1
|
Ullah N, Suchanta N, Pimpitak U, Santanirand P, Am-In N, Chaichanawongsaroj N. Validation of Recombinase Polymerase Amplification with In-House Lateral Flow Assay for mcr-1 Gene Detection of Colistin Resistant Escherichia coli Isolates. Antibiotics (Basel) 2024; 13:984. [PMID: 39452250 PMCID: PMC11505259 DOI: 10.3390/antibiotics13100984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES The emergence of the mobilized colistin resistance 1 (mcr-1) gene, which causes colistin resistance, is a serious concern in animal husbandry, particularly in pigs. Although antibiotic regulations in many countries have prohibited the use of colistin in livestock, the persistence and dissemination of this plasmid-mediated gene require effective and rapid monitoring. Therefore, a rapid, sensitive, and specific method combining recombinase polymerase amplification (RPA) with an in-house lateral flow assay (LFA) for the mcr-1 gene detection was developed. METHODS The colistin agar test and broth microdilution were employed to screen 152 E. coli isolates from pig fecal samples of five antibiotic-used farms. The established RPA-in-house LFA was validated with PCR for mcr-1 gene detection. RESULTS The RPA-in-house LFA was completed within 35 min (20 min of amplification and 5-15 min on LFA detection) at 37 °C. The sensitivity, specificity, and accuracy were entirely 100% in concordance with PCR results. No cross-reactivity was detected with seven common pathogenic bacteria or other mcr gene variants. CONCLUSIONS Therefore, the in-house RPA-LFA serves as a point-of-care testing tool that is rapid, simple, and portable, facilitating effective surveillance of colistin resistance in both veterinary and clinical settings, thereby enhancing health outcomes.
Collapse
Affiliation(s)
- Naeem Ullah
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (N.U.); (N.S.)
| | - Nutchaba Suchanta
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (N.U.); (N.S.)
| | - Umaporn Pimpitak
- Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Pitak Santanirand
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand;
| | - Nutthee Am-In
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Nuntaree Chaichanawongsaroj
- Center of Excellence for Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (N.U.); (N.S.)
| |
Collapse
|
2
|
Liu M, Wu J, Zhao J, Xi Y, Jin Y, Yang H, Chen S, Long J, Duan G. Global epidemiology and genetic diversity of mcr-positive Klebsiella pneumoniae: A systematic review and genomic analysis. ENVIRONMENTAL RESEARCH 2024; 259:119516. [PMID: 38950813 DOI: 10.1016/j.envres.2024.119516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/03/2024]
Abstract
The rapid increase of mcr-positive Klebsiella pneumoniae (K. pneumoniae) has received considerable attention and poses a major public health concern. Here, we systematically analyzed the global distribution of mcr-positive K. pneumoniae isolates based on published articles as well as publicly available genomes. Combining strain information from 78 articles and 673 K. pneumoniae genomes, a total of 1000 mcr-positive K. pneumoniae isolates were identified. We found that mcr-positive K. pneumoniae has disseminated widely worldwide, especially in Asia, with a higher diversity of sequence types (STs). These isolates were disseminated in 57 countries and were associated with 12 different hosts. Most of the isolates were found in China and were isolated from human sources. Moreover, MLST analysis showed that ST15 and ST11 accounted for the majority of mcr-positive K. pneumoniae, which deserve sustained attention in further surveillance programs. mcr-1 and mcr-9 were the dominant mcr variants in mcr-positive K. pneumoniae. Furthermore, a Genome-wide association study (GWAS) demonstrated that mcr-1- and mcr-9-producing genomes exhibited different antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs), thereby indicating a distinct evolutionary path. Notably, the phylogenetic analysis suggested that certain mcr-positive K. pneumoniae genomes from various geographical areas and hosts harbored a high degree of genetic similarities (<20 SNPs), suggesting frequent cross-region and cross-host clonal transmission. Overall, our results emphasize the significance of monitoring and exploring the transmission and evolution of mcr-positive K. pneumoniae in the context of "One health".
Collapse
Affiliation(s)
- Mengyue Liu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jie Wu
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jiaxue Zhao
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanyan Xi
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Yuefei Jin
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Haiyan Yang
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Shuaiyin Chen
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| | - Jinzhao Long
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China.
| | - Guangcai Duan
- Department of Epidemiology, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Bakleh MZ, Kohailan M, Marwan M, Alhaj Sulaiman A. A Systematic Review and Comprehensive Analysis of mcr Gene Prevalence in Bacterial Isolates in Arab Countries. Antibiotics (Basel) 2024; 13:958. [PMID: 39452224 PMCID: PMC11505126 DOI: 10.3390/antibiotics13100958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND The resurgence of colistin has become critical in combating multidrug-resistant Gram-negative bacteria. However, the emergence of mobilized colistin resistance (mcr) genes presents a crucial global challenge, particularly in the Arab world, which includes regions with unique conditions and ongoing conflicts in some parts. METHODS To address this issue, a systematic review was conducted using multiple databases, including Cochrane, PubMed, Scopus, Web of Science, and Arab World Research Source. RESULTS A total of 153 studies were included, revealing substantial heterogeneity in the prevalence of mcr genes across 15 Arab countries, with notable findings indicating that Egypt and Lebanon reported the highest number of cases. The analysis indicated that the most prevalent sequence types were ST10, ST101, and ST1011, all of which are Escherichia coli strains linked to significant levels of colistin resistance and multiple antimicrobial resistance profiles. CONCLUSIONS By analyzing the diverse findings from different Arab countries, this review lays a critical foundation for future research and highlights the necessity for enhanced surveillance and targeted interventions to address the looming threat of colistin resistance in the region. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42024584379.
Collapse
Affiliation(s)
- Mouayad Zuheir Bakleh
- Division of Genomics and Precision Medicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Muhammad Kohailan
- Qatar Precision Health Institute, Qatar Foundation, Doha P. O. Box 5825, Qatar
| | - Muhammad Marwan
- Division of Biopsychology and Neuroscience, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Abdallah Alhaj Sulaiman
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha P.O. Box 34110, Qatar
| |
Collapse
|
4
|
Chen HX, Chen FJ, Zhou QJ, Shang SL, Tang B, Xu ZJ, Duan LJ, Jin JL, Xu GZ, Yan MC, Chen J. Two colistin resistance-producing Aeromonas strains, isolated from coastal waters in Zhejiang, China: characteristics, multi-drug resistance and pathogenicity. Front Microbiol 2024; 15:1401802. [PMID: 39144207 PMCID: PMC11322120 DOI: 10.3389/fmicb.2024.1401802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024] Open
Abstract
Introduction Aeromonas spp. are ubiquitous inhabitants of ecosystems, and many species are opportunistically pathogenic to humans and animals. Multidrug-resistant (MDR) Aeromonas species have been widely detected in hospitals, urban rivers, livestock, and aquatic animals. Results In this study, we identified two Aeromonas isolates, namely Aeromonas veronii 0728Q8Av and Aeromonas caviae 1029Y16Ac, from coastal waters in Zhejiang, China. Both isolates exhibited typical biochemical characteristics and conferred MDR to 11 kinds of antibiotics, remaining susceptible to ceftazidime. Whole-genome sequencing revealed that both isolates harbored multiple antibiotic resistance genes (ARGs) and several mobile genetic elements (MGEs) on the chromosomes, each containing a resistance genomic island (GI), a typical class 1 integron, a transposon, and various insertion sequences (ISs). Most ARGs were situated within the multiple resistance GI, which contained a class 1 integron and a transposon in both Aeromonas isolates. Furthermore, a chromosomal mcr-3.16 gene was identified in A. veronii 0728Q8Av, while a chromosomal mcr-3.3 was found in A. caviae 1029Y16Ac. Both mcr-3 variants were not located within but were distanced from the multidrug resistance GI on the chromosome, flanking by multiple ISs. In addition, a mcr-3-like was found adjacent to mcr-3.16 to form a tandem mcr-3.16-mcr-3-like-dgkA structure; yet, Escherichia coli carrying the recombinants of mcr-3-like did not exhibit resistance to colistin. And an incomplete mcr-3-like was found adjacent to mcr-3.3 in A. caviae 1029Y16Ac, suggesting the possibility that mcr-3 variants originated from Aeromonas species. In vivo bacterial pathogenicity test indicated that A. veronii 0728Q8Av exhibited moderate pathogenicity towards infected ayu, while A. caviae 1029Y16Ac was non-virulent. Discussion Thus, both Aeromonas species deserve further attention regarding their antimicrobial resistance and pathogenicity.
Collapse
Affiliation(s)
- Hong-Xian Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Fang-Jie Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Qian-Jin Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| | - Shi-Lin Shang
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Biao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhong-Jie Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Li-Jun Duan
- School of Marine Sciences, Ningbo University, Ningbo, China
- Ningbo Haishu District Animal Husbandry and Veterinary Medicine Technical Management Service Station, Ningbo, China
| | - Jing-Lei Jin
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Gui-Zong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
| | - Mao-Cang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-Resource, Zhejiang Mariculture Research Institute, Wenzhou, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, China
- School of Marine Sciences, Ningbo University, Ningbo, China
- Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
5
|
Sarker S, Neeloy RM, Habib MB, Urmi UL, Al Asad M, Mosaddek ASM, Khan MRK, Nahar S, Godman B, Islam S. Mobile Colistin-Resistant Genes mcr-1, mcr-2, and mcr-3 Identified in Diarrheal Pathogens among Infants, Children, and Adults in Bangladesh: Implications for the Future. Antibiotics (Basel) 2024; 13:534. [PMID: 38927200 PMCID: PMC11200974 DOI: 10.3390/antibiotics13060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Colistin is a last-resort antimicrobial for treating multidrug-resistant Gram-negative bacteria. Phenotypic colistin resistance is highly associated with plasmid-mediated mobile colistin resistance (mcr) genes. mcr-bearing Enterobacteriaceae have been detected in many countries, with the emergence of colistin-resistant pathogens a global concern. This study assessed the distribution of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes with phenotypic colistin resistance in isolates from diarrheal infants and children in Bangladesh. Bacteria were identified using the API-20E biochemical panel and 16s rDNA gene sequencing. Polymerase chain reactions detected mcr gene variants in the isolates. Their susceptibilities to colistin were determined by agar dilution and E-test by minimal inhibitory concentration (MIC) measurements. Over 31.6% (71/225) of isolates showed colistin resistance according to agar dilution assessment (MIC > 2 μg/mL). Overall, 15.5% of isolates carried mcr genes (7, mcr-1; 17, mcr-2; 13, and mcr-3, with co-occurrence occurring in two isolates). Clinical breakout MIC values (≥4 μg/mL) were associated with 91.3% of mcr-positive isolates. The mcr-positive pathogens included twenty Escherichia spp., five Shigella flexneri, five Citrobacter spp., two Klebsiella pneumoniae, and three Pseudomonas parafulva. The mcr-genes appeared to be significantly associated with phenotypic colistin resistance phenomena (p = 0.000), with 100% colistin-resistant isolates showing MDR phenomena. The age and sex of patients showed no significant association with detected mcr variants. Overall, mcr-associated colistin-resistant bacteria have emerged in Bangladesh, which warrants further research to determine their spread and instigate activities to reduce resistance.
Collapse
Affiliation(s)
- Shafiuzzaman Sarker
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Reeashat Muhit Neeloy
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Marnusa Binte Habib
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Umme Laila Urmi
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mamun Al Asad
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | | | | | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Liu JH, Liu YY, Shen YB, Yang J, Walsh TR, Wang Y, Shen J. Plasmid-mediated colistin-resistance genes: mcr. Trends Microbiol 2024; 32:365-378. [PMID: 38008597 DOI: 10.1016/j.tim.2023.10.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/14/2023] [Accepted: 10/16/2023] [Indexed: 11/28/2023]
Abstract
Colistin is regarded as a last-line drug against serious infections caused by multidrug-resistant Gram-negative bacterial pathogens. Therefore, the emergence of mobile colistin resistance (mcr) genes has attracted global concern and led to policy changes for the use of colistin in food animals across many countries. Currently, the distribution, function, mechanism of action, transmission vehicles, origin of mcr, and new treatment strategies against MCR-producing pathogens have been extensively studied. Here we review the prevalence, structure and function of mcr, the fitness cost and persistence of mcr-carrying plasmids, the impact of MCR on host immune response, as well as the control strategies to combat mcr-mediated colistin resistance.
