1
|
Fischer MT, Xue KS, Costello EK, Dvorak M, Raboisson G, Robaczewska A, Caty SN, Relman DA, O’Connell LA. Effects of parental care on skin microbial community composition in poison frogs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612488. [PMID: 39314287 PMCID: PMC11419107 DOI: 10.1101/2024.09.11.612488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Parent-offspring interactions constitute the first contact of many newborns with their environment, priming community assembly of microbes through priority effects. Early exposure to microbes can have lasting influences on the assembly and functionality of the host's microbiota, leaving a life-long imprint on host health and disease. Studies of the role played by parental care in microbial acquisition have primarily focused on humans and hosts with agricultural relevance. Anuran vertebrates offer the opportunity to examine microbial community composition across life stages as a function of parental investment. In this study, we investigate vertical transmission of microbiota during parental care in a poison frog (Family Dendrobatidae), where fathers transport their offspring piggyback-style from terrestrial clutches to aquatic nurseries. We found that substantial bacterial colonization of the embryo begins after hatching from the vitelline envelope, emphasizing its potential role as microbial barrier during early development. Using a laboratory cross-foster experiment, we demonstrated that poison frogs performing tadpole transport serve as a source of skin microbes for tadpoles on their back. To study how transport impacts the microbial skin communities of tadpoles in an ecologically relevant setting, we sampled frogs and tadpoles of sympatric species that do or do not exhibit tadpole transport in their natural habitat. We found more diverse microbial communities associated with tadpoles of transporting species compared to a non-transporting frog. However, we detected no difference in the degree of similarity between adult and tadpole skin microbiotas, based on whether the frog species exhibits transporting behavior or not. Using a field experiment, we confirmed that tadpole transport can result in the persistent colonization of tadpoles by isolated microbial taxa associated with the caregiver's skin, albeit often at low prevalence. This is the first study to describe vertical transmission of skin microbes in anuran amphibians, showing that offspring transport may serve as a mechanism for transmission of parental skin microbes. Overall, these findings provide a foundation for further research on how vertical transmission in this order impacts host-associated microbiota and physiology.
Collapse
Affiliation(s)
| | - Katherine S. Xue
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Elizabeth K. Costello
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mai Dvorak
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gaëlle Raboisson
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anna Robaczewska
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - David A. Relman
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Infectious Diseases Section, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Lauren A. O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Wu Tsai Institute for Neuroscience, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Johnston SD, Hulse L, Keeley T, Mucci A, Seddon J, Maynard S. The Utility of the Koala Scat: A Scoping Review. BIOLOGY 2024; 13:523. [PMID: 39056716 PMCID: PMC11273466 DOI: 10.3390/biology13070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/21/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
The use of samples or scats to provide important ecological, genetic, disease and physiology details on free-range populations is gaining popularity as an alternative non-invasive methodology. Koala populations in SE Queensland and NSW have recently been listed as endangered and continue to face anthropomorphic and stochastic environmental impacts that could potentially lead to their extinction. This scoping review examines the current and potential utility of the koala scat to contribute data relevant to the assessment of koala conservation status and decision making. Although we demonstrate that there is great potential for this methodology in providing details for both individual wild animal and population biology (distribution, abundance, sex ratio, immigration/emigration, genetic diversity, evolutionary significant unit, disease epidemiology, nutrition, reproductive status and stress physiology), the calibre of this information is likely to be a function of the quality of the scat that is sampled.
Collapse
Affiliation(s)
- Stephen D. Johnston
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
| | - Lyndal Hulse
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
| | - Tamara Keeley
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
| | - Albano Mucci
- School of Environment, The University of Queensland, Gatton 4343, Australia; (L.H.); (T.K.); (A.M.)
