkanes- and naphtha-amended cultures during incubation, assA/masD genes related to Peptococcaceae were amplified in all CNUL and CNRL primary cultures. The findings of this present study suggest that microbial communities in different tailings ponds can biodegrade hydrocarbons through fumarate addition as activation pathway under methanogenic and sulfidogenic conditions.
Collapse
Affiliation(s)
- Mohd Faidz Mohamad Shahimin
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada.
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis, Aras 2, Blok S2, UniCITI Alam Campus, 02100, Padang Besar, Perlis, Malaysia.
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, T6G 2G7, Canada
| |
Collapse
|
3
|
Mohamad Shahimin MF, Siddique T. Biodegradation of 2-methylpentane in fluid fine tailings amended with a mixture of iso-alkanes under sulfate-reducing conditions. Can J Microbiol 2023; 69:362-368. [PMID: 37235883 DOI: 10.1139/cjm-2023-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Anaerobic microorganisms in Canada Natural Upgrading Limited (CNUL) fluid fine tailings (FFT) are sustained by residual solvent hydrocarbons. Although FFT are methanogenic in nature, sulfate-reducing microorganisms represent a significant portion of FFT bacterial community. In this study, we examined biodegradation of three iso-alkanes (2-methylbutane, 2-methylpentane, and 3-methylpentane), representing major iso-alkanes in paraffinic solvent, in CNUL FFT under sulfate-reducing conditions. During ∼1100 days of incubation, only 2-methylpentane was degraded partially, whereas 2-methylbutane and 3-methylpentane were not degraded. During active degradation of 2-methylpentane, the bacterial community was dominated by Anaerolineaceae followed by Syntrophaceae, Peptococcaceae, Desulfobacteraceae, and Desulfobulbaceae. The archaeal community was co-dominated by acetoclastic (Methanosaetaceae) and hydrogenotrophic (Methanobacteriaceae) methanogens. This study underlines the limited capability of the microbial community indigenous to CNUL FFT in degrading recalcitrant iso-alkanes under sulfate-reducing conditions.
Collapse
Affiliation(s)
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada
| |
Collapse
|
4
|
Ventura J, Camargo FP, Sakamoto IK, Silva EL, Varesche MBA. Potential methanogenic and degradation of nonylphenol ethoxylate from domestic sewage: unravelling the essential roles of nutritional conditions and microbial community. ENVIRONMENTAL TECHNOLOGY 2023; 44:1996-2010. [PMID: 34907848 DOI: 10.1080/09593330.2021.2018504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/07/2021] [Indexed: 05/25/2023]
Abstract
Nonylphenol ethoxylathe (NPEO) is a non-ionic surfactant of increasing concern, used in the formulation of laundry detergents and is frequently found in aquatic environments. The purpose of this study was to evaluate the effects of yeast extract (YE) and sodium fumarate (SF) in NPEO removal from domestic sewage under anaerobic conditions via central composite rotatable design (CCRD) and response surface methodology (RSM). Experiments were designed by varying concentrations of NPEO (1.6-5.8 mg L-1), YE (131.8-468.2 mg L-1) and SF (97.7-602.3 mg L-1) in batch reactors. SF and YE addition significantly influenced NPEO removal and CH4 production. Optimal values of YE (400 mg L-1) and SF (200 mg L-1) result in removal efficiency of 97% for 5 mg L-1 of NPEO, being mostly removed by biodegradation (86%). Meanwhile COD removal was 95% and methane yield was 134 ± 4 NmLCH4 g-¹CODremoved. The most abundant Bacteria genus identified were Macellibacteroides, Longilinea, Petrimonas and Proteiniphilum, while for Archaea, Methanosaeta and Methanoregula were the genera identified in higher relative abundances in optimized conditions.
Collapse
Affiliation(s)
- Jeny Ventura
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| | - Edson Luiz Silva
- Federal University of São Carlos, Chemical Engineering, São Carlos, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. João Dagnone 1100, Jardim Santa Angelina, São Carlos 13563120, Brazil
| |
Collapse
|
5
|
A microbial solution to oil sand pollution: Understanding the microbiomes, metabolic pathways and mechanisms involved in naphthenic acid (NA) biodegradation. ADV ECOL RES 2022. [DOI: 10.1016/bs.aecr.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Does Addition of Phosphate and Ammonium Nutrients Affect Microbial Activity in Froth Treatment Affected Tailings? Microorganisms 2021; 9:microorganisms9112224. [PMID: 34835351 PMCID: PMC8620261 DOI: 10.3390/microorganisms9112224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
We examined greenhouse gas (GHG) production upon the addition of ammonium and phosphate to mature fine tailing (MFT) samples from Alberta's Pond 2/3 (at 5 and 15 m) and Pond 7 (12.5 m) in microcosm studies. The methane production rate in unamended Pond 2/3 MFT correlated with sample age; the production rate was higher in the less dense, more recently discharged MFT samples and lower in the denser, deeper sample. Adding small amounts of naphtha increased methane production, but there was no correlation with increasing naphtha, indicating that naphtha may partition into bitumen, reducing its bioavailability. Although non-detectable phosphate and low ammonium in the pore water indicate that these nutrients were potentially limiting microbial activity, their addition did not significantly affect methanogenesis but somewhat enhanced sulphate and nitrate reduction. Neither ammonium nor phosphate were detected in the pore water when added at low concentrations, but when added at high concentrations, 25-35% phosphate and 30-45% ammonium were lost. These ions likely sorbed to MFT minerals such as kaolinite, which have microbial activity governed by phosphate/ammonium desorption. Hence, multiple limitations affected microbial activity. Sulphate was less effective than nitrate was in inhibiting methanogenesis because H2S may be a less effective inhibitor than NOx- intermediates are, and/or H2S may be more easily abiotically removed. With nitrate reduction, N2O, a potent GHG was produced but eventually metabolized.
