1
|
Xing Y, Kang L, Chen L, Li Y, Lu D. Research progress of exosomes in pathogenesis and treatment of preeclampsia. J Obstet Gynaecol Res 2024. [PMID: 39434205 DOI: 10.1111/jog.16106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
AIM Preeclampsia (PE) is a critical and severe disease in obstetrics, which seriously affects maternal and neonatal life safety and long-term prognosis. However, the etiology and pathogenesis of PE are complex, and no unified conclusion has been reached. The types and number of exosomes and their transport substances in PE patients changed. The study of exosomes in PE patients helps clarify the etiology, diagnosis, effective treatment, accurate monitoring, and prognosis. METHOD The published articles were reviewed. RESULTS Exosomes may affect endothelial and vascular production and function, participate in maternal-fetal immune regulation, and transport substances such as miRNAs, lncRNAs, and proteins involved in the development of PE. Detection of the contents of exosomes can help in the early diagnosis of PE, and can help to improve PE by inhibiting the action of exosomes or preventing their binding to target organs. CONCLUSION Exosomes may be involved in the development of PE, and exosomes can be used as markers for predicting the onset of PE and tracking the disease process and determining the prognosis, and exosomes have great potential in the treatment of PE.
Collapse
Affiliation(s)
- Yue Xing
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Luyao Kang
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lu Chen
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Youyou Li
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Dan Lu
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Parvin A, Erabi G, Mohammadpour D, Maleki-Kakelar H, Sadeghpour S, Pashaei MR, Taheri-Anganeh M, Ghasemnejad-Berenji H. Infertility: Focus on the therapeutic potential of extracellular vesicles. Reprod Biol 2024; 24:100925. [PMID: 39018753 DOI: 10.1016/j.repbio.2024.100925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/28/2024] [Accepted: 07/05/2024] [Indexed: 07/19/2024]
Abstract
Infertility is a well-known problem that arises from a variety of reproductive diseases. Until now, researchers have tried various methods to restore fertility, including medication specific to the cause, hormone treatments, surgical removals, and assisted reproductive technologies. While these methods do produce results, they do not consistently lead to fertility restoration in every instance. The use of exosome therapy has significant potential in treating infertility in patients. This is because exosomes, microvesicles, and apoptotic bodies, which are different types of vesicles, play a crucial role in transferring bioactive molecules that aid in cell-to-cell communication. Reproductive fluids can transport a variety of molecular cargos, such as miRNAs, mRNAs, proteins, lipids, and DNA molecules. The percentage of these cargos in the fluids can be linked to their physiological and pathological status. EVs are involved in several physiological and pathological processes and offer interesting non-cellular therapeutic possibilities to treat infertility. EVs (extracellular vesicles) transplantation has been shown in many studies to be a key part of regenerating different parts of the reproductive system, including the production of oocytes and the start of sperm production. Nevertheless, the existing evidence necessitates testifying to the effectiveness of injecting EVs in resolving reproductive problems among humans. This review focuses on the current literature about infertility issues in both females and males, specifically examining the potential treatments involving extracellular vesicles (EVs).
Collapse
Affiliation(s)
- Ali Parvin
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Gisou Erabi
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Donna Mohammadpour
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
| | - Hadi Maleki-Kakelar
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Sonia Sadeghpour
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Obstetrics & Gynecology, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Reza Pashaei
- Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| | - Hojat Ghasemnejad-Berenji
- Reproductive Health Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
3
|
Youssef L, Testa L, Crovetto F, Crispi F. 10. Role of high dimensional technology in preeclampsia (omics in preeclampsia). Best Pract Res Clin Obstet Gynaecol 2024; 92:102427. [PMID: 37995432 DOI: 10.1016/j.bpobgyn.2023.102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/05/2023] [Accepted: 08/06/2023] [Indexed: 11/25/2023]
Abstract
Preeclampsia is a pregnancy-specific disease that has no known precise cause. Integrative biology approach based on multi-omics has been applied to identify upstream pathways and better understand the pathophysiology of preeclampsia. At DNA level, genomics and epigenomics studies have revealed numerous genetic variants associated with preeclampsia, including those involved in regulating blood pressure and immune response. Transcriptomics analyses have revealed altered expression of genes in preeclampsia, particularly those related to inflammation and angiogenesis. At protein level, proteomics studies have identified potential biomarkers for preeclampsia diagnosis and prediction in addition to revealing the main pathophysiological pathways involved in this disease. At metabolite level, metabolomics has highlighted altered lipid and amino acid metabolisms in preeclampsia. Finally, microbiomics studies have identified dysbiosis in the gut and vaginal microbiota in pregnant women with preeclampsia. Overall, omics technologies have improved our understanding of the complex molecular mechanisms underlying preeclampsia. However, further research is warranted to fully integrate and translate these omics findings into clinical practice.
Collapse
Affiliation(s)
- Lina Youssef
- BCNatal | Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, IDIBAPS, University of Barcelona, Barcelona, Spain; Institut de Recerca August Pi Sunyer (IDIBAPS), Barcelona, Spain; Josep Carreras Leukaemia Research Institute, Hospital Clinic/University of Barcelona Campus, Barcelona, Spain.
| | - Lea Testa
- BCNatal | Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Francesca Crovetto
- BCNatal | Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, IDIBAPS, University of Barcelona, Barcelona, Spain; Institut de Recerca Sant Joan de Deu (IRSJD), Barcelona, Spain
| | - Fatima Crispi
- BCNatal | Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic and Hospital Sant Joan de Déu, IDIBAPS, University of Barcelona, Barcelona, Spain; Institut de Recerca August Pi Sunyer (IDIBAPS), Barcelona, Spain; Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| |
Collapse
|
4
|
Giannubilo SR, Cecati M, Marzioni D, Ciavattini A. Circulating miRNAs and Preeclampsia: From Implantation to Epigenetics. Int J Mol Sci 2024; 25:1418. [PMID: 38338700 PMCID: PMC10855731 DOI: 10.3390/ijms25031418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In this review, we comprehensively present the literature on circulating microRNAs (miRNAs) associated with preeclampsia, a pregnancy-specific disease considered the primary reason for maternal and fetal mortality and morbidity. miRNAs are single-stranded non-coding RNAs, 20-24 nt long, which control mRNA expression. Changes in miRNA expression can induce a variation in the relative mRNA level and influence cellular homeostasis, and the strong presence of miRNAs in all body fluids has made them useful biomarkers of several diseases. Preeclampsia is a multifactorial disease, but the etiopathogenesis remains unclear. The functions of trophoblasts, including differentiation, proliferation, migration, invasion and apoptosis, are essential for a successful pregnancy. During the early stages of placental development, trophoblasts are strictly regulated by several molecular pathways; however, an imbalance in these molecular pathways can lead to severe placental lesions and pregnancy complications. We then discuss the role of miRNAs in trophoblast invasion and in the pathogenesis, diagnosis and prediction of preeclampsia. We also discuss the potential role of miRNAs from an epigenetic perspective with possible future therapeutic implications.
Collapse
Affiliation(s)
| | - Monia Cecati
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| | - Daniela Marzioni
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Andrea Ciavattini
- Department of Clinical Sciences, Università Politecnica delle Marche, 60020 Ancona, Italy; (S.R.G.); (A.C.)
| |
Collapse
|
5
|
Lekva T, Sundaram AYF, Roland MCP, Åsheim J, Michelsen AE, Norwitz ER, Aukrust P, Gilfillan GD, Ueland T. Platelet and mitochondrial RNA is decreased in plasma-derived extracellular vesicles in women with preeclampsia-an exploratory study. BMC Med 2023; 21:458. [PMID: 37996819 PMCID: PMC10666366 DOI: 10.1186/s12916-023-03178-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Circulating extracellular vesicles (EVs) are increased in preeclampsia (PE) and are associated with severity and progression. We examined in this exploratory cohort study if the mRNAs and long noncoding RNAs (lncRNAs) in plasma-derived EVs were dysregulated in PE compared to normal pregnancy and display different temporal patterns during gestation. METHODS We isolated EVs from plasma at weeks 22-24 and 36-38 in women with and without PE (n=7 in each group) and performed RNA-seq, focusing on mRNAs and lncRNAs. We validated highly expressed mitochondrial and platelet-derived RNAs discovered from central pathways in 60 women with/without PE. We examined further one of the regulated RNAs, noncoding mitochondrially encoded tRNA alanine (MT-TA), in leukocytes and plasma to investigate its biomarker potential and association with clinical markers of PE. RESULTS We found abundant levels of platelet-derived and mitochondrial RNAs in EVs. Expression of these RNAs were decreased and lncRNAs increased in EVs from PE compared to without PE. These findings were further validated by qPCR for mitochondrial RNAs MT-TA, MT-ND2, MT-CYB and platelet-derived RNAs PPBP, PF4, CLU in EVs. Decreased expression of mitochondrial tRNA MT-TA in leukocytes at 22-24 weeks was strongly associated with the subsequent development of PE. CONCLUSIONS Platelet-derived and mitochondrial RNA were highly expressed in plasma EVs and were decreased in EVs isolated from women with PE compared to without PE. LncRNAs were mostly increased in PE. The MT-TA in leukocytes may be a useful biomarker for prediction and/or early detection of PE.