| | - Jennifer Seddon
- School of Veterinary Science, The University of Queensland, Gatton 4343, Australia;
- Research Division, James Cook University, Townsville 4811, Australia
| | - Sam Maynard
- Saunders Havill Group, Bowen Hills 4006, Australia;
| |
Collapse
|
3
|
Kondo K, Suzuki M, Amadaira M, Araki C, Watanabe R, Murakami K, Ochiai S, Ogura T, Hayakawa T. Association of maternal genetics with the gut microbiome and eucalypt diet selection in captive koalas. PeerJ 2024; 12:e17385. [PMID: 38818452 PMCID: PMC11138522 DOI: 10.7717/peerj.17385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024] Open
Abstract
Background Koalas, an Australian arboreal marsupial, depend on eucalypt tree leaves for their diet. They selectively consume only a few of the hundreds of available eucalypt species. Since the koala gut microbiome is essential for the digestion and detoxification of eucalypts, their individual differences in the gut microbiome may lead to variations in their eucalypt selection and eucalypt metabolic capacity. However, research focusing on the relationship between the gut microbiome and differences in food preferences is very limited. We aimed to determine whether individual and regional differences exist in the gut microbiome of koalas as well as the mechanism by which these differences influence eucalypt selection. Methods Foraging data were collected from six koalas and a total of 62 feces were collected from 15 koalas of two zoos in Japan. The mitochondrial phylogenetic analysis was conducted to estimate the mitochondrial maternal origin of each koala. In addition, the 16S-based gut microbiome of 15 koalas was analyzed to determine the composition and diversity of each koala's gut microbiome. We used these data to investigate the relationship among mitochondrial maternal origin, gut microbiome and eucalypt diet selection. Results and Discussion This research revealed that diversity and composition of the gut microbiome and that eucalypt diet selection of koalas differs among regions. We also revealed that the gut microbiome alpha diversity was correlated with foraging diversity in koalas. These individual and regional differences would result from vertical (maternal) transmission of the gut microbiome and represent an intraspecific variation in koala foraging strategies. Further, we demonstrated that certain gut bacteria were strongly correlated with both mitochondrial maternal origin and eucalypt foraging patterns. Bacteria found to be associated with mitochondrial maternal origin included bacteria involved in fiber digestion and degradation of secondary metabolites, such as the families Rikenellaceae and Synergistaceae. These bacteria may cause differences in metabolic capacity between individual and regional koalas and influence their eucalypt selection. Conclusion We showed that the characteristics (composition and diversity) of the gut microbiome and eucalypt diet selection of koalas differ by individuals and regional origins as we expected. In addition, some gut bacteria that could influence eucalypt foraging of koalas showed the relationships with both mitochondrial maternal origin and eucalypt foraging pattern. These differences in the gut microbiome between regional origins may make a difference in eucalypt selection. Given the importance of the gut microbiome to koalas foraging on eucalypts and their strong symbiotic relationship, future studies should focus on the symbiotic relationship and coevolution between koalas and the gut microbiome to understand individual and regional differences in eucalypt diet selection by koalas.
Collapse
Affiliation(s)
- Kotaro Kondo
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mirei Suzuki
- Graduate School of Environmental Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Mana Amadaira
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Chiharu Araki
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Rie Watanabe
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | | | | | - Tadatoshi Ogura
- School of Veterinary Medicine, Kitasato University, Towada, Aomori, Japan
| | - Takashi Hayakawa
- Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
4
|
Videvall E, Bensch HM, Engelbrecht A, Cloete S, Cornwallis CK. Coprophagy rapidly matures juvenile gut microbiota in a precocial bird. Evol Lett 2023; 7:240-251. [PMID: 37475750 PMCID: PMC10355177 DOI: 10.1093/evlett/qrad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 07/22/2023] Open
Abstract
Coprophagy is a behavior where animals consume feces, and has been observed across a wide range of species, including birds and mammals. The phenomenon is particularly prevalent in juveniles, but the reasons for this remain unclear. One hypothesis is that coprophagy enables offspring to acquire beneficial gut microbes that aid development. However, despite the potential importance of this behavior, studies investigating the effects in juveniles are rare. Here we experimentally test this idea by examining how ingestion of adult feces by ostrich chicks affects their gut microbiota development, growth, feeding behavior, pathogen abundance, and mortality. We conducted extensive longitudinal experiments for 8 weeks, repeated over 2 years. It involved 240 chicks, of which 128 were provided daily access to fresh fecal material from adults and 112 were simultaneously given a control treatment. Repeated measures, behavioral observations, and DNA metabarcoding of the microbial gut community, both prior to and over the course of the experiment, allowed us to evaluate multiple aspects of the behavior. The results show that coprophagy causes (a) marked shifts to the juvenile gut microbiota, including a major increase in diversity and rapid maturation of the microbial composition, (b) higher growth rates (fecal-supplemented chicks became 9.4% heavier at 8 weeks old), (c) changes to overall feeding behavior but no differences in feed intake, (d) lower abundance of a common gut pathogen (Clostridium colinum), and (e) lower mortality associated with gut disease. Together, our results suggest that the behavior of coprophagy in juveniles is highly beneficial and may have evolved to accelerate the development of gut microbiota.