Collapse
|
7
|
Methanogenic Biodegradation of iso-Alkanes by Indigenous Microbes from Two Different Oil Sands Tailings Ponds. Microorganisms 2021; 9:microorganisms9081569. [PMID: 34442648 PMCID: PMC8400375 DOI: 10.3390/microorganisms9081569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/18/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022] Open
Abstract
iso-Alkanes, a major fraction of the solvents used in bitumen extraction from oil sand ores, are slow to biodegrade in anaerobic tailings ponds. We investigated methanogenic biodegradation of iso-alkane mixtures comprising either three (2-methylbutane, 2-methylpentane, 3-methylpentane) or five (2-methylbutane, 2-methylpentane, 2-methylhexane, 2-methylheptane, 2-methyloctane) iso-alkanes representing paraffinic and naphtha solvents, respectively. Mature fine tailings (MFT) collected from two tailings ponds, having different residual solvents (paraffinic solvent in Canadian Natural Upgrading Limited (CNUL) and naphtha in Canadian Natural Resources Limited (CNRL)), were amended separately with the two mixtures and incubated in microcosms for ~1600 d. The indigenous microbes in CNUL MFT produced methane from the three-iso-alkane mixture after a lag of ~200 d, completely depleting 2-methylpentane while partially depleting 2-methylbutane and 3-methylpentane. CNRL MFT exhibited a similar degradation pattern for the three iso-alkanes after a lag phase of ~700 d, but required 1200 d before beginning to produce methane from the five-iso-alkane mixture, preferentially depleting components in the order of decreasing carbon chain length. Peptococcaceae members were key iso-alkane-degraders in both CNUL and CNRL MFT but were associated with different archaeal partners. Co-dominance of acetoclastic (Methanosaeta) and hydrogenotrophic (Methanolinea and Methanoregula) methanogens was observed in CNUL MFT during biodegradation of three-iso-alkanes whereas CNRL MFT was enriched in Methanoregula during biodegradation of three-iso-alkanes and in Methanosaeta with five-iso-alkanes. This study highlights the different responses of indigenous methanogenic microbial communities in different oil sands tailings ponds to iso-alkanes.
Collapse
|
8
|
A Deep Look into the Microbiology and Chemistry of Froth Treatment Tailings: A Review. Microorganisms 2021; 9:microorganisms9051091. [PMID: 34069522 PMCID: PMC8161226 DOI: 10.3390/microorganisms9051091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 11/30/2022] Open
Abstract
In Alberta’s Athabasca oil sands region (AOSR), over 1.25 billion m3 of tailings waste from the bitumen extraction process are stored in tailings ponds. Fugitive emissions associated with residual hydrocarbons in tailings ponds pose an environmental concern and include greenhouse gases (GHGs), reduced sulphur compounds (RSCs), and volatile organic compounds (VOCs). Froth treatment tailings (FTT) are a specific type of tailings waste stream from the bitumen froth treatment process that contains bioavailable diluent: either naphtha or paraffins. Tailings ponds that receive FTT are associated with the highest levels of biogenic gas production, as diverse microbial communities biodegrade the residual diluent. In this review, current literature regarding the composition, chemical analysis, and microbial degradation of FTT and its constituents is presented in order to provide a more complete understanding of the complex chemistry and biological processes related to fugitive emissions from tailings ponds receiving FTT. Characterizing the composition and biodegradation of FTT is important from an environmental perspective to better predict emissions from tailings ponds and guide tailings pond management decisions.
Collapse
|
9
|
Laczi K, Erdeiné Kis Á, Szilágyi Á, Bounedjoum N, Bodor A, Vincze GE, Kovács T, Rákhely G, Perei K. New Frontiers of Anaerobic Hydrocarbon Biodegradation in the Multi-Omics Era. Front Microbiol 2020; 11:590049. [PMID: 33304336 PMCID: PMC7701123 DOI: 10.3389/fmicb.2020.590049] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/26/2020] [Indexed: 12/17/2022] Open
Abstract
The accumulation of petroleum hydrocarbons in the environment substantially endangers terrestrial and aquatic ecosystems. Many microbial strains have been recognized to utilize aliphatic and aromatic hydrocarbons under aerobic conditions. Nevertheless, most of these pollutants are transferred by natural processes, including rain, into the underground anaerobic zones where their degradation is much more problematic. In oxic zones, anaerobic microenvironments can be formed as a consequence of the intensive respiratory activities of (facultative) aerobic microbes. Even though aerobic bioremediation has been well-characterized over the past few decades, ample research is yet to be done in the field of anaerobic hydrocarbon biodegradation. With the emergence of high-throughput techniques, known as omics (e.g., genomics and metagenomics), the individual biodegraders, hydrocarbon-degrading microbial communities and metabolic pathways, interactions can be described at a contaminated site. Omics approaches provide the opportunity to examine single microorganisms or microbial communities at the system level and elucidate the metabolic networks, interspecies interactions during hydrocarbon mineralization. Metatranscriptomics and metaproteomics, for example, can shed light on the active genes and proteins and functional importance of the less abundant species. Moreover, novel unculturable hydrocarbon-degrading strains and enzymes can be discovered and fit into the metabolic networks of the community. Our objective is to review the anaerobic hydrocarbon biodegradation processes, the most important hydrocarbon degraders and their diverse metabolic pathways, including the use of various terminal electron acceptors and various electron transfer processes. The review primarily focuses on the achievements obtained by the current high-throughput (multi-omics) techniques which opened new perspectives in understanding the processes at the system level including the metabolic routes of individual strains, metabolic/electric interaction of the members of microbial communities. Based on the multi-omics techniques, novel metabolic blocks can be designed and used for the construction of microbial strains/consortia for efficient removal of hydrocarbons in anaerobic zones.