Collapse
Affiliation(s)
- Jian-Hua Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China.
| | - Yi-Yun Liu
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | - Ying-Bo Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- State Key Laboratory for Animal Disease Control and Prevention, Guangdong Laboratory for Lingnan Modern Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Zoonosis of Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, Guangzhou 510642, China
| | | | - Yang Wang
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Gharaibeh MH, Al Sheyab SY, Malkawi IM, Al Qudsi FR. Phenotypic and genotypic characterization of Escherichia coli isolated from the chicken liver in relation to slaughterhouse conditions. Heliyon 2024; 10:e27759. [PMID: 38515697 PMCID: PMC10955320 DOI: 10.1016/j.heliyon.2024.e27759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/04/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024] Open
Abstract
Avian pathogenic Escherichia coli (APEC) has been identified as a sub-group of extraintestinal pathogenic E. coli (ExPEC). Recent studies indicate APEC as a potential foodborne zoonotic pathogen and a source or reservoir of human extraintestinal infections. The slaughtering and processing of poultry in low-income countries such as Jordan occurs in two distinct ways: in informal facilities known as Natafat and in formal slaughterhouses. This study compared E. coli phenotypes and genotypes according to slaughtering conditions (formal slaughterhouses vs. informal slaughter facilities). Therefore, liver samples (n = 242) were collected from formal (n = 121) and informal slaughter facilities (n = 121). Results revealed a high prevalence (94.2%) of E. coli among all isolates, with 59 (17 formal and 42 informal) isolates considered avian pathogenic E. coli (APEC) based on the virulence-associated genes. The prevalence of resistance among isolates was relatively high, reaching up to 99% against penicillin and 97% against nalidixic acid. However, the prevalence of resistance was the lowest (1.3%) against both meropenem and imipenem. Based on the MIC test findings, colistin resistance was 46.9% (107/228). The mcr -1 gene prevalence was 51.4% (55/107), of which 17.1 % were from formal plants (6/36) and 68.1% from informal facilities (49/72). Interestingly, only one isolate (0.9%) expressed mcr-10. Escherichia coli O157:H7 and associated virulence genes were found more in informal (n = 15 genes) than in formal slaughterhouses (n = 8). Phylogroups B1, C, and A were the most frequent in 228 E. coli isolates, while G, B2, and clade were the least frequent. In conclusion, these findings highlight the importance of implementing biosecurity measures in slaughterhouses to reduce antibiotic-resistant E. coli spread. Furthermore, this study provides valuable insights into the effects of wet market (Natafat) slaughter conditions on increasing bacterial resistance and virulence.
Collapse
Affiliation(s)
- Mohammad H. Gharaibeh
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Sahba Y. Al Sheyab
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Ismail M. Malkawi
- Department of Basic Veterinary Medical Science, Faculty of Veterinary Medicine, Jordan University of Science and Technology, P. O. Box 3030, Irbid, 22110, Jordan
| | - Farah R. Al Qudsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, 21121, Jordan
| |
Collapse
|
8
|
Lencina FA, Bertona M, Stegmayer MA, Olivero CR, Frizzo LS, Zimmermann JA, Signorini ML, Soto LP, Zbrun MV. Prevalence of colistin-resistant Escherichia coli in foods and food-producing animals through the food chain: A worldwide systematic review and meta-analysis. Heliyon 2024; 10:e26579. [PMID: 38434325 PMCID: PMC10904249 DOI: 10.1016/j.heliyon.2024.e26579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/31/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The purpose of this systematic review and meta-analysis was to summarize the available scientific evidence on the prevalence of colistin-resistant Escherichia coli strains isolated from foods and food-producing animals, the mobile colistin-resistant genes involved, and the impact of the associated variables. A systematic review was carried out in databases according to selection criteria and search strategies established a priori. Random-effect meta-analysis models were fitted to estimate the prevalence of colistin-resistant Escherichia coli and to identify the factors associated with the outcome. In general, 4.79% (95% CI: 3.98%-5.76%) of the food and food-producing animal samples harbored colistin-resistant Escherichia coli (total number of colistin-resistant Escherichia coli/total number of samples), while 5.70% (95% confidence interval: 4.97%-6.52%) of the E. coli strains isolated from food and food-producing animal samples harbored colistin resistance (total number of colistin-resistant Escherichia coli/total number of Escherichia coli isolated samples). The prevalence of colistin-resistant Escherichia coli increased over time (P < 0.001). On the other hand, 65.30% (95% confidence interval: 57.77%-72.14%) of colistin resistance was mediated by the mobile colistin resistance-1 gene. The mobile colistin resistance-1 gene prevalence did not show increases over time (P = 0.640). According to the findings, other allelic variants (mobile colistin resistance 2-10 genes) seem to have less impact on prevalence. A higher prevalence of colistin resistance was estimated in developing countries (P < 0.001), especially in samples (feces and intestinal content, meat, and viscera) derived from poultry and pigs (P < 0.001). The mobile colistin resistance-1 gene showed a global distribution with a high prevalence in most of the regions analyzed (>50%). The prevalence of colistin-resistant Escherichia coli and the mobile colistin resistance-1 gene has a strong impact on the entire food chain. The high prevalence estimated in the retail market represents a potential risk for consumers' health. There is an urgent need to implement based-evidence risk management measures under the "One Health" approach to guarantee public health, food safety, and a sustainable future.
Collapse
Affiliation(s)
- Florencia Aylen Lencina
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Matías Bertona
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - María Angeles Stegmayer
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Carolina Raquel Olivero
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Laureano Sebastián Frizzo
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - Jorge Alberto Zimmermann
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
| | - Marcelo Lisandro Signorini
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| | - Lorena Paola Soto
- Laboratory of Food Analysis, Institute of Veterinary Science (ICiVet Litoral), National University of the Litoral, National Council of Scientific and Technical Research (UNL/CONICET), Esperanza, Argentina
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
| | - María Virginia Zbrun
- Department of Public Health, Faculty of Veterinary Science – Litoral National University, Esperanza, Argentina
- Instituto de Investigación de la Cadena Láctea (INTA-CONICET), Estación Experimental Agropecuaria Rafaela, Ruta 34 Km 227, Rafaela, Santa Fe, Argentina
| |
Collapse
|
9
|
Manaia CM, Aga DS, Cytryn E, Gaze WH, Graham DW, Guo J, Leonard AFC, Li L, Murray AK, Nunes OC, Rodriguez-Mozaz S, Topp E, Zhang T. The Complex Interplay Between Antibiotic Resistance and Pharmaceutical and Personal Care Products in the Environment. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:637-652. [PMID: 36582150 DOI: 10.1002/etc.5555] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/29/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are important environmental contaminants. Nonetheless, what drives the evolution, spread, and transmission of antibiotic resistance dissemination is still poorly understood. The abundance of ARB and ARGs is often elevated in human-impacted areas, especially in environments receiving fecal wastes, or in the presence of complex mixtures of chemical contaminants, such as pharmaceuticals and personal care products. Self-replication, mutation, horizontal gene transfer, and adaptation to different environmental conditions contribute to the persistence and proliferation of ARB in habitats under strong anthropogenic influence. Our review discusses the interplay between chemical contaminants and ARB and their respective genes, specifically in reference to co-occurrence, potential biostimulation, and selective pressure effects, and gives an overview of mitigation by existing man-made and natural barriers. Evidence and strategies to improve the assessment of human health risks due to environmental antibiotic resistance are also discussed. Environ Toxicol Chem 2024;43:637-652. © 2022 SETAC.
Collapse
Affiliation(s)
- Célia M Manaia
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Porto, Portugal
| | - Diana S Aga
- Chemistry Department, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Eddie Cytryn
- Institute of Soil, Water and Environmental Sciences, Volcani Institute, Agricultural Research Organization, Rishon-Lezion, Israel
| | - William H Gaze
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - David W Graham
- School of Engineering, Newcastle University, Newcastle, UK
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Queensland, Australia
| | - Anne F C Leonard
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Liguan Li
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall, UK
| | - Olga C Nunes
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sara Rodriguez-Mozaz
- Catalan Institute for Water Research, Girona, Spain
- Universitat de Girona, Girona, Spain
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Pitt SJ, Gunn A. The One Health Concept. Br J Biomed Sci 2024; 81:12366. [PMID: 38434675 PMCID: PMC10902059 DOI: 10.3389/bjbs.2024.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The concept of One Health has been developed as the appreciation that human health is intricately connected to those of other animals and the environment that they inhabit. In recent years, the COVID-19 pandemic and noticeable effects of climate change have encouraged national and international cooperation to apply One Health strategies to address key issues of health and welfare. The United Nations (UN) Sustainable Development Goals have established targets for health and wellbeing, clean water and sanitation, climate action, as well as sustainability in marine and terrestrial ecosystems. The One Health Quadripartite comprises the World Health Organization (WHO), the World Organization for Animal Health (WOAH-formerly OIE), the United Nations Food and Agriculture Organization (FAO) and the United Nations Environment Programme (UNEP). There are six areas of focus which are Laboratory services, Control of zoonotic diseases, Neglected tropical diseases, Antimicrobial resistance, Food safety and Environmental health. This article discusses the concept of One Health by considering examples of infectious diseases and environmental issues under each of those six headings. Biomedical Scientists, Clinical Scientists and their colleagues working in diagnostic and research laboratories have a key role to play in applying the One Health approach to key areas of healthcare in the 21st Century.
Collapse
Affiliation(s)
- Sarah J. Pitt
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Alan Gunn
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
11
|
Memesh R, Yasir M, Ledder RG, Zowawi H, McBain AJ, Azhar EI. An update on the prevalence of colistin and carbapenem-resistant Gram-negative bacteria in aquaculture: an emerging threat to public health. J Appl Microbiol 2024; 135:lxad288. [PMID: 38059867 DOI: 10.1093/jambio/lxad288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 09/22/2023] [Accepted: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Aquaculture has been recognized as a hotspot for the emergence and spread of antimicrobial resistance genes conferring resistance to clinically important antibiotics. This review gives insights into studies investigating the prevalence of colistin and carbapenem resistance (CCR) among Gram-negative bacilli in aquaculture. Overall, a high incidence of CCR has been reported in aquatic farms in several countries, with CCR being more prevalent among opportunistic human pathogens such as Acinetobacter nosocomialis, Shewanella algae, Photobacterium damselae, Vibrio spp., Aeromonas spp., as well as members of Enterobacteriaceae family. A high proportion of isolates in these studies exhibited wide-spectrum profiles of antimicrobial resistance, highlighting their multidrug-resistance properties (MDR). Several mobile colistin resistance genes (including, mcr-1, mcr-1.1, mcr-2, mcr-2.1, mcr-3, mcr-3.1, mcr-4.1, mcr-4.3, mcr-5.1, mcr-6.1, mcr-7.1, mcr-8.1, and mcr-10.1) and carbapenemase encoding genes (including, blaOXA-48, blaOXA-55, blaNDM, blaKPC, blaIMI, blaAIM, blaVIM, and blaIMP) have been detected in aquatic farms in different countries. The majority of these were carried on MDR Incompatibility (Inc) plasmids including IncA/C, and IncX4, which have been associated with a wide host range of different sources. Thus, there is a risk for the possible spread of resistance genes between fish, their environments, and humans. These findings highlight the need to monitor and regulate the usage of antimicrobials in aquaculture. A multisectoral and transdisciplinary (One Health) approach is urgently needed to reduce the spread of resistant bacteria and/or resistance genes originating in aquaculture and avoid their global reach.
Collapse
Affiliation(s)
- Roa Memesh
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Muhammad Yasir
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ruth G Ledder
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hosam Zowawi
- College of Medicine, King Saud bin Abdul-Aziz University for Health Science (KSAU-HS), Riyadh, Saudi Arabia
- King Abdullah International Medical Research Centre (KAIMRC), Riyadh, Saudi Arabia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Andrew J McBain
- School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Esam I Azhar
- Special Infectious Agents Unit, King Fahd Medical Research Center and Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Xu T, Fang D, Li F, Wang Z, Liu Y. A Dietary Source of High Level of Fluoroquinolone Tolerance in mcr-Carrying Gram-Negative Bacteria. RESEARCH (WASHINGTON, D.C.) 2023; 6:0245. [PMID: 37808177 PMCID: PMC10557118 DOI: 10.34133/research.0245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 10/10/2023]
Abstract
The emergence of antibiotic tolerance, characterized by the prolonged survival of bacteria following antibiotic exposure, in natural bacterial populations, especially in pathogens carrying antibiotic resistance genes, has been an increasing threat to public health. However, the major causes contributing to the formation of antibiotic tolerance and underlying molecular mechanisms are yet poorly understood. Herein, we show that potassium sorbate (PS), a widely used food additive, triggers a high level of fluoroquinolone tolerance in bacteria carrying mobile colistin resistance gene mcr. Mechanistic studies demonstrate that PS treatment results in the accumulation of intracellular fumarate, which activates bacterial two-component system and decreases the expression level of outer membrane protein OmpF, thereby reducing the uptake of ciprofloxacin. In addition, the supplementation of PS inhibits aerobic respiration, reduces reactive oxygen species production and alleviates DNA damage caused by bactericidal antibiotics. Furthermore, we demonstrate that succinate, an intermediate product of the tricarboxylic acid cycle, overcomes PS-mediated ciprofloxacin tolerance. In multiple animal models, ciprofloxacin treatment displays failure outcomes in PS preadministrated animals, including comparable survival and bacterial loads with the vehicle group. Taken together, our works offer novel mechanistic insights into the development of antibiotic tolerance and uncover potential risks associated with PS use.
Collapse
Affiliation(s)
- Tianqi Xu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Dan Fang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Fulei Li
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
| | - Zhiqiang Wang
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
| | - Yuan Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine,
Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China,
Yangzhou University, Yangzhou 225009, China
- Institute of Comparative Medicine,
Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
13
|
Cai J, Shi J, Chen C, He M, Wang Z, Liu Y. Structural-Activity Relationship-Inspired the Discovery of Saturated Fatty Acids as Novel Colistin Enhancers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302182. [PMID: 37552809 PMCID: PMC10582468 DOI: 10.1002/advs.202302182] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/19/2023] [Indexed: 08/10/2023]
Abstract
The emergence and prevalence of mobile colistin resistance gene mcr have dramatically compromised the clinical efficacy of colistin, a cyclopeptide antibiotic considered to be the last option for treating different-to-treat infections. The combination strategy provides a productive and cost-effective strategy to expand the lifespan of existing antibiotics. Structural-activity relationship analysis of polymyxins indicates that the fatty acyl chain plays an indispensable role in their antibacterial activity. Herein, it is revealed that three saturated fatty acids (SFAs), especially sodium caprate (SC), substantially potentiate the antibacterial activity of colistin against mcr-positive bacteria. The combination of SFAs and colistin effectively inhibits biofilm formation and eliminates matured biofilms, and is capable of preventing the emergence and spread of mobile colistin resistance. Mechanistically, the addition of SFAs reduces lipopolysaccharide (LPS) modification by simultaneously promoting LPS biosynthesis and inhibiting the activity of MCR enzyme, enhance bacterial membrane damage, and impair the proton motive force-dependent efflux pump, thereby boosting the action of colistin. In three animal models of infection by mcr-positive pathogens, SC combined with colistin exhibit an excellent therapeutic effect. These findings indicate the therapeutic potential of SFAs as novel antibiotic adjuvants for the treatment of infections caused by multidrug-resistant bacteria in combination with colistin.