Collapse
Affiliation(s)
- Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway.
| | - Arvind Y Fm Sundaram
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | | | - June Åsheim
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Annika E Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| | | | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Gregor D Gilfillan
- Department Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- K. G. Jebsen Thrombosis Research and Expertise Center, University of Tromsø, Tromsø, Norway
| |
Collapse
|
6
|
Hartmann S, Botha SM, Gray CM, Valdes DS, Tong S, Kaitu'u-Lino TJ, Herse F, Bergman L, Cluver CA, Dechend R, Nonn O. Can single-cell and spatial omics unravel the pathophysiology of pre-eclampsia? J Reprod Immunol 2023; 159:104136. [PMID: 37634318 DOI: 10.1016/j.jri.2023.104136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/16/2023] [Indexed: 08/29/2023]
Abstract
Pre-eclampsia is a leading cause of maternal and fetal morbidity and mortality. Characterised by the onset of hypertension and proteinuria in the second half of pregnancy, it can lead to maternal end-organ injury such as cerebral ischemia and oedema, pulmonary oedema and renal failure, and potentially fatal outcomes for both mother and fetus. The causes of the different maternal end-organ phenotypes of pre-eclampsia and why some women develop pre-eclampsia condition early in pregnancy have yet to be elucidated. Omics methods include proteomics, genomics, metabolomics, transcriptomics. These omics techniques, previously mostly used on bulk tissue and individually, are increasingly available at a single cellular level and can be combined with each other. Multi-omics techniques on a single-cell or spatial level provide us with a powerful tool to understand the pathophysiology of pre-eclampsia. This review will explore the status of omics methods and how they can and could contribute to understanding the pathophysiology of pre-eclampsia.
Collapse
Affiliation(s)
- Sunhild Hartmann
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany
| | - Stefan Marc Botha
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Clive M Gray
- Division of Molecular Biology and Human Genetics, Biomedical Research Institute, Stellenbosch University, Cape Town 7505, South Africa
| | - Daniela S Valdes
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Stephen Tong
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia
| | - Florian Herse
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lina Bergman
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town 7505, South Africa; Department of Women's and Children's Health, Uppsala University, Uppsala 751 85, Sweden,; Department of Obstetrics and Gynaecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg 405 30, Sweden
| | - Catherine A Cluver
- Mercy Perinatal, Mercy Hospital for Women, Heidelberg, Victoria 3084, Australia; Translational Obstetrics Group, The Department of Obstetrics and Gynaecology, Mercy Hospital for Women, University of Melbourne, Heidelberg, Victoria 3084, Australia; Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town 7505, South Africa
| | - Ralf Dechend
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany; HELIOS Clinic, Department of Cardiology and Nephrology, Berlin, Germany
| | - Olivia Nonn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany; Experimental and Clinical Research Center, a cooperation between the Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association and the Charité - Universitätsmedizin Berlin, Berlin, Germany; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; DZHK (German Center for Cardiovascular Research), partner site Berlin, Germany; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| |
Collapse
|
7
|
Cao C, Cui J, Liu G. circ_0004904 regulates the trophoblast cell in preeclampsia via miR-19b-3p/ARRDC3 axis. Open Med (Wars) 2023; 18:20220546. [PMID: 37215052 PMCID: PMC10193406 DOI: 10.1515/med-2022-0546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 07/25/2022] [Indexed: 05/24/2023] Open
Abstract
Circular RNAs have been demonstrated to act as vital participants in various diseases, including preeclampsia (PE). This study aimed to research the effects of circ_0004904 on PE. The contents of circ_0004904, microRNA-19b-3p (miR-19b-3p) and arrestin domain containing 3 (ARRDC3) were quantified by quantitative real-time PCR and western blot. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and 5-ethynyl-2'-deoxyuridine assays were enforced to assess cell proliferation. The transwell assay and flow cytometry were applied to detect the cell migration, invasion, and apoptosis. The liaison between miR-19b-3p and circ_0004904 or ARRDC3 was demonstrated by dual-luciferase reporter assay. Thereafter, circ_0004904 and ARRDC3 were augmented, and miR-19b-3p was restrained in PE. Circ_0004904 silencing contributed to cell proliferation, migration, and invasion, but restrained cell apoptosis in trophoblast cells. Further, miR-19b-3p was a target of circ_0004904, and miR-19b-3p could target ARRDC3. Additionally, circ_0004904 accelerated PE evolution via changing ARRDC3 level by binding to miR-19b-3p. In all, circ_0004904 encouraged PE progress via miR-19b-3p/ARRDC3 axis.
Collapse
Affiliation(s)
- Chenyuan Cao
- Department of Obstetrics, The Affiliated Hospital of Hebei University, Baoding City, Hebei Province, 071000, China
| | - Jie Cui
- Department of Obstetrics, The Affiliated Hospital of Hebei University, Baoding City, Hebei Province, 071000, China
| | - Guiling Liu
- Department of Obstetrics, The Affiliated Hospital of Hebei University, Baoding City, Hebei Province, 071000, China
| |
Collapse
|
8
|
Li N, Gu Y, Tang J, Li Y, Chen D, Xu Z. Circulating Non-coding RNAs and Exosomes: Liquid Biopsies for Monitoring Preeclampsia. Methods Mol Biol 2023; 2695:263-277. [PMID: 37450125 DOI: 10.1007/978-1-0716-3346-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Preeclampsia (PE) remains a leading cause of maternal and fetal mortality, due to ineffective treatment and diagnostic strategies, compounded by the lack of clarity on the etiology of the disorder. The early prediction or accurate diagnosis of PE is a concern of researchers. Liquid biopsy can be analyzed for cell-free nucleic acids and exosomes. Because circulating non-coding RNAs (ncRNAs) and peripheral blood exosomes can be detected in the peripheral blood of women in early pregnancy, these vesicles and their contents have become the focus of research on early predictive and diagnostic biomarkers for preeclampsia. In this review, we focus on recent studies addressing the roles of circulating ncRNAs and exosomes in PE, with particular attention paid to the potential application value of placenta-derived exosomes and circulating ncRNAs as PE-specific biomarkers.
Collapse
Affiliation(s)
- Na Li
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Ying Gu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Jiaqi Tang
- Institute for Fetology, First Hospital of Soochow University, Suzhou, China
| | - Yongmei Li
- Department of Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Daozhen Chen
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| | - Zhice Xu
- Lab of Perinatal Medicine, Wuxi Maternity and Child Health Care Hospital, Wuxi, Jiangsu, China
| |
Collapse
|
9
|
Chen Z, Wang X. The Role and Application of Exosomes and Their Cargos in Reproductive Diseases: A Systematic Review. Vet Sci 2022; 9:vetsci9120706. [PMID: 36548867 PMCID: PMC9785507 DOI: 10.3390/vetsci9120706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the incidence of the reproductive diseases is increasing year-by-year, leading to abortion or fetal arrest, which seriously affects the reproductive health of human beings and the reproductive efficiency of animals. Exosomes are phospholipid bilayer vesicles that are widely distributed in living organisms and released by the cells of various organs and tissues. Exosomes contain proteins, RNA, lipids, and other components and are important carriers of information transfer between cells, which play a variety of physiological and pathological regulatory functions. More and more studies have found that exosomes and their connotations play an important role in the diagnosis, prognosis and treatment of diseases. A systematic review was conducted in this manuscript and then highlights our knowledge about the diagnostic and therapeutic applications of exosomes to reproductive diseases, such as polycystic ovary syndrome (PCOS), endometriosis, premature ovarian failure (POF), preeclampsia, polycystic, endometrial cancer, cervical cancer, ovarian cancer, and prostate gland cancer.
