1
|
Padhi C, Field CM, Forneris CC, Olszewski D, Fraley AE, Sandu I, Scott TA, Farnung J, Ruscheweyh HJ, Narayan Panda A, Oxenius A, Greber UF, Bode JW, Sunagawa S, Raina V, Suar M, Piel J. Metagenomic study of lake microbial mats reveals protease-inhibiting antiviral peptides from a core microbiome member. Proc Natl Acad Sci U S A 2024; 121:e2409026121. [PMID: 39585984 PMCID: PMC11626197 DOI: 10.1073/pnas.2409026121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 10/04/2024] [Indexed: 11/27/2024] Open
Abstract
In contrast to the large body of work on bioactive natural products from individually cultivated bacteria, the chemistry of environmental microbial communities remains largely elusive. Here, we present a comprehensive bioinformatic and functional study on a complex and interaction-rich ecosystem, algal-bacterial (microbial) mats of Lake Chilika in India, Asia's largest brackish water body. We report the bacterial compositional dynamics over the mat life cycle, >1,300 reconstructed environmental genomes harboring >2,200 biosynthetic gene clusters (BGCs), the successful cultivation of a widespread core microbiome member belonging to the genus Rheinheimera, heterologous reconstitution of two silent Rheinheimera biosynthetic pathways, and new compounds with potent protease inhibitory and antiviral activities. The identified substances, posttranslationally modified peptides from the graspetide and spliceotide families, were targeted among the large BGC diversity by applying a strategy focusing on recurring multi-BGC loci identified in diverse samples, suggesting their presence in successful colonizers. In addition to providing broad insights into the biosynthetic potential of a poorly studied community from sampling to bioactive substances, the study highlights the potential of ribosomally synthesized and posttranslationally modified peptides as a large, underexplored resource for antiviral drug discovery.
Collapse
Affiliation(s)
- Chandrashekhar Padhi
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Christopher M. Field
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Clarissa C. Forneris
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Dominik Olszewski
- Department of Molecular Life Sciences, University of Zurich, Zurich8057, Switzerland
| | - Amy E. Fraley
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Ioana Sandu
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Thomas A. Scott
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Jakob Farnung
- Laboratory of Organic Chemistry, ETH Zurich, Zurich8093, Switzerland
| | - Hans-Joachim Ruscheweyh
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Ananta Narayan Panda
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha751024, India
| | - Annette Oxenius
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Urs F. Greber
- Department of Molecular Life Sciences, University of Zurich, Zurich8057, Switzerland
| | - Jeffrey W. Bode
- Laboratory of Organic Chemistry, ETH Zurich, Zurich8093, Switzerland
| | - Shinichi Sunagawa
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| | - Vishakha Raina
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology University, Bhubaneswar, Odisha751024, India
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule Zurich, Zurich8093, Switzerland
| |
Collapse
|
2
|
Nuhamunada M, Mohite OS, Phaneuf P, Palsson B, Weber T. BGCFlow: systematic pangenome workflow for the analysis of biosynthetic gene clusters across large genomic datasets. Nucleic Acids Res 2024; 52:5478-5495. [PMID: 38686794 PMCID: PMC11162802 DOI: 10.1093/nar/gkae314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Genome mining is revolutionizing natural products discovery efforts. The rapid increase in available genomes demands comprehensive computational platforms to effectively extract biosynthetic knowledge encoded across bacterial pangenomes. Here, we present BGCFlow, a novel systematic workflow integrating analytics for large-scale genome mining of bacterial pangenomes. BGCFlow incorporates several genome analytics and mining tools grouped into five common stages of analysis such as: (i) data selection, (ii) functional annotation, (iii) phylogenetic analysis, (iv) genome mining, and (v) comparative analysis. Furthermore, BGCFlow provides easy configuration of different projects, parallel distribution, scheduled job monitoring, an interactive database to visualize tables, exploratory Jupyter Notebooks, and customized reports. Here, we demonstrate the application of BGCFlow by investigating the phylogenetic distribution of various biosynthetic gene clusters detected across 42 genomes of the Saccharopolyspora genus, known to produce industrially important secondary/specialized metabolites. The BGCFlow-guided analysis predicted more accurate dereplication of BGCs and guided the targeted comparative analysis of selected RiPPs. The scalable, interoperable, adaptable, re-entrant, and reproducible nature of the BGCFlow will provide an effective novel way to extract the biosynthetic knowledge from the ever-growing genomic datasets of biotechnologically relevant bacterial species.
Collapse
Affiliation(s)
- Matin Nuhamunada
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Omkar S Mohite
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Patrick V Phaneuf
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Bernhard O Palsson
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Tilmann Weber
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
3
|
Haas D, Barba M, Vicente C, Nezbedová Š, Garénaux A, Bury-Moné S, Lorenzi JN, Hôtel L, Laureti L, Thibessard A, Le Goff G, Ouazzani J, Leblond P, Aigle B, Pernodet JL, Lespinet O, Lautru S. Synteruptor: mining genomic islands for non-classical specialized metabolite gene clusters. NAR Genom Bioinform 2024; 6:lqae069. [PMID: 38915823 PMCID: PMC11195616 DOI: 10.1093/nargab/lqae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/06/2024] [Accepted: 05/29/2024] [Indexed: 06/26/2024] Open
Abstract
Microbial specialized metabolite biosynthetic gene clusters (SMBGCs) are a formidable source of natural products of pharmaceutical interest. With the multiplication of genomic data available, very efficient bioinformatic tools for automatic SMBGC detection have been developed. Nevertheless, most of these tools identify SMBGCs based on sequence similarity with enzymes typically involved in specialised metabolism and thus may miss SMBGCs coding for undercharacterised enzymes. Here we present Synteruptor (https://bioi2.i2bc.paris-saclay.fr/synteruptor), a program that identifies genomic islands, known to be enriched in SMBGCs, in the genomes of closely related species. With this tool, we identified a SMBGC in the genome of Streptomyces ambofaciens ATCC23877, undetected by antiSMASH versions prior to antiSMASH 5, and experimentally demonstrated that it directs the biosynthesis of two metabolites, one of which was identified as sphydrofuran. Synteruptor is also a valuable resource for the delineation of individual SMBGCs within antiSMASH regions that may encompass multiple clusters, and for refining the boundaries of these SMBGCs.
Collapse
Affiliation(s)
- Drago Haas
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Matthieu Barba
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | | | - Šarká Nezbedová
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Amélie Garénaux
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Stéphanie Bury-Moné
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jean-Noël Lorenzi
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Laurence Hôtel
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Luisa Laureti
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | | | - Géraldine Le Goff
- Institut de Chimie des Substances Naturelles ICSN, CNRS, Gif-sur-Yvette 91198, France
| | - Jamal Ouazzani
- Institut de Chimie des Substances Naturelles ICSN, CNRS, Gif-sur-Yvette 91198, France
| | - Pierre Leblond
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Bertrand Aigle
- Université de Lorraine, INRAE, DynAMic, Nancy 54000, France
| | - Jean-Luc Pernodet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Lespinet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Sylvie Lautru
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Mara P, Geller-McGrath D, Suter E, Taylor GT, Pachiadaki MG, Edgcomb VP. Plasmid-Borne Biosynthetic Gene Clusters within a Permanently Stratified Marine Water Column. Microorganisms 2024; 12:929. [PMID: 38792759 PMCID: PMC11123730 DOI: 10.3390/microorganisms12050929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/26/2024] Open
Abstract
Plasmids are mobile genetic elements known to carry secondary metabolic genes that affect the fitness and survival of microbes in the environment. Well-studied cases of plasmid-encoded secondary metabolic genes in marine habitats include toxin/antitoxin and antibiotic biosynthesis/resistance genes. Here, we examine metagenome-assembled genomes (MAGs) from the permanently-stratified water column of the Cariaco Basin for integrated plasmids that encode biosynthetic gene clusters of secondary metabolites (smBGCs). We identify 16 plasmid-borne smBGCs in MAGs associated primarily with Planctomycetota and Pseudomonadota that encode terpene-synthesizing genes, and genes for production of ribosomal and non-ribosomal peptides. These identified genes encode for secondary metabolites that are mainly antimicrobial agents, and hence, their uptake via plasmids may increase the competitive advantage of those host taxa that acquire them. The ecological and evolutionary significance of smBGCs carried by prokaryotes in oxygen-depleted water columns is yet to be fully elucidated.
Collapse
Affiliation(s)
- Paraskevi Mara
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| | - David Geller-McGrath
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Elizabeth Suter
- Biology, Chemistry and Environmental Science Department, Molloy University, New York, NY 11570, USA;
| | - Gordon T. Taylor
- School of Marine, Atmospheric and Sustainability Sciences, Stony Brook University, New York, NY 11794, USA;
| | - Maria G. Pachiadaki
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA; (D.G.-M.); (M.G.P.)
| | - Virginia P. Edgcomb
- Geology & Geophysics Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA;
| |
Collapse
|
5
|
Suárez‐Moo P, Prieto‐Davó A. Biosynthetic potential of the sediment microbial subcommunities of an unexplored karst ecosystem and its ecological implications. Microbiologyopen 2024; 13:e1407. [PMID: 38593340 PMCID: PMC11003711 DOI: 10.1002/mbo3.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial communities from various environments have been studied in the quest for new natural products with a broad range of applications in medicine and biotechnology. We employed an enrichment method and genome mining tools to examine the biosynthetic potential of microbial communities in the sediments of a coastal sinkhole within the karst ecosystem of the Yucatán Peninsula, Mexico. Our investigation led to the detection of 203 biosynthetic gene clusters (BGCs) and 55 secondary metabolites (SMs) within 35 high-quality metagenome-assembled genomes (MAGs) derived from these subcommunities. The most abundant types of BGCs were Terpene, Nonribosomal peptide-synthetase, and Type III polyketide synthase. Some of the in silico identified BGCs and SMs have been previously reported to exhibit biological activities against pathogenic bacteria and fungi. Others could play significant roles in the sinkhole ecosystem, such as iron solubilization and osmotic stress protection. Interestingly, 75% of the BGCs showed no sequence homology with bacterial BGCs previously reported in the MiBIG database. This suggests that the microbial communities in this environment could be an untapped source of genes encoding novel specialized compounds. The majority of the BGCs were identified in pathways found in the genus Virgibacillus, followed by Sporosarcina, Siminovitchia, Rhodococcus, and Halomonas. The latter, along with Paraclostridium and Lysinibacillus, had the highest number of identified BGC types. This study offers fresh insights into the potential ecological role of SMs from sediment microbial communities in an unexplored environment, underscoring their value as a source of novel natural products.
Collapse
Affiliation(s)
- Pablo Suárez‐Moo
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| | - Alejandra Prieto‐Davó
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| |
Collapse
|
6
|
van Bergeijk DA, Augustijn HE, Elsayed SS, Willemse J, Carrión VJ, Du C, Urem M, Grigoreva LV, Cheprasov MY, Grigoriev S, Jansen H, Wintermans B, Budding AE, Spaink HP, Medema MH, van Wezel GP. Taxonomic and metabolic diversity of Actinomycetota isolated from faeces of a 28,000-year-old mammoth. Environ Microbiol 2024; 26:e16589. [PMID: 38356049 DOI: 10.1111/1462-2920.16589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Ancient environmental samples, including permafrost soils and frozen animal remains, represent an archive with microbial communities that have barely been explored. This yet unexplored microbial world is a genetic resource that may provide us with new evolutionary insights into recent genomic changes, as well as novel metabolic pathways and chemistry. Here, we describe Actinomycetota Micromonospora, Oerskovia, Saccharopolyspora, Sanguibacter and Streptomyces species were successfully revived and their genome sequences resolved. Surprisingly, the genomes of these bacteria from an ancient source show a large phylogenetic distance to known strains and harbour many novel biosynthetic gene clusters that may well represent uncharacterised biosynthetic potential. Metabolic profiles of the strains display the production of known molecules like antimycin, conglobatin and macrotetrolides, but the majority of the mass features could not be dereplicated. Our work provides insights into Actinomycetota isolated from an ancient source, yielding unexplored genomic information that is not yet present in current databases.