Collapse
Affiliation(s)
- Jinju Cai
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Jingru Shi
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Chen Chen
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Mengping He
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
| | - Zhiqiang Wang
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| | - Yuan Liu
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesCollege of Veterinary MedicineYangzhou UniversityYangzhou225009China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhou225009China
- Institute of Comparative MedicineYangzhou UniversityYangzhou225009China
| |
Collapse
|
14
|
Anyanwu MU, Jaja IF, Okpala COR, Njoga EO, Okafor NA, Oguttu JW. Mobile Colistin Resistance ( mcr) Gene-Containing Organisms in Poultry Sector in Low- and Middle-Income Countries: Epidemiology, Characteristics, and One Health Control Strategies. Antibiotics (Basel) 2023; 12:1117. [PMID: 37508213 PMCID: PMC10376608 DOI: 10.3390/antibiotics12071117] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/30/2023] Open
Abstract
Mobile colistin resistance (mcr) genes (mcr-1 to mcr-10) are plasmid-encoded genes that threaten the clinical utility of colistin (COL), one of the highest-priority critically important antibiotics (HP-CIAs) used to treat infections caused by multidrug-resistant and extensively drug-resistant bacteria in humans and animals. For more than six decades, COL has been used largely unregulated in the poultry sector in low- and middle-income countries (LMICs), and this has led to the development/spread of mcr gene-containing bacteria (MGCB). The prevalence rates of mcr-positive organisms from the poultry sector in LMICs between January 1970 and May 2023 range between 0.51% and 58.8%. Through horizontal gene transfer, conjugative plasmids possessing insertion sequences (ISs) (especially ISApl1), transposons (predominantly Tn6330), and integrons have enhanced the spread of mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, mcr-7, mcr-8, mcr-9, and mcr-10 in the poultry sector in LMICs. These genes are harboured by Escherichia, Klebsiella, Proteus, Salmonella, Cronobacter, Citrobacter, Enterobacter, Shigella, Providencia, Aeromonas, Raoultella, Pseudomonas, and Acinetobacter species, belonging to diverse clones. The mcr-1, mcr-3, and mcr-10 genes have also been integrated into the chromosomes of these bacteria and are mobilizable by ISs and integrative conjugative elements. These bacteria often coexpress mcr with virulence genes and other genes conferring resistance to HP-CIAs, such as extended-spectrum cephalosporins, carbapenems, fosfomycin, fluoroquinolone, and tigecycline. The transmission routes and dynamics of MGCB from the poultry sector in LMICs within the One Health triad include contact with poultry birds, feed/drinking water, manure, poultry farmers and their farm workwear, farming equipment, the consumption and sale of contaminated poultry meat/egg and associated products, etc. The use of pre/probiotics and other non-antimicrobial alternatives in the raising of birds, the judicious use of non-critically important antibiotics for therapy, the banning of nontherapeutic COL use, improved vaccination, biosecurity, hand hygiene and sanitization, the development of rapid diagnostic test kits, and the intensified surveillance of mcr genes, among others, could effectively control the spread of MGCB from the poultry sector in LMICs.
Collapse
Affiliation(s)
| | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| | - Charles Odilichukwu R Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
- UGA Cooperative Extension, College of Agricultural and Environmental Sciences, University of Georgia, Athens, GA 30602, USA
| | - Emmanuel Okechukwu Njoga
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria
| | | | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, Florida Campus, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
15
|
Slimene K, Ali AA, Mohamed EA, El Salabi A, Suliman FS, Elbadri AA, El-fertas FF, El-awjly A, Shokri SA, Rolain JM, Chouchani C. Isolation of Carbapenem and Colistin Resistant Gram-Negative Bacteria Colonizing Immunocompromised SARS-CoV-2 Patients Admitted to Some Libyan Hospitals. Microbiol Spectr 2023; 11:e0297222. [PMID: 37042782 PMCID: PMC10269485 DOI: 10.1128/spectrum.02972-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 03/16/2023] [Indexed: 04/13/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a devastating effect, globally. We describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing SARS-CoV-2 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of SARS-CoV-2 in the eastern part of Libya. In total, at first, 109 samples were collected from 43 patients, with the samples being recovered from oral (n = 35), nasal (n = 45), and rectal (n = 29) cavities. Strain identification was performed via matrix assisted laser desorption ionization-time of flight (MALDI-TOF). Antibiotic susceptibility testing was carried out on Mueller-Hinton agar, using the standard disk diffusion method. MIC determination was confirmed via E-TEST and microdilution standard methods. A molecular study was carried out to characterize the carbapenem and colistin resistance in Gram-negative bacterial strains. All of the positive results were confirmed via sequencing. Klebsiella pneumoniae (n = 32), Citrobacter freundii (n = 21), Escherichia coli (n = 7), and Acinetobacter baumannii (n = 21) were the predominant isolated bacteria. Gram-negative isolates were multidrug-resistant and carried different carbapenem resistance-associated genes, including NDM-1 (56/119; 47.05%), OXA-48 (15/119; 12.60%), OXA-23 (19/119; 15.96%), VIM (10/119; 8.40%), and the colistin resistance mobile gene mcr-1 (4/119; 3.36%). The overuse of antimicrobials, particularly carbapenem antibiotics, during the SARS-CoV-2 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae, A. baumannii, and colistin-resistant E. coli strains. Increased surveillance as well as the rational use of carbapenem antibiotics and, recently, colistin are required to reduce the propagation of multidrug-resistant strains and to optimally maintain the efficacy of these antibiotics. IMPORTANCE In this work, we describe, for the first time, the occurrence of carbapenem-resistant bacteria colonizing COVID-19 patients who developed hospital-associated infections with carbapenemase-producing, Gram-negative bacteria at some isolation centers of COVID-19 in the eastern part of Libya. Our results confirmed that the overuse of antimicrobials, such as carbapenem antibiotics, during the COVID-19 pandemic has led to the emergence of multidrug-resistant bacteria, mainly K. pneumoniae and A. baumannii, as well as colistin resistance.
Collapse
Affiliation(s)
- Khouloud Slimene
- Université Aix-Marseille, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, 2098 El-Manar II, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l’Environnement, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, BP-1003, Hammam-Lif 2050, Université de Carthage, Tunisie
- Unité de Service en Commun pour la Recherche Plateforme Génomique Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, BP-1003, Hammam-Lif 2050, Université de Carthage, Tunisie
| | - Asrra A. Ali
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Elhussan A. Mohamed
- Department of Community Medicine, Omar Al-Mukhtar University, El-Beyda, Libya
| | - Allaaeddin El Salabi
- Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Faraj S. Suliman
- Department of Community Medicine, Omar Al-Mukhtar University, El-Beyda, Libya
- Almansoura Isolation Department of COVID-19 Patients, Shahat Teaching Hospital for Chest Diseases and Tuberculosis, Shahat, Libya
| | - Agela A. Elbadri
- Department of Medicine, Faculty of Medicine, University of Benghazi, Benghazi, Libya
- Alhawari Hospital, Benghazi, Libya
| | | | - Ahmed El-awjly
- Sterilization Service Department, Benghazi Medical Center, Benghazi, Libya
| | - Salah A. Shokri
- Department of Microbiology, Faculty of Science, Misurata University, Misurata, Libya
| | - Jean-Marc Rolain
- Université Aix-Marseille, IRD, APHM, MEPHI, Faculté de Médecine et de Pharmacie, Marseille Cedex 05, France
- IHU Méditerranée Infection, Marseille Cedex 05, France
| | - Chedly Chouchani
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Campus Universitaire, 2098 El-Manar II, Université de Tunis El-Manar, Tunis, Tunisie
- Laboratoire de Recherche des Sciences et Technologies de l’Environnement, Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, BP-1003, Hammam-Lif 2050, Université de Carthage, Tunisie
- Unité de Service en Commun pour la Recherche Plateforme Génomique Institut Supérieur des Sciences et Technologies de l’Environnement de Borj-Cedria, BP-1003, Hammam-Lif 2050, Université de Carthage, Tunisie
| |
Collapse
|
16
|
Di Francesco A, Salvatore D, Sakhria S, Bertelloni F, Catelli E, Ben Yahia S, Tlatli A. Colistin Resistance Genes in Broiler Chickens in Tunisia. Animals (Basel) 2023; 13:ani13081409. [PMID: 37106971 PMCID: PMC10135375 DOI: 10.3390/ani13081409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023] Open
Abstract
Colistin is a polymyxin antibiotic that has been used in veterinary medicine for decades, as a treatment for enterobacterial digestive infections as well as a prophylactic treatment and growth promoter in livestock animals, leading to the emergence and spread of colistin-resistant Gram-negative bacteria and to a great public health concern, considering that colistin is one of the last-resort antibiotics against multidrug-resistant deadly infections in clinical practice. Previous studies performed on livestock animals in Tunisia using culture-dependent methods highlighted the presence of colistin-resistant Gram-negative bacteria. In the present survey, DNA extracted from cloacal swabs from 195 broiler chickens from six farms in Tunisia was tested via molecular methods for the ten mobilized colistin resistance (mcr) genes known so far. Of the 195 animals tested, 81 (41.5%) were mcr-1 positive. All the farms tested were positive, with a prevalence ranging from 13% to 93%. These results confirm the spread of colistin resistance in livestock animals in Tunisia and suggest that the investigation of antibiotic resistance genes by culture-independent methods could be a useful means of conducting epidemiological studies on the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Antonietta Di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Daniela Salvatore
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Sonia Sakhria
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
| | | | - Elena Catelli
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, 40064 Bologna, Italy
| | - Salma Ben Yahia
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
| | - Aida Tlatli
- Institute of Veterinary Research of Tunisia, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
17
|
Cabello FC, Millanao AR, Lozano-Muñoz I, Godfrey HP. Misunderstandings and misinterpretations: Antimicrobial use and resistance in salmon aquaculture. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023. [PMID: 36934450 DOI: 10.1111/1758-2229.13147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
The exponential growth of aquaculture over the past 30 years has been accompanied by a parallel increase in the use of antimicrobials. This widespread use has had negative effects on animal, human and environmental health and affected the biodiversity of the environments where aquaculture takes place. Results showing these harmful effects have been resisted and made light of by the aquaculture industry and their scientific supporters through introduction of misunderstandings and misinterpretations of concepts developed in the evolution, genetics, and molecular epidemiology of antimicrobial resistance. We focus on a few of the most obvious scientific shortcomings and biases of two recent attempts to minimise the negative impacts of excessive antimicrobial use in Chilean salmon aquaculture on human and piscine health and on the environment. Such open debate is critical to timely implementation of effective regulation of antimicrobial usage in salmon aquaculture in Chile, if the negative local and worldwide impacts of this usage are to be avoided.
Collapse
Affiliation(s)
- Felipe C Cabello
- Department of Pathology, Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Ana R Millanao
- Instituto de Farmacia, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Ivonne Lozano-Muñoz
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, Santiago, Chile
| | - Henry P Godfrey
- Department of Pathology (retired), New York Medical College, Valhalla, New York, USA
| |
Collapse
|
18
|
Kusumoto M, Tamamura-Andoh Y, Hikoda-Kogiku Y, Magome A, Okuhama E, Sato K, Mizuno Y, Arai N, Watanabe-Yanai A, Iwata T, Ogura Y, Gotoh Y, Nakamura K, Hayashi T, Akiba M. Nationwide analysis of antimicrobial resistance in pathogenic Escherichia coli strains isolated from diseased swine over 29 years in Japan. Front Microbiol 2023; 14:1107566. [PMID: 37007495 PMCID: PMC10065406 DOI: 10.3389/fmicb.2023.1107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Pathogenic Escherichia coli strains are important causes of several swine diseases that result in significant economic losses worldwide. In Japan, the use of antimicrobials in swine is much higher than that in other farm animals every year. Antimicrobial resistance in pathogenic E. coli strains also heavily impacts the swine industry due to the limited treatment options and an increase in the potential risk of the One Health crisis. In 2016, we investigated 684 Japanese isolates of swine pathogenic E. coli belonging to four major serogroups and reported the emergence and increase in the highly multidrug-resistant serogroups O116 and OSB9 and the appearance of colistin-resistant strains. In the present study, by expanding our previous analysis, we determined the serotypes and antimicrobial resistance of 1,708 E. coli strains isolated from diseased swine between 1991 and 2019 in Japan and found recent increases in the prevalences of multidrug-resistant strains and minor serogroup strains. Among the antimicrobials examined in this study that have been approved for animal use, a third-generation cephalosporin was found to be effective against the most isolates (resistance rate: 1.2%) but not against highly multidrug-resistant strains. We also analyzed the susceptibilities of the 1,708 isolates to apramycin and bicozamycin, both which are available for treating swine in Japan, and found that the rates of resistance to apramycin and bicozamycin were low (6.7% and 5.8%, respectively), and both antimicrobials are more effective (resistance rates: 2.7% and 5.4%, respectively) than third-generation cephalosporins (resistance rate: 16.2%) against highly multidrug-resistant strains.