Collapse
Affiliation(s)
- Zhi Chen
- College of Biological Science and Agriculture, Qiannan Normal University for Nationalities, Duyun 558000, China
| | - Xiangguo Wang
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
10
|
Abstract
Pregnancy complications affect millions of women each year. Some of these diseases have high morbidity and mortality such as preeclampsia. At present, there is no safe and effective treatment for pregnancy complications, so it is still a difficult clinical problem. As many pregnancy complications are closely related to placental dysplasia, placenta-specific therapy, as an important method, is expected to be a safe, effective, and specific therapeutic strategy. This review explains in detail the placenta physiological structure, characteristics, and action mechanism of some biomolecules and signaling pathways that play roles in normal development and disorders of the development of the placenta, and how to use these biomolecules as therapeutic targets when the placenta disorder causes disease, combining the latest progress in the field of nanodelivery systems, so as to lay a foundation for the development of placenta-specific therapy of pregnancy complications.
Collapse
Affiliation(s)
- Yang Liu
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China
| | - Xingli Gao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China
| | - Songwei Gao
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China.,Department of Pharmacy, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yu Song
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, China
| | - Yongran Guo
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100, Kexue Avenue, Zhengzhou, 450001, China
| | - Jing Cao
- Department of Pathology, The Third Affiliated Hospital of Zhenzhou University, Zhengzhou, 450001, China
| |
Collapse
|
11
|
Hayder H, Shan Y, Chen Y, O’Brien JA, Peng C. Role of microRNAs in trophoblast invasion and spiral artery remodeling: Implications for preeclampsia. Front Cell Dev Biol 2022; 10:995462. [PMID: 36263015 PMCID: PMC9575991 DOI: 10.3389/fcell.2022.995462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 11/18/2022] Open
Abstract
It is now well-established that microRNAs (miRNAs) are important regulators of gene expression. The role of miRNAs in placental development and trophoblast function is constantly expanding. Trophoblast invasion and their ability to remodel uterine spiral arteries are essential for proper placental development and successful pregnancy outcome. Many miRNAs are reported to be dysregulated in pregnancy complications, especially preeclampsia and they exert various regulatory effects on trophoblasts. In this review, we provide a brief overview of miRNA biogenesis and their mechanism of action, as well as of trophoblasts differentiation, invasion and spiral artery remodeling. We then discuss the role of miRNAs in trophoblasts invasion and spiral artery remodeling, focusing on miRNAs that have been thoroughly investigated, especially using multiple model systems. We also discuss the potential role of miRNAs in the pathogenesis of preeclampsia.
Collapse
Affiliation(s)
- Heyam Hayder
- Department of Biology, York University, Toronto, ON, Canada
| | - Yanan Shan
- Department of Biology, York University, Toronto, ON, Canada
| | - Yan Chen
- Department of Biology, York University, Toronto, ON, Canada
| | | | - Chun Peng
- Department of Biology, York University, Toronto, ON, Canada
- Centre for Research on Biomolecular Interactions, York University, Toronto, ON, Canada
- *Correspondence: Chun Peng,
| |
Collapse
|
12
|
Zhang M, Deng X, Jiang Z, Ge Z. Identification of underlying mechanisms and hub gene-miRNA networks of the genomic subgroups in preeclampsia development. Medicine (Baltimore) 2022; 101:e29569. [PMID: 35866827 PMCID: PMC9302342 DOI: 10.1097/md.0000000000029569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Preeclampsia is a hypertensive disorder of pregnancy that can lead to multiorgan complications in the mother and fetus. Our study aims to uncover the underlying mechanisms and hub genes between genomic subgroups of preeclampsia. A total of 180 preeclampsia cases from 4 gene profiles were classified into 3 subgroups. Weighted gene coexpression analysis was performed to uncover the genomic characteristics associated with different clinical features. Functional annotation was executed within the significant modules and hub genes were predicted using Cytoscape software. Subsequently, miRNet analysis was performed to identify potential miRNA-mRNA networks. Three key subgroup-specific modules were identified. Patients in subgroup II were found to develop more severe preeclampsia symptoms. Subgroup II, characterized by classical markers, was considered representative of typical preeclampsia patients. Subgroup I was considered as an early stage of preeclampsia with normal-like gene expression patterns. Moreover, subgroup III was a proinflammatory subgroup, which presented immune-related genomic characteristics. Subsequently, miR-34a-5p and miR-106a-5p were found to be correlated with all 3 significant gene modules. This study revealed the transcriptome classification of preeclampsia cases with unique gene expression patterns. Potential hub genes and miRNAs may facilitate the identification of therapeutic targets for preeclampsia in future.
Collapse
Affiliation(s)
- Min Zhang
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaheng Deng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyan Jiang
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiping Ge
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Zhiping Ge, Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, 368 Jiangdong North Road, Nanjing 210000, China. (e-mail: )
| |
Collapse
|
13
|
Li K, Lv C, Zhang W, Fang J. CircFN1 upregulation initiated oxidative stress-induced apoptosis and inhibition of proliferation and migration in trophoblasts via circFN1-miR-19a/b-3p-ATF2 ceRNA network. Reprod Biol 2022; 22:100631. [DOI: 10.1016/j.repbio.2022.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/17/2022] [Accepted: 02/19/2022] [Indexed: 11/25/2022]
|
14
|
Barranco I, Salas-Huetos A, Berlanga A, Spinaci M, Yeste M, Ribas-Maynou J. Involvement of extracellular vesicle-encapsulated miRNAs in human reproductive disorders: a systematic review. Reprod Fertil Dev 2022; 34:751-775. [PMID: 35527383 DOI: 10.1071/rd21301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/23/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) have emerged as essential players in cell-to-cell communication, particularly having an active regulating role in biological systems. Because reproductive-associated processes are not exempt of this communication, multiple studies have been devoted to this realm, focusing on gamete maturation, embryo implantation or fetal development. The aim of the present review was to comprehensively and systematically collect evidence about the function of the microRNA (miRNA) encapsulated in EVs isolated from different reproductive tissues or fluids in reproductive-related diseases. Following PRISMA guidelines, we conducted a systematic search of the literature published in MEDLINE-PubMed until the end of February 2021. After selection, 32 studies were included in the qualitative review comparing the miRNA expression profile in EVs between different pathological disorders. Most reports showed the potential of the miRNAs carried by EVs to be used as putative biomarkers of reproductive disorders, including pregnancy affections, disease progression and quality of preimplantation embryos. The most relevant miRNAs were found to be highly heterogeneous among studies, with some conflicting results. Further research is thus warranted to address whether cofounding factors, such as the methods to isolate EVs and miRNAs, the subset of EVs, the criteria of patient selection, the timing of sample retrieval, or any other factor, may explain the inconsistencies between studies.