Collapse
Affiliation(s)
- Krisztián Laczi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Ágnes Erdeiné Kis
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Árpád Szilágyi
- Department of Biotechnology, University of Szeged, Szeged, Hungary
| | - Naila Bounedjoum
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | | | - Tamás Kovács
- Department of Biotechnology, Nanophagetherapy Center, Enviroinvest Corporation, Pécs, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Biophysics, Biological Research Centre, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Szeged, Hungary.,Institute of Environmental and Technological Sciences, University of Szeged, Szeged, Hungary
| |
Collapse
|
10
|
Zamanpour MK, Kaliappan RS, Rockne KJ. Gas ebullition from petroleum hydrocarbons in aquatic sediments: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:110997. [PMID: 32778285 DOI: 10.1016/j.jenvman.2020.110997] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/19/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
Gas ebullition in sediment results from biogenic gas production by mixtures of bacteria and archaea. It often occurs in organic-rich sediments that have been impacted by petroleum hydrocarbon (PHC) and other anthropogenic pollution. Ebullition occurs under a relatively narrow set of biological, chemical, and sediment geomechanical conditions. This process occurs in three phases: I) biogenic production of primarily methane and dissolved phase transport of the gases in the pore water to a bubble nucleation site, II) bubble growth and sediment fracture, and III) bubble rise to the surface. The rate of biogenic gas production in phase I and the resistance of the sediment to gas fracture in phase II play the most significant roles in ebullition kinetics. What is less understood is the role that substrate structure plays in the rate of methanogenesis that drives gas ebullition. It is well established that methanogens have a very restricted set of compounds that can serve as substrates, so any complex organic molecule must first be broken down to fermentable compounds. Given that most ebullition-active sediments are completely anaerobic, the well-known difficulty in degrading PHCs under anaerobic conditions suggests potential limitations on PHC-derived gas ebullition. To date, there are no studies that conclusively demonstrate that weathered PHCs can alone drive gas ebullition. This review consists of an overview of the factors affecting gas ebullition and the biochemistry of anaerobic PHC biodegradation and methanogenesis in sediment systems. We next compile results from the scholarly literature on PHCs serving as a source of methanogenesis. We combine these results to assess the potential for PHC-driven gas ebullition using energetics, kinetics, and sediment geomechanics analyses. The results suggest that short chain <C10 alkanes are the only PHC class that alone may have the potential to drive ebullition, and that PHC-derived methanogenesis likely plays a minor part in driving gas ebullition in contaminated sediments compared to natural organic matter.
Collapse
Affiliation(s)
| | - Raja Shankar Kaliappan
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Karl John Rockne
- Department of Civil and Materials Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA.
| |
Collapse
|
11
|
Lv X, Ma B, Cologgi D, Lee K, Ulrich A. Naphthenic acid anaerobic biodegrading consortia enriched from pristine sediments underlying oil sands tailings ponds. JOURNAL OF HAZARDOUS MATERIALS 2020; 394:122546. [PMID: 32203719 DOI: 10.1016/j.jhazmat.2020.122546] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/06/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Seepage from oil sands tailings ponds (OSTP), which contain toxic naphthenic acids (NAs), can infiltrate into groundwater. Clay sediment layer beneath is a critical barrier for reducing the infiltration of NAs into the sand sediment layer, where groundwater channels reside. Biodegradation has great potential as a strategy for NAs removal, but little is known about NAs biodegradability and potential functional microbes in these pristine sediments. This study investigated the potential for anaerobic biodegradation of NAs by microbial consortia enriched from clay and sand sediments underlying OSTP, amended with either acid extracted organics or Merichem NAs, under nitrate- and sulfate-reducing conditions. Degradation of NAs only be detected after DOC concentration reached to steady state after 163 days. Microbial community analysis shows that different electron acceptors, sediment types, and NAs sources associated with specific microbial taxa and can explain 14.8, 13.9 % and 5% of variation of microbial community structures, respectively. The DOC and methane were the most important geochemical properties for microbial community variations. This study approved the potential capability of indigenous microbial communities from the pristine sediments in NA degradation, demonstrating the barrier function of pristine clay sediments underlying OSTP in prohibiting organic contaminants from entering into groundwater.
Collapse
Affiliation(s)
- Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou, 310018, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada.
| | - Dena Cologgi
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | - Korris Lee
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| | - Ania Ulrich
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 2W2, Canada
| |
Collapse
|
12
|
Chen J, Liu YF, Zhou L, Irfan M, Hou ZW, Li W, Mbadinga SM, Liu JF, Yang SZ, Wu XL, Gu JD, Mu BZ. Long-chain n-alkane biodegradation coupling to methane production in an enriched culture from production water of a high-temperature oil reservoir. AMB Express 2020; 10:63. [PMID: 32266503 PMCID: PMC7138878 DOI: 10.1186/s13568-020-00998-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 03/21/2020] [Indexed: 11/18/2022] Open
Abstract
Paraffinic n-alkanes (C22–C30), crucial portions of residual oil, are generally considered to be difficult to be biodegraded owing to their general solidity at ambient temperatures and low water solubility, rendering relatively little known about metabolic processes in different methanogenic hydrocarbon-contaminated environments. Here, we established a methanogenic C22–C30 n-alkane-degrading enrichment culture derived from a high-temperature oil reservoir production water. During two-year incubation (736 days), unexpectedly significant methane production was observed. The measured maximum methane yield rate (164.40 μmol L−1 d−1) occurred during the incubation period from day 351 to 513. The nearly complete consumption (> 97%) of paraffinic n-alkanes and the detection of dicarboxylic acids in n-alkane-amended cultures indicated the biotransformation of paraffin to methane under anoxic condition. 16S rRNA gene analysis suggested that the dominant methanogen in n-alkane-degrading cultures shifted from Methanothermobacter on day 322 to Thermoplasmatales on day 736. Bacterial community analysis based on high-throughput sequencing revealed that members of Proteobacteria and Firmicutes exhibiting predominant in control cultures, while microorganisms affiliated with Actinobacteria turned into the most dominant phylum in n-alkane-dependent cultures. Additionally, the relative abundance of mcrA gene based on genomic DNA significantly increased over the incubation time, suggesting an important role of methanogens in these consortia. This work extends our understanding of methanogenic paraffinic n-alkanes conversion and has biotechnological implications for microbial enhanced recovery of residual hydrocarbons and effective bioremediation of hydrocarbon-containing biospheres.