Collapse
Affiliation(s)
- Doris A van Bergeijk
- Department of Microbiology, Immunology and Transplantation (Laboratory of Molecular Bacteriology), KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven, Belgium
| | - Hannah E Augustijn
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | | | - Joost Willemse
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Victor J Carrión
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbiology, University of Málaga, Málaga, Spain
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Chao Du
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Mia Urem
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | | | | | | | | - Bas Wintermans
- Department of Medical Microbiology, Adrz Hospital, Goes, The Netherlands
| | | | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Marnix H Medema
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Leiden, The Netherlands
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| |
Collapse
|
7
|
Alas I, Braun DR, Ericksen SS, Salamzade R, Kalan L, Rajski SR, Bugni TS. Micromonosporaceae biosynthetic gene cluster diversity highlights the need for broad-spectrum investigations. Microb Genom 2024; 10:001167. [PMID: 38175683 PMCID: PMC10868606 DOI: 10.1099/mgen.0.001167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Investigations of the bacterial family Micromonosporaceae have enabled the development of secondary metabolites critical to human health. Historical investigation of bacterial families for natural product discovery has focused on terrestrial strains, where time-consuming isolation processes often lead to the rediscovery of known compounds. To investigate the secondary metabolite potential of marine-derived Micromonosporaceae , 38 strains were sequenced, assembled and analysed using antiSMASH and BiG-SLiCE. BiG-SLiCE contains a near-comprehensive dataset of approximately 1.2 million publicly available biosynthetic gene clusters from primarily terrestrial strains. Our marine-derived Micromonosporaceae were directly compared to BiG-SLiCE’s preprocessed database using BiG-SLiCE’s query mode; genetic diversity within our strains was uncovered using BiG-SCAPE and metric multidimensional scaling analysis. Our analysis of marine-derived Micromonosporaceae emphasizes the clear need for broader genomic investigations of marine strains to fully realize their potential as sources of new natural products.
Collapse
Affiliation(s)
- Imraan Alas
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Doug R. Braun
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Spencer S. Ericksen
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI, USA
| | - Rauf Salamzade
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Lindsay Kalan
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI, USA
- Department of Biochemistry & Biomedical Sciences, McMaster University, Health Sciences Centre, Hamilton, ON, Canada
| | - Scott R. Rajski
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, University of Wisconsin–Madison, Madison, WI, USA
- Small Molecule Screening Facility, UW Carbone Cancer Center, Madison, WI, USA
- Lachman Institute for Pharmaceutical Development, University of Wisconsin–Madison, Madison, WI, USA
| |
Collapse
|
8
|
Parra J, Beaton A, Seipke RF, Wilkinson B, Hutchings MI, Duncan KR. Antibiotics from rare actinomycetes, beyond the genus Streptomyces. Curr Opin Microbiol 2023; 76:102385. [PMID: 37804816 DOI: 10.1016/j.mib.2023.102385] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 10/09/2023]
Abstract
Throughout the golden age of antibiotic discovery, Streptomyces have been unsurpassed for their ability to produce bioactive metabolites. Yet, this success has been hampered by rediscovery. As we enter a new stage of biodiscovery, omics data and existing scientific repositories can enable informed choices on the biodiversity that may yield novel antibiotics. Here, we focus on the chemical potential of rare actinomycetes, defined as bacteria within the order Actinomycetales, but not belonging to the genus Streptomyces. They are named as such due to their less-frequent isolation under standard laboratory practices, yet there is increasing evidence to suggest these biologically diverse genera harbour considerable biosynthetic and chemical diversity. In this review, we focus on examples of successful isolation and genera that have been the focus of more concentrated biodiscovery efforts, we survey the representation of rare actinomycete taxa, compared with Streptomyces, across natural product data repositories in addition to its biosynthetic potential. This is followed by an overview of clinically useful drugs produced by rare actinomycetes and considerations for future biodiscovery efforts. There is much to learn about these underexplored taxa, and mounting evidence suggests that they are a fruitful avenue for the discovery of novel antimicrobials.
Collapse
Affiliation(s)
- Jonathan Parra
- Instituto de Investigaciones Farmacéuticas (INIFAR), Facultad de Farmacia, Universidad de Costa Rica, San José 11501-2060, Costa Rica; Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARE, San José 1174-1200, Costa Rica
| | - Ainsley Beaton
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Ryan F Seipke
- University of Leeds, Faculty of Biological Sciences, Astbury Centre for Structural Molecular Biology, Leeds LS2 9JT, UK
| | - Barrie Wilkinson
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Matthew I Hutchings
- John Innes Centre, Department of Molecular Microbiology, Norwich Research Park, Norwich NR4 7UH, UK
| | - Katherine R Duncan
- University of Strathclyde, Strathclyde Institute of Pharmacy and Biomedical Sciences, 141 Cathedral Street, Glasgow G4 0RE, UK.
| |
Collapse
|
9
|
Roda-Garcia JJ, Haro-Moreno JM, López-Pérez M. Evolutionary pathways for deep-sea adaptation in marine planktonic Actinobacteriota. Front Microbiol 2023; 14:1159270. [PMID: 37234526 PMCID: PMC10205998 DOI: 10.3389/fmicb.2023.1159270] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The deep ocean, one of the largest ecosystems on earth, is dominated by microorganisms that are keystones in the regulation of biogeochemical cycles. However, the evolutionary pathways underlying the specific adaptations required (e.g., high pressure and low temperature) by this unique niche remain understudied. Here, we analyzed the first representatives belonging to the order Acidimicrobiales, a group of marine planktonic Actinobacteriota, that specifically inhabits the aphotic zone of the oceanic water column (>200 m). Compared with their epipelagic counterparts, deep-sea representatives showed the same evolution in genome architecture with higher GC content, longer intergenic spaces as well as higher nitrogen (N-ARSC) and lower carbon (C-ARSC) content in encoded amino acid residue side chains consistent with the higher nitrogen concentration and lower carbon concentration in deep waters compared to the photic zone. Metagenomic recruitment showed distribution patterns that allowed the description of different ecogenomic units within the three deep water-associated genera defined by our phylogenomic analyses (UBA3125, S20-B6 and UBA9410). The entire genus UBA3125 was found exclusively associated with oxygen minimum zones linked to the acquisition of genes involved in denitrification. Genomospecies of genus S20-B6 recruited in samples from both mesopelagic (200-1,000 m) and bathypelagic (1000-4,000 m) zones, including polar regions. Diversity in the genus UBA9410 was higher, with genomospecies widely distributed in temperate zones, others in polar regions, and the only genomospecies associated with abyssal zones (>4,000 m). At the functional level, groups beyond the epipelagic zone have a more complex transcriptional regulation including in their genomes a unique WhiB paralog. In addition, they showed higher metabolic potential for organic carbon and carbohydrate degradation as well as the ability to accumulate glycogen as a source of carbon and energy. This could compensate for energy metabolism in the absence of rhodopsins, which is only present in genomes associated with the photic zone. The abundance in deep samples of cytochrome P450 monooxygenases associated with the genomes of this order suggests an important role in remineralization of recalcitrant compounds throughout the water column.
Collapse
|
10
|
Gattoni G, de la Haba RR, Martín J, Reyes F, Sánchez-Porro C, Feola A, Zuchegna C, Guerrero-Flores S, Varcamonti M, Ricca E, Selem-Mojica N, Ventosa A, Corral P. Genomic study and lipidomic bioassay of Leeuwenhoekiella parthenopeia: A novel rare biosphere marine bacterium that inhibits tumor cell viability. Front Microbiol 2023; 13:1090197. [PMID: 36687661 PMCID: PMC9859067 DOI: 10.3389/fmicb.2022.1090197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
The fraction of low-abundance microbiota in the marine environment is a promising target for discovering new bioactive molecules with pharmaceutical applications. Phenomena in the ocean such as diel vertical migration (DVM) and seasonal dynamic events influence the pattern of diversity of marine bacteria, conditioning the probability of isolation of uncultured bacteria. In this study, we report a new marine bacterium belonging to the rare biosphere, Leeuwenhoekiella parthenopeia sp. nov. Mr9T, which was isolated employing seasonal and diel sampling approaches. Its complete characterization, ecology, biosynthetic gene profiling of the whole genus Leeuwenhoekiella, and bioactivity of its extract on human cells are reported. The phylogenomic and microbial diversity studies demonstrated that this bacterium is a new and rare species, barely representing 0.0029% of the bacterial community in Mediterranean Sea metagenomes. The biosynthetic profiling of species of the genus Leeuwenhoekiella showed nine functionally related gene cluster families (GCF), none were associated with pathways responsible to produce known compounds or registered patents, therefore revealing its potential to synthesize novel bioactive compounds. In vitro screenings of L. parthenopeia Mr9T showed that the total lipid content (lipidome) of the cell membrane reduces the prostatic and brain tumor cell viability with a lower effect on normal cells. The lipidome consisted of sulfobacin A, WB 3559A, WB 3559B, docosenamide, topostin B-567, and unknown compounds. Therefore, the bioactivity could be attributed to any of these individual compounds or due to their synergistic effect. Beyond the rarity and biosynthetic potential of this bacterium, the importance and novelty of this study is the employment of sampling strategies based on ecological factors to reach the hidden microbiota, as well as the use of bacterial membrane constituents as potential novel therapeutics. Our findings open new perspectives on cultivation and the relationship between bacterial biological membrane components and their bioactivity in eukaryotic cells, encouraging similar studies in other members of the rare biosphere.
Collapse
Affiliation(s)
- Giuliano Gattoni
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Rafael R. de la Haba
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | | | | | - Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Antonia Feola
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Candida Zuchegna
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Shaday Guerrero-Flores
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Mario Varcamonti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ezio Ricca
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Nelly Selem-Mojica
- Centro de Ciencias Matemáticas, Universidad Nacional Autónoma de México (UNAM), Morelia, Mexico
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Paulina Corral
- Department of Biology, University of Naples Federico II, Naples, Italy,Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain,*Correspondence: Paulina Corral,
| |
Collapse
|
11
|
Siro G, Pipite A, Christi K, Srinivasan S, Subramani R. Marine Actinomycetes Associated with Stony Corals: A Potential Hotspot for Specialized Metabolites. Microorganisms 2022; 10:1349. [PMID: 35889068 PMCID: PMC9319285 DOI: 10.3390/microorganisms10071349] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial secondary metabolites are an important source of antibiotics currently available for combating drug-resistant pathogens. These important secondary metabolites are produced by various microorganisms, including Actinobacteria. Actinobacteria have a colossal genome with a wide array of genes that code for several bioactive metabolites and enzymes. Numerous studies have reported the isolation and screening of millions of strains of actinomycetes from various habitats for specialized metabolites worldwide. Looking at the extent of the importance of actinomycetes in various fields, corals are highlighted as a potential hotspot for untapped secondary metabolites and new bioactive metabolites. Unfortunately, knowledge about the diversity, distribution and biochemistry of marine actinomycetes compared to hard corals is limited. In this review, we aim to summarize the recent knowledge on the isolation, diversity, distribution and discovery of natural compounds from marine actinomycetes associated with hard corals. A total of 11 new species of actinomycetes, representing nine different families of actinomycetes, were recovered from hard corals during the period from 2007 to 2022. In addition, this study examined a total of 13 new compounds produced by five genera of actinomycetes reported from 2017 to 2022 with antibacterial, antifungal and cytotoxic activities. Coral-derived actinomycetes have different mechanisms of action against their competitors.