Collapse
Affiliation(s)
- Isabel Barranco
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Albert Salas-Huetos
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain; and Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Angel Berlanga
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Marcella Spinaci
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| | - Jordi Ribas-Maynou
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, Girona, Spain; and Unit of Cell Biology, Department of Biology, Faculty of Sciences, University of Girona, Girona, Spain
| |
Collapse
|
15
|
Tu GW, Ma JF, Li JK, Su Y, Luo JC, Hao GW, Luo MH, Cao YR, Zhang Y, Luo Z. Exosome-Derived From Sepsis Patients' Blood Promoted Pyroptosis of Cardiomyocytes by Regulating miR-885-5p/HMBOX1. Front Cardiovasc Med 2022; 9:774193. [PMID: 35345489 PMCID: PMC8957255 DOI: 10.3389/fcvm.2022.774193] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Background Septic myocardial depression has been associated with increased morbidity and mortality. miR-885-5p has been shown to regulate cell growth, senescence, and/or apoptosis. Published studies demonstrated that Homeobox-containing protein 1 (HMBOX1) inhibits inflammatory response, regulates cell autophagy, and apoptosis. However, the role of miR-885-5p/HMBOX1 in sepsis and septic myocardial depression and the underlying mechanism is not fully understood. Materials and Methods Exosomes (exos) derived from sepsis patients (sepsis-exos) were isolated using ultracentrifugation. Rats were subjected to cecal ligation and puncture surgery and treated with sepsis-exos. HMBOX1 was knocked down or overexpressed in AC16 cells using lentiviral plasmids carrying short interfering RNAs targeting human HMBOX1 or carrying HMBOX1 cDNA. Cell pyroptosis was measured by flow cytometry. The secretion of IL-1β and IL-18 was examined by ELISA kits. Quantitative polymerase chain reaction (PCR) or western blot was used for gene expression. Results Sepsis-exos increased the level of miR-885-5p, decreased HMBOX1, elevated IL-1β and IL-18, and promoted pyroptosis in AC16 cells. Septic rats treated with sepsis-exos increased the serum inflammatory cytokines is associated with increased pyroptosis-related proteins of hearts. MiR-885-5p bound to the three prime untranslated regions of HMBOX1 to negatively regulate its expression. Overexpressing HMBOX1 reversed miR-885-5p-induced elevation of inflammatory cytokines and upregulation of NLRP3, caspase-1, and GSDMD-N in AC16 cells. The mechanistic study indicated that the effect of HMBOX1 was NF-κB dependent. Conclusion Sepsis-exos promoted the pyroptosis of AC16 cells through miR-885-5p via HMBOX1. The results show the significance of the miR-885-5p/HMBOX1 axis in myocardial cell pyroptosis and provide new directions for the treatment of septic myocardial depression.
Collapse
Affiliation(s)
- Guo-Wei Tu
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie-Fei Ma
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Jia-Kun Li
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Su
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing-Chao Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guang-Wei Hao
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ming-Hao Luo
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Rui Cao
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China
| | - Yi Zhang
- Shanghai Key Laboratory of Organ Transplantation, Shanghai, China.,Biomedical Research Center, Institute for Clinical Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhe Luo
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Critical Care Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.,Shanghai Key Laboratory of Lung Inflammation and Injury, Shanghai, China
| |
Collapse
|
16
|
Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset and severity revealed MALAT-1, miR-363 and miR-17. Sci Rep 2022; 12:1249. [PMID: 35075166 PMCID: PMC8786922 DOI: 10.1038/s41598-022-05119-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
New predictors that could boost early detection of preeclampsia (PE) and prognosticate its severity are urgently needed. We examined serum miR-17, miR-363, MALAT-1 and HOTAIR as potential biomarkers of PE risk, onset and severity. This prospective study included 160 pregnant females; 82 PE cases and 78 healthy pregnancies. Serum samples were collected between 20 to 40 weeks of gestation. Early-onset PE was defined as developing clinical manifestations at ≤ 34 gestational weeks. Severe PE was defined as systolic blood pressure ≥ 160 mmHg and/or diastolic blood pressure ≥ 110 mmHg and proteinuria (≥ 2 g/24 h or ≥ 2+ dipstick). Selection of PE-related non-coding RNAs and functional target gene analysis were conducted using bioinformatics analysis. Expression profiles were assessed by RT-qPCR. Serum miR-363 and MALAT-1 were downregulated, meanwhile miR-17 was upregulated, and HOTAIR was not significantly altered in PE compared with healthy pregnancies. miR-17 was elevated while miR-363 and MALAT-1 were reduced in severe versus mild PE. miR-363 was lower in early-onset versus late-onset PE. MALAT-1, miR-17 and miR-363 showed diagnostic potential and discriminated severe PE, whereas miR-363 distinguished early-onset PE in the receiver-operating-characteristic analysis. miR-363 and MALAT-1 were significantly associated with early and severe PE, respectively in multivariate logistic analysis. In PE, miR-17 and MALAT-1 were significantly correlated with gestational age (r = - 0.328 and r = 0.322, respectively) and albuminuria (r = 0.312, and r = - 0.35, respectively). We constructed the MALAT-1, miR-363, and miR-17-related protein-protein interaction networks linked to PE. Serum miR-17, miR-363 and MALAT-1 could have utility as new biomarkers of PE diagnosis. miR-363 may be associated with early-onset PE and MALAT-1 downregulation correlates with PE severity.
Collapse
|
17
|
Schuchardt EL, Miyamoto SD, Crombleholme T, Karimpour-Fard A, Korst A, Neltner B, Howley LW, Cuneo B, Sucharov CC. Amniotic Fluid microRNA in Severe Twin-Twin Transfusion Syndrome Cardiomyopathy-Identification of Differences and Predicting Demise. J Cardiovasc Dev Dis 2022; 9:37. [PMID: 35200691 PMCID: PMC8878714 DOI: 10.3390/jcdd9020037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
Twin-twin transfusion syndrome (TTTS) is a rare but serious cause of fetal cardiomyopathy with poorly understood pathophysiology and challenging prognostication. This study sought a nonbiased, comprehensive assessment of amniotic fluid (AF) microRNAs from TTTS pregnancies and associations of these miRNAs with clinical characteristics. For the discovery cohort, AF from ten fetuses with severe TTTS cardiomyopathy were selected and compared to ten normal singleton AF. Array panels assessing 384 microRNAs were performed on the discovery cohort and controls. Using a stringent q < 0.0025, arrays identified 32 miRNAs with differential expression. Top three microRNAs were miR-99b, miR-370 and miR-375. Forty distinct TTTS subjects were selected for a validation cohort. RT-PCR targeted six differentially-expressed microRNAs in the discovery and validation cohorts. Expression differences by array were confirmed by RT-PCR with high fidelity. The ability of these miRNAs to predict clinical differences, such as cardiac findings and later demise, was evaluated on TTTS subjects. Down-regulation of miRNA-127-3p, miRNA-375-3p and miRNA-886 were associated with demise. Our results indicate AF microRNAs have potential as a diagnostic and prognostic biomarker in TTTS. The top microRNAs have previously demonstrated roles in angiogenesis, cardiomyocyte stress response and hypertrophy. Further studies of the mechanism of actions and potential targets is warranted.
Collapse
Affiliation(s)
- Eleanor L. Schuchardt
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
- Department of Pediatrics, Rady Children’s Hospital, School of Medicine, University of California San Diego, San Diego, CA 92123, USA
| | - Shelley D. Miyamoto
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
| | - Timothy Crombleholme
- Fetal Care Center Dallas, Medical City Children’s Hospital, Dallas, TX 75230, USA;
| | - Anis Karimpour-Fard
- Department of Pharmacology, School of Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO 80045, USA;
| | - Armin Korst
- Research Institute, Children’s Hospital Colorado, Aurora, CO 80045, USA;
| | - Bonnie Neltner
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| | - Lisa W. Howley
- Division of Cardiology, Department of Pediatrics, The Children’s Heart Clinic, Children’s Minnesota, Minneapolis, MN 55404, USA;
| | - Bettina Cuneo
- Department of Pediatrics, Colorado Fetal Care Center, Children’s Hospital Colorado, School of Medicine, University of Colorado, Aurora, CO 80045, USA; (E.L.S.); (S.D.M.); (B.C.)