Collapse
|
13
|
Ji JH, Zhou L, Mbadinga SM, Irfan M, Liu YF, Pan P, Qi ZZ, Chen J, Liu JF, Yang SZ, Gu JD, Mu BZ. Methanogenic biodegradation of C 9 to C 12n-alkanes initiated by Smithella via fumarate addition mechanism. AMB Express 2020; 10:23. [PMID: 32008120 PMCID: PMC6995468 DOI: 10.1186/s13568-020-0956-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 01/16/2020] [Indexed: 11/15/2022] Open
Abstract
In the present study, a methanogenic alkane-degrading (a mixture of C9 to C12n-alkanes) culture enriched from production water of a low-temperature oil reservoir was established and assessed. Significant methane production was detected in the alkane-amended enrichment cultures compared with alkane-free controls over an incubation period of 1 year. At the end of the incubation, fumarate addition metabolites (C9 to C12 alkylsuccinates) and assA genes (encoding the alpha subunit of alkylsuccinate synthase) were detected only in the alkane-amended enrichment cultures. Microbial community analysis showed that putative syntrophic n-alkane degraders (Smithella) capable of initiating n-alkanes by fumarate addition mechanism were enriched in the alkane-amended enrichment cultures. In addition, both hydrogenotrophic (Methanocalculus) and acetoclastic (Methanothrix) methanogens were also observed. Our results provide further evidence that alkanes can be activated by addition to fumarate under methanogenic conditions.
Collapse
|
14
|
Kong JD, Wang H, Siddique T, Foght J, Semple K, Burkus Z, Lewis MA. Second-generation stoichiometric mathematical model to predict methane emissions from oil sands tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 694:133645. [PMID: 31400693 DOI: 10.1016/j.scitotenv.2019.133645] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Microbial metabolism of fugitive hydrocarbons produces greenhouse gas (GHG) emissions from oil sands tailings ponds (OSTP) and end pit lakes (EPL) that retain fluid tailings from surface mining of oil sands ores. Predicting GHG production, particularly methane (CH4), would help oil sands operators mitigate tailings emissions and may assist regulators evaluating the trajectory of reclamation scenarios. Using empirical datasets from laboratory incubation of OSTP sediments with pertinent hydrocarbons, we developed a stoichiometric model for CH4 generation by indigenous microbes. This model improved on previous first-approximation models by considering long-term biodegradation kinetics for 18 relevant hydrocarbons from three different oil sands operations, lag times, nutrient limitations, and microbial growth and death rates. Laboratory measurements were used to estimate model parameter values and to validate the new model. Goodness of fit analysis showed that the stoichiometric model predicted CH4 production well; normalized mean square error analysis revealed that it surpassed previous models. Comparison of model predictions with field measurements of CH4 emissions further validated the new model. Importantly, the model also identified in-situ parameters that are currently lacking but are needed to enable future robust modeling of CH4 production from OSTP and EPL in-situ.
Collapse
Affiliation(s)
- Jude D Kong
- Center for Discrete Mathematics and Theoretical Computer Science, Rutgers University, 96 Frelinghuysen Road Piscataway, NJ 08854-8018, USA; Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada
| | - Hao Wang
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada.
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G7, Canada
| | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Kathleen Semple
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Zvonko Burkus
- Alberta Environment and Parks, Government of Alberta, Edmonton, Canada
| | - Mark A Lewis
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, AB T6G 2G1, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
15
|
Liang R, Davidova I, Hirano SI, Duncan KE, Suflita JM. Community succession in an anaerobic long-chain paraffin-degrading consortium and impact on chemical and electrical microbially influenced iron corrosion. FEMS Microbiol Ecol 2019; 95:5529450. [DOI: 10.1093/femsec/fiz111] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 07/06/2019] [Indexed: 11/12/2022] Open
Abstract
ABSTRACT
Community compositional changes and the corrosion of carbon steel in the presence of different electron donor and acceptor combinations were examined with a methanogenic consortium enriched for its ability to mineralize paraffins. Despite cultivation in the absence of sulfate, metagenomic analysis revealed the persistence of several sulfate-reducing bacterial taxa. Upon sulfate amendment, the consortium was able to couple C28H58 biodegradation with sulfate reduction. Comparative analysis suggested that Desulforhabdus and/or Desulfovibrio likely supplanted methanogens as syntrophic partners needed for C28H58 mineralization. Further enrichment in the absence of a paraffin revealed that the consortium could also utilize carbon steel as a source of electrons. The severity of both general and localized corrosion increased in the presence of sulfate, regardless of the electron donor utilized. With carbon steel as an electron donor, Desulfobulbus dominated in the consortium and electrons from iron accounted for ∼92% of that required for sulfate reduction. An isolated Desulfovibrio spp. was able to extract electrons from iron and accelerate corrosion. Thus, hydrogenotrophic partner microorganisms required for syntrophic paraffin metabolism can be readily substituted depending on the availability of an external electron acceptor and a single paraffin-degrading consortium harbored microbes capable of both chemical and electrical microbially influenced iron corrosion.