Collapse
Affiliation(s)
- Galana Siro
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Ketan Christi
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 01797, Korea
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| |
Collapse
|
12
|
Natural Products Produced in Culture by Biosynthetically Talented Salinispora arenicola Strains Isolated from Northeastern and South Pacific Marine Sediments. Molecules 2022; 27:molecules27113569. [PMID: 35684507 PMCID: PMC9181873 DOI: 10.3390/molecules27113569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 11/25/2022] Open
Abstract
Laboratory cultures of two ‘biosynthetically talented’ bacterial strains harvested from tropical and temperate Pacific Ocean sediment habitats were examined for the production of new natural products. Cultures of the tropical Salinispora arenicola strain RJA3005, harvested from a PNG marine sediment, produced salinorcinol (3) and salinacetamide (4), which had previously been reported as products of engineered and mutated strains of Amycolatopsis mediterranei, but had not been found before as natural products. An S. arenicola strain RJA4486, harvested from marine sediment collected in the temperate ocean waters off British Columbia, produced the new aminoquinone polyketide salinisporamine (5). Natural products 3, 4, and 5 are putative shunt products of the widely distributed rifamycin biosynthetic pathway.
Collapse
|
13
|
Jensen PR. Microbe Profile: Salinispora tropica: natural products and the evolution of a unique marine bacterium. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35380529 DOI: 10.1099/mic.0.001163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Salinispora tropica was originally cultured from tropical marine sediments and described as the first obligate marine actinomycete genus. Soon after its discovery, it yielded the potent proteasome inhibitor salinosporamide A, a structurally novel natural product that is currently in phase III clinical trials for the treatment of cancer. If approved, it will be the first natural product derived from a cultured marine microbe to achieve clinical relevance. S. tropica produces many other biologically active natural products, including some linked to chemical defence, thus providing ecological context for their production. However, genomic analyses reveal that most natural product biosynthetic gene clusters remain orphan, suggesting that more compounds await discovery. The abundance of biosynthetic gene clusters in S. tropica supports the concept that the small molecules they encode serve important ecological functions, while their evolutionary histories suggest a potential role in promoting diversification. Better insights into the ecological functions of microbial natural products will help inform future discovery efforts.
Collapse
Affiliation(s)
- Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0204, USA
| |
Collapse
|
14
|
Hemmerling F, Piel J. Strategies to access biosynthetic novelty in bacterial genomes for drug discovery. Nat Rev Drug Discov 2022; 21:359-378. [PMID: 35296832 DOI: 10.1038/s41573-022-00414-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 12/17/2022]
Abstract
Bacteria provide a rich source of natural products with potential therapeutic applications, such as novel antibiotic classes or anticancer drugs. Bioactivity-guided screening of bacterial extracts and characterization of biosynthetic pathways for drug discovery is now complemented by the availability of large (meta)genomic collections, placing researchers into the postgenomic, big-data era. The progress in next-generation sequencing and the rise of powerful computational tools provide unprecedented insights into unexplored taxa, ecological niches and 'biosynthetic dark matter', revealing diverse and chemically distinct natural products in previously unstudied bacteria. In this Review, we discuss such sources of new chemical entities and the implications for drug discovery with a particular focus on the strategies that have emerged in recent years to identify and access novelty.
Collapse
Affiliation(s)
- Franziska Hemmerling
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Tsalgatidou PC, Thomloudi EE, Baira E, Papadimitriou K, Skagia A, Venieraki A, Katinakis P. Integrated Genomic and Metabolomic Analysis Illuminates Key Secreted Metabolites Produced by the Novel Endophyte Bacillus halotolerans Cal.l.30 Involved in Diverse Biological Control Activities. Microorganisms 2022; 10:microorganisms10020399. [PMID: 35208854 PMCID: PMC8877463 DOI: 10.3390/microorganisms10020399] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/01/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
The endophytic strain Cal.l.30, isolated from the medicinal plant Calendula officinalis, was selected among seven Bacillus strains with plant growth promoting activity and strong biological potential against the postharvest fungal pathogen Botrytis cinerea. Treatment by inoculating Cal.l.30 bacterial cell culture or cell free supernatant on harvested grapes and cherry tomato fruits, significantly reduced gray mold disease severity index and disease incidence. Based on 16S rRNA sequence analysis and whole genome phylogeny, Cal.l.30 was identified as Bacillus halotolerans. Genome mining revealed that B. halotolerans Cal.l.30 is endowed with a diverse arsenal of secondary metabolite biosynthetic gene clusters (SM-BGCs) responsible for metabolite production with antimicrobial properties. A sub-set of the identified SM-BGCs (mojavensin A, ‘bacillunoic acid’) appears to be the result of recent horizontal gene transfer events. Its genome was also mined for CAZymes associated with antifungal activity. Further UHPLC-HRMS analysis indicated that Cal.l.30 synthesizes and secretes secondary metabolites with antimicrobial activity, including the lipopeptides, fengycin, surfactin and mojavensin A, bacillaene isoforms, L-dihydroanticapsin and bacillibactin. Other compounds with known antimicrobial activity were also detected, such as azelaic acid, 15- hydroxypentadecanoid acid and 2-hydroxyphenylacetic acid. The genomic and metabolomic features of the B. halotolerans Cal.l.30 provided new perspectives on the exploitation of novel Bacillus sp. as a biocontrol agent.
Collapse
Affiliation(s)
- Polina C. Tsalgatidou
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Department of Agriculture, University of the Peloponnese, 24100 Kalamata, Greece
| | - Eirini-Evangelia Thomloudi
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Eirini Baira
- Laboratory of Toxicological Control of Pesticides, Scientific Directorate of Pesticides’ Control and Phytopharmacy, Benaki Phytopathological Institute (BPI), Kifissia, 14561 Athens, Greece;
| | | | - Aggeliki Skagia
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
| | - Anastasia Venieraki
- Laboratory of Plant Pathology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
- Correspondence: (A.V.); (P.K.)
| | - Panagiotis Katinakis
- Laboratory of General and Agricultural Microbiology, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (P.C.T.); (E.-E.T.); (A.S.)
- Correspondence: (A.V.); (P.K.)
| |
Collapse
|
16
|
Tuttle RN, Rouse GW, Castro-Falcón G, Hughes CC, Jensen PR. Specialized Metabolite-Mediated Predation Defense in the Marine Actinobacterium Salinispora. Appl Environ Microbiol 2022; 88:e0117621. [PMID: 34669450 PMCID: PMC8752147 DOI: 10.1128/aem.01176-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/10/2021] [Indexed: 11/20/2022] Open
Abstract
The obligate marine actinobacterial genus Salinispora has become a model organism for natural product discovery, yet little is known about the ecological functions of the compounds produced by this taxon. The aims of this study were to assess the effects of live cultures and culture extracts from two Salinispora species on invertebrate predators. In choice-based feeding experiments using the bacterivorous nematode Caenorhabditis elegans, live cultures of both Salinispora species were less preferred than Escherichia coli. When given a choice between the two species, C. elegans preferred S. areniolca over S. tropica. Culture extracts from S. tropica deterred C. elegans, while those from S. arenicola did not, suggesting that compounds produced by S. tropica account for the feeding deterrence. Bioactivity-guided isolation linked compounds in the lomaiviticin series to the deterrent activity. Additional assays using the marine polychaete Ophryotrocha siberti and marine nematodes further support the deterrent activity of S. tropica against potential predators. These results provide evidence that Salinispora natural products function as a defense against predation and that the strategies of predation defense differ between closely related species. IMPORTANCE Bacteria inhabiting marine sediments are subject to predation by bacterivorous eukaryotes. Here, we test the hypothesis that sediment-derived bacteria in the genus Salinispora produce biologically active natural products that function as a defense against predation. The results reveal that cultures and culture extracts of S. tropica deter feeding by Caenorhabditis elegans and negatively affect the habitat preference of a marine annelid (Ophryotrocha siberti). These activities were linked to the lomaiviticins, a series of cytotoxic compounds produced by S. tropica. Microbial natural products that function as a defense against predation represent a poorly understood trait that can influence community structure in marine sediments.
Collapse
Affiliation(s)
- Robert N. Tuttle
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Greg W. Rouse
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Gabriel Castro-Falcón
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Pinto-Almeida A, Bauermeister A, Luppino L, Grilo IR, Oliveira J, Sousa JR, Petras D, Rodrigues CF, Prieto-Davó A, Tasdemir D, Sobral RG, Gaudêncio SP. The Diversity, Metabolomics Profiling, and the Pharmacological Potential of Actinomycetes Isolated from the Estremadura Spur Pockmarks (Portugal). Mar Drugs 2021; 20:21. [PMID: 35049876 PMCID: PMC8780274 DOI: 10.3390/md20010021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/05/2021] [Accepted: 12/14/2021] [Indexed: 01/24/2023] Open
Abstract
The Estremadura Spur pockmarks are a unique and unexplored ecosystem located in the North Atlantic, off the coast of Portugal. A total of 85 marine-derived actinomycetes were isolated and cultured from sediments collected from this ecosystem at a depth of 200 to 350 m. Nine genera, Streptomyces, Micromonospora, Saccharopolyspora, Actinomadura, Actinopolymorpha, Nocardiopsis, Saccharomonospora, Stackebrandtia, and Verrucosispora were identified by 16S rRNA gene sequencing analyses, from which the first two were the most predominant. Non-targeted LC-MS/MS, in combination with molecular networking, revealed high metabolite diversity, including several known metabolites, such as surugamide, antimycin, etamycin, physostigmine, desferrioxamine, ikarugamycin, piericidine, and rakicidin derivatives, as well as numerous unidentified metabolites. Taxonomy was the strongest parameter influencing the metabolite production, highlighting the different biosynthetic potentials of phylogenetically related actinomycetes; the majority of the chemical classes can be used as chemotaxonomic markers, as the metabolite distribution was mostly genera-specific. The EtOAc extracts of the actinomycete isolates demonstrated antimicrobial and antioxidant activity. Altogether, this study demonstrates that the Estremadura Spur is a source of actinomycetes with potential applications for biotechnology. It highlights the importance of investigating actinomycetes from unique ecosystems, such as pockmarks, as the metabolite production reflects their adaptation to this habitat.