| | - Carmen C. Sucharov
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA;
| |
Collapse
|
18
|
Cirkovic A, Stanisavljevic D, Milin-Lazovic J, Rajovic N, Pavlovic V, Milicevic O, Savic M, Kostic Peric J, Aleksic N, Milic N, Stanisavljevic T, Mikovic Z, Garovic V, Milic N. Preeclamptic Women Have Disrupted Placental microRNA Expression at the Time of Preeclampsia Diagnosis: Meta-Analysis. Front Bioeng Biotechnol 2022; 9:782845. [PMID: 35004644 PMCID: PMC8740308 DOI: 10.3389/fbioe.2021.782845] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
Introduction: Preeclampsia (PE) is a pregnancy-associated, multi-organ, life-threatening disease that appears after the 20th week of gestation. The aim of this study was to perform a systematic review and meta-analysis to determine whether women with PE have disrupted miRNA expression compared to women who do not have PE. Methods: We conducted a systematic review and meta-analysis of studies that reported miRNAs expression levels in placenta or peripheral blood of pregnant women with vs. without PE. Studies published before October 29, 2021 were identified through PubMed, EMBASE and Web of Science. Two reviewers used predefined forms and protocols to evaluate independently the eligibility of studies based on titles and abstracts and to perform full-text screening, data abstraction and quality assessment. Standardized mean difference (SMD) was used as a measure of effect size. Results: 229 publications were included in the systematic review and 53 in the meta-analysis. The expression levels in placenta were significantly higher in women with PE compared to women without PE for miRNA-16 (SMD = 1.51,95%CI = 0.55-2.46), miRNA-20b (SMD = 0.89, 95%CI = 0.33-1.45), miRNA-23a (SMD = 2.02, 95%CI = 1.25-2.78), miRNA-29b (SMD = 1.37, 95%CI = 0.36-2.37), miRNA-155 (SMD = 2.99, 95%CI = 0.83-5.14) and miRNA-210 (SMD = 1.63, 95%CI = 0.69-2.58), and significantly lower for miRNA-376c (SMD = -4.86, 95%CI = -9.51 to -0.20). An increased level of miRNK-155 expression was found in peripheral blood of women with PE (SMD = 2.06, 95%CI = 0.35-3.76), while the expression level of miRNA-16 was significantly lower in peripheral blood of PE women (SMD = -0.47, 95%CI = -0.91 to -0.03). The functional roles of the presented miRNAs include control of trophoblast proliferation, migration, invasion, apoptosis, differentiation, cellular metabolism and angiogenesis. Conclusion: miRNAs play an important role in the pathophysiology of PE. The identification of differentially expressed miRNAs in maternal blood creates an opportunity to define an easily accessible biomarker of PE.
Collapse
Affiliation(s)
- Andja Cirkovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Dejana Stanisavljevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Milin-Lazovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Nina Rajovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Vedrana Pavlovic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Ognjen Milicevic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Savic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jelena Kostic Peric
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Natasa Aleksic
- Center for Molecular Biology, University of Vienna, Vienna, Austria
| | - Nikola Milic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | | | - Zeljko Mikovic
- Clinic for Gynecology and Obstetrics Narodni Front, Belgrade, Serbia
| | - Vesna Garovic
- Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| | - Natasa Milic
- Institute for Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, Belgrade, Serbia.,Division of Nephrology and Hypertension, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
19
|
Brown PA. Differential and targeted vesiculation: pathologic cellular responses to elevated arterial pressure. Mol Cell Biochem 2022; 477:1023-1040. [PMID: 34989921 DOI: 10.1007/s11010-021-04351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Extracellular vesicles are small membrane-enclosed particles released during cell activation or injury. They have been investigated for several decades and found to be secreted in various diseases. Their pathogenic role is further supported by the presence of several important molecules among their cargo, including proteins, lipids, and nucleic acids. Many studies have reported enhanced and targeted extracellular vesicle biogenesis in diseases that involve chronic or transient elevation of arterial pressure resulting in endothelial dysfunction, within either the general circulatory system or specific local vascular beds. In addition, several associated pathologic processes have been studied and reported. However, the role of elevated pressure as a common pathogenic trigger across vascular domains and disease chronicity has not been previously described. This review will therefore summarize our current knowledge of the differential and targeted biogenesis of extracellular vesicles in major diseases that are characterized by elevated arterial pressure leading to endothelial dysfunction and propose a unified theory of pressure-induced extracellular vesicle-mediated pathogenesis.
Collapse
Affiliation(s)
- Paul A Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences Teaching and Research Complex, The University of the West Indies, Mona, Kingston 7, Jamaica.
| |
Collapse
|
20
|
Zu Y, Wang Q, Wang H. Identification of miR-885-5p as a tumor biomarker: regulation of cellular function in cervical cancer. Gynecol Obstet Invest 2021; 86:525-532. [PMID: 34801999 DOI: 10.1159/000520980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/15/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVES MicroRNAs were revealed as biomarkers for early detection or prognosis predictors of cancer and were involved in the progression of cancer. The present study investigated the expression pattern, potential clinical, and functional role of miR-885-5p in cervical cancer. DESIGN A total of 115 pairs of cervical cancer tissue specimens and adjacent non-tumor paracancerous tissue specimens were collected from the cervical cancer patients who underwent surgical resection or biopsy without preoperative systemic therapy at Maternity and Child Health Care of Zaozhuang from 2012 to 2014. Participants/Materials, Setting, Methods: The expression levels of miR-885-5p in cervical cancer were measured using the qRT-PCR assay. A follow-up study was conducted and the Kaplan-Meier method with log-rank test was used to analyze the potential clinical significance of miR-885-5p in cervical cancer. The functional experiments including CCK-8, Transwell migration, and invasion assays were used to investigate the biological function of miR-885-5p in cervical cancer cells. RESULTS miR-885-5p expression was decreased in tumor tissues and tumor cell lines compared to normal control. Low expression of miR-885-5p was related to lymph node metastasis, late FIGO stage, and shorter overall survival outcome. Ascending expression of miR-885-5p inhibited the proliferative, migratory, and invasive abilities of cervical cancer cells, while downregulation of miR-885-5p promoted these cellular abilities of cervical cancer cells in vitro. LIMITATIONS The patient population size was limited, thus the clinical significance of miR-885-5p requires further verification. Secondly, the precise mechanism of miR-885-5p in cervical cancer still exclusive. In future studies, a larger sample size will be required to confirm the prognostic value of miR-885-5p in cervical cancer, and the possible targets, as well as the detailed mechanism of miR-885-5p, will be investigated. CONCLUSIONS miR-885-5p expression was decreased in cervical cancer and downregulation of miR-885-5p promoted the progression of cervical cancer cells. miR-885-5p may be an independent prognostic predictor and therapeutic target for treating cervical cancer.
Collapse
Affiliation(s)
- Yuanqi Zu
- Department of Gynecology, Maternity and Child Health Care of Zaozhuang, Zaozhuang, China
| | - Qianqian Wang
- Department of Gynecology, Maternity and Child Health Care of Zaozhuang, Zaozhuang, China
| | - Hong Wang
- Department of Gynecology, Maternity and Child Health Care of Zaozhuang, Zaozhuang, China
| |
Collapse
|
21
|
Luizon MR, Conceição IMCA, Viana-Mattioli S, Caldeira-Dias M, Cavalli RC, Sandrim VC. Circulating MicroRNAs in the Second Trimester From Pregnant Women Who Subsequently Developed Preeclampsia: Potential Candidates as Predictive Biomarkers and Pathway Analysis for Target Genes of miR-204-5p. Front Physiol 2021; 12:678184. [PMID: 34630130 PMCID: PMC8493119 DOI: 10.3389/fphys.2021.678184] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/23/2021] [Indexed: 01/08/2023] Open
Abstract
MicroRNAs (miRNAs) play an important role in the pathophysiology of preeclampsia (PE). However, the expression of circulating miRNAs was not analyzed in the second trimester of pregnancy, a period of major relevance to identify predictive biomarkers for PE. Therefore, we examined the expression profiles of 84 circulating miRNAs using a PCR array in plasma collected between 20 and 25 weeks of gestation from pregnant women, who subsequently developed PE and those who remained healthy during pregnancy, randomly selected from a prospective cohort. Overall, 23 miRNAs had a fold change > 2.0 and were considered to be upregulated in plasma from pregnant women who subsequently developed PE, even before the onset of clinical symptoms of PE. However, only miR-204-5p was statistically significant (P = 0.0082). Experimentally validated interactions for the target genes of miR-204-5p extracted from miRTarBase were used in the gene set functional enrichment analysis to identify Reactome pathways. The network connecting the 37 target genes for miR-204-5p revealed pathways of known pathophysiological relevance during the early development of PE and included key genes related to PE, such as BDNF, MMP-9, MALAT1, TGFBR2, and SIRT1. We further depicted downstream targets of SIRT1 that are related to the vascular endothelial function or implicated in the pathophysiology of PE, namely, FOXO1, NFκB, HIF-1α, NOS3, and PPAR-γ. Our novel findings provide for circulating miRNAs upregulated in the second trimester on plasma from pregnant women who subsequently developed PE that is potentially related to the early development of PE, which may guide further studies focused on the validation of potential predictive biomarkers in PE.
