1
|
Zhang X, Li H, Li B, Song K, Sha Y, Liu Y, Dong S, Wang D, Yang L. Microbial Community Shifts in Tea Plant Rhizosphere under Seawater Stress: Enrichment of Beneficial Taxa. Microorganisms 2024; 12:1287. [PMID: 39065056 PMCID: PMC11279268 DOI: 10.3390/microorganisms12071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Seawater intrusion has a significant impact on the irrigation quality of agricultural water, thereby posing a threat to plant growth and development. We hypothesized that the rhizosphere of tea plants harbors beneficial microorganisms, which may improve the tolerance of tea plants to seawater stress. This study utilized 16s and ITS techniques to analyze microbial community shifts in the tea plant rhizosphere and non-rhizosphere under seawater stress conditions. The findings suggest that seawater stress leads to a reduction in microbial diversity, although the rhizosphere microbial diversity in stressed soils showed a relatively higher level. Moreover, the rhizosphere of the tea plant under seawater stress exhibited an enrichment of plant growth-promoting rhizobacteria alongside a higher presence of pathogenic fungi. Network analysis revealed that seawater stress resulted in the construction of a more complex and stable rhizosphere microbial network compared to normal conditions. Predictions of bacterial potential functions highlighted a greater diversity of functional groups, enhancing resource utilization efficiency. In general, the rhizosphere microorganisms of tea plants are jointly selected by seawater and the host. The microorganisms closely related to the rhizosphere of tea plants are retained and, at the same time, attract beneficial microorganisms that may alleviate stress. These findings provide new insights into plant responses to saline stress and have significant implications for leveraging vegetation to enhance the resilience of coastal saline soils and contribute to economic progress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Long Yang
- College of Plant Protection and Agricultural Big-Data Research Center, Shandong Agricultural University, Tai’an 271018, China (K.S.); (Y.L.)
| |
Collapse
|
2
|
Mondal S, Acharya U, Mukherjee T, Bhattacharya D, Ghosh A, Ghosh A. Exploring the dynamics of ISR signaling in maize upon seed priming with plant growth promoting actinobacteria isolated from tea rhizosphere of Darjeeling. Arch Microbiol 2024; 206:282. [PMID: 38806859 DOI: 10.1007/s00203-024-04016-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Plant growth-promoting rhizobacteria (PGPR) offer an eco-friendly alternative to agrochemicals for better plant growth and development. Here, we evaluated the plant growth promotion abilities of actinobacteria isolated from the tea (Camellia sinensis) rhizosphere of Darjeeling, India. 16 S rRNA gene ribotyping of 28 isolates demonstrated the presence of nine different culturable actinobacterial genera. Assessment of the in vitro PGP traits revealed that Micrococcus sp. AB420 exhibited the highest level of phosphate solubilization (i.e., 445 ± 2.1 µg/ml), whereas Kocuria sp. AB429 and Brachybacterium sp. AB440 showed the highest level of siderophore (25.8 ± 0.1%) and IAA production (101.4 ± 0.5 µg/ml), respectively. Biopriming of maize seeds with the individual actinobacterial isolate revealed statistically significant growth in the treated plants compared to controls. Among them, treatment with Paenarthrobacter sp. AB416 and Brachybacterium sp. AB439 exhibited the highest shoot and root length. Biopriming has also triggered significant enzymatic and non-enzymatic antioxidative defense reactions in maize seedlings both locally and systematically, providing a critical insight into their possible role in the reduction of reactive oxygen species (ROS) burden. To better understand the role of actinobacterial isolates in the modulation of plant defense, three selected actinobacterial isolates, AB426 (Brevibacterium sp.), AB427 (Streptomyces sp.), and AB440 (Brachybacterium sp.) were employed to evaluate the dynamics of induced systemic resistance (ISR) in maize. The expression profile of five key genes involved in SA and JA pathways revealed that bio-priming with actinobacteria (Brevibacterium sp. AB426 and Brachybacterium sp. AB440) preferably modulates the JA pathway rather than the SA pathway. The infection studies in bio-primed maize plants resulted in a delay in disease progression by the biotrophic pathogen Ustilago maydis in infected maize plants, suggesting the positive efficacy of bio-priming in aiding plants to cope with biotic stress. Conclusively, this study unravels the intrinsic mechanisms of PGPR-mediated ISR dynamics in bio-primed plants, offering a futuristic application of these microorganisms in the agricultural fields as an eco-friendly alternative.