Collapse
Affiliation(s)
- António Pinto-Almeida
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Instituto de Engenharias e Ciências do Mar, Universidade Técnica do Atlântico, 163 Ribeira de Julião, 163 Mindelo, Cape Verde
| | - Anelize Bauermeister
- Skaggs School of Pharmacy & Pharmaceutical Science, University of California San Diego, La Jolla, CA 92093-075, USA;
| | - Luca Luppino
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
- Dipartimento di Scienze Della Vita, Università Degli Studi di Modena e Reggio Emilia, 41125 Modena, Italy
| | - Inês R. Grilo
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Juliana Oliveira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Joana R. Sousa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Daniel Petras
- CMFI Cluster of Excellence, Interfaculty Institute of Microbiology and Medicine, University of Tuebingen, Auf der Morgenstelle 24, 72076 Tuebingen, Germany;
| | - Clara F. Rodrigues
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Alejandra Prieto-Davó
- Unidad de Química-Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal 97356, Mexico;
| | - Deniz Tasdemir
- GEOMAR Centre for Marine Biotechnology, Research Unit Marine Natural Products Chemistry, GEOMAR Helmholtz Centre for Ocean Research Kiel, 24106 Kiel, Germany;
- Faculty of Mathematics and Natural Sciences, Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
| | - Rita G. Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| | - Susana P. Gaudêncio
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, 2819-516 Caparica, Portugal; (A.P.-A.); (L.L.); (I.R.G.); (J.O.); (J.R.S.); (R.G.S.)
- UCIBIO—Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University of Lisbon, 2819-516 Caparica, Portugal
| |
Collapse
|
18
|
Vertical Inheritance Facilitates Interspecies Diversification in Biosynthetic Gene Clusters and Specialized Metabolites. mBio 2021; 12:e0270021. [PMID: 34809466 PMCID: PMC8609351 DOI: 10.1128/mbio.02700-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While specialized metabolites are thought to mediate ecological interactions, the evolutionary processes driving chemical diversification, particularly among closely related lineages, remain poorly understood. Here, we examine the evolutionary dynamics governing the distribution of natural product biosynthetic gene clusters (BGCs) among 118 strains representing all nine currently named species of the marine actinobacterial genus Salinispora. While much attention has been given to the role of horizontal gene transfer (HGT) in structuring BGC distributions, we find that vertical descent facilitates interspecies BGC diversification over evolutionary timescales. Moreover, we identified a distinct phylogenetic signal among Salinispora species at both the BGC and metabolite level, indicating that specialized metabolism represents a conserved phylogenetic trait. Using a combination of genomic analyses and liquid chromatography–high-resolution tandem mass spectrometry (LC-MS/MS) targeting nine experimentally characterized BGCs and their small molecule products, we identified gene gain/loss events, constrained interspecies recombination, and other evolutionary processes associated with vertical inheritance as major contributors to BGC diversification. These evolutionary dynamics had direct consequences for the compounds produced, as exemplified by species-level differences in salinosporamide production. Together, our results support the concept that specialized metabolites, and their cognate BGCs, can represent phylogenetically conserved functional traits with chemical diversification proceeding in species-specific patterns over evolutionary time frames.
Collapse
|
19
|
Genomic and Metabolomic Insights into Secondary Metabolites of the Novel Bacillus halotolerans Hil4, an Endophyte with Promising Antagonistic Activity against Gray Mold and Plant Growth Promoting Potential. Microorganisms 2021; 9:microorganisms9122508. [PMID: 34946110 PMCID: PMC8704346 DOI: 10.3390/microorganisms9122508] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/28/2022] Open
Abstract
The endophytic bacterial strain Hil4 was isolated from leaves of the medicinal plant Hypericum hircinum. It exhibited antifungal activity against Botrytis cinerea and a plethora of plant growth promoting traits in vitro. Whole genome sequencing revealed that it belongs to Bacillus halotolerans and possesses numerous secondary metabolite biosynthetic gene clusters and genes involved in plant growth promotion, colonization, and plant defense elicitation. The Mojavensin cluster was present in the genome, making this strain novel among plant-associated B. halotolerans strains. Extracts of secreted agar-diffusible compounds from single culture secretome extracts and dual cultures with B. cinerea were bioactive and had the same antifungal pattern on TLC plates after bioautography. UHPLC-HRMS analysis of the single culture secretome extract putatively annotated the consecutively produced antimicrobial substances and ISR elicitors. The isolate also proved efficient in minimizing the severity of gray mold post-harvest disease on table grape berries, as well as cherry tomatoes. Finally, it positively influenced the growth of Arabidopsis thaliana Col-0 and Solanum lycopersicum var. Chondrokatsari Messinias after seed biopriming in vitro. Overall, these results indicate that the B. halotolerans strain Hil4 is a promising novel plant growth promoting and biocontrol agent, and can be used in future research for the development of biostimulants and/or biological control agents.
Collapse
|
20
|
Anderson VM, Wendt KL, Najar FZ, McCall LI, Cichewicz RH. Building Natural Product Libraries Using Quantitative Clade-Based and Chemical Clustering Strategies. mSystems 2021; 6:e0064421. [PMID: 34698546 PMCID: PMC8547436 DOI: 10.1128/msystems.00644-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
The success of natural product-based drug discovery is predicated on having chemical collections that offer broad coverage of metabolite diversity. We propose a simple set of tools combining genetic barcoding and metabolomics to help investigators build natural product libraries aimed at achieving predetermined levels of chemical coverage. It was found that such tools aided in identifying overlooked pockets of chemical diversity within taxa, which could be useful for refocusing collection strategies. We have used fungal isolates identified as Alternaria from a citizen-science-based soil collection to demonstrate the application of these tools for assessing and carrying out predictive measurements of chemical diversity in a natural product collection. Within Alternaria, different subclades were found to contain nonequivalent levels of chemical diversity. It was also determined that a surprisingly modest number of isolates (195 isolates) was sufficient to afford nearly 99% of Alternaria chemical features in the data set. However, this result must be considered in the context that 17.9% of chemical features appeared in single isolates, suggesting that fungi like Alternaria might be engaged in an ongoing process of actively exploring nature's metabolic landscape. Our results demonstrate that combining modest investments in securing internal transcribed spacer (ITS)-based sequence information (i.e., establishing gene-based clades) with data from liquid chromatography-mass spectrometry (i.e., generating feature accumulation curves) offers a useful route to obtaining actionable insights into chemical diversity coverage trends in a natural product library. It is anticipated that these outcomes could be used to improve opportunities for accessing bioactive molecules that serve as the cornerstone of natural product-based drug discovery. IMPORTANCE Natural product drug discovery efforts rely on libraries of organisms to provide access to diverse pools of compounds. Actionable strategies to rationally maximize chemical diversity, rather than relying on serendipity, can add value to such efforts. Readily implementable biological (i.e., ITS sequence analysis) and chemical (i.e., mass spectrometry-based feature and scaffold measurements) diversity assessment tools can be employed to monitor and adjust library development tactics in real time. In summary, metabolomics-driven technologies and simple gene-based specimen barcoding approaches have broad applicability to building chemically diverse natural product libraries.
Collapse
Affiliation(s)
- Victoria M. Anderson
- Natural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Karen L. Wendt
- Natural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| | - Fares Z. Najar
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Chemistry and Biochemistry Bioinformatics Core, University of Oklahoma, Norman, Oklahoma, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma, USA
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, Oklahoma, USA
| | - Robert H. Cichewicz
- Natural Products Discovery Group, University of Oklahoma, Norman, Oklahoma, USA
- Institute for Natural Products Applications and Research Technologies, University of Oklahoma, Norman, Oklahoma, USA
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA
| |
Collapse
|
21
|
Mullins AJ, Mahenthiralingam E. The Hidden Genomic Diversity, Specialized Metabolite Capacity, and Revised Taxonomy of Burkholderia Sensu Lato. Front Microbiol 2021; 12:726847. [PMID: 34650530 PMCID: PMC8506256 DOI: 10.3389/fmicb.2021.726847] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Burkholderia sensu lato is a collection of closely related genera within the family Burkholderiaceae that includes species of environmental, industrial, biotechnological, and clinical importance. Multiple species within the complex are the source of diverse specialized metabolites, many of which have been identified through genome mining of their biosynthetic gene clusters (BGCs). However, the full, true genomic diversity of these species and genera, and their biosynthetic capacity have not been investigated. This study sought to cluster and classify over 4000 Burkholderia sensu lato genome assemblies into distinct genomic taxa representing named and uncharacterized species. We delineated 235 species groups by average nucleotide identity analyses that formed seven distinct phylogenomic clades, representing the genera of Burkholderia sensu lato: Burkholderia, Paraburkholderia, Trinickia, Caballeronia, Mycetohabitans, Robbsia, and Pararobbisa. A total of 137 genomic taxa aligned with named species possessing a sequenced type strain, while 93 uncharacterized species groups were demarcated. The 95% ANI threshold proved capable of delineating most genomic species and was only increased to resolve several closely related species. These analyses enabled the assessment of species classifications of over 4000 genomes, and the correction of over 400 genome taxonomic assignments in public databases into existing and uncharacterized genomic species groups. These species groups were genome mined for BGCs, their specialized metabolite capacity calculated per species and genus, and the number of distinct BGCs per species estimated through kmer-based de-replication. Mycetohabitans species dedicated a larger proportion of their relatively small genomes to specialized metabolite biosynthesis, while Burkholderia species harbored more BGCs on average per genome and possessed the most distinct BGCs per species compared to the remaining genera. Exploring the hidden genomic diversity of this important multi-genus complex contributes to our understanding of their taxonomy and evolutionary relationships, and supports future efforts toward natural product discovery.
Collapse
|
22
|
Undabarrena A, Valencia R, Cumsille A, Zamora-Leiva L, Castro-Nallar E, Barona-Gomez F, Cámara B. Rhodococcus comparative genomics reveals a phylogenomic-dependent non-ribosomal peptide synthetase distribution: insights into biosynthetic gene cluster connection to an orphan metabolite. Microb Genom 2021; 7:000621. [PMID: 34241590 PMCID: PMC8477407 DOI: 10.1099/mgen.0.000621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 01/14/2023] Open
Abstract
Natural products (NPs) are synthesized by biosynthetic gene clusters (BGCs), whose genes are involved in producing one or a family of chemically related metabolites. Advances in comparative genomics have been favourable for exploiting huge amounts of data and discovering previously unknown BGCs. Nonetheless, studying distribution patterns of novel BGCs and elucidating the biosynthesis of orphan metabolites remains a challenge. To fill this knowledge gap, our study developed a pipeline for high-quality comparative genomics for the actinomycete genus Rhodococcus , which is metabolically versatile, yet understudied in terms of NPs, leading to a total of 110 genomes, 1891 BGCs and 717 non-ribosomal peptide synthetases (NRPSs). Phylogenomic inferences showed four major clades retrieved from strains of several ecological habitats. BiG-SCAPE sequence similarity BGC networking revealed 44 unidentified gene cluster families (GCFs) for NRPS, which presented a phylogenomic-dependent evolution pattern, supporting the hypothesis of vertical gene transfer. As a proof of concept, we analysed in-depth one of our marine strains, Rhodococcus sp. H-CA8f, which revealed a unique BGC distribution within its phylogenomic clade, involved in producing a chloramphenicol-related compound. While this BGC is part of the most abundant and widely distributed NRPS GCF, corason analysis unveiled major differences regarding its genetic context, co-occurrence patterns and modularity. This BGC is composed of three sections, two well-conserved right/left arms flanking a very variable middle section, composed of nrps genes. The presence of two non-canonical domains in H-CA8f’s BGC may contribute to adding chemical diversity to this family of NPs. Liquid chromatography-high resolution MS and dereplication efforts retrieved a set of related orphan metabolites, the corynecins, which to our knowledge are reported here for the first time in Rhodococcus . Overall, our data provide insights to connect BGC uniqueness with orphan metabolites, by revealing key comparative genomic features supported by models of BGC distribution along phylogeny.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Ricardo Valencia
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
- Present address: Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, King’s Buildings, Edinburgh, UK
| | - Andrés Cumsille
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Leonardo Zamora-Leiva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Francisco Barona-Gomez
- Evolution of Metabolic Diversity Laboratory, Unidad de Genómica Avanzada (Langebio), Cinvestav, Irapuato, Guanajuato, Mexico
| | - Beatriz Cámara
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química y Centro de Biotecnología Daniel Alkalay Lowitt, Universidad Técnica Federico Santa María, Valparaíso 2340000, Chile
| |
Collapse
|
23
|
Jagannathan SV, Manemann EM, Rowe SE, Callender MC, Soto W. Marine Actinomycetes, New Sources of Biotechnological Products. Mar Drugs 2021; 19:365. [PMID: 34201951 PMCID: PMC8304352 DOI: 10.3390/md19070365] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 02/07/2023] Open
Abstract
The Actinomycetales order is one of great genetic and functional diversity, including diversity in the production of secondary metabolites which have uses in medical, environmental rehabilitation, and industrial applications. Secondary metabolites produced by actinomycete species are an abundant source of antibiotics, antitumor agents, anthelmintics, and antifungals. These actinomycete-derived medicines are in circulation as current treatments, but actinomycetes are also being explored as potential sources of new compounds to combat multidrug resistance in pathogenic bacteria. Actinomycetes as a potential to solve environmental concerns is another area of recent investigation, particularly their utility in the bioremediation of pesticides, toxic metals, radioactive wastes, and biofouling. Other applications include biofuels, detergents, and food preservatives/additives. Exploring other unique properties of actinomycetes will allow for a deeper understanding of this interesting taxonomic group. Combined with genetic engineering, microbial experimental evolution, and other enhancement techniques, it is reasonable to assume that the use of marine actinomycetes will continue to increase. Novel products will begin to be developed for diverse applied research purposes, including zymology and enology. This paper outlines the current knowledge of actinomycete usage in applied research, focusing on marine isolates and providing direction for future research.