Collapse
Affiliation(s)
- Marcelo R Luizon
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Izabela M C A Conceição
- Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Sarah Viana-Mattioli
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Mayara Caldeira-Dias
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| | - Ricardo C Cavalli
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of São Paulo, Ribeirao Preto, São Paulo, Brazil
| | - Valeria C Sandrim
- Department of Biophysics and Pharmacology, Institute of Biosciences, Universidade Estadual Paulista (UNESP), Botucatu, São Paulo, Brazil
| |
Collapse
|
22
|
Wang Y, Zhang Z. Increased expression of lncRNA SNHG7 promotes the cell viability, migration, and invasion in pre-eclampsia via modulating the miR-214-5p/TWIST1 axis. Hypertens Pregnancy 2021; 40:261-270. [PMID: 34606403 DOI: 10.1080/10641955.2021.1981372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE This study is aimed to elucidate the molecular mechanism of lncRNA SNHG7 on pre-eclampsia (PE). METHODS The expression of SNHG7, miR-214-5p and TWIST1 in PE placental tissues was detected by qRT-PCR. The regulatory mechanism of SNHG7/miR-214-5p/TWIST1 axis on PE was determined using MTT, wound healing, transwell invasion, and western blot assays. RESULTS In PE pregnancies, SNHG7 and TWIST1 were decreased, while miR-214-5p was increased.The elevated miR-214-5p and decreased TWIST1 partly eliminated the promoting effects of SNHG7 up-regulation on the viability and metastasis of JEG-3 cells. CONCLUSIONS Up-regulated SNHG7 protects against PE through modulating the miR-214-5p/TWIST1 axi.
Collapse
Affiliation(s)
- Yongping Wang
- Department of Maternity Ward 2nd, Haidian Maternal and Child Health Hospital in Beijing,Beijing, China
| | - Zhihui Zhang
- Department of Maternity Ward 2nd, Haidian Maternal and Child Health Hospital in Beijing,Beijing, China
| |
Collapse
|
23
|
Abstract
Preeclampsia (PE) is an idiopathic disease that occurs during pregnancy. It comprises multiple organ and system damage, and can seriously threaten the safety of the mother and infant throughout the perinatal period. As the pathogenesis of PE is unclear, there are few specific remedies. Currently, the only way to eliminate the clinical symptoms is to terminate the pregnancy. Although noncoding RNA (ncRNA) was once thought to be the "junk" of gene transcription, it is now known to be widely involved in pathological and physiological processes, including pregnancy-related disorders. Moreover, there is growing evidence that the unbalanced expression of specific ncRNA is involved in the pathogenesis of PE. In the present review, we summarize the expression patterns of ncRNAs, i.e., microRNAs (miRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), and the functional mechanisms by which they affect the development of PE, and examine the clinical significance of ncRNAs as biomarkers for the diagnosis of PE. We also discuss the contributions made by genetic polymorphisms and epigenetic ncRNA regulation to PE. In the present review, we wish to explore and reinforce the clinical value of ncRNAs as noninvasive biomarkers of PE.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Gynecology and obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Shiting Qin
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China
| | - Lu Zhang
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, 16 Jiangsu Road, Qingdao, 266003, China.
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, 266003, China.
| |
Collapse
|
24
|
Gao X, Shao L, Ge X, Zhang L, Chen D, He R. The Potential Role of Serum Exosomes in Preeclampsia. Curr Drug Metab 2021; 21:352-356. [PMID: 32484101 DOI: 10.2174/1389200221666200525152441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/05/2020] [Accepted: 03/05/2020] [Indexed: 12/20/2022]
Abstract
Preeclampsia is a serious pregnancy-specific disease that affects about 5%-8% of pregnant women and is the main reason for the increase in maternal and perinatal mortality. Due to unknown etiology, preeclampsia is still the main cause of increased mortality in maternal and perinatal infants, which is mainly manifested by new hypertension after 20 weeks of pregnancy. As the pathogenesis has not been fully elucidated, early diagnosis and full treatment are lacking. Exosomes secreted from the placenta to the peripheral circulation may be involved in the pathogenesis of preeclampsia and can be detected from the plasma of pregnant women after 6 weeks of pregnancy. Related studies have shown that the levels of exosomes in preeclampsia have changed, and the protein and miRNA expression profiles are also different. Therefore, monitoring changes in plasma exosomes and expression profiles may provide new ideas and new perspectives for the prediction, diagnosis and treatment of preeclampsia.
Collapse
Affiliation(s)
- Xuelin Gao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Lulu Shao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xinying Ge
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Zhang
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Dexin Chen
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China.,Department of Obstetrics and Gynecology, Third Hospital of Xian, Shaanxi Province, China
| | - Rongxia He
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
25
|
Cao M, Wen J, Bu C, Li C, Lin Y, Zhang H, Gu Y, Shi Z, Zhang Y, Long W, Zhang L. Differential circular RNA expression profiles in umbilical cord blood exosomes from preeclampsia patients. BMC Pregnancy Childbirth 2021; 21:303. [PMID: 33858365 PMCID: PMC8051099 DOI: 10.1186/s12884-021-03777-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/05/2021] [Indexed: 02/07/2023] Open
Abstract
Background Exosomal circular RNAs (circRNAs) are emerging as important regulators of physiological development and disease pathogenesis. However, the roles of exosomal circRNAs from umbilical cord blood in preeclampsia (PE) occurrence remains poorly understood. Methods We used microarray technology to establish the differential circRNA expression profiles in umbilical cord blood exosomes from PE patients compared with normal controls. Bioinformatics analysis was conducted to further predict the potential effects of the differentially expressed circRNAs and their interactions with miRNAs. Results According to the microarray data, we identified 143 significantly up-regulated circRNAs and 161 significantly down-regulated circRNAs in umbilical cord blood exosomes of PE patients compared with controls. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) biological pathway analyses showed that circRNA parental genes involved in the regulation of metabolic process, trophoblast growth and invasion were significantly enriched, which play important roles in PE development. Moreover, pathway network was constructed to reveal the key pathways in PE, such as PI3K-Akt signaling pathway. Further circRNA/miRNA interactions analysis demonstrated that most exosomal circRNAs had miRNA binding sites, and some miRNAs were associated with PE. Conclusions Our results highlight the importance of exosomal circRNAs in the pathogenesis of PE and lay a foundation for extensive studies on the role of exosomal circRNAs in PE development. Supplementary Information The online version contains supplementary material available at 10.1186/s12884-021-03777-7.
Collapse
Affiliation(s)
- Minkai Cao
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Juan Wen
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Chaozhi Bu
- Research Institute for Reproductive Medicine and Genetic Diseases, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Chunyan Li
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yu Lin
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Hong Zhang
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Yanfang Gu
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China
| | - Zhonghua Shi
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China
| | - Yan Zhang
- Department of Obstetrics, The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, 214002, China.
| | - Wei Long
- Department of Obstetrics, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, 210004, China.
| | - Le Zhang
- Department of Neonatology, The Affiliated Wuxi Children's Hospital of Nanjing Medical University, Wuxi, 214023, China.
| |
Collapse
|
26
|
Howe CG, Foley HB, Kennedy EM, Eckel SP, Chavez TA, Faham D, Grubbs BH, Al-Marayati L, Lerner D, Suglia S, Bastain TM, Marsit CJ, Breton CV. Extracellular vesicle microRNA in early versus late pregnancy with birth outcomes in the MADRES study. Epigenetics 2021; 17:269-285. [PMID: 33734019 DOI: 10.1080/15592294.2021.1899887] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Circulating miRNA may contribute to the development of adverse birth outcomes. However, few studies have investigated extracellular vesicle (EV) miRNA, which play important roles in intercellular communication, or compared miRNA at multiple time points in pregnancy. In the current study, 800 miRNA were profiled for EVs from maternal plasma collected in early (median: 12.5 weeks) and late (median: 31.8 weeks) pregnancy from 156 participants in the MADRES Study, a health disparity pregnancy cohort. Associations between miRNA and birth weight, birth weight for gestational age (GA), and GA at birth were examined using covariate-adjusted robust linear regression. Differences by infant sex and maternal BMI were also investigated. Late pregnancy measures of 13 miRNA were associated with GA at birth (PFDR<0.050). Negative associations were observed for eight miRNA (miR-4454+ miR-7975, miR-4516, let-7b-5p, miR-126-3p, miR-29b-3p, miR-15a-5p, miR-15b-5p, miR-19b-3p) and positive associations for five miRNA (miR-212-3p, miR-584-5p, miR-608, miR-210-3p, miR-188-5p). Predicted target genes were enriched (PFDR<0.050) in pathways involved in organogenesis and placental development. An additional miRNA (miR-107), measured in late pregnancy, was positively associated with GA at birth in infants born to obese women (PFDR for BMI interaction = 0.011). In primary analyses, the associations between early pregnancy miRNA and birth outcomes were not statistically significant (PFDR≥0.05). However, sex-specific associations were observed for early pregnancy measures of 37 miRNA and GA at birth (PFDR for interactions<0.050). None of the miRNA were associated with fetal growth measures (PFDR≥0.050). Our findings suggest that EV miRNA in both early and late pregnancy may influence gestational duration.