Collapse
Affiliation(s)
- Renxing Liang
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Irene Davidova
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Shin-ichi Hirano
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, Institute for Energy and the Environment, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
16
|
Methanogenic degradation of branched alkanes in enrichment cultures of production water from a high-temperature petroleum reservoir. Appl Microbiol Biotechnol 2019; 103:2391-2401. [DOI: 10.1007/s00253-018-09574-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/10/2018] [Accepted: 12/10/2018] [Indexed: 11/26/2022]
|
17
|
Foght JM, Gieg LM, Siddique T. The microbiology of oil sands tailings: past, present, future. FEMS Microbiol Ecol 2017; 93:3064888. [PMID: 28334283 DOI: 10.1093/femsec/fix034] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 03/08/2017] [Indexed: 01/30/2023] Open
Abstract
Surface mining of enormous oil sands deposits in northeastern Alberta, Canada since 1967 has contributed greatly to Canada's economy but has also received negative international attention due largely to environmental concerns and challenges. Not only have microbes profoundly affected the composition and behavior of this petroleum resource over geological time, they currently influence the management of semi-solid tailings in oil sands tailings ponds (OSTPs) and tailings reclamation. Historically, microbial impacts on OSTPs were generally discounted, but next-generation sequencing and biogeochemical studies have revealed unexpectedly diverse indigenous communities and expanded our fundamental understanding of anaerobic microbial functions. OSTPs that experienced different processing and management histories have developed distinct microbial communities that influence the behavior and reclamation of the tailings stored therein. In particular, the interactions of Deltaproteobacteria and Firmicutes with methanogenic archaea impact greenhouse gas emissions, sulfur cycling, pore water toxicity, sediment biogeochemistry and densification, water usage and the trajectory of long-term mine waste reclamation. This review summarizes historical data; synthesizes current understanding of microbial diversity and activities in situ and in vitro; predicts microbial effects on tailings remediation and reclamation; and highlights knowledge gaps for future research.
Collapse
Affiliation(s)
- Julia M Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada T6G 2G7
| |
Collapse
|
18
|
Mohamad Shahimin MF, Siddique T. Methanogenic biodegradation of paraffinic solvent hydrocarbons in two different oil sands tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 583:115-122. [PMID: 28094047 DOI: 10.1016/j.scitotenv.2017.01.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/04/2017] [Accepted: 01/05/2017] [Indexed: 06/06/2023]
Abstract
Microbial communities drive many biogeochemical processes in oil sands tailings and cause greenhouse gas emissions from tailings ponds. Paraffinic solvent (primarily C5-C6; n- and iso-alkanes) is used by some oil sands companies to aid bitumen extraction from oil sands ores. Residues of unrecovered solvent escape to tailings ponds during tailings deposition and sustain microbial metabolism. To investigate biodegradation of hydrocarbons in paraffinic solvent, mature fine tailings (MFT) collected from Albian and CNRL ponds were amended with paraffinic solvent at ~0.1wt% (final concentration: ~1000mgL-1) and incubated under methanogenic conditions for ~1600d. Albian and CNRL MFTs exhibited ~400 and ~800d lag phases, respectively after which n-alkanes (n-pentane and n-hexane) in the solvent were preferentially metabolized to methane over iso-alkanes in both MFTs. Among iso-alkanes, only 2-methylpentane was completely biodegraded whereas 2-methylbutane and 3-methylpentane were partially biodegraded probably through cometabolism. 16S rRNA gene pyrosequencing showed dominance of Anaerolineaceae and Methanosaetaceae in Albian MFT and Peptococcaceae and co-domination of "Candidatus Methanoregula" and Methanosaetaceae in CNRL MFT bacterial and archaeal communities, respectively, during active biodegradation of paraffinic solvent. The results are important for developing future strategies for tailings reclamation and management of greenhouse gas emissions.
Collapse
Affiliation(s)
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
19
|
Mohamad Shahimin MF, Siddique T. Sequential biodegradation of complex naphtha hydrocarbons under methanogenic conditions in two different oil sands tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 221:398-406. [PMID: 27939633 DOI: 10.1016/j.envpol.2016.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 11/30/2016] [Accepted: 12/02/2016] [Indexed: 06/06/2023]
Abstract
Methane emissions in oil sands tailings ponds are sustained by anaerobic biodegradation of unrecovered hydrocarbons. Naphtha (primarily C6-C10; n- iso- and cycloalkanes) is commonly used as a solvent during bitumen extraction process and its residue escapes to tailings ponds during tailings deposition. To investigate biodegradability of hydrocarbons in naphtha, mature fine tailings (MFT) collected from Albian and CNRL tailings ponds were amended with CNRL naphtha at ∼0.2 wt% (∼2000 mg L-1) and incubated under methanogenic conditions for ∼1600 d. Microbial communities in both MFTs started metabolizing naphtha after a lag phase of ∼100 d. Complete biodegradation/biotransformation of all n-alkanes (except partial biodegradation of n-octane in CNRL MFT) followed by major iso-alkanes (2-methylpentane, 3-methylhexane, 2- and 4-methylheptane, iso-nonanes and 2-methylnonane) and a few cycloalkanes (derivatives of cyclopentane and cyclohexane) was observed during the incubation. 16S rRNA gene pyrosequencing showed dominance of Peptococcaceae and Anaerolineaceae in Albian MFT and Anaerolineaceae and Syntrophaceae in CNRL MFT bacterial communities with co-domination of Methanosaetaceae and "Candidatus Methanoregula" in archaeal populations during active biodegradation of hydrocarbons. The findings extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments and help refine existing kinetic model to predict greenhouse gas emissions from tailings ponds.