Collapse
Affiliation(s)
- Sangita Mondal
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Udita Acharya
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Triparna Mukherjee
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
- Department of Biotechnology, School of Biotechnology and Bioscience, Brainware University, Kolkata, India
| | - Dhruba Bhattacharya
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Anupama Ghosh
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Abhrajyoti Ghosh
- Department of Biological Sciences, Bose Institute, Unified Academic Campus, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India.
| |
Collapse
|
3
|
An Q, Zhen Z, Zhong N, Qiu D, Xie Y, Yan C. Effects of biodegradable microplastics on arsenic migration and transformation in paddy soils: a comparative analysis with conventional microplastics. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134053. [PMID: 38508111 DOI: 10.1016/j.jhazmat.2024.134053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/18/2024] [Accepted: 03/14/2024] [Indexed: 03/22/2024]
Abstract
The combined pollution of microplastics (MPs) and arsenic (As) in paddy soils has attracted more attention worldwide. However, there are few comparative studies on the effects of biodegradable and conventional MPs on As migration and transformation. Therefore, conventional (polystyrene, polyethylene, polyvinyl chloride) and biodegradable (polybutadiene styrene, polylactic acid, polybutylene adipate terephthalate) MPs were selected to explore and demonstrate their influences and mechanism on As migration from paddy soils to overlying water and As speciation transformation through microcosmic experiment with measuring the changes of As chemical distribution, physicochemical indexes and microbial community in paddy soils. The results showed that biodegradable MPs enhanced As migration and transformation more effective than conventional MPs during 60 d. Biodegradable MPs indirectly increased the content of As(Ⅲ) and bioavailable As by changing the microbial community structure and affecting the biogeochemical cycles of carbon, nitrogen, sulfur and iron in soils, and promoted the As migration and transformation. PBS showed the strongest promoting effect, transforming to more As(Ⅲ) (11.43%) and bioavailable As (4.28%) than control. This helps to a better understanding of the effects of MPs on As biogeochemical cycle and to clarify the ecological and food safety risks of their combined pollution in soils.
Collapse
Affiliation(s)
- Qiuying An
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Zhen
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Nijing Zhong
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Donghua Qiu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunhe Xie
- Hunan Institute of Agro-Environment and Ecology/Key Laboratory of Agro, Environment in Midstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Changsha 410013, China
| | - Changzhou Yan
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
4
|
Yuan YH, Liu LX, Wang L, Dong GZ, Liu YG. Effects of different seasons on bacterial community structure in rose rhizosphere soil. Appl Microbiol Biotechnol 2022; 107:405-417. [DOI: 10.1007/s00253-022-12290-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022]
|
5
|
Wang F, Zhang B, Wen D, Liu R, Yao X, Chen Z, Mu R, Pei H, Liu M, Song B, Lu L. Chromosome-scale genome assembly of Camellia sinensis combined with multi-omics provides insights into its responses to infestation with green leafhoppers. FRONTIERS IN PLANT SCIENCE 2022; 13:1004387. [PMID: 36212364 PMCID: PMC9539759 DOI: 10.3389/fpls.2022.1004387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 06/16/2023]
Abstract
The tea plant (Camellia sinensis) is an important economic crop, which is becoming increasingly popular worldwide, and is now planted in more than 50 countries. Tea green leafhopper is one of the major pests in tea plantations, which can significantly reduce the yield and quality of tea during the growth of plant. In this study, we report a genome assembly for DuyunMaojian tea plants using a combination of Oxford Nanopore Technology PromethION™ with high-throughput chromosome conformation capture technology and used multi-omics to study how the tea plant responds to infestation with tea green leafhoppers. The final genome was 3.08 Gb. A total of 2.97 Gb of the genome was mapped to 15 pseudo-chromosomes, and 2.79 Gb of them could confirm the order and direction. The contig N50, scaffold N50 and GC content were 723.7 kb, 207.72 Mb and 38.54%, respectively. There were 2.67 Gb (86.77%) repetitive sequences, 34,896 protein-coding genes, 104 miRNAs, 261 rRNA, 669 tRNA, and 6,502 pseudogenes. A comparative genomics analysis showed that DuyunMaojian was the most closely related to Shuchazao and Yunkang 10, followed by DASZ and tea-oil tree. The multi-omics results indicated that phenylpropanoid biosynthesis, α-linolenic acid metabolism, flavonoid biosynthesis and 50 differentially expressed genes, particularly peroxidase, played important roles in response to infestation with tea green leafhoppers (Empoasca vitis Göthe). This study on the tea tree is highly significant for its role in illustrating the evolution of its genome and discovering how the tea plant responds to infestation with tea green leafhoppers will contribute to a theoretical foundation to breed tea plants resistant to insects that will ultimately result in an increase in the yield and quality of tea.
Collapse
Affiliation(s)
- Fen Wang
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
| | - Baohui Zhang
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Di Wen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Rong Liu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Xinzhuan Yao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| | - Zhi Chen
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Ren Mu
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Huimin Pei
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Baoxing Song
- The Department of Life Science and Agriculture, Qiannan Normal College for Nationalities, Duyun, China
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
| | - Litang Lu
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guiyang, China
- College of Tea Science, Guizhou University, Guiyang, China
| |
Collapse
|