Collapse
Affiliation(s)
- Masahiro Kusumoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
- Graduate School of Veterinary Science, Osaka Metropolitan University, Osaka, Japan
- *Correspondence: Masahiro Kusumoto,
| | - Yukino Tamamura-Andoh
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | | | - Asami Magome
- Kagoshima Central Livestock Hygiene Service Center, Kagoshima, Japan
| | - Erina Okuhama
- Miyazaki Livestock Hygiene Service Center, Miyazaki, Japan
| | - Keisuke Sato
- Niigata Chuo Livestock Hygiene Service Center, Niigata, Japan
| | - Yoshino Mizuno
- Kumamoto Chuo Livestock Hygiene Service Center, Kumamoto, Japan
| | - Nobuo Arai
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Ayako Watanabe-Yanai
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Taketoshi Iwata
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Yoshitoshi Ogura
- Department of Infectious Medicine, Kurume University School of Medicine, Fukuoka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keiji Nakamura
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masato Akiba
- School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Japan
| |
Collapse
|
19
|
Joo H, Eom H, Cho Y, Rho M, Song WJ. Discovery and Characterization of Polymyxin-Resistance Genes pmrE and pmrF from Sediment and Seawater Microbiome. Microbiol Spectr 2023; 11:e0273622. [PMID: 36602384 PMCID: PMC9927302 DOI: 10.1128/spectrum.02736-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Polymyxins are the last-line antibiotics used to treat Gram-negative pathogens. Thus, the discovery and biochemical characterization of the resistance genes against polymyxins are urgently needed for diagnosis, treatment, and novel antibiotic design. Herein, we report novel polymyxin-resistance genes identified from sediment and seawater microbiome. Despite their low sequence identity against the known pmrE and pmrF, they show in vitro activities in UDP-glucose oxidation and l-Ara4N transfer to undecaprenyl phosphate, respectively, which occur as the part of lipid A modification that leads to polymyxin resistance. The expression of pmrE and pmrF also showed substantially high MICs in the presence of vanadate ions, indicating that they constitute polymyxin resistomes. IMPORTANCE Polymyxins are one of the last-resort antibiotics. Polymyxin resistance is a severe threat to combat multidrug-resistant pathogens. Thus, up-to-date identification and understanding of the related genes are crucial. Herein, we performed structure-guided sequence and activity analysis of five putative polymyxin-resistant metagenomes. Despite relatively low sequence identity to the previously reported polymyxin-resistance genes, at least four out of five discovered genes show reactivity essential for lipid A modification and polymyxin resistance, constituting antibiotic resistomes.
Collapse
Affiliation(s)
- Hwanjin Joo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Hyunuk Eom
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Youna Cho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
| | - Mina Rho
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea
- Department of Biomedical Informatics, Hanyang University, Seoul, Republic of Korea
| | - Woon Ju Song
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Rhouma M, Madec JY, Laxminarayan R. Colistin: from the shadows to a One Health approach for addressing antimicrobial resistance. Int J Antimicrob Agents 2023; 61:106713. [PMID: 36640846 DOI: 10.1016/j.ijantimicag.2023.106713] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/26/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Antimicrobial resistance (AMR) poses a serious threat to human, animal and environmental health worldwide. Colistin has regained importance as a last-resort treatment against multi-drug-resistant Gram-negative bacteria. However, colistin resistance has been reported in various Enterobacteriaceae species isolated from several sources. The 2015 discovery of the plasmid-mediated mcr-1 (mobile colistin resistance) gene conferring resistance to colistin was a major concern within the scientific community worldwide. The global spread of this plasmid - as well as the subsequent identification of 10 MCR-family genes and their variants that catalyse the addition of phosphoethanolamine to the phosphate group of lipid A - underscores the urgent need to regulate the use of colistin, particularly in animal production. This review traces the history of colistin resistance and mcr-like gene identification, and examines the impact of policy changes regarding the use of colistin on the prevalence of mcr-1-positive Escherichia coli and colistin-resistant E. coli from a One Health perspective. The withdrawal of colistin as a livestock growth promoter in several countries reduced the prevalence of colistin-resistant bacteria and its resistance determinants (e.g. mcr-1 gene) in farm animals, humans and the environment. This reduction was certainly favoured by the significant fitness cost associated with acquisition and expression of the mcr-1 gene in enterobacterial species. The success of this One Health intervention could be used to accelerate regulation of other important antimicrobials, especially those associated with bacterial resistance mechanisms linked to high fitness cost. The development of global collaborations and the implementation of sustainable solutions like the One Health approach are essential to manage AMR.
Collapse
Affiliation(s)
- Mohamed Rhouma
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Groupe de Recherche et d'Enseignement en Salubrité Alimentaire, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada; Swine and Poultry Infectious Diseases Research Center, Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada.
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes - Agence Nationale de Sécurité Sanitaire, Université de Lyon, Lyon, France
| | - Ramanan Laxminarayan
- One Health Trust, Washington, DC 20005, Princeton University, Princeton NJ 08544, USA
| |
Collapse
|
21
|
Öz Gergin Ö, Gergin İŞ, Pehlivan SS, Cengiz Mat O, Turan IT, Bayram A, Gönen ZB, Korkmaz Ş, Bıcer C, Yildiz K, Yay AH. The neuroprotective effect of mesenchymal stem cells in colistin-induced neurotoxicity. Toxicol Mech Methods 2023; 33:95-103. [PMID: 35702031 DOI: 10.1080/15376516.2022.2090303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Colistin is an effective antibiotic against multidrug-resistant gram-negative bacterial infections; however, neurotoxic effects are fundamental dose-limiting factors for this treatment. Stem cell therapy is a promising method for treating neuronal diseases. Multipotent mesenchymal stromal cells (MSC) represent a promising source for regenerative medicine. Identification of neuroprotective agents that can be co-administered with colistin has the potential to allow the clinical application of this essential drug. This study was conducted to assess the potential protective effects of MSC, against colistin-induced neurotoxicity, and the possible mechanisms underlying any effect. Forty adult female albino rats were randomly classified into four equal groups; the control group, the MSC-treated group (A single dose of 1 × 106/mL MSCs through the tail vein), the colistin-treated group (36 mg/kg/d colistin was given for 7 d) and the colistin and MSC treated group (36 mg/kg/d colistin was administered for 7 d, and 1 × 106/mL MSCs). Colistin administration significantly increased GFAP, NGF, Beclin-1, IL-6, and TNF-α immunreactivity intensity. MSC administration in colistin-treated rats partially restored each of these markers. Histopathological changes in brain tissues were also alleviated by MSC co-treatment. Our study reveals a critical role of inflammation, autophagy, and apoptosis in colistin-induced neurotoxicity and showed that they were markedly ameliorated by MSC co-administration. Therefore, MSC could represent a promising agent for prevention of colistin-induced neurotoxicity.
Collapse
Affiliation(s)
- Özlem Öz Gergin
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | | | - Sibel Seckin Pehlivan
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Ozge Cengiz Mat
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Işıl Tuğçe Turan
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Adnan Bayram
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | | | - Şeyda Korkmaz
- Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| | - Cihangir Bıcer
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Karamehmet Yildiz
- Department of Anesthesiology and Reanimation, Medical Faculty, Erciyes University, Kayseri, Turkey
| | - Arzu Hanım Yay
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.,Genome and Stem Cell Center (GENKOK), Erciyes University, Kayseri, Turkey
| |
Collapse
|
22
|
Zhang H, Chen C, Yang Z, Ye L, Miao J, Lan Y, Wang Q, Ye Z, Cao Y, Liu G. Combined transcriptomic and proteomic analysis of the antibacterial mechanisms of an antimicrobial substance produced by Lactobacillus paracasei FX-6 against colistin-resistant Escherichia coli. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
23
|
Shen Y, Zhang R, Shao D, Yang L, Lu J, Liu C, Wang X, Jiang J, Wang B, Wu C, Parkhill J, Wang Y, Walsh TR, Gao GF, Shen Z. Genomic Shift in Population Dynamics of mcr-1-positive Escherichia coli in Human Carriage. GENOMICS, PROTEOMICS & BIOINFORMATICS 2022; 20:1168-1179. [PMID: 36481457 DOI: 10.1016/j.gpb.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Emergence of the colistin resistance gene, mcr-1, has attracted worldwide attention. Despite the prevalence of mcr-1-positive Escherichia coli (MCRPEC) strains in human carriage showing a significant decrease between 2016 and 2019, genetic differences in MCRPEC strains remain largely unknown. We therefore conducted a comparative genomic study on MCRPEC strains from fecal samples of healthy human subjects in 2016 and 2019. We identified three major differences in MCRPEC strains between these two time points. First, the insertion sequence ISApl1 was often deleted and the percentage of mcr-1-carrying IncI2 plasmids was increased in MCRPEC strains in 2019. Second, the antibiotic resistance genes (ARGs), aac(3)-IVa and blaCTX-M-1, emerged and coexisted with mcr-1 in 2019. Third, MCRPEC strains in 2019 contained more virulence genes, resulting in an increased proportion of extraintestinal pathogenic E. coli (ExPEC) strains (36.1%) in MCRPEC strains in 2019 compared to that in 2016 (10.5%), which implies that these strains could occupy intestinal ecological niches by competing with other commensal bacteria. Our results suggest that despite the significant reduction in the prevalence of MCRPEC strains in humans, mcr-1 is now associated with more stable genetic structures as well as the widespread IncI2 plasmid exhibits increased coexistence with other clinically important ARGs, and is increasingly associated with ExPEC strains, thus posing a potential public health threat.
Collapse
Affiliation(s)
- Yingbo Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Dongyan Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Lu Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Jiayue Lu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Congcong Liu
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310009, China
| | - Xueyang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Junyao Jiang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Boxuan Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Congming Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China
| | - Timothy R Walsh
- Department of Biology, University of Oxford, Oxford OX1 3SZ, UK.
| | - George F Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Zhangqi Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510641, China.
| |
Collapse
|
24
|
Hamame A, Davoust B, Hasnaoui B, Mwenebitu DL, Rolain JM, Diene SM. Screening of colistin-resistant bacteria in livestock animals from France. Vet Res 2022; 53:96. [DOI: 10.1186/s13567-022-01113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/26/2022] [Indexed: 11/24/2022] Open
Abstract
AbstractColistin is frequently used as a growth factor or treatment against infectious bacterial diseases in animals. The Veterinary Division of the European Medicines Agency (EMA) restricted colistin use as a second-line treatment to reduce colistin resistance. In 2020, 282 faecal samples were collected from chickens, cattle, sheep, goats, and pigs in the south of France. In order to track the emergence of mobilized colistin resistant (mcr) genes in pigs, 111 samples were re-collected in 2021 and included pig faeces, food, and water from the same location. All samples were cultured in a selective Lucie Bardet Jean-Marc Rolain (LBJMR) medium and colonies were identified using MALDI-TOF mass spectrometry and then antibiotic susceptibility tests were performed. PCR and Sanger sequencing were performed to screen for the presence of mcr genes. The selective culture revealed the presence of 397 bacteria corresponding to 35 different bacterial species including Gram-negative and Gram-positive. Pigs had the highest prevalence of colistin-resistant bacteria with an abundance of intrinsically colistin-resistant bacteria and from these samples one strain harbouring both mcr-1 and mcr-3 has been isolated. The second collection allowed us to identify 304 bacteria and revealed the spread of mcr-1 and mcr-3 in pigs. In the other samples, naturally, colistin-resistant bacteria were more frequent, nevertheless the mcr-1 variant was the most abundant gene found in chicken, sheep, and goat samples and one cattle sample was positive for the mcr-3 gene. Animals are potential reservoir of colistin-resistant bacteria which varies from one animal to another. Interventions and alternative options are required to reduce the emergence of colistin resistance and to avoid zoonotic transmissions.
Collapse
|
25
|
Jansen W, van Hout J, Wiegel J, Iatridou D, Chantziaras I, De Briyne N. Colistin Use in European Livestock: Veterinary Field Data on Trends and Perspectives for Further Reduction. Vet Sci 2022; 9:650. [PMID: 36423099 PMCID: PMC9697203 DOI: 10.3390/vetsci9110650] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/17/2022] [Accepted: 11/19/2022] [Indexed: 09/29/2023] Open
Abstract
Polymyxin E (colistin) is a medically important active substance both in human and veterinary medicine. Colistin has been used in veterinary medicine since the 1950s. Due to the discovery of the plasmid-borne mcr gene in 2015 and the simultaneously increased importance in human medicine as a last-resort antibiotic, the use of colistin for animals was scrutinised. Though veterinary colistin sales dropped by 76.5% between 2011 to 2020, few studies evaluated real-world data on the use patterns of colistin in different European countries and sectors. A survey among veterinarians revealed that 51.9% did not use or ceased colistin, 33.4% decreased their use, 10.4% stabilised their use, and 2.7% increased use. The most important indications for colistin use were gastrointestinal diseases in pigs followed by septicaemia in poultry. A total of 106 (16.0%) responding veterinarians reported governmental/industry restrictions regarding colistin use, most commonly mentioning "use only after susceptibility testing" (57%). In brief, colistin was perceived as an essential last-resort antibiotic in veterinary medicine for E. coli infections in pigs and poultry, where there is no alternative legal, safe, and efficacious antimicrobial available. To further reduce the need for colistin, synergistic preventive measures, including improved biosecurity, husbandry, and vaccinations, must be employed.