Collapse
Affiliation(s)
| | - Tariq Siddique
- Department of Renewable Resources, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Stasik S, Wendt-Potthoff K. Vertical gradients in carbon flow and methane production in a sulfate-rich oil sands tailings pond. WATER RESEARCH 2016; 106:223-231. [PMID: 27723480 DOI: 10.1016/j.watres.2016.09.053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 09/08/2016] [Accepted: 09/25/2016] [Indexed: 06/06/2023]
Abstract
Oil sands tailings ponds are primary storage basins for tailings produced during oil sands processing in Alberta (Canada). Due to microbial metabolism, methane production contributes to greenhouse gas emissions, but positively affects tailings densification, which is relevant for operational water re-use. Depending on the age and depth of tailings, the activity of sulfate-reducing bacteria (SRB) may control methanogenesis due to the competition for substrates. To assess the depth-related impact of sulfate reduction on CH4 emissions, original tailings of two vicinal pond profiles were incubated in anoxic microcosms with/without molybdate as selective inhibitor of microbial sulfate reduction. Integrating methane production rates, considerable volumes of CH4 emissions (∼5.37 million L d-1) may be effectively prevented by the activity of SRB in sulfidic tailings between 3.5 and 7.5 m. To infer metabolic potentials controlling methanogenic pathways, a set of relevant organic acids (acetate, formate, propionate, butyrate, lactate) was added to part of the microcosms. Generally, organic acid transformation shifted with depth, with highest rates (305-446 μmol L-1 d-1) measured in fresh tailings at 5.5-7.5 m. In all depths, a transient accumulation of acetate revealed its importance as key intermediate during organic matter decomposition. SRB dominated the transformation of acetate, butyrate and propionate, but were not essential for lactate and formate turnover. Acetate as methanogenic substrate was important only at 13.5 m. At 1-7.5 m, methanogenesis significantly increased in presence of organic acids, most likely due to the syntrophic oxidation of acetate to CO2 by SRB and subsequent conversion to CH4.
Collapse
Affiliation(s)
- Sebastian Stasik
- Department of Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany.
| | - Katrin Wendt-Potthoff
- Department of Lake Research, UFZ - Helmholtz Centre for Environmental Research, Brückstraße 3a, 39114 Magdeburg, Germany
| |
Collapse
|
21
|
Wawrik B, Marks CR, Davidova IA, McInerney MJ, Pruitt S, Duncan KE, Suflita JM, Callaghan AV. Methanogenic paraffin degradation proceeds via alkane addition to fumarate by 'Smithella' spp. mediated by a syntrophic coupling with hydrogenotrophic methanogens. Environ Microbiol 2016; 18:2604-19. [PMID: 27198766 DOI: 10.1111/1462-2920.13374] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization.
Collapse
Affiliation(s)
- Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Christopher R Marks
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Irene A Davidova
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Michael J McInerney
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| | - Shane Pruitt
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Development and Alumni Relations, Oglethorpe University, 4484 Peachtree Road, NE, Atlanta, GA, 30319, USA
| | - Kathleen E Duncan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Joseph M Suflita
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA.,Institute for Energy and the Environment, University of Oklahoma, 100 East Boyd Street, Norman, OK, 73019, USA
| | - Amy V Callaghan
- Department of Microbiology and Plant Biology, University of Oklahoma, George Lynn Cross Hall, 770 Van Vleet Oval, Norman, OK, 73019, USA
| |
Collapse
|
22
|
Fowler SJ, Toth CRA, Gieg LM. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments. Front Microbiol 2016; 7:562. [PMID: 27148240 PMCID: PMC4840303 DOI: 10.3389/fmicb.2016.00562] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst bacteria themselves are as important as interactions between bacteria and methanogens in complex methanogenic communities.
Collapse
Affiliation(s)
- S Jane Fowler
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Courtney R A Toth
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| |
Collapse
|
23
|
Herath A, Wawrik B, Qin Y, Zhou J, Callaghan AV. Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses. FEMS Microbiol Ecol 2016; 92:fiw062. [PMID: 27009900 DOI: 10.1093/femsec/fiw062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2016] [Indexed: 12/16/2022] Open
Abstract
Microbial transformation of n-alkanes in anaerobic ecosystems plays a pivotal role in biogeochemical carbon cycling and bioremediation, but the requisite genetic machinery is not well elucidated.Desulfatibacillum alkenivorans AK-01 utilizes n-alkanes (C13 to C18) and contains two genomic loci encoding alkylsuccinate synthase (ASS) gene clusters. ASS catalyzes alkane addition to fumarate to form methylalkylsuccinic acids. We hypothesized that the genes in the two clusters would be differentially expressed depending on the alkane substrate utilized for growth. RT-qPCR was used to investigate ass-gene expression across AK-01's known substrate range, and microarray-based transcriptomic analysis served to investigate whole-cell responses to growth on n-hexadecane versus hexadecanoate. RT-qPCR revealed induction of ass gene cluster 1 during growth on all tested alkane substrates, and the transcriptional start sites in cluster 1 were determined via 5'RACE. Induction of ass gene cluster 2 was not observed under the tested conditions. Transcriptomic analysis indicated that the upregulation of genes potentially involved in methylalkylsuccinate metabolism, including methylmalonyl-CoA mutase and a putative carboxyl transferase. These findings provide new directions for studying the transcriptional regulation of genes involved in alkane addition to fumarate, fumarate recycling and the processing of methylalkylsuccinates with regard to isolates, enrichment cultures and ecological datasets.