Collapse
Affiliation(s)
- Elin Videvall
- Corresponding author: Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | - Hanna M Bensch
- Department of Biology, Lund University, Lund, Sweden
- Department of Biology and Environmental Science, Linneaus University, Kalmar, Sweden
| | - Anel Engelbrecht
- Directorate Animal Sciences, Western Cape Department of Agriculture, Oudtshoorn, South Africa
| | - Schalk Cloete
- Directorate Animal Sciences, Western Cape Department of Agriculture, Oudtshoorn, South Africa
- Department of Animal Sciences, Stellenbosch University, Stellenbosch, South Africa
| | | |
Collapse
|
5
|
Kouete MT, Bletz MC, LaBumbard BC, Woodhams DC, Blackburn DC. Parental care contributes to vertical transmission of microbes in a skin-feeding and direct-developing caecilian. Anim Microbiome 2023; 5:28. [PMID: 37189209 PMCID: PMC10184399 DOI: 10.1186/s42523-023-00243-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Our current understanding of vertebrate skin and gut microbiomes, and their vertical transmission, remains incomplete as major lineages and varied forms of parental care remain unexplored. The diverse and elaborate forms of parental care exhibited by amphibians constitute an ideal system to study microbe transmission, yet investigations of vertical transmission among frogs and salamanders have been inconclusive. In this study, we assess bacteria transmission in Herpele squalostoma, an oviparous direct-developing caecilian in which females obligately attend juveniles that feed on their mother's skin (dermatophagy). RESULTS We used 16S rRNA amplicon-sequencing of the skin and gut of wild caught H. squalostoma individuals (males, females, including those attending juveniles) as well as environmental samples. Sourcetracker analyses revealed that juveniles obtain an important portion of their skin and gut bacteria communities from their mother. The contribution of a mother's skin to the skin and gut of her respective juveniles was much larger than that of any other bacteria source. In contrast to males and females not attending juveniles, only the skins of juveniles and their mothers were colonized by bacteria taxa Verrucomicrobiaceae, Nocardioidaceae, and Erysipelotrichaceae. In addition to providing indirect evidence for microbiome transmission linked to parental care among amphibians, our study also points to noticeable differences between the skin and gut communities of H. squalostoma and that of many frogs and salamanders, which warrants further investigation. CONCLUSION Our study is the first to find strong support for vertical bacteria transmission attributed to parental care in a direct-developing amphibian species. This suggests that obligate parental care may promote microbiome transmission in caecilians.
Collapse
Affiliation(s)
- Marcel T Kouete
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, 32611, USA.
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.
| | - Molly C Bletz
- Department of Biology, University of Massachusetts, Boston, MA, 02125, USA
| | | | - Douglas C Woodhams
- Department of Biology, University of Massachusetts, Boston, MA, 02125, USA
| | - David C Blackburn
- Department of Natural History, Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
6
|
Maidment TI, Bryan ER, Pyne M, Barnes M, Eccleston S, Cunningham S, Whitlock E, Redman K, Nicolson V, Beagley KW, Pelzer E. Characterisation of the koala (Phascolarctos cinereus) pouch microbiota in a captive population reveals a dysbiotic compositional profile associated with neonatal mortality. MICROBIOME 2023; 11:75. [PMID: 37060097 PMCID: PMC10105441 DOI: 10.1186/s40168-023-01527-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/20/2023] [Indexed: 05/12/2023]
Abstract
BACKGROUND Captive koala breeding programmes are essential for long-term species management. However, breeding efficacy is frequently impacted by high neonatal mortality rates in otherwise healthy females. Loss of pouch young typically occurs during early lactation without prior complications during parturition and is often attributed to bacterial infection. While these infections are thought to originate from the maternal pouch, little is known about the microbial composition of koala pouches. As such, we characterised the koala pouch microbiome across the reproductive cycle and identified bacteria associated with mortality in a cohort of 39 captive animals housed at two facilities. RESULTS Using 16S rRNA gene amplicon sequencing, we observed significant changes in pouch bacterial composition and diversity between reproductive time points, with the lowest diversity observed following parturition (Shannon entropy - 2.46). Of the 39 koalas initially sampled, 17 were successfully bred, after which seven animals lost pouch young (overall mortality rate - 41.18%). Compared to successful breeder pouches, which were largely dominated by Muribaculaceae (phylum - Bacteroidetes), unsuccessful breeder pouches exhibited persistent Enterobacteriaceae (phylum - Proteobacteria) dominance from early lactation until mortality occurred. We identified two species, Pluralibacter gergoviae and Klebsiella pneumoniae, which were associated with poor reproductive outcomes. In vitro antibiotic susceptibility testing identified resistance in both isolates to several antibiotics commonly used in koalas, with the former being multidrug resistant. CONCLUSIONS This study represents the first cultivation-independent characterisation of the koala pouch microbiota, and the first such investigation in marsupials associated with reproductive outcomes. Overall, our findings provide evidence that overgrowth of pathogenic organisms in the pouch during early development is associated with neonatal mortality in captive koalas. Our identification of previously unreported, multidrug resistant P. gergoviae strains linked to mortality also underscores the need for improved screening and monitoring procedures aimed at minimising neonatal mortality in future. Video Abstract.