Collapse
Affiliation(s)
- Wiebke Jansen
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| | - Jobke van Hout
- Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
| | - Jeanine Wiegel
- Royal GD, Arnsbergstraat 7, 7418 EZ Deventer, The Netherlands
| | - Despoina Iatridou
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| | - Ilias Chantziaras
- Veterinary Epidemiology Unit, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Nancy De Briyne
- Federation of Veterinarians of Europe (FVE), Rue Victor Oudart 7, 1030 Brussels, Belgium
| |
Collapse
|
26
|
Lin H, Chen W, Zhou R, Yang J, Wu Y, Zheng J, Fei S, Wu G, Sun Z, Li J, Chen X. Characteristics of the plasmid-mediated colistin-resistance gene mcr-1 in Escherichia coli isolated from a veterinary hospital in Shanghai. Front Microbiol 2022; 13:1002827. [PMID: 36386648 PMCID: PMC9650080 DOI: 10.3389/fmicb.2022.1002827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/03/2022] [Indexed: 09/09/2023] Open
Abstract
The mobile colistin-resistance (mcr)-1 gene is primarily detected in Enterobacteriaceae species, such as Escherichia coli and Salmonella enterica, and represents a significant public health threat. Herein, we investigated the prevalence and characteristics of mcr-1-positive E. coli (MCRPEC) in hospitalized companion animals in a pet hospital in Shanghai, China, from May 2021 to July 2021. Seventy-nine non-duplicate samples were collected from the feces (n = 52) and wounds (n = 20) of cats and dogs and the surrounding hospital environment (n = 7). Seven MCRPEC strains, identified using screening assays and polymerase chain reaction, exhibited multidrug-resistant phenotypes in broth-microdilution and agar-dilution assays. Based in whole-genome sequencing and bioinformatics analyses, all seven isolates were determined to belong to sequence type (ST) 117. Moreover, the Incl2 plasmid was prevalent in these MCRPEC isolates, and the genetic environment of the seven E. coli strains was highly similar to that of E. coli SZ02 isolated from human blood. The isolates also harbored the β-lactamase gene bla CTX-M-65, and florfenicol resistance gene floR, among other resistance genes. Given that horizontal transfer occurred in all seven strains, E. coli plasmid transferability may accelerate the emergence of multidrug-resistant bacteria and may be transmitted from companion animals to humans. Therefore, the surveillance of MCRPEC isolates among companion animals should be strengthened.
Collapse
Affiliation(s)
- Hongguang Lin
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Rushun Zhou
- Hunan Provincial Institution of Veterinary Drug and Feed Control, Changsha, Hunan, China
| | - Jie Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Yong Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiaomei Zheng
- Changsha Animal and Plant Disease Control Center, Changsha, Hunan, China
| | - Shuyue Fei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Guiting Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhiliang Sun
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Jiyun Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| | - Xiaojun Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, Hunan, China
- Hunan Engineering Technology Research Center of Veterinary Drugs, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
27
|
Manageiro V, Salgueiro V, Rosado T, Bandarra NM, Ferreira E, Smith T, Dias E, Caniça M. Genomic Analysis of a mcr-9.1-Harbouring IncHI2-ST1 Plasmid from Enterobacter ludwigii Isolated in Fish Farming. Antibiotics (Basel) 2022; 11:antibiotics11091232. [PMID: 36140011 PMCID: PMC9495039 DOI: 10.3390/antibiotics11091232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/23/2022] Open
Abstract
This study analyzed the resistome, virulome and mobilome of an MCR-9-producing Enterobacter sp. identified in a muscle sample of seabream (Sparus aurata), collected in a land tank from multitrophic fish farming production. Average Nucleotide Identity analysis identified INSAq77 at the species level as an Enterobacter ludwigii INSAq77 strain that was resistant to chloramphenicol, florfenicol and fosfomycin and was susceptible to all other antibiotics tested. In silico antimicrobial resistance analyses revealed genes conferring in silico resistance to β-lactams (blaACT-88), chloramphenicol (catA4-type), fosfomycin (fosA2-type) and colistin (mcr-9.1), as well as several efflux pumps (e.g., oqxAB-type and mar operon). Further bioinformatics analysis revealed five plasmid replicon types, including the IncHI2/HI2A, which are linked to the worldwide dissemination of the mcr-9 gene in different antibiotic resistance reservoirs. The conserved nickel/copper operon rcnR-rcnA-pcoE-ISSgsp1-pcoS-IS903-mcr-9-wbuC was present, which may play a key role in copper tolerance under anaerobic growth and nickel homeostasis. These results highlight that antibiotic resistance in aquaculture are spreading through food, the environment and humans, which places this research in a One Health context. In fact, colistin is used as a last resort for the treatment of serious infections in clinical settings, thus mcr genes may represent a serious threat to human health.
Collapse
Affiliation(s)
- Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Tânia Rosado
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture, Upgrading and Bioprospecting, Portuguese Institute for the Sea and Atmosphere, IPMA, 1749-077 Lisbon, Portugal
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
| | - Terry Smith
- Molecular Diagnostics Research Group, School of Biological and Chemical Sciences, National University of Ireland, H91 DK59 Galway, Ireland
- Centre for One Health, Ryan Institute, National University of Ireland, H91 TK33 Galway, Ireland
| | - Elsa Dias
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- Laboratory of Biology and Ecotoxicology, Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- AL4AnimalS, Associate Laboratory for Animal and Veterinary Sciences, 1300-477 Lisboa, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
28
|
Que M, Cao W, Zhang H, Shi L, Ye L. The prevalence, antibiotic resistance and multilocus sequence typing of colistin-resistant bacteria isolated from Penaeus vannamei farms in earthen ponds and HDPE film-lined ponds in China. JOURNAL OF FISH DISEASES 2022; 45:1289-1299. [PMID: 35841601 DOI: 10.1111/jfd.13661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
The aquaculture environment, especially the culture ponds and aquaculture products, is considered to be an important reservoir of colistin resistance genes. However, systematic investigations of colistin resistance in Penaeus vannamei farming in different culture modes are scarce. In this study, a total of 93 non-duplicated samples were collected from P. vannamei farms in five cities in China from 2019 to 2021. The prevalence, antibiotic resistance and multilocus sequence typing (MLST) of colistin-resistant bacteria were measured and analysed. The results showed that among the 1601 isolates in P. vannamei and its environmental samples, the pollution of colistin-resistant bacteria was serious (the overall prevalence was 37.3% and 28.8%, respectively), regardless of the earthen pond or high-density polyethylene (HDPE) film-lined pond. Among 533 isolates, the prevalence of mobile colistin resistance (mcr) genes, mcr-1, was the highest (60%, 320/533), followed by mcr-4 (1.5%, 8/533), mcr-8 (0.9%, 5/533), mcr-10 (0.6%, 3/533) and mcr-7 (0.4%, 2/533). The prevalence of mcr-1 in earthen ponds was significantly higher than that in HDPE film-lined ponds (67.5% vs. 49.1%, p < .001). The dominant strain carrying mcr-1 was Bacillus spp. (54.1%, 173/320), followed by Enterobacter spp. (8.1%, 26/320), Staphylococcus spp. (6.3%, 20/320) and Aeromonas spp. (5.3%, 17/320). The antibiotic resistance profiles of 173 Bacillus spp. varied among different sampling locations and culture types. These isolates were highly resistant to cefepime, ceftriaxone, trimethoprim-sulfamethoxazole and ceftiofur (>45%), and multidrug-resistant isolates were common (62.4%, 108/173). Sequence type (ST) 26 (37/66, 56%) was found to be the most prevalent ST in mcr-1-positive Bacillus cereus isolated from the aquaculture environment. In summary, our study pointed out that it is necessary to continuously monitor antibiotic usage and its residues regardless of the pond types, especially with regard to critical drugs such as colistin.
Collapse
Affiliation(s)
- Muyi Que
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Weiwei Cao
- College of Food and Bioengineering, Guangdong Polytechnic of Science and Trade, Guangzhou, China
| | - Huang Zhang
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Shi
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Lei Ye
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| |
Collapse
|
29
|
Wagemans J, Holtappels D, Vainio E, Rabiey M, Marzachì C, Herrero S, Ravanbakhsh M, Tebbe CC, Ogliastro M, Ayllón MA, Turina M. Going Viral: Virus-Based Biological Control Agents for Plant Protection. ANNUAL REVIEW OF PHYTOPATHOLOGY 2022; 60:21-42. [PMID: 35300520 DOI: 10.1146/annurev-phyto-021621-114208] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The most economically important biotic stresses in crop production are caused by fungi, oomycetes, insects, viruses, and bacteria. Often chemical control is still the most commonly used method to manage them. However, the development of resistance in the different pathogens/pests, the putative damage on the natural ecosystem, the toxic residues in the field, and, thus, the contamination of the environment have stimulated the search for saferalternatives such as the use of biological control agents (BCAs). Among BCAs, viruses, a major driver for controlling host populations and evolution, are somewhat underused, mostly because of regulatory hurdles that make the cost of registration of such host-specific BCAs not affordable in comparison with the limited potential market. Here, we provide a comprehensive overview of the state of the art of virus-based BCAs against fungi, bacteria, viruses, and insects, with a specific focus on new approaches that rely on not only the direct biocidal virus component but also the complex ecological interactions between viruses and their hosts that do not necessarily result in direct damage to the host.
Collapse
Affiliation(s)
| | | | - Eeva Vainio
- Forest Health and Biodiversity, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Mojgan Rabiey
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Cristina Marzachì
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| | - Salvador Herrero
- Department of Genetics and University Institute of Biotechnology and Biomedicine (BIOTECMED), Universitat de València, Burjassot, Spain
| | | | - Christoph C Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | | | - María A Ayllón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación Agraria y Alimentaria, Campus de Montegancedo, Pozuelo de Alarcón, Madrid, Spain
- Departamento Biotecnología-Biología Vegetal, E.T.S.I. Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Massimo Turina
- Istituto per la Protezione Sostenibile delle Piante, CNR, Torino, Italy;
| |
Collapse
|
30
|
Mmatli M, Mbelle NM, Osei Sekyere J. Global epidemiology, genetic environment, risk factors and therapeutic prospects of mcr genes: A current and emerging update. Front Cell Infect Microbiol 2022; 12:941358. [PMID: 36093193 PMCID: PMC9462459 DOI: 10.3389/fcimb.2022.941358] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 12/28/2022] Open
Abstract
Background Mobile colistin resistance (mcr) genes modify Lipid A molecules of the lipopolysaccharide, changing the overall charge of the outer membrane. Results and discussion Ten mcr genes have been described to date within eleven Enterobacteriaceae species, with Escherichia coli, Klebsiella pneumoniae, and Salmonella species being the most predominant. They are present worldwide in 72 countries, with animal specimens currently having the highest incidence, due to the use of colistin in poultry for promoting growth and treating intestinal infections. The wide dissemination of mcr from food animals to meat, manure, the environment, and wastewater samples has increased the risk of transmission to humans via foodborne and vector-borne routes. The stability and spread of mcr genes were mediated by mobile genetic elements such as the IncHI2 conjugative plasmid, which is associated with multiple mcr genes and other antibiotic resistance genes. The cost of acquiring mcr is reduced by compensatory adaptation mechanisms. MCR proteins are well conserved structurally and via enzymatic action. Thus, therapeutics found effective against MCR-1 should be tested against the remaining MCR proteins. Conclusion The dissemination of mcr genes into the clinical setting, is threatening public health by limiting therapeutics options available. Combination therapies are a promising option for managing and treating colistin-resistant Enterobacteriaceae infections whilst reducing the toxic effects of colistin.
Collapse
Affiliation(s)
- Masego Mmatli
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Nontombi Marylucy Mbelle
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - John Osei Sekyere
- Department of Medical Microbiology, School of Medicine, University of Pretoria, Pretoria, South Africa
- Department of Microbiology and Immunology, Indiana University School of Medicine-Northwest, Gary, IN, United States
- Department of Dermatology, School of Medicine, University of Pretoria, Pretoria, South Africa
- *Correspondence: John Osei Sekyere, ;
| |
Collapse
|
31
|
Um MM, Dupouy V, Arpaillange N, Bièche-Terrier C, Auvray F, Oswald E, Brugère H, Bibbal D. High Fecal Prevalence of mcr-Positive Escherichia coli in Veal Calves at Slaughter in France. Antibiotics (Basel) 2022; 11:antibiotics11081071. [PMID: 36009940 PMCID: PMC9405437 DOI: 10.3390/antibiotics11081071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to determine the percentage of healthy veal calves carrying mcr-positive E. coli strains at the time of slaughter in France. Fecal samples were selectively screened for mcr-positive E. coli isolates using media supplemented with colistin. Screening for mcr genes was also carried out in E. coli isolates resistant to critically important antimicrobials used in human medicine recovered from the same fecal samples. Overall, 28 (16.5%) out of the 170 veal calves tested carried mcr-positive E. coli. As some calves carried several non-redundant mcr-positive strains, 41 mcr-positive E. coli were recovered. Thirty-one and seven strains were positive for mcr-1 and mcr-3 genes, respectively, while no strain was positive for the mcr-2 gene. Co-carriage of mcr-1 and mcr-3 was identified in three strains. All mcr-positive E. coli isolates, except one, were multidrug-resistant, with 56.1% being ciprofloxacin-resistant and 31.7% harboring blaCTX-M genes. All mcr-3-positive E. coli carried blaCTX-M genes, mainly blaCTX-M-55. This study highlights the high prevalence of mcr-positive E. coli strains in feces of veal calves at the time of slaughter. It also points out the multidrug (including ciprofloxacin) resistance of such strains and the co-occurrence of mcr-3 genes with blaCTX-M-55 genes.