Collapse
Affiliation(s)
| | | | | | | | - William Soto
- Department of Biology, College of William & Mary, Williamsburg, VA 23185, USA; (S.V.J.); (E.M.M.); (S.E.R.); (M.C.C.)
| |
Collapse
|
24
|
Creamer KE, Kudo Y, Moore BS, Jensen PR. Phylogenetic analysis of the salinipostin γ-butyrolactone gene cluster uncovers new potential for bacterial signalling-molecule diversity. Microb Genom 2021; 7:000568. [PMID: 33979276 PMCID: PMC8209734 DOI: 10.1099/mgen.0.000568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/24/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria communicate by small-molecule chemicals that facilitate intra- and inter-species interactions. These extracellular signalling molecules mediate diverse processes including virulence, bioluminescence, biofilm formation, motility and specialized metabolism. The signalling molecules produced by members of the phylum Actinobacteria generally comprise γ-butyrolactones, γ-butenolides and furans. The best-known actinomycete γ-butyrolactone is A-factor, which triggers specialized metabolism and morphological differentiation in the genus Streptomyces . Salinipostins A–K are unique γ-butyrolactone molecules with rare phosphotriester moieties that were recently characterized from the marine actinomycete genus Salinispora . The production of these compounds has been linked to the nine-gene biosynthetic gene cluster (BGC) spt . Critical to salinipostin assembly is the γ-butyrolactone synthase encoded by spt9 . Here, we report the surprising distribution of spt9 homologues across 12 bacterial phyla, the majority of which are not known to produce γ-butyrolactones. Further analyses uncovered a large group of spt -like gene clusters outside of the genus Salinispora , suggesting the production of new salinipostin-like diversity. These gene clusters show evidence of horizontal transfer and location-specific recombination among Salinispora strains. The results suggest that γ-butyrolactone production may be more widespread than previously recognized. The identification of new γ-butyrolactone BGCs is the first step towards understanding the regulatory roles of the encoded small molecules in Actinobacteria.
Collapse
Affiliation(s)
- Kaitlin E. Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Yuta Kudo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Present address: Frontier Research Institute for Interdisciplinary Sciences, Japan Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
25
|
Crüsemann M. Coupling Mass Spectral and Genomic Information to Improve Bacterial Natural Product Discovery Workflows. Mar Drugs 2021; 19:142. [PMID: 33807702 PMCID: PMC7998270 DOI: 10.3390/md19030142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/18/2022] Open
Abstract
Bacterial natural products possess potent bioactivities and high structural diversity and are typically encoded in biosynthetic gene clusters. Traditional natural product discovery approaches rely on UV- and bioassay-guided fractionation and are limited in terms of dereplication. Recent advances in mass spectrometry, sequencing and bioinformatics have led to large-scale accumulation of genomic and mass spectral data that is increasingly used for signature-based or correlation-based mass spectrometry genome mining approaches that enable rapid linking of metabolomic and genomic information to accelerate and rationalize natural product discovery. In this mini-review, these approaches are presented, and discovery examples provided. Finally, future opportunities and challenges for paired omics-based natural products discovery workflows are discussed.
Collapse
Affiliation(s)
- Max Crüsemann
- Institute for Pharmaceutical Biology, University of Bonn, Nussallee 6, 53115 Bonn, Germany
| |
Collapse
|
26
|
Heard SC, Wu G, Winter JM. Antifungal natural products. Curr Opin Biotechnol 2021; 69:232-241. [PMID: 33640596 DOI: 10.1016/j.copbio.2021.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 12/19/2022]
Abstract
Natural products are specialized small molecules produced in Nature and play pivotal roles in many cellular processes. These compounds possess exquisite chemical diversity and represent some of the most important pharmaceutical agents in human health care. With the rampant rise of fungal pathogens that are becoming resistant to nearly all clinically available antibiotics, there is an increased urgency to find new antifungal therapies with novel modes of action. To meet this need, we must be able to quickly identify new bioactive chemical scaffolds within complex natural extracts, determine their mechanisms of action, and generate appreciable yields for preclinical studies. In this review, we will highlight naturally derived antifungal agents of clinical importance as well as those with strong potential as leads in drug development.
Collapse
Affiliation(s)
- Stephanie C Heard
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| | - Guangwei Wu
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, and Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China.
| | - Jaclyn M Winter
- Department of Medicinal Chemistry, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
27
|
Soldatou S, Eldjárn GH, Ramsay A, van der Hooft JJJ, Hughes AH, Rogers S, Duncan KR. Comparative Metabologenomics Analysis of Polar Actinomycetes. Mar Drugs 2021; 19:103. [PMID: 33578887 PMCID: PMC7916644 DOI: 10.3390/md19020103] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
Biosynthetic and chemical datasets are the two major pillars for microbial drug discovery in the omics era. Despite the advancement of analysis tools and platforms for multi-strain metabolomics and genomics, linking these information sources remains a considerable bottleneck in strain prioritisation and natural product discovery. In this study, molecular networking of the 100 metabolite extracts derived from applying the OSMAC approach to 25 Polar bacterial strains, showed growth media specificity and potential chemical novelty was suggested. Moreover, the metabolite extracts were screened for antibacterial activity and promising selective bioactivity against drug-persistent pathogens such as Klebsiella pneumoniae and Acinetobacter baumannii was observed. Genome sequencing data were combined with metabolomics experiments in the recently developed computational approach, NPLinker, which was used to link BGC and molecular features to prioritise strains for further investigation based on biosynthetic and chemical information. Herein, we putatively identified the known metabolites ectoine and chrloramphenicol which, through NPLinker, were linked to their associated BGCs. The metabologenomics approach followed in this study can potentially be applied to any large microbial datasets for accelerating the discovery of new (bioactive) specialised metabolites.
Collapse
Affiliation(s)
- Sylvia Soldatou
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | | | - Andrew Ramsay
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | | | - Alison H. Hughes
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| | - Simon Rogers
- School of Computing Science, University of Glasgow, Glasgow G12 8RZ, UK; (G.H.E.); (A.R.); (S.R.)
| | - Katherine R. Duncan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK; (S.S.); (A.H.H.)
| |
Collapse
|
28
|
The Isolation of a Novel Streptomyces sp. CJ13 from a Traditional Irish Folk Medicine Alkaline Grassland Soil that Inhibits Multiresistant Pathogens and Yeasts. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app11010173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The World Health Organization recently stated that new sources of antibiotics are urgently required to stem the global spread of antibiotic resistance, especially in multiresistant Gram-negative bacteria. Although it was thought that many of the original sources of antibiotics were exhausted, innovative research has revealed promising new sources of antibiotic discovery in traditional medicine associated with Streptomyces. In this work we investigated the potential of a specific limestone grassland soil, associated with Irish folk medicine, as a new source of antimicrobial discovery. Using selective enrichment and isolation techniques on a limestone grassland soil sample obtained from Boho, West Fermanagh, we isolated Streptomyces sp. CJ13. This bacterium inhibited the growth of a broad range of pathogens in vitro including Gram positive Staphylococcus aureus (MRSA 43300) and Gram negative multiresistant Pseudomonas aeruginosa (PA01), as well as the anaerobic bacteria Propionibacterium acnes and the yeast Starmerella bombicola. Genome sequencing and phylogenetic analysis revealed Streptomyces sp. CJ13 to be closely related to an unclassified Streptomyces sp. MJM1172, Streptomyces sp. Mg1 and two species known as Streptomyces sp. ICC1 and ICC4 from a karst region in British Columbia. The closest type species to Streptomyces sp. CJ13 was Streptomyces lavendulae subspecies lavendulae. Analysis of Streptomyces sp. CJ13 whole genome sequence using the secondary metabolite prediction tool antiSMASH revealed similarities to several antibiotic gene synthesis clusters including salinichelin, mediomycin A, weishanmycin, combamide, heat stable antifungal factor and SAL-2242. These results demonstrate the potential of this alkaline grassland soil as a new resource for the discovery of a broad range of antimicrobial compounds including those effective against multiresistant Gram negative bacteria.
Collapse
|
29
|
Kudo Y, Awakawa T, Du YL, Jordan PA, Creamer KE, Jensen PR, Linington RG, Ryan KS, Moore BS. Expansion of Gamma-Butyrolactone Signaling Molecule Biosynthesis to Phosphotriester Natural Products. ACS Chem Biol 2020; 15:3253-3261. [PMID: 33232109 DOI: 10.1021/acschembio.0c00824] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bacterial hormones, such as the iconic gamma-butyrolactone A-factor, are essential signaling molecules that regulate diverse physiological processes, including specialized metabolism. These low molecular weight compounds are common in Streptomyces species and display species-specific structural differences. Recently, unusual gamma-butyrolactone natural products called salinipostins were isolated from the marine actinomycete genus Salinispora based on their antimalarial properties. As the salinipostins possess a rare phosphotriester motif of unknown biosynthetic origin, we set out to explore its construction by the widely conserved 9-gene spt operon in Salinispora species. We show through a series of in vivo and in vitro studies that the spt gene cluster dually encodes the salinipostins and newly identified natural A-factor-like gamma-butyrolactones (Sal-GBLs). Remarkably, homologous biosynthetic gene clusters are widely distributed among many actinomycete genera, including Streptomyces, suggesting the significance of this operon in bacteria.