Collapse
Affiliation(s)
- Anjumala Herath
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Boris Wawrik
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Yujia Qin
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA Institute of Environmental Genomics, Stephenson Research Center, 101 David L. Boren Blvd, Norman, OK 73019, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA Institute of Environmental Genomics, Stephenson Research Center, 101 David L. Boren Blvd, Norman, OK 73019, USA Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94270, USA State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Amy V Callaghan
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK 73019, USA
| |
Collapse
|
24
|
Jiménez N, Richnow HH, Vogt C, Treude T, Krüger M. Methanogenic Hydrocarbon Degradation: Evidence from Field and Laboratory Studies. J Mol Microbiol Biotechnol 2016; 26:227-42. [PMID: 26959375 DOI: 10.1159/000441679] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Microbial transformation of hydrocarbons to methane is an environmentally relevant process taking place in a wide variety of electron acceptor-depleted habitats, from oil reservoirs and coal deposits to contaminated groundwater and deep sediments. Methanogenic hydrocarbon degradation is considered to be a major process in reservoir degradation and one of the main processes responsible for the formation of heavy oil deposits and oil sands. In the absence of external electron acceptors such as oxygen, nitrate, sulfate or Fe(III), fermentation and methanogenesis become the dominant microbial metabolisms. The major end product under these conditions is methane, and the only electron acceptor necessary to sustain the intermediate steps in this process is CO2, which is itself a net product of the overall reaction. We are summarizing the state of the art and recent advances in methanogenic hydrocarbon degradation research. Both the key microbial groups involved as well as metabolic pathways are described, and we discuss the novel insights into methanogenic hydrocarbon-degrading populations studied in laboratory as well as environmental systems enabled by novel cultivation-based and molecular approaches. Their possible implications on energy resources, bioremediation of contaminated sites, deep-biosphere research, and consequences for atmospheric composition and ultimately climate change are also addressed.
Collapse
Affiliation(s)
- Núria Jiménez
- Department of Resource Geochemistry, BGR - Federal Institute for Geosciences and Natural Resources, Hannover, Germany
| | | | | | | | | |
Collapse
|
25
|
Wilkes H, Buckel W, Golding BT, Rabus R. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria. J Mol Microbiol Biotechnol 2016; 26:138-51. [PMID: 26959725 DOI: 10.1159/000442160] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The glycyl radical enzyme-catalyzed addition of n-alkanes to fumarate creates a C-C-bond between two concomitantly formed stereogenic carbon centers. The configurations of the two diastereoisomers of the product resulting from n-hexane activation by the n-alkane-utilizing denitrifying bacterium strain HxN1, i.e. (1-methylpentyl)succinate, were assigned as (2S,1'R) and (2R,1'R). Experiments with stereospecifically deuterated n-(2,5-2H2)hexanes revealed that exclusively the pro-S hydrogen atom is abstracted from C2 of the n-alkane by the enzyme and later transferred back to C3 of the alkylsuccinate formed. These results indicate that the alkylsuccinate-forming reaction proceeds with an inversion of configuration at the carbon atom (C2) of the n-alkane forming the new C-C-bond, and thus stereochemically resembles a SN2-type reaction. Therefore, the reaction may occur in a concerted manner, which may avoid the highly energetic hex-2-yl radical as an intermediate. The reaction is associated with a significant primary kinetic isotope effect (kH/kD ≥3) for hydrogen, indicating that the homolytic C-H-bond cleavage is involved in the first irreversible step of the reaction mechanism. The (1-methylalkyl)succinate synthases of n-alkane-utilizing anaerobic bacteria apparently have very broad substrate ranges enabling them to activate not only aliphatic but also alkyl-aromatic hydrocarbons. Thus, two denitrifiers and one sulfate reducer were shown to convert the nongrowth substrate toluene to benzylsuccinate and further to the dead-end product benzoyl-CoA. For this purpose, however, the modified β-oxidation pathway known from alkylbenzene-utilizing bacteria was not employed, but rather the pathway used for n-alkane degradation involving CoA ligation, carbon skeleton rearrangement and decarboxylation. Furthermore, various n-alkane- and alkylbenzene-utilizing denitrifiers and sulfate reducers were found to be capable of forming benzyl alcohols from diverse alkylbenzenes, putatively via dehydrogenases. The thermophilic sulfate reducer strain TD3 forms n-alkylsuccinates during growth with n-alkanes or crude oil, which, based on the observed patterns of homologs, do not derive from a terminal activation of n-alkanes.
Collapse
Affiliation(s)
- Heinz Wilkes
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | | | | | | |
Collapse
|
26
|
Siddique T, Mohamad Shahimin MF, Zamir S, Semple K, Li C, Foght JM. Long-Term Incubation Reveals Methanogenic Biodegradation of C5 and C6 iso-Alkanes in Oil Sands Tailings. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14732-14739. [PMID: 26571341 DOI: 10.1021/acs.est.5b04370] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
iso-Alkanes are major components of petroleum and have been considered recalcitrant to biodegradation under methanogenic conditions. However, indigenous microbes in oil sands tailings ponds exposed to solvents rich in 2-methylbutane, 2-methylpentane, 3-methylpentane, n-pentane, and n-hexane produce methane in situ. We incubated defined mixtures of iso- or n-alkanes with mature fine tailings from two tailings ponds of different ages historically exposed to different solvents: one, ~10 years old, receiving C5-C6 paraffins and the other, ~35 years old, receiving naphtha. A lengthy incubation (>6 years) revealed iso-alkane biodegradation after lag phases of 900-1800 and ~280 days, respectively, before the onset of methanogenesis, although lag phases were shorter with n-alkanes (~650-1675 and ~170 days, respectively). 2-Methylpentane and both n-alkanes were completely depleted during ~2400 days of incubation, whereas 2-methylbutane and 3-methylpentane were partially depleted only during active degradation of 2-methylpentane, suggesting co-metabolism. In both cases, pyrotag sequencing of 16S rRNA genes showed codominance of Peptococcaceae with acetoclastic (Methanosaeta) and hydrogenotrophic (Methanoregula and Methanolinea) methanogens. These observations are important for predicting long-term greenhouse-gas emissions from oil sands tailings ponds and extend the known range of hydrocarbons susceptible to methanogenic biodegradation in petroleum-impacted anaerobic environments.