Collapse
Affiliation(s)
- Maryse Michèle Um
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Véronique Dupouy
- Innovations Thérapeutiques et Résistances, Université de Toulouse, INRAE, ENVT, 31 000 Toulouse, France
| | - Nathalie Arpaillange
- Innovations Thérapeutiques et Résistances, Université de Toulouse, INRAE, ENVT, 31 000 Toulouse, France
| | | | - Frédéric Auvray
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Eric Oswald
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
- CHU de Toulouse, Hôpital Purpan, 31 000 Toulouse, France
| | - Hubert Brugère
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
| | - Delphine Bibbal
- Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31 000 Toulouse, France
- Correspondence:
| |
Collapse
|
32
|
Conjugative transfer of mcr-1-bearing plasmid from Salmonella to Escherichia coli in vitro on chicken meat and in mouse gut. Food Res Int 2022; 157:111263. [DOI: 10.1016/j.foodres.2022.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 04/13/2022] [Accepted: 04/17/2022] [Indexed: 11/23/2022]
|
33
|
Sreejith S, Shajahan S, Pratyuish PR, Anjana VM, Mathew J, Aparna S, Abraham SS, Radhakrishnan EK. Rapid detection of mobile resistance genes tetA and tetB from metaplasmids isolated from healthy broiler feces. Microb Pathog 2022; 166:105504. [PMID: 35341957 DOI: 10.1016/j.micpath.2022.105504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Containing antimicrobial resistance is the thought of the moment as it affects the human life from every aspect. Because, the inappropriate use of antibiotics in livestock animals for the growth promotion and prophylactic purpose has already generated significant challenges. The livestock farms which harbor and disseminate drug resistant microorganisms have already been identified as potential source of resistance genes acquired by the sensitive strains. Hence there is high demand for the affordable and effective surveillance method for the detection of antimicrobial resistance genes from livestock. In this study, direct detection of antibiotic resistance from metaplasmid DNA isolated from the poultry feces was conducted. For the initial standardization, plasmid DNA purified from the previously characterized Escherichia coli and Klebsiella pneumoniae were used. The tetA and tetB genes amplified from the purified plasmid DNA were further confirmed by agarose gel electrophoresis and sequencing. Further to this, metaplasmid DNA was purified from 29 different poultry fecal samples and these were further screened for the presence of resistance genes. Among the 29 metaplasmid samples, 8 were positive for tetA gene and 9 were positive for tetB gene. The results of the study indicate the potential of PCR based methods for the rapid screening of poultry samples for the antibiotic stewardship in the livestock sector.
Collapse
Affiliation(s)
- S Sreejith
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| | - Shamna Shajahan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| | - P R Pratyuish
- State Institute for Animal Diseases, Palode, Thiruvananthapuram, Kerala, 695 563, India
| | - V M Anjana
- State Institute for Animal Diseases, Palode, Thiruvananthapuram, Kerala, 695 563, India
| | - Jyothis Mathew
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India
| | - S Aparna
- State Institute for Animal Diseases, Palode, Thiruvananthapuram, Kerala, 695 563, India
| | - Swapna Susan Abraham
- State Institute for Animal Diseases, Palode, Thiruvananthapuram, Kerala, 695 563, India
| | - E K Radhakrishnan
- School of Biosciences, Mahatma Gandhi University, Kottayam, Kerala, 686 560, India.
| |
Collapse
|
34
|
Lassen SB, Ahsan ME, Islam SR, Zhou XY, Razzak MA, Su JQ, Brandt KK. Prevalence of antibiotic resistance genes in Pangasianodon hypophthalmus and Oreochromis niloticus aquaculture production systems in Bangladesh. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:151915. [PMID: 34826462 DOI: 10.1016/j.scitotenv.2021.151915] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Antibiotic resistance genes (ARGs) constitute emerging pollutants of significant public health concern. Antibiotics applied in aquaculture may stimulate the proliferation and dissemination of ARGs. This study investigated the prevalence and diversity of ARGs in Pangasianodon hypophthalmus (formerly Pangasius) and Oreochromis niloticus (formerly Tilapia) commercial aquaculture ponds from four economically important divisions (i.e. regions) of Bangladesh using a high-throughput qPCR ARG SmartChip and further aimed to explore effects of aquaculture pond management and water quality on the observed ARG prevalence patterns. A total of 160 ARGs and 10 mobile genetic elements (MGEs) were detected across all samples (n = 33), of which 76 ARGs and MGEs were shared between all regions. Multidrug resistance genes were the most frequently encountered ARGs, followed by ARGs conferring resistance to β-lactams, aminoglycosides, tetracyclines, and macrolide-lincosamide-streptogramin B (MLSB). Research ponds managed by the Bangladesh Agricultural University had the lowest abundance and diversity of ARGs, suggesting that proper management such as regular water quality monitoring, fortnightly water exchange and use of probiotics instead of antibiotics may mitigate the dissemination of antibiotic resistance from aquaculture ponds. The Adonis test (R2 = 0.35, p < 0.001) and distance decay relationships revealed that the ARGs composition displayed a significant biogeographical pattern (i.e., separation based on geographic origin). However, this effect could possibly be due to feed type as different feed types were used in different regions. In conclusion, our results indicate that there is a vast potential for improving aquaculture pond management practices in Bangladesh to mitigate the environmental dissemination of ARGs and their subsequent transmission to humans.
Collapse
Affiliation(s)
- Simon Bo Lassen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China
| | - Md Emranul Ahsan
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh; Department of Fisheries Management, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur 1706, Bangladesh
| | - Seikh Razibul Islam
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Xin-Yuan Zhou
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Muhammad Abdur Razzak
- Department of Aquaculture, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Kristian Koefoed Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing, China.
| |
Collapse
|
35
|
Sonnevend Á, Alali WQ, Mahmoud SA, Ghazawi A, Bharathan G, Melegh S, Rizvi TA, Pál T. Molecular Characterization of MCR-1 Producing Enterobacterales Isolated in Poultry Farms in the United Arab Emirates. Antibiotics (Basel) 2022; 11:antibiotics11030305. [PMID: 35326769 PMCID: PMC8944778 DOI: 10.3390/antibiotics11030305] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/18/2022] [Accepted: 02/20/2022] [Indexed: 02/04/2023] Open
Abstract
Data on the prevalence of MCR-producing Enterobacterales of animal origin are scarce from the Arabian Peninsula. We investigated the presence and variety of such strains from fecal specimens of poultry collected in four farms in the United Arab Emirates. Colonies from ten composite samples per farm grown on colistin-supplemented plates were PCR-screened for alleles of the mcr gene. Thirty-nine isolates selected based on species, colony morphology, and plasmid profile were subjected to whole genome sequencing. The panel of their resistance and virulence genes, MLST and cgMLST were established. Transferability and incompatibility types of the MCR-plasmids were determined. mcr-1.1 positive strains were identified in 36 of the 40 samples. Thirty-four multi-drug resistant Escherichia coli of 16 different sequence types, two Escherichia albertii, two Klebsiella pneumoniae and one Salmonella minnesota were identified. Beyond various aminoglycoside, tetracycline, and co-trimoxazole resistance genes, seven of them also carried ESBL genes and one blaCMY-2. Six IncHI2, 26 IncI2 and 4 IncX4 MCR-plasmids were mobilized, in case of the IncHI2 plasmids co-transferring ampicillin, chloramphenicol and tetracycline resistance. The diversity of mcr-1 positive strains suggest a complex local epidemiology calling for a coordinated surveillance including animals, retail meat and clinical cases.
Collapse
Affiliation(s)
- Ágnes Sonnevend
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.S.); (S.M.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
| | - Walid Q. Alali
- Department of Epidemiology and Biostatistics, Faculty of Public Health, Kuwait University, Safat, Kuwait City 13110, Kuwait;
| | - Sara A. Mahmoud
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
| | - Akela Ghazawi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
| | - Greeshma Bharathan
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Szilvia Melegh
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.S.); (S.M.)
| | - Tahir A. Rizvi
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Tibor Pál
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, 7624 Pécs, Hungary; (Á.S.); (S.M.)
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (S.A.M.); (A.G.); (G.B.); (T.A.R.)
- Correspondence:
| |
Collapse
|
36
|
Low Level of Colistin Resistance and mcr Genes Presence in Salmonella spp.: Evaluation of Isolates Collected between 2000 and 2020 from Animals and Environment. Antibiotics (Basel) 2022; 11:antibiotics11020272. [PMID: 35203874 PMCID: PMC8868313 DOI: 10.3390/antibiotics11020272] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 12/10/2022] Open
Abstract
Salmonellosis is one of the most important zoonoses in Europe and the world. Human infection may evolve in severe clinical diseases, with the need for hospitalization and antimicrobial treatment. Colistin is now considered an important antimicrobial to treat infections from multidrug- resistant Gram-negative bacteria, but the spreading of mobile colistin-resistance (mcr) genes has limited this option. We aimed to evaluate colistin minimum inhibitory concentration and the presence of mcr (mcr-1 to mcr-9) genes in 236 Salmonella isolates previously collected from different animals and the environment between 2000 and 2020. Overall, 17.79% of isolates were resistant to colistin; no differences were observed in relation to years of isolation (2000–2005, 2009–2014, and 2015–2020), Salmonella enterica subspecies (enterica, salamae, diarizonae, and houtenae), origin of samples (domestic animals, wildlife, and environment), or animal category (birds, mammals, and reptiles); only recently isolated strains from houseflies showed the most resistance. Few isolates (5.93%) scored positive for mcr genes, in particular for mcr-1, mcr-2, mcr-4, mcr-6, and mcr-8; furthermore, only 2.54% of isolates were mcr-positive and colistin-resistant. Detected resistance to colistin was equally distributed among all examined Salmonella isolates and not always related to the presence of mcr genes.
Collapse
|
37
|
Zhu L, Shuai XY, Lin ZJ, Sun YJ, Zhou ZC, Meng LX, Zhu YG, Chen H. Landscape of genes in hospital wastewater breaking through the defense line of last-resort antibiotics. WATER RESEARCH 2022; 209:117907. [PMID: 34864622 DOI: 10.1016/j.watres.2021.117907] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/06/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Hospital wastewater contains abundant antibiotics, antibiotic resistance genes (ARGs), and pathogens. Last-resort antibiotic resistance genes (LARGs) include the New Delhi metallo-β-lactamase gene blaNDM, mobile colistin resistance gene mcr and tigecycline resistance gene tet(X) which confers resistance to carbapenems, colistin and tigecycline. The presence and significance of LARGs in hospital wastewater treatment systems (HWTS) have not yet been systematically explored. Here, LARG variants were shown to be prevalent both influents and effluents of HWTS. A total of 989 Enterobacteriaceae isolates that confer resistance to last-resort antibiotics were collected from effluents and multiple genetic contexts of LARGs were analyzed. LARGs-carrying plasmids were confirmed to show high multidrug phenotypes and transferability. We also discovered the co-occurrence of plasmids harboring blaNDM-1 and mcr-1 in single Escherichia coli, as well as E. coli HM016 containing two unique mcr-1-carrying plasmids. This result might accelerate co-dissemination of LARGs under environmental selection pressure. Different core genetic arrangements in these strains suggest several evolutionary pathways in HWTS. The resistance functions of LARGs were confirmed in vitro and in vivo by mass spectrometry. This study provides novel insights into the diversity, genetic context and function of critical ARGs in HWTS. The results raise the concern that LARGs may further spread into the environment, thus, more stringent discharge standards and regulations for hospital wastewater are urgently needed.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Xin-Yi Shuai
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ze-Jun Lin
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yu-Jie Sun
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Zhen-Chao Zhou
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Ling-Xuan Meng
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR. China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR. China
| | - Hong Chen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR. China.