Collapse
Affiliation(s)
- Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Helen B Foley
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Elizabeth M Kennedy
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Sandrah P Eckel
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Thomas A Chavez
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Dema Faham
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, Los Angeles, CA, USA
| | - Laila Al-Marayati
- Department of Obstetrics and Gynecology, Keck School of Medicine, Los Angeles, CA, USA.,Eisner Health, Los Angeles, CA, USA
| | | | - Shakira Suglia
- Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Theresa M Bastain
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Emory Rollins School of Public Health, Atlanta, GA, USA.,Department of Epidemiology, Emory Rollins School of Public Health, Atlanta, GA, USA
| | - Carrie V Breton
- Department of Preventive Medicine, Keck School of Medicine at the University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
27
|
Xu P, Ma Y, Wu H, Wang YL. Placenta-Derived MicroRNAs in the Pathophysiology of Human Pregnancy. Front Cell Dev Biol 2021; 9:646326. [PMID: 33777951 PMCID: PMC7991791 DOI: 10.3389/fcell.2021.646326] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
In placental mammals, reproductive success, and maternal-fetal health substantially depend on a well-being placenta, the interface between the fetus and the mother. Disorders in placental cells are tightly associated with adverse pregnancy outcomes including preeclampsia (PE), fetal growth restriction, etc. MicroRNAs (miRNAs) represent small non-coding RNAs that regulate post-transcriptional gene expression and are integral to a wide range of healthy or diseased cellular proceedings. Numerous miRNAs have been detected in human placenta and increasing evidence is revealing their important roles in regulating placental cell behaviors. Recent studies indicate that placenta-derived miRNAs can be released to the maternal circulation via encapsulating into the exosomes, and they potentially target various maternal cells to provide a hormone-like means of intercellular communication between the mother and the fetus. These placental exosome miRNAs are attracting more and more attention due to their differential expression in pregnant complications, which may provide novel biomarkers for prediction of the diseases. In this review, we briefly summarize the current knowledge and the perspectives of the placenta-derived miRNAs, especially the exosomal transfer of placental miRNAs and their pathophysiological relevance to PE. The possible exosomal-miRNA-targeted strategies for diagnosis, prognosis or therapy of PE are highlighted.
Collapse
Affiliation(s)
- Peng Xu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yeling Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Esfandyari S, Elkafas H, Chugh RM, Park HS, Navarro A, Al-Hendy A. Exosomes as Biomarkers for Female Reproductive Diseases Diagnosis and Therapy. Int J Mol Sci 2021; 22:ijms22042165. [PMID: 33671587 PMCID: PMC7926632 DOI: 10.3390/ijms22042165] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/14/2021] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Cell-cell communication is an essential mechanism for the maintenance and development of various organs, including the female reproductive system. Today, it is well-known that the function of the female reproductive system and successful pregnancy are related to appropriate follicular growth, oogenesis, implantation, embryo development, and proper fertilization, dependent on the main regulators of cellular crosstalk, exosomes. During exosome synthesis, selective packaging of different factors into these vesicles happens within the originating cells. Therefore, exosomes contain both genetic and proteomic data that could be applied as biomarkers or therapeutic targets in pregnancy-associated disorders or placental functions. In this context, the present review aims to compile information about the potential exosomes with key molecular cargos that are dysregulated in female reproductive diseases which lead to infertility, including polycystic ovary syndrome (PCOS), premature ovarian failure (POF), Asherman syndrome, endometriosis, endometrial cancer, cervical cancer, ovarian cancer, and preeclampsia, as well as signaling pathways related to the regulation of the reproductive system and pregnancy outcome during these pathological conditions. This review might help us realize the etiology of reproductive dysfunction and improve the early diagnosis and treatment of the related complications.
Collapse
Affiliation(s)
- Sahar Esfandyari
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Hoda Elkafas
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Pharmacology and Toxicology, Egyptian Drug Authority (EDA) Formally, (NODCAR), Cairo 35521, Egypt
| | - Rishi Man Chugh
- Department of Surgery, University of Illinois at Chicago, Chicago, IL 60612, USA; (S.E.); (H.E.); (R.M.C.)
- Department of Radiation Oncology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Hang-soo Park
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Antonia Navarro
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL 60637, USA; (H.-s.P.); (A.N.)
- Correspondence: ; Tel.: +1-773-832-0742
| |
Collapse
|
29
|
Caldeira-Dias M, Viana-Mattioli S, de Souza Rangel Machado J, Carlström M, de Carvalho Cavalli R, Sandrim VC. Resveratrol and grape juice: Effects on redox status and nitric oxide production of endothelial cells in in vitro preeclampsia model. Pregnancy Hypertens 2021; 23:205-210. [PMID: 33515977 DOI: 10.1016/j.preghy.2021.01.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 11/28/2022]
Abstract
Preeclampsia (PE) is a hypertensive disorder of pregnancy and it is one of the main causes of maternal and fetal morbidity and mortality worldwide. It is known that oxidative stress plays a role in its pathophysiology, therefore we investigated the effects of trans-resveratrol, a potent antioxidant, on the Nrf2/ARE pathway, nitric oxide (NO) production, and reactive oxygen species (ROS) levels in an in vitro model of PE. Plasma from PE patients increased ARE activity in endothelial cells compared with plasma from healthy pregnant (HP), and the addition of resveratrol was able to potentiate this increase only in PE. Resveratrol also decreased ROS levels in the cells incubated with plasma from PE. Based on these results, we performed a pilot clinical study to compare the effects of serum from PE women before and 1 h after ingestion of polyphenol-rich whole red grapefruit juice incubated on endothelial cells, since grapefruit contains large amounts of resveratrol. Serum from PE patients, obtained one hour after juice intake, decreased antioxidants markers in cells compared with the serum before juice intake, besides, it increased NO production. In conclusion, resveratrol and polyphenol-rich red grape juice have potentially beneficial effects on endothelial cells incubated with PE plasma/serum, which could aid in the management of PE.
Collapse
Affiliation(s)
- Mayara Caldeira-Dias
- Department of Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Distrito Rubiao Junior, Botucatu, São Paulo 18680-000, Brazil
| | - Sarah Viana-Mattioli
- Department of Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Distrito Rubiao Junior, Botucatu, São Paulo 18680-000, Brazil
| | - Jackeline de Souza Rangel Machado
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Mattias Carlström
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Ricardo de Carvalho Cavalli
- Department of Gynecology and Obstetrics, Faculty of Medicine of Ribeirao Preto, University of Sao Paulo (USP), Ribeirao Preto, São Paulo 14049-900, Brazil
| | - Valéria Cristina Sandrim
- Department of Pharmacology, Institute of Biosciences of Botucatu, Sao Paulo State University (UNESP), Distrito Rubiao Junior, Botucatu, São Paulo 18680-000, Brazil.
| |
Collapse
|
30
|
Abstract
Preeclampsia (PE) is associated with long-term morbidity in mothers and lifelong morbidities for their children, ranging from cerebral palsy and cognitive delay in preterm infants, to hypertension, diabetes and obesity in adolescents and young adults. There are several processes that are critical for development of materno-fetal exchange, including establishing adequate perfusion of the placenta by maternal blood, and the formation of the placental villous vascular tree. Recent studies provide persuasive evidence that placenta-derived extracellular vesicles (EVs) represent a significant intercellular communication pathway, and that they may play an important role in placental and endothelial cell (both fetal and maternal) function. These functions are known to be altered in PE. EVs can carry and transport a wide range of bioactive molescules that have potential to be used as biomarkers and therapeutic delivery tools for PE. EV content is often parent cell specific, thus providing an insight or "thumbprint" of the intracellular environment of the originating cell (e.g., human placenta). EV have been identified in plasma under both normal and pathological conditions, including PE. The concentration of EVs and their content in plasma has been reported to increase in association with disease severity and/or progression. Placenta-derived EVs have been identified in maternal plasma during normal pregnancy and PE pregnancies. They contain placenta-specific proteins and miRNAs and, as such, may be differentiated from maternally-derived EVs. The aim of this review, thus, is to describe the potential roles of EVs in preecmpatic pregnancies, focussing on EVs secreted from placental cells. The biogenesis, specificity of placental EVs, and methods used to characterise EVs in the context of PE pregnancies will be also discussed.