Collapse
Affiliation(s)
- Toby I Maidment
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia.
| | - Emily R Bryan
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Michael Pyne
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Michele Barnes
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Sarah Eccleston
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Samantha Cunningham
- Dreamworld Wildlife Foundation, Dreamworld Parkway, Coomera, QLD, 4209, Australia
| | - Emma Whitlock
- Currumbin Wildlife Hospital, 27 Millers Dr, Currumbin, QLD, 4223, Australia
| | - Kelsie Redman
- Billabong Zoo Koala and Wildlife Park, 61 Billabong Drive, Port Macquarie, NSW, 2444, Australia
| | - Vere Nicolson
- Paradise Country, Production Drive, Oxenford, QLD, 4210, Australia
| | - Kenneth W Beagley
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| | - Elise Pelzer
- Centre for Immunology and Infection Control, Queensland University of Technology, 300 Herston Rd, Brisbane, QLD, 4001, Australia
| |
Collapse
|
7
|
Mureb LS, Rocha-Santos L, Cassano CR, da Silva Lopes G, Rosa B, Miranda FR, Miranda CRR, Giné GAF. Tree diversity mediates individual diet specialization of the maned sloth (Bradypus torquatus). Mamm Biol 2023. [DOI: 10.1007/s42991-023-00348-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
|
8
|
Animal Age Affects the Gut Microbiota and Immune System in Captive Koalas ( Phascolarctos cinereus). Microbiol Spectr 2023; 11:e0410122. [PMID: 36602319 PMCID: PMC9927321 DOI: 10.1128/spectrum.04101-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gut microbiota is one of the major elements in the control of host health. However, the composition of gut microbiota in koalas has rarely been investigated. Here, we performed 16S rRNA gene sequencing to determine the individual and environmental determinants of gut microbiota diversity and function in 35 fecal samples collected from captive koalas. Meanwhile, blood immune-related cytokine levels were examined by quantitative reverse transcription-PCR to initially explore the relationship between the gut microbiota and the immune system in koalas. The relative abundance of many bacteria, such as Lonepinella koalarum, varies at different ages in koalas and decreases with age. Conversely, Ruminococcus flavefaciens increases with age. Moreover, bacterial pathways involved in lipid metabolism, the biosynthesis of other secondary metabolites, and infectious disease show a significant correlation with age. Age affects the relationship between the microbiota and the host immune system. Among them, the gut microbiota of subadult and aged koalas was closely correlated with CD8β and CD4, whereas adult koalas were correlated with CLEC4E. We also found that sex, reproductive status, and living environment have little impact on the koala gut microbiota and immune system. These results shed suggest age is a key factor affecting gut microbiota and immunity in captive koalas and thus provide new insight into its role in host development and the host immune system. IMPORTANCE Although we have a preliminary understanding of the gut microbiota of koalas, we lack insight into which factors potentially impact captive koalas. This study creates the largest koala gut microbiota data set in China to date and describes several factors that may affect gut microbiota and the immune system in captive koalas, highlighting that age may be a key factor affecting captive koalas. Moreover, this study is the first to characterize the correlation between gut microbiota and cytokines in koalas. Better treatment strategies for infectious disorders may be possible if we can better understand the interactions between the immune system and the microbiota.