| |
Collapse
|
38
|
Dziri O, Dziri R, El Salabi AA, Alawami AA, Ksouri R, Chouchani C. Polymyxin E-Resistant Gram-Negative Bacteria in Tunisia and Neighboring Countries: Are There Commonalities? Infect Drug Resist 2021; 14:4821-4832. [PMID: 34815678 PMCID: PMC8605809 DOI: 10.2147/idr.s327718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/13/2021] [Indexed: 11/23/2022] Open
Abstract
The current global dissemination of polymyxin E resistance constitutes a real public health threat because of the restricted therapeutic options. This review provides a comprehensive assessment of the epidemiology of polymyxin E-resistant bacteria, with special reference to colistin-resistant Gram-negative bacteria in Tunisia and neighboring countries, based on available published data to January 2020. We aimed to determine their prevalence by species and origin, shedding light on the different genes involved and illustrating their genetic support, genetic environment, and geographic distribution. We found that colistin resistance varies considerably among countries. A majority of the research has focused on Algeria (13 of 32), followed by Tunisia (nine of 32), Egypt (nine of 32), and Libya (one of 32). All these reports showed that colistin-resistant Gram-negative bacteria were dramatically disseminated in these countries, as well as in African wildlife. Moreover, high prevalence of these isolates was recorded from various sources (humans, animals, food products, and natural environments). Colistin resistance was mainly reported among Enterobacteriaceae, particularly Klebsiella pneumoniae and Escherichia coli. It was associated with chromosomal mutations and plasmid-mediated genes (mcr). Four mcr variants (mcr1, mcr2, mcr3, and mcr8), mobilized by several plasmid types (IncHI2, IncP, IncFIB, and IncI2), were detected in these countries and were responsible for their rapid spread. Countrywide dissemination of high-risk clones was also observed, including E. coli ST10 and K. pneumoniae ST101 and ST11. Intensified efforts to raise awareness of antibiotic use and legalization thereon are required in order to monitor and minimize the spread of multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Olfa Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, Higher Institute of Sciences and Technologies of Environment of Borj Cédria, University of Carthage, Hammam-Lif, Tunisia.,Joint Service Unit for Research Genomic Platform, Higher Institute of Environmental Sciences and Technologies of Environment of Borj Cédria, Center of Biotechnology of Borj Cédria, Hammam-Lif, Tunisia
| | - Raoudha Dziri
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Allaaeddin A El Salabi
- Infection Control and Patient Safety Office, New Marwa Hospital, Benghazi, Libya.,Department of Environmental Health, Faculty of Public Health, University of Benghazi, Benghazi, Libya
| | - Alhussain A Alawami
- Infection Control and Patient Safety Office, New Marwa Hospital, Benghazi, Libya
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Center of Biotechnology of Borj Cédria, Hammam-Lif, Tunisia
| | - Chedly Chouchani
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunis, Tunisia.,Laboratory of Research in Sciences and Technology of Environment, Higher Institute of Sciences and Technologies of Environment of Borj Cédria, University of Carthage, Hammam-Lif, Tunisia.,Joint Service Unit for Research Genomic Platform, Higher Institute of Environmental Sciences and Technologies of Environment of Borj Cédria, Center of Biotechnology of Borj Cédria, Hammam-Lif, Tunisia
| |
Collapse
|
39
|
Lin Y, Zhang Y, Liu S, Ye D, Chen L, Huang N, Zeng W, Liao W, Zhan Y, Zhou T, Cao J. Quercetin Rejuvenates Sensitization of Colistin-Resistant Escherichia coli and Klebsiella Pneumoniae Clinical Isolates to Colistin. Front Chem 2021; 9:795150. [PMID: 34900948 PMCID: PMC8656154 DOI: 10.3389/fchem.2021.795150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/03/2021] [Indexed: 11/13/2022] Open
Abstract
Colistin is being considered as "the last ditch" treatment in many infections caused by Gram-negative stains. However, colistin is becoming increasingly invalid in treating patients who are infected with colistin-resistant Escherichia coli (E. coli) and Klebsiella Pneumoniae (K. pneumoniae). To cope with the continuous emergence of colistin resistance, the development of new drugs and therapies is highly imminent. Herein, in this work, we surprisingly found that the combination of quercetin with colistin could efficiently and synergistically eradicate the colistin-resistant E. coli and K. pneumoniae, as confirmed by the synergy checkboard and time-kill assay. Mechanismly, the treatment of quercetin combined with colistin could significantly downregulate the expression of mcr-1 and mgrB that are responsible for colistin-resistance, synergistically enhancing the bacterial cell membrane damage efficacy of colistin. The colistin/quercetin combination was notably efficient in eradicating the colistin-resistant E. coli and K. pneumoniae both in vitro and in vivo. Therefore, our results may provide an efficient alternative pathway against colistin-resistant E. coli and K. pneumoniae infections.
Collapse
Affiliation(s)
- Yishuai Lin
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Ying Zhang
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Shixing Liu
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dandan Ye
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liqiong Chen
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Na Huang
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weiliang Zeng
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| | - Wenli Liao
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yizhou Zhan
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Tieli Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianming Cao
- School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
40
|
Anyanwu MU, Jaja IF, Okpala COR, Jaja CJI, Oguttu JW, Chah KF, Shoyinka VS. Potential sources and characteristic occurrence of mobile colistin resistance ( mcr) gene-harbouring bacteria recovered from the poultry sector: a literature synthesis specific to high-income countries. PeerJ 2021; 9:e11606. [PMID: 34707919 PMCID: PMC8500085 DOI: 10.7717/peerj.11606] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 05/23/2021] [Indexed: 11/20/2022] Open
Abstract
Understanding the sources, prevalence, phenotypic and genotypic characteristics of mcr gene-harbouring bacteria (MGHB) in the poultry sector is crucial to supplement existing information. Through this, the plasmid-mediated colistin resistance (PMCR) could be tackled to improve food safety and reduce public health risks. Therefore, we conducted a literature synthesis of potential sources and characteristic occurrence of MGHB recovered from the poultry sector specific to the high-income countries (HICs). Colistin (COL) is a last-resort antibiotic used for treating deadly infections. For more than 60 years, COL has been used in the poultry sector globally, including the HICs. The emergence and rapid spread of mobile COL resistance (mcr) genes threaten the clinical use of COL. Currently, ten mcr genes (mcr-1 to mcr-10) have been described. By horizontal and vertical transfer, the mcr-1, mcr-2, mcr-3, mcr-4, mcr-5, and mcr-9 genes have disseminated in the poultry sector in HICs, thus posing a grave danger to animal and human health, as harboured by Escherichia coli, Klebsiella pneumoniae, Salmonella species, and Aeromonas isolates. Conjugative and non-conjugative plasmids are the major backbones for mcr in poultry isolates from HICs. The mcr-1, mcr-3 and mcr-9 have been integrated into the chromosome, making them persist among the clones. Transposons, insertion sequences (IS), especially ISApl1 located downstream and upstream of mcr, and integrons also drive the COL resistance in isolates recovered from the poultry sector in HICs. Genes coding multi-and extensive-drug resistance and virulence factors are often co-carried with mcr on chromosome and plasmids in poultry isolates. Transmission of mcr to/among poultry strains in HICs is clonally unrestricted. Additionally, the contact with poultry birds, manure, meat/egg, farmer's wears/farm equipment, consumption of contaminated poultry meat/egg and associated products, and trade of poultry-related products continue to serve as transmission routes of MGHB in HICs. Indeed, the policymakers, especially those involved in antimicrobial resistance and agricultural and poultry sector stakeholders-clinical microbiologists, farmers, veterinarians, occupational health clinicians and related specialists, consumers, and the general public will find this current literature synthesis very useful.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Ishmael Festus Jaja
- Livestock and Pasture Science, University of Fort Hare, Alice, Eastern Cape, South Africa
| | - Charles Odilichukwu R. Okpala
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Chinwe-Juliana Iwu Jaja
- Department of Nursing and Midwifery, Faculty of Medicine and Health Sciences, University of Stellenbosch, Cape Town, Western Cape, South Africa
| | - James Wabwire Oguttu
- Department of Agriculture and Animal Health, University of South Africa, Johannesburg, Gauteng, South Africa
| | - Kennedy Foinkfu Chah
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| | - Vincent Shodeinde Shoyinka
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nsukka, Enugu, Nigeria
| |
Collapse
|
41
|
Salgueiro V, Reis L, Ferreira E, Botelho MJ, Manageiro V, Caniça M. Assessing the Bacterial Community Composition of Bivalve Mollusks Collected in Aquaculture Farms and Respective Susceptibility to Antibiotics. Antibiotics (Basel) 2021; 10:antibiotics10091135. [PMID: 34572717 PMCID: PMC8468174 DOI: 10.3390/antibiotics10091135] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/09/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture is a growing sector, providing several products for human consumption, and it is therefore important to guarantee its quality and safety. This study aimed to contribute to the knowledge of bacterial composition of Crassostrea gigas, Mytilus spp. and Ruditapes decussatus, and the antibiotic resistances/resistance genes present in aquaculture environments. Two hundred and twenty-two bacterial strains were recovered from all bivalve mollusks samples belonging to the Aeromonadaceae, Bacillaceae, Comamonadaceae, Enterobacteriaceae, Enterococcaceae, Micrococcaceae, Moraxellaceae, Morganellaceae, Pseudomonadaceae, Shewanellaceae, Staphylococcaceae, Streptococcaceae, Vibrionaceae, and Yersiniaceae families. Decreased susceptibility to oxytetracycline prevails in all bivalve species, aquaculture farms and seasons. Decreased susceptibilities to amoxicillin, amoxicillin/clavulanic acid, cefotaxime, cefoxitin, ceftazidime, chloramphenicol, florfenicol, colistin, ciprofloxacin, flumequine, nalidixic acid and trimethoprim/sulfamethoxazole were also found. This study detected six qnrA genes among Shewanella algae, ten qnrB genes among Citrobacter spp. and Escherichia coli, three oqxAB genes from Raoultella ornithinolytica and blaTEM-1 in eight E. coli strains harboring a qnrB19 gene. Our results suggest that the bacteria and antibiotic resistances/resistance genes present in bivalve mollusks depend on several factors, such as host species and respective life stage, bacterial family, farm’s location and season, and that is important to study each aquaculture farm individually to implement the most suitable measures to prevent outbreaks.
Collapse
Affiliation(s)
- Vanessa Salgueiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (L.R.); (E.F.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
| | - Lígia Reis
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (L.R.); (E.F.); (V.M.)
| | - Eugénia Ferreira
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (L.R.); (E.F.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
| | - Maria João Botelho
- Division of Oceanography and Marine Environment, Portuguese Institute for the Sea and Atmosphere, 1749-077 Lisbon, Portugal;
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, 4450-208 Matosinhos, Portugal
| | - Vera Manageiro
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (L.R.); (E.F.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
| | - Manuela Caniça
- National Reference Laboratory of Antibiotic Resistances and Healthcare Associated Infections, Department of Infectious Diseases, National Institute of Health Dr. Ricardo Jorge, 1649-016 Lisbon, Portugal; (V.S.); (L.R.); (E.F.); (V.M.)
- Centre for the Studies of Animal Science, Institute of Agrarian and Agri-Food Sciences and Technologies, University of Porto, 4051-401 Porto, Portugal
- CIISA, Center for Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
42
|
Cherak Z, Loucif L, Moussi A, Rolain JM. Epidemiology of mobile colistin resistance (mcr) genes in aquatic environments. J Glob Antimicrob Resist 2021; 27:51-62. [PMID: 34438108 DOI: 10.1016/j.jgar.2021.07.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/11/2021] [Accepted: 07/25/2021] [Indexed: 02/05/2023] Open
Abstract
Colistin is one of the last-line therapies against multidrug-resistant Gram-negative pathogens, especially carbapenemase-producing isolates, making resistance to this compound a major global public-health crisis. Until recently, colistin resistance in Gram-negative bacteria was known to arise only by chromosomal mutations. However, a plasmid-mediated colistin resistance mechanism was described in late 2015. This mechanism is encoded by different mobile colistin resistance (mcr) genes that encode phosphoethanolamine (pEtN) transferases. These enzymes catalyse the addition of a pEtN moiety to lipid A in the bacterial outer membrane leading to colistin resistance. MCR-producing Gram-negative bacteria have been largely disseminated worldwide. However, their environmental dissemination has been underestimated. Indeed, water environments act as a connecting medium between different environments, allowing them to play a crucial role in the spread of antibiotic resistance between the natural environment and humans and other animals. For a better understanding of the role of such environments as reservoirs and/or dissemination routes of mcr genes, this review discusses primarily the various water habitats contributing to the spread of antibiotic resistance. Thereafter, we provide an overview of existing knowledge regarding the global epidemiology of mcr genes in water environments. This review confirms the global distribution of mcr genes in several water environments, including wastewater from different origins, surface water and tap water, making these environments reservoirs and dissemination routes of concern for this resistance mechanism.
Collapse
Affiliation(s)
- Zineb Cherak
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Lotfi Loucif
- Laboratoire de Biotechnologie des Molécules Bioactives et de la Physiopathologie Cellulaire (LBMBPC), Département de Microbiologie et de Biochimie, Faculté des Sciences de la Nature et de la Vie, Université de Batna 2, Batna, Algeria.
| | - Abdelhamid Moussi
- Laboratoire de Génétique, Biotechnologie et Valorisation des Bio-ressources (GBVB), Faculté des Sciences Exactes et des Sciences de la Nature et de la Vie, Université Mohamed Khider, Biskra, Algeria
| | - Jean-Marc Rolain
- Aix-Marseille Université, IRD, MEPHI, Faculté de Médecine et de Pharmacie, Marseille, France; IHU Méditerranée Infection, Marseille, France; Assistance Publique des Hôpitaux de Marseille, Marseille, France
| |
Collapse
|
43
|
Wang Y, Lyu N, Liu F, Liu WJ, Bi Y, Zhang Z, Ma S, Cao J, Song X, Wang A, Zhang G, Hu Y, Zhu B, Gao GF. More diversified antibiotic resistance genes in chickens and workers of the live poultry markets. ENVIRONMENT INTERNATIONAL 2021; 153:106534. [PMID: 33799229 DOI: 10.1016/j.envint.2021.106534] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Poultry farms and LPMs are a reservoir of antimicrobial resistant bacteria and resistance genes from feces. The LPM is an important interface between humans, farm animals, and environments in a typical urban environment, and it is considered a reservoir for ARGs and viruses. However, the antibiotic resistomes shared between chicken farms and LPMs, and that of LPM workers and people who have no contact with the LPMs remains unknown. METHODS We characterized the resistome and bacterial microbiome of farm chickens and LPMs and LPM workers and control subjects. The mobile ARGs identified in chickens and the distribution of the mcr-family genes in publicly bacterial genomes and chicken gut metagenomes was analyzed, respectively. In addition, the prevalence of mcr-1 in LPMs following the ban on colistin-positive additives in China was explored. RESULTS By profiling the microbiomes and resistomes in chicken farms, LPMs, LPM workers, and LPM environments, we found that the bacterial community composition and resistomes were significantly different between the farms and the LPMs, and the LPM samples possessed more diversified ARGs (59 types) than the farms. Some mobile ARGs, such as mcr-1 and tet(X3), identified in chicken farms, LPMs, LPM workers, and LPM environments were also harbored by human clinical pathogens. Moreover, we found that the resistomes were significantly different between the LPM workers and those who have no contact with the LPMs, and more diversified ARGs (188 types) were observed in the LPM workers. It is also worth noting that mcr-10 was identified in both human (5.2%, 96/1,859) and chicken (1.5%, 14/910) gut microbiomes. Although mcr-1 prevalence decreased significantly in the LPMs across the eight provinces in China, from 190/333 (57.1%) samples in September 2016-March 2017 to 208/544 (38.2%) samples in August 2018-May 2019, it is widespread and continuous in the LPMs. CONCLUSION Live poultry trade has a significant effect on the diversity of ARGs in LPM workers, chickens, and environments in China, driven by human selection with the live poultry trade. Our findings highlight the live poultry trade as ARG disseminators into LPMs, which serve as an interface of LPM environments even LPM workers, and that could urge Government to have better control of LPMs in China. Further studies on the factors that promote antibiotic resistance exchange between LPM environments, human commensals, and pathogens, are warranted.