Collapse
Affiliation(s)
- Yuta Kudo
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki-Aza-Aoba, Aoba-ku, Sendai, Miyagi 980-8572, Japan
| | - Takayoshi Awakawa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yi-Ling Du
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Peter A. Jordan
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Kaitlin E. Creamer
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Paul R. Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
| | - Roger G. Linington
- Department of Chemistry, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Katherine S. Ryan
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Bradley S. Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093, United States
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
30
|
Paulsen SS, Isbrandt T, Kirkegaard M, Buijs Y, Strube ML, Sonnenschein EC, Larsen TO, Gram L. Production of the antimicrobial compound tetrabromopyrrole and the Pseudomonas quinolone system precursor, 2-heptyl-4-quinolone, by a novel marine species Pseudoalteromonas galatheae sp. nov. Sci Rep 2020; 10:21630. [PMID: 33303891 PMCID: PMC7730127 DOI: 10.1038/s41598-020-78439-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 11/25/2020] [Indexed: 01/23/2023] Open
Abstract
Novel antimicrobials are urgently needed due to the rapid spread of antibiotic resistant bacteria. In a genome-wide analysis of Pseudoalteromonas strains, one strain (S4498) was noticed due to its potent antibiotic activity. It did not produce the yellow antimicrobial pigment bromoalterochromide, which was produced by several related type strains with which it shared less than 95% average nucleotide identity. Also, it produced a sweet-smelling volatile not observed from other strains. Mining the genome of strain S4498 using the secondary metabolite prediction tool antiSMASH led to eight biosynthetic gene clusters with no homology to known compounds, and synteny analyses revealed that the yellow pigment bromoalterochromide was likely lost during evolution. Metabolome profiling of strain S4498 using HPLC-HRMS analyses revealed marked differences to the type strains. In particular, a series of quinolones known as pseudanes were identified and verified by NMR. The characteristic odor of the strain was linked to the pseudanes. The highly halogenated compound tetrabromopyrrole was detected as the major antibacterial component by bioassay-guided fractionation. Taken together, the polyphasic analysis demonstrates that strain S4498 belongs to a novel species within the genus Pseudoalteromonas, and we propose the name Pseudoalteromonas galatheae sp. nov. (type strain S4498T = NCIMB 15250T = LMG 31599T).
Collapse
Affiliation(s)
- Sara Skøtt Paulsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Thomas Isbrandt
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Markus Kirkegaard
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Yannick Buijs
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Mikael Lenz Strube
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Thomas O Larsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 221, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
31
|
Genomic analysis suggests Salinispora is a rich source of novel lanthipeptides. Mol Genet Genomics 2020; 295:1529-1535. [PMID: 32894358 DOI: 10.1007/s00438-020-01718-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
Lanthipeptides are a subgroup of ribosomally encoded and post-translationally modified peptides (RiPPs) which frequently possess potent biological activity. Here we provide the first comprehensive bioinformatic analysis of the lanthipeptide-producing capability of the Salinispora genus, a marine actinomycete. One hundred twenty-two Salinispora arenicola, tropica, and pacifica genomic sequences were analyzed for lanthipeptide gene clusters, and the resulting 182 clusters were divided into seven groups based on sequence similarities. Group boundaries were defined based on LanB and LanM sequences with greater than 80% similarity within groups. Of the seven groups, six are predicted to encode class I lanthipeptides while only one group is predicted to encode class II lanthipeptides. Leader and core peptides were predicted for each cluster along with the number of possible lanthionine bridges. Notably, all of the predicted products of these clusters would represent novel lanthipeptide scaffolds. Of the 122 Salinispora genomes analyzed in this study, 92% contained at least one lanthipeptide gene cluster suggesting that Salinispora is a rich, yet untapped, source of lanthipeptides.
Collapse
|
32
|
Román-Ponce B, Millán-Aguiñaga N, Guillen-Matus D, Chase AB, Ginigini JGM, Soapi K, Feussner KD, Jensen PR, Trujillo ME. Six novel species of the obligate marine actinobacterium Salinispora, Salinispora cortesiana sp. nov., Salinispora fenicalii sp. nov., Salinispora goodfellowii sp. nov., Salinispora mooreana sp. nov., Salinispora oceanensis sp. nov. and Salinispora vitiensis sp. nov., and emended description of the genus Salinispora. Int J Syst Evol Microbiol 2020; 70:4668-4682. [PMID: 32701422 DOI: 10.1099/ijsem.0.004330] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ten representative actinobacterial strains isolated from marine sediments collected worldwide were studied to determine their taxonomic status. The strains were previously identified as members of the genus Salinispora and shared >99 % 16S rRNA gene sequence similarity to the three currently recognized Salinispora species. Comparative genomic analyses resulted in the delineation of six new species based on average nucleotide identity and digital DNA-DNA hybridization values below 95 and 70 %, respectively. The species status of the six new groups was supported by a core-genome phylogeny reconstructed from 2106 orthologs detected in 118 publicly available Salinispora genomes. Chemotaxonomic and physiological studies were used to complete the phenotypic characterization of the strains. The fatty acid profiles contained the major components iso-C16 : 0, C15 : 0, iso-17 : 0 and anteiso C17 : 0. Galactose and xylose were common in all whole-sugar patterns but differences were found between the six groups of strains. Polar lipid compositions were also unique for each species. Distinguishable physiological and biochemical characteristics were also recorded. The names proposed are Salinispora cortesiana sp. nov., CNY-202T (=DSM 108615T=CECT 9739T); Salinispora fenicalii sp. nov., CNT-569T (=DSM 108614T=CECT 9740T); Salinispora goodfellowii sp. nov., CNY-666T (=DSM 108616T=CECT 9738T); Salinispora mooreana sp. nov., CNT-150T (=DSM 45549T=CECT 9741T); Salinispora oceanensis sp. nov., CNT-138T (=DSM 45547T=CECT 9742T); and Salinispora vitiensis sp. nov., CNT-148T (=DSM 45548T=CECT 9743T).
Collapse
Affiliation(s)
- Brenda Román-Ponce
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Natalie Millán-Aguiñaga
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, Baja California, Mexico
| | - Dulce Guillen-Matus
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Alexander B Chase
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Joape G M Ginigini
- The University of South Pacific, Faculty of Science, Technology and Environment, Institute of Applied Sciences, Suva, Fiji
| | - Katy Soapi
- The University of South Pacific, Faculty of Science, Technology and Environment, Institute of Applied Sciences, Suva, Fiji
| | - Klaus D Feussner
- The University of South Pacific, Faculty of Science, Technology and Environment, Institute of Applied Sciences, Suva, Fiji
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Martha E Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
33
|
van Bergeijk DA, Terlouw BR, Medema MH, van Wezel GP. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat Rev Microbiol 2020; 18:546-558. [DOI: 10.1038/s41579-020-0379-y] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2020] [Indexed: 01/09/2023]
|
34
|
Blin K, Kim HU, Medema MH, Weber T. Recent development of antiSMASH and other computational approaches to mine secondary metabolite biosynthetic gene clusters. Brief Bioinform 2020; 20:1103-1113. [PMID: 29112695 PMCID: PMC6781578 DOI: 10.1093/bib/bbx146] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/10/2017] [Indexed: 01/06/2023] Open
Abstract
Many drugs are derived from small molecules produced by microorganisms and plants, so-called natural products. Natural products have diverse chemical structures, but the biosynthetic pathways producing those compounds are often organized as biosynthetic gene clusters (BGCs) and follow a highly conserved biosynthetic logic. This allows for the identification of core biosynthetic enzymes using genome mining strategies that are based on the sequence similarity of the involved enzymes/genes. However, mining for a variety of BGCs quickly approaches a complexity level where manual analyses are no longer possible and require the use of automated genome mining pipelines, such as the antiSMASH software. In this review, we discuss the principles underlying the predictions of antiSMASH and other tools and provide practical advice for their application. Furthermore, we discuss important caveats such as rule-based BGC detection, sequence and annotation quality and cluster boundary prediction, which all have to be considered while planning for, performing and analyzing the results of genome mining studies.
Collapse
Affiliation(s)
| | | | | | - Tilmann Weber
- Corresponding author: Tilmann Weber, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark. Tel.: +45 24 89 61 32; E-mail:
| |
Collapse
|
35
|
Koch H, Germscheid N, Freese HM, Noriega-Ortega B, Lücking D, Berger M, Qiu G, Marzinelli EM, Campbell AH, Steinberg PD, Overmann J, Dittmar T, Simon M, Wietz M. Genomic, metabolic and phenotypic variability shapes ecological differentiation and intraspecies interactions of Alteromonas macleodii. Sci Rep 2020; 10:809. [PMID: 31964928 PMCID: PMC6972757 DOI: 10.1038/s41598-020-57526-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 12/23/2019] [Indexed: 01/28/2023] Open
Abstract
Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.
Collapse
Affiliation(s)
- Hanna Koch
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
- Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Nora Germscheid
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Heike M Freese
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Beatriz Noriega-Ortega
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Dominik Lücking
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Martine Berger
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Galaxy Qiu
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Western Sydney University, Hawkesbury, Australia
| | - Ezequiel M Marzinelli
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
- University of Sydney, Camperdown, Australia
| | - Alexandra H Campbell
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- University of Sunshine Coast, Sunshine Coast, Australia
| | - Peter D Steinberg
- Centre for Marine Science and Innovation, University of New South Wales, Kensington, Australia
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- Sydney Institute of Marine Science, Mosman, Australia
| | - Jörg Overmann
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Braunschweig University of Technology, Braunschweig, Germany
| | - Thorsten Dittmar
- ICBM-MPI Bridging Group for Marine Geochemistry, University of Oldenburg, Oldenburg, Germany
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany
| | - Matthias Wietz
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Oldenburg, Germany.
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany.
| |
Collapse
|
36
|
Low ZJ, Ma GL, Tran HT, Zou Y, Xiong J, Pang L, Nuryyeva S, Ye H, Hu JF, Houk KN, Liang ZX. Sungeidines from a Non-canonical Enediyne Biosynthetic Pathway. J Am Chem Soc 2020; 142:1673-1679. [PMID: 31922407 DOI: 10.1021/jacs.9b10086] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report the genome-guided discovery of sungeidines, a class of microbial secondary metabolites with unique structural features. Despite evolutionary relationships with dynemicin-type enediynes, the sungeidines are produced by a biosynthetic gene cluster (BGC) that exhibits distinct differences from known enediyne BGCs. Our studies suggest that the sungeidines are assembled from two octaketide chains that are processed differently than those of the dynemicin-type enediynes. The biosynthesis also involves a unique activating sulfotransferase that promotes a dehydration reaction. The loss of genes, including a putative epoxidase gene, is likely to be the main cause of the divergence of the sungeidine pathway from other canonical enediyne pathways. The findings disclose the surprising evolvability of enediyne pathways and set the stage for characterizing the intriguing enzymatic steps in sungeidine biosynthesis.