Collapse
|
9
|
Abstract
Common culturing techniques and priorities bias our discovery towards specific traits that may not be representative of microbial diversity in nature. So far, these biases have not been systematically examined. To address this gap, here we use 116,884 publicly available metagenome-assembled genomes (MAGs, completeness ≥80%) from 203 surveys worldwide as a culture-independent sample of bacterial and archaeal diversity, and compare these MAGs to the popular RefSeq genome database, which heavily relies on cultures. We compare the distribution of 12,454 KEGG gene orthologs (used as trait proxies) in the MAGs and RefSeq genomes, while controlling for environment type (ocean, soil, lake, bioreactor, human, and other animals). Using statistical modeling, we then determine the conditional probabilities that a species is represented in RefSeq depending on its genetic repertoire. We find that the majority of examined genes are significantly biased for or against in RefSeq. Our systematic estimates of gene prevalences across bacteria and archaea in nature and gene-specific biases in reference genomes constitutes a resource for addressing these issues in the future.
Collapse
Affiliation(s)
- Sage Albright
- Department of Biology, University of Oregon, Eugene, USA
| | - Stilianos Louca
- Department of Biology, University of Oregon, Eugene, USA.
- Institute of Ecology and Evolution, University of Oregon, Eugene, USA.
| |
Collapse
|
10
|
Eisenhofer R, Brice KL, Blyton MDJ, Bevins SE, Leigh K, Singh BK, Helgen KM, Hough I, Daniels CB, Speight N, Moore BD. Individuality and stability of the koala ( Phascolarctos cinereus) faecal microbiota through time. PeerJ 2023; 11:e14598. [PMID: 36710873 PMCID: PMC9879153 DOI: 10.7717/peerj.14598] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 11/29/2022] [Indexed: 01/24/2023] Open
Abstract
Gut microbiota studies often rely on a single sample taken per individual, representing a snapshot in time. However, we know that gut microbiota composition in many animals exhibits intra-individual variation over the course of days to months. Such temporal variations can be a confounding factor in studies seeking to compare the gut microbiota of different wild populations, or to assess the impact of medical/veterinary interventions. To date, little is known about the variability of the koala (Phascolarctos cinereus) gut microbiota through time. Here, we characterise the gut microbiota from faecal samples collected at eight timepoints over a month for a captive population of South Australian koalas (n individuals = 7), and monthly over 7 months for a wild population of New South Wales koalas (n individuals = 5). Using 16S rRNA gene sequencing, we found that microbial diversity was stable over the course of days to months. Each koala had a distinct faecal microbiota composition which in the captive koalas was stable across days. The wild koalas showed more variation across months, although each individual still maintained a distinct microbial composition. Per koala, an average of 57 (±16) amplicon sequence variants (ASVs) were detected across all time points; these ASVs accounted for an average of 97% (±1.9%) of the faecal microbial community per koala. The koala faecal microbiota exhibits stability over the course of days to months. Such knowledge will be useful for future studies comparing koala populations and developing microbiota interventions for this regionally endangered marsupial.
Collapse
Affiliation(s)
- Raphael Eisenhofer
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kylie L. Brice
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Michaela DJ Blyton
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, Brisbane, Queensland, Australia
| | - Scott E. Bevins
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| | - Kellie Leigh
- Science for Wildlife Ltd, Sydney, New South Wales, Australia
| | - Brajesh K. Singh
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia,Global Centre for Land Based Innovation, Western Sydney University, Penrith, New South Wales, Australia
| | - Kristofer M. Helgen
- Australian Museum Research Institute, Sydney, New South Wales, Australia,Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of New South Wales, Sydney, New South Wales, Australia,Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Ian Hough
- Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Christopher B. Daniels
- Koala Life Foundation, Cleland Wildlife Park, Department for Environment and Water, 365c Mt Lofty Summit Road, Adelaide, South Australia, Australia
| | - Natasha Speight
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, New South Wales, Australia
| |
Collapse
|
11
|
Blyton MDJ, Pascoe J, Hynes E, Soo RM, Hugenholtz P, Moore BD. The koala gut microbiome is largely unaffected by host translocation but rather influences host diet. Front Microbiol 2023; 14:1085090. [PMID: 36937253 PMCID: PMC10018171 DOI: 10.3389/fmicb.2023.1085090] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/31/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction Translocation is a valuable and increasingly used strategy for the management of both threatened and overabundant wildlife populations. However, in some instances the translocated animals fail to thrive. Differences in diet between the source and destination areas may contribute to poor translocation outcomes, which could conceivably be exacerbated if the animals' microbiomes are unsuited to the new diet and cannot adapt. Methods In this study we tracked how the faecal microbiome of a specialist Eucalyptus folivore, the koala (Phascolarctos cinereus), changed over the course of a year after translocation. We assessed microbiome composition by 16S rRNA amplicon sequencing of faecal pellets. Results We found no significant overall changes in the faecal microbiomes of koalas post-translocation (n = 17) in terms of microbial richness, diversity or composition when compared to the faecal microbiomes of koalas from an untranslocated control group (n = 12). This was despite the translocated koalas feeding on a greater variety of Eucalyptus species after translocation. Furthermore, while differences between koalas accounted for half of the microbiome variation, estimated diets at the time of sampling only accounted for 5% of the variation in the koala microbiomes between sampling periods. By contrast, we observed that the composition of koala faecal microbiomes at the time of translocation accounted for 37% of between koala variation in post-translocation diet. We also observed that translocated koalas lost body condition during the first month post-translocation and that the composition of the koalas' initial microbiomes were associated with the magnitude of that change. Discussion These findings suggest that the koala gut microbiome was largely unaffected by dietary change and support previous findings suggesting that the koala gut microbiome influences the tree species chosen for feeding. They further indicate that future research is needed to establish whether the koalas' gut microbiomes are directly influencing their health and condition or whether aspects of the koala gut microbiomes are an indicator of underlying physiological differences or pathologies. Our study provides insights into how animal microbiomes may not always be affected by the extreme upheaval of translocation and highlights that responses may be host species-specific. We also provide recommendations to improve the success of koala translocations in the future.