Collapse
Affiliation(s)
- Yanan Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Na Lyu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - William J Liu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yuhai Bi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China
| | - Zewu Zhang
- Dongguan Municipal Center for Disease Control and Prevention, Dongguan 523129, China
| | - Sufang Ma
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jian Cao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaofeng Song
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Aiping Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Gaiping Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450046, China; School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfei Hu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Baoli Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China; Beijing Key Laboratory of Antimicrobial Resistance and Pathogen Genomics, Beijing 100101, China; Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Influenza Research and Early-warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Diseases (CEEID), Chinese Academy of Sciences, Beijing 100101, China; Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
44
|
Köck R, Herr C, Kreienbrock L, Schwarz S, Tenhagen BA, Walther B. Multiresistant Gram-Negative Pathogens—A Zoonotic Problem. DEUTSCHES ARZTEBLATT INTERNATIONAL 2021; 118:579-589. [PMID: 33814041 DOI: 10.3238/arztebl.m2021.0184] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 11/25/2020] [Accepted: 03/07/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Extended-spectrum-β-lactamase-producing, carbapenemase-producing, and colistin-resistant Enterobacteriaceae (ESBL-E, CPE, and Col-E) are multiresistant pathogens that are increasingly being encountered in both human and veterinary medicine. In this review, we discuss the frequency, sources, and significance of the zoonotic transmission of these pathogens between animals and human beings. METHODS This review is based on pertinent publications retrieved by a selective literature search. Findings for Germany are presented in the global context. RESULTS ESBL-E are common in Germany in both animals and human beings, with a 6-10% colonization rate in the general human population. A major source of ESBL-E is human-tohuman transmission, partly through travel. Some colonizations are of zoonotic origin (i.e., brought about by contact with animals or animal-derived food products); in the Netherlands, more than 20% of cases are thought to be of this type. CPE infections, on the other hand, are rare in Germany in both animals and human beings. Their main source in human beings is nosocomial transmission. Col-E, which bear mcr resistance genes, have been described in Germany mainly in food-producing animals and their meat. No representative data are available on Col-E in human beings in Germany; in Europe, the prevalence of colonization is less than 2%, with long-distance travel as a risk factor. The relevance of animals as a source of Col-E for human beings is not yet entirely clear. CONCLUSION Livestock farming and animal contact affect human colonization with the multiresistant Gram-negative pathogens CPE, ESBL-E and Col-E to differing extents. Improved prevention will require the joint efforts of human and veterinary medicine.
Collapse
|
45
|
Xu Y. Phage and phage lysins: New era of bio-preservatives and food safety agents. J Food Sci 2021; 86:3349-3373. [PMID: 34302296 DOI: 10.1111/1750-3841.15843] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 01/21/2023]
Abstract
There has been an increase in the search and application of new antimicrobial agents as alternatives to use of chemical preservatives and antibiotic-like compounds by the food industry. The massive use of antibiotic has created a reservoir of antibiotic-resistant bacteria that find their way from farm to humans. Thus, there exists an imperative need to explore new antibacterial options and bacteriophages perfectly fit into the class of safe and potent antimicrobials. Phage bio-control has come a long way owing to advances with use of phage cocktails, recombinant phages, and phage lysins; however, there still exists unmet challenges that restrict the number of phage-based products reaching the market. Hence, further studies are required to explore for more efficient phage-based bio-control strategies that can become an integral part of food safety protocols. This review thus aims to highlight the recent developments made in the application of phages and phage enzymes covering pre-harvest as well as post-harvest usage. It further focuses on the major issues in both phage and phage lysin research hindering their optimum use while detailing out the advances made by researchers lately in this direction for full exploitation of phages and phage lysins in the food sector.
Collapse
Affiliation(s)
- Yingmin Xu
- Food Technology College Jiangsu Vocational College of Agriculture and Forestry, China
| |
Collapse
|
46
|
Kalová A, Gelbíčová T, Overballe-Petersen S, Litrup E, Karpíšková R. Characterisation of Colistin -Resistant Enterobacterales and Acinetobacter Strains Carrying mcr Genes from Asian Aquaculture Products. Antibiotics (Basel) 2021; 10:antibiotics10070838. [PMID: 34356760 PMCID: PMC8300808 DOI: 10.3390/antibiotics10070838] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/29/2021] [Accepted: 07/07/2021] [Indexed: 11/16/2022] Open
Abstract
Aquaculture systems are widely recognised as hotspots for horizontal gene transfer, and the need for screening for bacteria carrying antimicrobial resistance genes in aquaculture systems is becoming more important. In this study, we characterised seventeen bacterial strains (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii, and A. nosocomialis) resistant to colistin originating from retailed aquaculture products imported from Vietnam to the Czech Republic. The mcr-1.1 gene was found located on plasmid types IncHI2, IncI2, and IncX4, as well as on the rarely described plasmid types IncFIB-FIC and IncFIB(K), phage-like plasmid p0111, and on the chromosome of E. coli. One E. coli strain carried the mcr-3.5 gene on IncFII(pCoo) plasmid in addition to the mcr-1.1 gene located on IncHI2 plasmid. K. pneumoniae was found to carry the mcr-1.1 and mcr-8.2 genes on IncFIA(HI1) plasmid. The mcr-4.3 gene was found on similar untypeable plasmids of A. baumannii and A. nosocomialis strains, pointing to the possible interspecies transfer of plasmids carrying the mcr-4 gene. Our results highlight that some aquaculture products of Asian origin can represent an important source of variable plasmids carrying mcr genes. The results showed an involvement of phages in the incorporation of the mcr-1 gene into plasmids or the chromosome in E. coli strains from aquaculture. The detection of E. coli with the mcr-1 gene in the chromosome points to the risks associated with the stabilisation of the mcr genes in the bacterial chromosome.
Collapse
Affiliation(s)
- Alžběta Kalová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.)
- Department of Experimental Biology, Faculty of Science, Masaryk University, 602 00 Brno, Czech Republic
- Correspondence:
| | - Tereza Gelbíčová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.)
| | | | - Eva Litrup
- Statens Serum Institut, 2300 Copenhagen, Denmark; (S.O.-P.); (E.L.)
| | - Renáta Karpíšková
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic; (T.G.); (R.K.)
| |
Collapse
|
47
|
Li W, Yan Y, Chen J, Sun R, Wang Y, Wang T, Feng Z, Peng K, Wang J, Chen S, Luo Y, Li R, Yang B. Genomic characterization of conjugative plasmids carrying the mcr-1 gene in foodborne and clinical strains of Salmonella and Escherichia coli. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
48
|
Lv Z, Shen Y, Liu W, Ye H, Liu D, Liu J, Fu Y, Peng C, Chen K, Deng X, Liu B, He J, Yang L, Xu C, Cai C, Wang Y, Ke Y, Shen J. Prevalence and risk factors of mcr-1-positive volunteers after colistin banning as animal growth promoter in China: a community-based case-control study. Clin Microbiol Infect 2021; 28:267-272. [PMID: 34197932 DOI: 10.1016/j.cmi.2021.06.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/19/2021] [Accepted: 06/19/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES China banned the use of colistin as animal growth promoter in April 2017. Herein, we report the prevalence of mcr-1 in the intestine of healthy humans and risk factors associated with mcr-1 carriage after the implementation of the ban. METHODS We recruited 719 healthy volunteers from Shenzhen City from 1 March 2018 to 31 December 2019 to investigate the prevalence of mcr-1 in human intestine, and undertook a case-control study to ascertain the risk factors associated with the mcr-1-positive population. A further comparative study was conducted to identify differences between genetic characteristics of mcr-1-positive and mcr-1-negative Escherichia coli. RESULTS Overall, 56 (7.8%, 95% CI 5.9%-10.0%, n = 719) individual faecal samples were positive for mcr-1, and prevalence of mcr-1 among individuals in 2019 (2.4%, 95% CI 8.7%-15.0%, 7/294) was significantly lower than that in 2018 (11.5%, 95% CI 1.0%-4.8%, 49/425) (p < 0.0001). After the colistin ban, animal-derived food (pork and chicken meat) was no longer a risk factor for mcr-1 carriage in human intestine, whereas a higher intake of fish and seafood (>75 g/day) and whole grains (>150 g/day) was associated with higher and lower risk of mcr-1 carriage, respectively (OR 2.175, 95% CI 1.047-4.517; OR 0.045, 95% CI 0.004-0.567). Compared with mcr-1-negative E. coli, the mcr-1-positive E. coli had different patterns of resistance genes and genetic heterogeneity. CONCLUSIONS Our study implicates aquatic food as beeing associated with mcr-1 carriage in the healthy population, even after the ban on colistin. Dietary modification (e.g. whole grains) may help to combat mcr-1-positive bacterial colonization of the gut.
Collapse
Affiliation(s)
- Ziquan Lv
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Yingbo Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China; CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Liu
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Hailing Ye
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Dejun Liu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Juan Liu
- Shenzhen Hospital of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Yulin Fu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Changfeng Peng
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Kun Chen
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Xiangxiao Deng
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Bang Liu
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Jie He
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China
| | - Lu Yang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chunyan Xu
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Chang Cai
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A and F University, Hangzhou, China
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuebin Ke
- Key Laboratory of Genetics & Molecular Medicine of Shenzhen, Shenzhen Centre for Disease Control and Prevention, Shenzhen, China.
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.
| |
Collapse
|
49
|
Cilia G, Turchi B, Fratini F, Ebani VV, Turini L, Cerri D, Bertelloni F. Phenotypic and genotypic resistance to colistin in E. coli isolated from wild boar (Sus scrofa) hunted in Italy. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01501-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AbstractThe One Health approach is not only focused on diseases and zoonosis control but also on antimicrobial resistance. As concern this important issue, the problem of plasmid-mediated colistin resistance recently emerged. Few studies reported data about colistin resistance and mcr genes in bacteria from wildlife. In this manuscript, 168 Escherichia coli isolated from hunted wild boar were tested; colistin resistance was evaluated by MIC microdilution method, and the presence of mcr-1 and mcr-2 genes was evaluated by PCR. Overall, 27.9% of isolates resulted resistant to colistin, and most of them showed a MIC value > 256 μg/mL. A percentage of 44.6% of tested E. coli scored positive for one or both genes. In details, 13.6% of isolated harbored mcr-1 and mcr-2 in combination; most of them exhibiting the highest MIC values. Interestingly, 19.6% of mcr-positive E. coli resulted phenotypically susceptible to colistin. Wild boar could be considered a potential reservoir of colistin-resistant bacteria. In the light of the possible contacts with domestic animals and humans, this wild species could play an important role in the diffusion of colistin resistance. Thus, the monitoring programs on wildlife should include this aspect.
Collapse
|
50
|
Lentz SAM, Dalmolin TV, Barth AL, Martins AF. mcr-1 Gene in Latin America: How Is It Disseminated Among Humans, Animals, and the Environment? Front Public Health 2021; 9:648940. [PMID: 34026712 PMCID: PMC8139396 DOI: 10.3389/fpubh.2021.648940] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/22/2021] [Indexed: 12/29/2022] Open
Affiliation(s)
- Silvia Adriana Mayer Lentz
- Programa de Ps Graduao em Microbiologia Agrcola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Laboratrio de Microbiologia Aplicada, Instituto de Cincias Bsicas da Sade, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Afonso Lus Barth
- Laboratrio de Pesquisa em Resistncia Bacteriana (LABRESIS), Hospital de Clnicas de Porto Alegre, Porto Alegre, Brazil
| | - Andreza Francisco Martins
- Programa de Ps Graduao em Microbiologia Agrcola e Do Ambiente, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Laboratrio de Microbiologia Aplicada, Instituto de Cincias Bsicas da Sade, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.,Laboratrio de Pesquisa em Resistncia Bacteriana (LABRESIS), Hospital de Clnicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|