Collapse
Affiliation(s)
- Tariq Siddique
- Department of Renewable Resources, University of Alberta , Edmonton, AB T6G 2G7, Canada
| | | | - Saima Zamir
- Department of Renewable Resources, University of Alberta , Edmonton, AB T6G 2G7, Canada
| | - Kathleen Semple
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9, Canada
| | - Julia M Foght
- Department of Biological Sciences, University of Alberta , Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
27
|
Liang B, Wang LY, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ. Anaerolineaceae and Methanosaeta turned to be the dominant microorganisms in alkanes-dependent methanogenic culture after long-term of incubation. AMB Express 2015; 5:117. [PMID: 26080793 PMCID: PMC4469597 DOI: 10.1186/s13568-015-0117-4] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 05/18/2015] [Indexed: 11/30/2022] Open
Abstract
The methanogenic alkanes-degrading enrichment culture which had been incubated for over 1,300 days amended with n-alkanes (C15–C20) was investigated through clone libraries of bacteria, archaea and assA, mcrA functional genes. These enrichment cultures were obtained from oily sludge after an initial incubation of the oily sludge without any carbon source and then an enrichment transfer with n-alkanes (C15–C20) for acclimation. Activation of alkanes, methane precursor generation and methanogenic pathways are considered as three pivotal stages for the continuous methanogenesis from degradation of alkanes. The presence of functional genes encoding the alkylsuccinate synthase α-subunit indicated that fumarate addition is most likely the one of initial activation step for degradation of n-alkanes. Degradation intermediates of n-alkanes were octadecanoate, hexadecanoate, butyrate, isobutyrate, acetate and propionate, which could provide the appropriate substrates for acetate formation. Both methyl coenzyme M reductase gene and 16S rRNA gene analysis showed that microorganisms of Methanoseata were the most dominant methanogens, capable of using acetate as the electron donor to produce methane. Bacterial clone libraries showed organisms of Anaerolineaceae (within the phylum of Chloroflexi) were predominant (45.5%), indicating syntrophically cooperation with Methanosaeta archaea was likely involved in the process of methanogenic degradation of alkanes. Alkanes may initially be activated via fumarate addition and degraded to fatty acids, then converted to acetate, which was further converted to methane and carbon dioxide by methanogens.
Collapse
|
28
|
Foght JM. Microbial metagenomics of oil sands tailings ponds: small bugs, big data. Genome 2015; 58:507-10. [DOI: 10.1139/gen-2015-0146] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Julia M. Foght
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
29
|
Tan B, Jane Fowler S, Laban NA, Dong X, Sensen CW, Foght J, Gieg LM. Comparative analysis of metagenomes from three methanogenic hydrocarbon-degrading enrichment cultures with 41 environmental samples. THE ISME JOURNAL 2015; 9:2028-45. [PMID: 25734684 PMCID: PMC4542035 DOI: 10.1038/ismej.2015.22] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 01/07/2015] [Accepted: 01/09/2015] [Indexed: 11/09/2022]
Abstract
Methanogenic hydrocarbon metabolism is a key process in subsurface oil reservoirs and hydrocarbon-contaminated environments and thus warrants greater understanding to improve current technologies for fossil fuel extraction and bioremediation. In this study, three hydrocarbon-degrading methanogenic cultures established from two geographically distinct environments and incubated with different hydrocarbon substrates (added as single hydrocarbons or as mixtures) were subjected to metagenomic and 16S rRNA gene pyrosequencing to test whether these differences affect the genetic potential and composition of the communities. Enrichment of different putative hydrocarbon-degrading bacteria in each culture appeared to be substrate dependent, though all cultures contained both acetate- and H2-utilizing methanogens. Despite differing hydrocarbon substrates and inoculum sources, all three cultures harbored genes for hydrocarbon activation by fumarate addition (bssA, assA, nmsA) and carboxylation (abcA, ancA), along with those for associated downstream pathways (bbs, bcr, bam), though the cultures incubated with hydrocarbon mixtures contained a broader diversity of fumarate addition genes. A comparative metagenomic analysis of the three cultures showed that they were functionally redundant despite their enrichment backgrounds, sharing multiple features associated with syntrophic hydrocarbon conversion to methane. In addition, a comparative analysis of the culture metagenomes with those of 41 environmental samples (containing varying proportions of methanogens) showed that the three cultures were functionally most similar to each other but distinct from other environments, including hydrocarbon-impacted environments (for example, oil sands tailings ponds and oil-affected marine sediments). This study provides a basis for understanding key functions and environmental selection in methanogenic hydrocarbon-associated communities.
Collapse
Affiliation(s)
- Boonfei Tan
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - S Jane Fowler
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Nidal Abu Laban
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Xiaoli Dong
- Visual Genomics Centre, Faculty of Medicine, Calgary, Alberta, Canada
| | | | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|