Collapse
Affiliation(s)
- Michaela D. J. Blyton
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
- The University of Queensland, Australian Institute of Bioengineering and Nanotechnology, St Lucia, QLD, Australia
- *Correspondence: Michaela D. J. Blyton,
| | - Jack Pascoe
- Conservation Ecology Centre, Cape Otway, VIC, Australia
- School of Ecosystem and Forest Science, University of Melbourne, Parkville, VIC, Australia
| | | | - Rochelle M. Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, St Lucia, QLD, Australia
| | - Ben D. Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, Australia
| |
Collapse
|
12
|
Abstract
The longstanding interactions between mammals and their symbionts enable thousands of mammal species to consume herbivorous diets. The microbial communities in mammals degrade both plant fiber and toxins. Microbial toxin degradation has been repeatedly documented in domestic ruminants, but similar work in wild mammals is more limited due to constraints on sampling and manipulating the microbial communities in these species. In this review, we briefly describe the toxins commonly encountered in mammalian diets, major classes of biotransformation enzymes in microbes and mammals, and the gut chambers that house symbiotic microbes. We next examine evidence for microbial detoxification in domestic ruminants before providing case studies on microbial toxin degradation in both foregut- and hindgut-fermenting wild mammals. We end by discussing species that may be promising for future investigations, and the advantages and limitations of approaches currently available for studying degradation of toxins by mammalian gut microbes. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- M Denise Dearing
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA;
| | - Sara B Weinstein
- School of Biological Sciences, University of Utah, Salt Lake City, Utah, USA;
| |
Collapse
|
13
|
Blyton MDJ, Soo RM, Hugenholtz P, Moore BD. Characterization of the juvenile koala gut microbiome across wild populations. Environ Microbiol 2022; 24:4209-4219. [PMID: 35018700 DOI: 10.1111/1462-2920.15884] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/21/2021] [Indexed: 11/03/2022]
Abstract
In this study we compared the faecal microbiomes of wild joey koalas (Phascolarctos cinereus) to those of adults, including their mothers, to establish whether gut microbiome maturation and inheritance in the wild is comparable to that seen in captivity. Our findings suggest that joey koala microbiomes slowly shift towards an adult assemblage between 6 and 12 months of age, as the microbiomes of 9-month-old joeys were more similar to those of adults than those of 7-month-olds, but still distinct. At the phylum level, differences between joeys and adults were broadly consistent with those in captivity, with Firmicutes increasing in relative abundance over the joeys' development and Proteobacteria decreasing. Of the fibre-degrading genes that increased in abundance over the development of captive joeys, those involved in hemicellulose and cellulose degradation, but not pectin degradation, were also generally found in higher abundance in adult wild koalas compared to 7-month-olds. Greater maternal inheritance of the faecal microbiome was seen in wild than in captive koalas, presumably due to the more solitary nature of wild koalas. This strong maternal inheritance of the gut microbiome could contribute to the development of localized differences in microbiome composition, population health and diet through spatial clustering of relatives.
Collapse
Affiliation(s)
- Michaela D J Blyton
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Rochelle M Soo
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Philip Hugenholtz
- School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, The University of Queensland, St Lucia, Qld, 4072, Australia
| | - Ben D Moore
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|