Collapse
Affiliation(s)
- Zhen Jie Low
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | - Guang-Lei Ma
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | - Hoa Thi Tran
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | - Yike Zou
- Department of Chemistry & Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Juan Xiong
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore.,School of Pharmacy , Fudan University , Shanghai 200433 , China
| | - Limei Pang
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | - Selbi Nuryyeva
- Department of Chemistry & Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Hong Ye
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| | - Jin-Feng Hu
- School of Pharmacy , Fudan University , Shanghai 200433 , China
| | - K N Houk
- Department of Chemistry & Biochemistry , University of California , Los Angeles , California 90095 , United States
| | - Zhao-Xun Liang
- School of Biological Sciences , Nanyang Technological University , 637551 Singapore
| |
Collapse
|
37
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
38
|
Costa MS, Clark CM, Ómarsdóttir S, Sanchez LM, Murphy BT. Minimizing Taxonomic and Natural Product Redundancy in Microbial Libraries Using MALDI-TOF MS and the Bioinformatics Pipeline IDBac. JOURNAL OF NATURAL PRODUCTS 2019; 82:2167-2173. [PMID: 31335140 PMCID: PMC7197193 DOI: 10.1021/acs.jnatprod.9b00168] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Libraries of microorganisms have been a cornerstone of drug discovery efforts since the mid-1950s, but strain duplication in some libraries has resulted in unwanted natural product redundancy. In the current study, we implemented a workflow that minimizes both the natural product overlap and the total number of bacterial isolates in a library. Using a collection expedition to Iceland as an example, we purified every distinct bacterial colony off isolation plates derived from 86 environmental samples. We employed our mass spectrometry (MS)-based IDBac workflow on these isolates to form groups of taxa based on protein MS fingerprints (3-15 kDa) and further distinguished taxa subgroups based on their degree of overlap within corresponding natural product spectra (0.2-2 kDa). This informed the decision to create a library of 301 isolates spanning 54 genera. This process required only 25 h of data acquisition and 2 h of analysis. In a separate experiment, we reduced the size of an existing library based on the degree of metabolic overlap observed in natural product MS spectra of bacterial colonies (from 833 to 233 isolates, a 72.0% size reduction). Overall, our pipeline allows for a significant reduction in costs associated with library generation and minimizes natural product redundancy entering into downstream biological screening efforts.
Collapse
Affiliation(s)
- Maria S Costa
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Chase M Clark
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Sesselja Ómarsdóttir
- Faculty of Pharmaceutical Sciences , University of Iceland , Hagi, Hofsvallagata 53 , IS-107 Reykjavík , Iceland
| | - Laura M Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| | - Brian T Murphy
- Department of Pharmaceutical Sciences, College of Pharmacy , University of Illinois at Chicago , 833 South Wood Street (MC 781), Room 539 , Chicago , Illinois 60607 , United States
| |
Collapse
|
39
|
Individual Physiological Adaptations Enable Selected Bacterial Taxa To Prevail during Long-Term Incubations. Appl Environ Microbiol 2019; 85:AEM.00825-19. [PMID: 31152013 DOI: 10.1128/aem.00825-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 01/22/2023] Open
Abstract
Enclosure experiments are frequently used to investigate the impact of changing environmental conditions on microbial assemblages. Yet, how the incubation itself challenges complex bacterial communities is thus far unknown. In this study, metaproteomic profiling, 16S rRNA gene analyses, and cell counts were combined to evaluate bacterial communities derived from marine, mesohaline, and oligohaline conditions after long-term batch incubations. Early in the experiment, the three bacterial communities were highly diverse and differed significantly in their compositions. Manipulation of the enclosures with terrigenous dissolved organic carbon resulted in notable differences compared to the control enclosures at this early phase of the experiment. However, after 55 days, bacterial communities in the manipulated and the control enclosures under marine and mesohaline conditions were all dominated by gammaproteobacterium Spongiibacter In the oligohaline enclosures, actinobacterial cluster I of the hgc group (hgc-I) remained abundant in the late phase of the incubation. Metaproteome analyses suggested that the ability to use outer membrane-based internal energy stores, in addition to the previously described grazing resistance, may enable the gammaproteobacterium Spongiibacter to prevail in long-time incubations. Under oligohaline conditions, the utilization of external recalcitrant carbon appeared to be more important (hgc-I). Enclosure experiments with complex natural microbial communities are important tools to investigate the effects of manipulations. However, species-specific properties, such as individual carbon storage strategies, can cause manipulation-independent effects and need to be considered when interpreting results from enclosures.IMPORTANCE In microbial ecology, enclosure studies are often used to investigate the effect of single environmental factors on complex bacterial communities. However, in addition to the manipulation, unintended effects ("bottle effect") may occur due to the enclosure itself. In this study, we analyzed the bacterial communities that originated from three different salinities of the Baltic Sea, comparing their compositions and physiological activities both at the early stage and after 55 days of incubation. Our results suggested that internal carbon storage strategies impact the success of certain bacterial species, independent of the experimental manipulation. Thus, while enclosure experiments remain valid tools in environmental research, microbial community composition shifts must be critically followed. This investigation of the metaproteome during long-term batch enclosures expanded our current understanding of the so-called "bottle effect," which is well known to occur during enclosure experiments.
Collapse
|
40
|
Niu G, Li W. Next-Generation Drug Discovery to Combat Antimicrobial Resistance. Trends Biochem Sci 2019; 44:961-972. [PMID: 31256981 DOI: 10.1016/j.tibs.2019.05.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/16/2022]
Abstract
The widespread emergence of antibiotic-resistant pathogens poses a severe threat to public health. This problem becomes even worse with a coincident decline in the supply of new antibiotics. Conventional bioactivity-guided natural product discovery has failed to meet the urgent need for new antibiotics, largely due to limited resources and high rediscovery rates. Recent advances in cultivation techniques, analytical technologies, and genomics-based approaches have greatly expanded our access to previously underexploited microbial sources. These strategies will enable us to access new reservoirs of microorganisms and unleash their chemical potentials, thus opening new opportunities for the discovery of next-generation drugs to address the growing concerns of antimicrobial resistance.
Collapse
Affiliation(s)
- Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Southwest University, Chongqing 400715, China; State Cultivation Base of Crop Stress Biology for Southern Mountainous Land, Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China.
| | - Wenli Li
- Key Laboratory of Marine Drugs, Ministry of Education of China, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
41
|
Borsetto C, Amos GCA, da Rocha UN, Mitchell AL, Finn RD, Laidi RF, Vallin C, Pearce DA, Newsham KK, Wellington EMH. Microbial community drivers of PK/NRP gene diversity in selected global soils. MICROBIOME 2019; 7:78. [PMID: 31118083 PMCID: PMC6532259 DOI: 10.1186/s40168-019-0692-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND The emergence of antibiotic-resistant pathogens has created an urgent need for novel antimicrobial treatments. Advances in next-generation sequencing have opened new frontiers for discovery programmes for natural products allowing the exploitation of a larger fraction of the microbial community. Polyketide (PK) and non-ribosomal pepetide (NRP) natural products have been reported to be related to compounds with antimicrobial and anticancer activities. We report here a new culture-independent approach to explore bacterial biosynthetic diversity and determine bacterial phyla in the microbial community associated with PK and NRP diversity in selected soils. RESULTS Through amplicon sequencing, we explored the microbial diversity (16S rRNA gene) of 13 soils from Antarctica, Africa, Europe and a Caribbean island and correlated this with the amplicon diversity of the adenylation (A) and ketosynthase (KS) domains within functional genes coding for non-ribosomal peptide synthetases (NRPSs) and polyketide synthases (PKSs), which are involved in the production of NRP and PK, respectively. Mantel and Procrustes correlation analyses with microbial taxonomic data identified not only the well-studied phyla Actinobacteria and Proteobacteria, but also, interestingly, the less biotechnologically exploited phyla Verrucomicrobia and Bacteroidetes, as potential sources harbouring diverse A and KS domains. Some soils, notably that from Antarctica, provided evidence of endemic diversity, whilst others, such as those from Europe, clustered together. In particular, the majority of the domain reads from Antarctica remained unmatched to known sequences suggesting they could encode enzymes for potentially novel PK and NRP. CONCLUSIONS The approach presented here highlights potential sources of metabolic novelty in the environment which will be a useful precursor to metagenomic biosynthetic gene cluster mining for PKs and NRPs which could provide leads for new antimicrobial metabolites.
Collapse
Affiliation(s)
- Chiara Borsetto
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Gregory C. A. Amos
- School of Life Sciences, University of Warwick, Coventry, UK
- Present addresses: G.C.A.A National Institute for Biological Standards and Control (NIBSC), Potters Bar, UK
| | - Ulisses Nunes da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Alex L. Mitchell
- EMBL-EBI European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Robert D. Finn
- EMBL-EBI European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | | | - David A. Pearce
- Applied Sciences, Faculty of Health and Life Sciences, Northumbria University at Newcastle, Ellison Building, Northumberland Road, Newcastle, NE1 8ST UK
- Natural Environment Research Council, British Antarctic Survey, Cambridge, UK
| | - Kevin K. Newsham
- Natural Environment Research Council, British Antarctic Survey, Cambridge, UK
| | | |
Collapse
|
42
|
Tuttle RN, Demko AM, Patin NV, Kapono CA, Donia MS, Dorrestein P, Jensen PR. Detection of Natural Products and Their Producers in Ocean Sediments. Appl Environ Microbiol 2019; 85:e02830-18. [PMID: 30737349 PMCID: PMC6450032 DOI: 10.1128/aem.02830-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 01/30/2019] [Indexed: 11/20/2022] Open
Abstract
Thousands of natural products have been identified from cultured microorganisms, yet evidence of their production in the environment has proven elusive. Technological advances in mass spectrometry, combined with public databases, now make it possible to address this disparity by detecting compounds directly from environmental samples. Here, we used adsorbent resins, tandem mass spectrometry, and next-generation sequencing to assess the metabolome of marine sediments and its relationship to bacterial community structure. We identified natural products previously reported from cultured bacteria, providing evidence they are produced in situ, and compounds of anthropogenic origin, suggesting this approach can be used as an indicator of environmental impact. The bacterial metabolite staurosporine was quantified and shown to reach physiologically relevant concentrations, indicating that it may influence sediment community structure. Staurosporine concentrations were correlated with the relative abundance of the staurosporine-producing bacterial genus Salinispora and production confirmed in strains cultured from the same location, providing a link between compound and candidate producer. Metagenomic analyses revealed numerous biosynthetic gene clusters related to indolocarbazole biosynthesis, providing evidence for noncanonical sources of staurosporine and a path forward to assess the relationships between natural products and the organisms that produce them. Untargeted environmental metabolomics circumvents the need for laboratory cultivation and represents a promising approach to understanding the functional roles of natural products in shaping microbial community structure in marine sediments.IMPORTANCE Natural products are readily isolated from cultured bacteria and exploited for useful purposes, including drug discovery. However, these compounds are rarely detected in the environments from which the bacteria are obtained, thus limiting our understanding of their ecological significance. Here, we used environmental metabolomics to directly assess chemical diversity in marine sediments. We identified numerous metabolites and, in one case, isolated strains of bacteria capable of producing one of the compounds detected. Coupling environmental metabolomics with community and metagenomic analyses provides opportunities to link compounds and producers and begin to assess the complex interactions mediated by specialized metabolites in marine sediments.
Collapse
Affiliation(s)
- Robert N Tuttle
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Alyssa M Demko
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Nastassia V Patin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Clifford A Kapono
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
| | - Mohamed S Donia
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Pieter Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
43
|
Park CJ, Andam CP. Within-Species Genomic Variation and Variable Patterns of Recombination in the Tetracycline Producer Streptomyces rimosus. Front Microbiol 2019; 10:552. [PMID: 30949149 PMCID: PMC6437091 DOI: 10.3389/fmicb.2019.00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Streptomyces rimosus is best known as the primary source of the tetracycline class of antibiotics, most notably oxytetracycline, which have been widely used against many gram-positive and gram-negative pathogens and protozoan parasites. However, despite the medical and agricultural importance of S. rimosus, little is known of its evolutionary history and genome dynamics. In this study, we aim to elucidate the pan-genome characteristics and phylogenetic relationships of 32 S. rimosus genomes. The S. rimosus pan-genome contains more than 22,000 orthologous gene clusters, and approximately 8.8% of these genes constitutes the core genome. A large part of the accessory genome is composed of 9,646 strain-specific genes. S. rimosus exhibits an open pan-genome (decay parameter α = 0.83) and high gene diversity between strains (genomic fluidity φ = 0.12). We also observed strain-level variation in the distribution and abundance of biosynthetic gene clusters (BGCs) and that each individual S. rimosus genome has a unique repertoire of BGCs. Lastly, we observed variation in recombination, with some strains donating or receiving DNA more often than others, strains that tend to frequently recombine with specific partners, genes that often experience recombination more than others, and variable sizes of recombined DNA sequences. We conclude that the high levels of inter-strain genomic variation in S. rimosus is partly explained by differences in recombination among strains. These results have important implications on current efforts for natural drug discovery, the ecological role of strain-level variation in microbial populations, and addressing the fundamental question of why microbes have pan-genomes.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Cheryl P Andam
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
44
|
Busch J, Agarwal V, Schorn M, Machado H, Moore BS, Rouse GW, Gram L, Jensen PR. Diversity and distribution of the bmp gene cluster and its Polybrominated products in the genus Pseudoalteromonas. Environ Microbiol 2019; 21:1575-1585. [PMID: 30652406 DOI: 10.1111/1462-2920.14532] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 12/18/2022]
Abstract
The production of pentabromopseudilin and related brominated compounds by Pseudoalteromonas spp. has recently been linked to the bmp biosynthetic gene cluster. This study explored the distribution and evolutionary history of this gene cluster in the genus Pseudoalteromonas. A phylogeny of the genus revealed numerous clades that do not contain type strains, suggesting considerable species level diversity has yet to be described. Comparative genomics revealed four distinct versions of the gene cluster distributed among 19 of the 101 Pseudoalteromonas genomes examined. These were largely localized to the least inclusive clades containing the Pseudoalteromonas luteoviolacea and Pseudoalteromonas phenolica type strains and show clear evidence of gene and gene cluster loss in certain lineages. Bmp gene phylogeny is largely congruent with the Pseudoalteromonas species phylogeny, suggesting vertical inheritance within the genus. However, the gene cluster is found in three different genomic environments suggesting either chromosomal rearrangement or multiple acquisition events. Bmp conservation within certain lineages suggests the encoded products are highly relevant to the ecology of these bacteria.
Collapse
Affiliation(s)
- Julia Busch
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Vinayak Agarwal
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Michelle Schorn
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Henrique Machado
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs. Lyngby, Denmark
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Greg W Rouse
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads bldg. 221, DK-2800, Kgs. Lyngby, Denmark
| | - Paul R Jensen
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA.,Scripps Center for Oceans and Human Health, Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
45
|
Özakin S, Ince E. Genome and metabolome mining of marine obligate Salinisporsatrains to discover new natural products. ACTA ACUST UNITED AC 2019; 43:28-36. [PMID: 30930633 PMCID: PMC6426641 DOI: 10.3906/biy-1807-136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Marine microorganisms are receiving more attention as a promising potential source of new natural products. In the present study, we performed genomic and metabolomic analyses to explore the metabolic potential of the obligate marine actinomycete genus Salinispora. The genomes of thirty Salinispora strains were prospected in search of biosynthetic gene clusters including polyketide synthase (PKS), nonribosomal peptide synthetase (NPRS), terpene, indole, lantibiotics, and siderophores. We determined considerable diversity of natural product biosynthetic gene clusters in their genome. There were a total of 1428 putative gene clusters involved in the biosynthesis of various bioactive natural products. Furthermore, 1509 ketosynthase (KS) and condensation (C) domains were detected by using NapDoS belonging to PKS and NRPS genes, respectively. Metabolic profiling was performed by a nontargeted LC-MS/MS approach combined with spectral networking using Global Natural Product Social Molecular Networking (GNPS). Dereplication and tentative identification of natural products were evaluated for common chemical properties and their associated pathways. Significant bioactive natural products such as lomaiviticin C, 7-OH-staurosporine, staurosporine, and cyanosporaside B were determined. More importantly, an unknown glycosylated compound associated with an NRPS/PKS-I hybrid gene cluster in Salinispora pacifica CNY703 was established through chemical and genomic analyses.
Collapse
Affiliation(s)
- Süleyman Özakin
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego , La Jolla, California , USA.,Department of Biology, Faculty of Science, Dicle University , Diyarbakır , Turkey
| | - Ebru Ince
- Department of Biology, Faculty of Science, Dicle University , Diyarbakır , Turkey
| |
Collapse
|
46
|
Tawfike A, Attia EZ, Desoukey SY, Hajjar D, Makki AA, Schupp PJ, Edrada-Ebel R, Abdelmohsen UR. New bioactive metabolites from the elicited marine sponge-derived bacterium Actinokineospora spheciospongiae sp. nov. AMB Express 2019; 9:12. [PMID: 30680548 PMCID: PMC6345950 DOI: 10.1186/s13568-018-0730-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/31/2018] [Indexed: 12/15/2022] Open
Abstract
Several approaches have been dedicated to activate the cryptic gene clusters in the genomes of actinomycetes for the targeted discovery of new fascinating biomedical lead structures. In the current study, N-acetylglucosamine was used to maximize the chemical diversity of sponge-derived actinomycete Actinokineospora spheciospongiae sp. nov. HR-ESI-MS was employed for dereplication study and orthogonal partial least square-discriminant analysis was applied to evaluate the HR-ESI-MS data of the different fractions. As a result, two new fridamycins H (1) and I (2), along with three known compounds actinosporin C (3), D (4), and G (5) were isolated from the solid culture of sponge-associated actinomycete Actinokineospora spheciospongiae sp. nov., elicited with N-acetylglucosamine. Characterization of the isolated compounds was pursued using mass spectrometry and NMR spectral data. Fridamycin H (1) exhibited significant growth inhibitory activity towards Trypanosoma brucei strain TC221. These results highlight the potential of elicitation in sponge-associated actinomycetes as an effective strategy for the discovery of new anti-infective natural products.
Collapse
|
47
|
Adamek M, Alanjary M, Ziemert N. Applied evolution: phylogeny-based approaches in natural products research. Nat Prod Rep 2019; 36:1295-1312. [DOI: 10.1039/c9np00027e] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Here we highlight how phylogenetic analyses can be used to facilitate natural product discovery and structure elucidation.
Collapse
Affiliation(s)
- Martina Adamek
- Applied Natural Products Genome Mining
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen (IMIT)
- University of Tuebingen
- 72076 Tuebingen
- Germany
| | | | - Nadine Ziemert
- Applied Natural Products Genome Mining
- Interfaculty Institute of Microbiology and Infection Medicine Tuebingen (IMIT)
- University of Tuebingen
- 72076 Tuebingen
- Germany
| |
Collapse
|
48
|
Bauermeister A, Velasco-Alzate K, Dias T, Macedo H, Ferreira EG, Jimenez PC, Lotufo TMC, Lopes NP, Gaudêncio SP, Costa-Lotufo LV. Metabolomic Fingerprinting of Salinispora From Atlantic Oceanic Islands. Front Microbiol 2018; 9:3021. [PMID: 30619120 PMCID: PMC6297358 DOI: 10.3389/fmicb.2018.03021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 11/22/2018] [Indexed: 11/13/2022] Open
Abstract
Salinispora (Micromonosporaceae) is an obligate marine bacterium genus consisting of three species that share over 99% 16S rRNA identity. The genome and biosynthetic pathways of the members of this genus have been widely investigated due to their production of species-specific metabolites. However, despite the species’ high genetic similarity, site-specific secondary metabolic gene clusters have been found in Salinispora strains collected at different locations. Therefore, exploring the metabolic expression of Salinispora recovered from different sites may furnish insights into their environmental adaptation or their chemical communication and, further, may lead to the discovery of new natural products. We describe the first occurrence of Salinispora strains in sediments from the Saint Peter and Saint Paul Archipelago (a collection of islets in Brazil) in the Atlantic Ocean, and we investigate the metabolic profiles of these strains by employing mass-spectrometry-based metabolomic approaches, including molecular networking from the Global Natural Products Social Molecular Networking platform. Furthermore, we analyze data from Salinispora strains recovered from sediments from the Madeira Archipelago (Portugal, Macaronesia) in order to provide a wider metabolomic investigation of Salinispora strains from the Atlantic Oceanic islands. Overall, our study evidences a broader geographic influence on the secondary metabolism of Salinispora than was previously proposed. Still, some biosynthetic gene clusters, such as those corresponding to typical chemical signatures of S. arenicola, like saliniketals and rifamycins, are highly conserved among the assessed strains.
Collapse
Affiliation(s)
- Anelize Bauermeister
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Karen Velasco-Alzate
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Tiago Dias
- UCIBIO-REQUIMTE, Departamento de Química, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Helena Macedo
- UCIBIO-REQUIMTE, Departamento de Química, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Elthon G Ferreira
- Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Paula C Jimenez
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil.,Departamento de Ciências do Mar, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tito M C Lotufo
- Instituto Oceanográfico, Universidade de São Paulo, São Paulo, Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisa em Produtos Naturais e Sintéticos (NPPNS), Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Susana P Gaudêncio
- UCIBIO-REQUIMTE, Departamento de Química, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal.,UCIBIO-REQUIMTE, Departamento de Ciências da Vida, Laboratório de Biotecnologia Azul e Biomedicina, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Letícia V Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Zhang JJ, Moore BS, Tang X. Engineering Salinispora tropica for heterologous expression of natural product biosynthetic gene clusters. Appl Microbiol Biotechnol 2018; 102:8437-8446. [PMID: 30105571 DOI: 10.1007/s00253-018-9283-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/25/2018] [Accepted: 07/29/2018] [Indexed: 01/06/2023]
Abstract
The marine actinomycete genus Salinispora is a remarkably prolific source of structurally diverse and biologically active secondary metabolites. Herein, we select the model organism Salinispora tropica CNB-440 for development as a heterologous host for the expression of biosynthetic gene clusters (BGCs) to complement well-established Streptomyces host strains. In order to create an integratable host with a clean background of secondary metabolism, we replaced three genes (salA-C) essential for salinosporamide biosynthesis with a cassette containing the Streptomyces coelicolor ΦC31 phage attachment site attB to generate the mutant S. tropica CNB-4401 via double-crossover recombination. This mutagenesis not only knocks-in the attachment site attB in the genome of S. tropica CNB-440 but also abolishes production of the salinosporamides, thereby simplifying the strain's chemical background. We validated this new heterologous host with the successful integration and expression of the thiolactomycin BGC that we recently identified in several S. pacifica strains. When compared to the extensively engineered superhost S. coelicolor M1152, the production of thiolactomycins from S. tropica CNB-4401 was approximately 3-fold higher. To the best of our knowledge, this is the first example of using a marine actinomycete as a heterologous host for natural product BGC expression. The established heterologous host may provide a useful platform to accelerate the discovery of novel natural products and engineer biosynthetic pathways.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, CA, USA. .,Genomic Medicine, J. Craig Venter Institute, La Jolla, CA, USA.
| |
Collapse
|
50
|
Rigali S, Anderssen S, Naômé A, van Wezel GP. Cracking the regulatory code of biosynthetic gene clusters as a strategy for natural product discovery. Biochem Pharmacol 2018; 153:24-34. [DOI: 10.1016/j.bcp.2018.01.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/03/2018] [Indexed: 12/19/2022]
|