Collapse
|
31
|
Gao X, Shao L, Ge X, Zhang L, Chen D, He R. The Potential Role of Serum Exosomes in Preeclampsia. Curr Drug Metab 2020. [DOI: 10.2174/1389200221666200525152441 dali liu (guest editor) loyola university chicago, chicago, il 60660, usa xiangkai li (guest editor) school of life sciences, lanzhou university, gansu] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Preeclampsia is a serious pregnancy-specific disease that affects about 5%-8% of pregnant women and is
the main reason for the increase in maternal and perinatal mortality. Due to unknown etiology, preeclampsia is still
the main cause of increased mortality in maternal and perinatal infants, which is mainly manifested by new
hypertension after 20 weeks of pregnancy. As the pathogenesis has not been fully elucidated, early diagnosis and full
treatment are lacking. Exosomes secreted from the placenta to the peripheral circulation may be involved in the
pathogenesis of preeclampsia and can be detected from the plasma of pregnant women after 6 weeks of pregnancy.
Related studies have shown that the levels of exosomes in preeclampsia have changed, and the protein and miRNA
expression profiles are also different. Therefore, monitoring changes in plasma exosomes and expression profiles
may provide new ideas and new perspectives for the prediction, diagnosis and treatment of preeclampsia.
Collapse
Affiliation(s)
- Xuelin Gao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Lulu Shao
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xinying Ge
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Long Zhang
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Dexin Chen
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Rongxia He
- Department of Obstetrics, Second Hospital of Lanzhou University, Second Clinical Medical College of Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Transfection of maternal cells with placental extracellular vesicles in preeclampsia. Med Hypotheses 2020; 141:109721. [PMID: 32289644 DOI: 10.1016/j.mehy.2020.109721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
The role of extracellular vesicles is widely studied. As well as other organs, placenta produces extracellular vesicles during both, normal and pathological pregnancies. During pregnancy, placental/fetal free DNA circulates in maternal blood. Concentrations of free placental DNA are much higher when pregnancy complications of various etiologies occur. Such a complication could be preeclampsia. In our previous animal model, administration of pure DNA isolated from fetus did not induce any prenatal complications. Here we hypothesize that in real life during preeclampsia or other pregnancy complications, placental DNA might be transported by extracellular vesicles to maternal cells. Also, our preliminary data prove that placental DNA is present in circulating exosomes in maternal blood. Therefore, a lipid bilayer of extracellular vesicles could protect DNA from degradation by enzymes. Extracellular vesicles tend to merge with other cells, therefore, following expression of fetal genes from placental extracellular vesicles in maternal cells could lead to an immune response already observed in pregnancy complications. Future studies should be mainly focused on verification of our hypothesis and evaluate the potential of placental/fetal extracellular vesicles and their gene transfer in preeclampsia or other pregnancy complications.
Collapse
|
33
|
Rodriguez-Rius A, Lopez S, Martinez-Perez A, Souto JC, Soria JM. Identification of a Plasma MicroRNA Profile Associated With Venous Thrombosis. Arterioscler Thromb Vasc Biol 2020; 40:1392-1399. [PMID: 32160777 DOI: 10.1161/atvbaha.120.314092] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Venous thrombosis (VT) is a complex condition with a highly heritable genetic component that predisposes one to its development. Certain microRNAs (miRNAs) might be used as biomarkers of VT, but few studies have examined miRNA expression in this respect. The aim of the present work was to identify a plasma miRNA profile associated with VT. Approach and Results: miRNAs were analyzed by quantitative polymerase chain reaction in plasma samples from members of the GAIT-2 (Genetic Analysis of Idiopathic Thrombophilia 2) population (n=935). A discovery phase involving the screening of 752 miRNAs from a subset of 104 GAIT-2 subjects was followed by an internal validation phase in which the selected miRNAs were quantified in the whole GAIT-2 population. In the discovery phase, 16 miRNAs were selected, including 9 associated with VT and 7 that correlated with an intermediate phenotype of VT. In the next phase, 4 miRNAs were validated as differentially expressed (false discovery rate, <0.1) in VT: hsa-miR-126-3p, hsa-miR-885-5p, hsa-miR-194-5p, and hsa-miR-192-5p. The 4 miRNAs each returned a significant (P<0.05) odds ratio for VT (range of 1.3-1.8). A risk model including the 4 miRNAs, age, and sex returned an area under the receiver operating characteristic curve of 0.77. Moreover, all 4 miRNAs showed significant correlations with intermediate phenotypes of VT (eg, protein S and factor VII). The targets of the miRNAs in the blood coagulation pathway and their interactions are also discussed. CONCLUSIONS The present results suggest a 4-miRNA plasma profile associated with VT is of potential use in predicting the risk of this condition.
Collapse
Affiliation(s)
- Alba Rodriguez-Rius
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| | - Sonia Lopez
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| | - Angel Martinez-Perez
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| | - Juan Carlos Souto
- Unit of Thrombosis and Hemostasis, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain (J.C.S.)
| | - Jose Manuel Soria
- From the Genomics of Complex Diseases Group, Research Institute Hospital de la Santa Creu i Sant Pau, IIB Sant Pau, Barcelona, Spain (A.R.-R., S.L., A.M.-P., J.M.S.)
| |
Collapse
|
34
|
|
35
|
Abstract
Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.
Collapse
|
36
|
Demirer S, Hocaoglu M, Turgut A, Karateke A, Komurcu-Bayrak E. Expression profiles of candidate microRNAs in the peripheral blood leukocytes of patients with early- and late-onset preeclampsia versus normal pregnancies. Pregnancy Hypertens 2020; 19:239-245. [PMID: 31899190 DOI: 10.1016/j.preghy.2019.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/12/2019] [Accepted: 11/09/2019] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Maternal leucocytes play an important role in the pathogenesis of preeclampsia (PE). Circulating microRNAs (miRNAs) are small, noncoding RNA molecules. The purpose of this study was to investigate miR-518b, miR-155-5p, and miR-21-3p in the peripheral blood leukocytes of patients with PE, compared to controls. STUDY DESIGN Using real-time quantitative PCR method, the selected miRNAs which have been associated with PE were examined from early- onset PE (EOPE) (<34 weeks) (n = 48), late- onset PE (LOPE) (≥34 weeks) (n = 48), total cases of PE (n = 96), and healthy controls (n = 52). MAIN OUTCOME MEASURES The relative expression of the target miR in patient samples was compared to the calibrator and the results were expressed as relative quantification values. RESULTS Gestational age (GA) was significantly different between PE and controls. Univariate logistic regression analysis adjusted for GA at blood draw were fit to compare miR-518b, miR-155-5p, and miR-21-3p between PE and controls. The expression of miR-518b, miR-155-5p, and miR-21-3p were not significantly different in PE, compared to controls. The expression of miR-518b was upregulated in the EOPE and LOPE group, compared to controls, and the area under the receiver operating characteristic curve (AUC) of miR-518b was 0.65 and 0.62, respectively. miR-518b was positively correlated with WBC count, platelet count, serum levels of AST, ALT, LDH in EOPE. miR-21-3p expression level was negatively correlated with body mass index at blood draw and systolic blood pressure in the LOPE group. CONCLUSIONS Increased miR-518b expression levels were found to be associated with EOPE and LOPE.
Collapse
Affiliation(s)
- Selin Demirer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Meryem Hocaoglu
- Department of Obstetrics and Gynecology, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Abdulkadir Turgut
- Department of Obstetrics and Gynecology, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey; Department of Obstetrics and Gynecology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Ateş Karateke
- Department of Obstetrics and Gynecology, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey; Department of Obstetrics and Gynecology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Evrim Komurcu-Bayrak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
37
|
Ylioja CM, Rolf MM, Mamedova LK, Bradford BJ. Associations between body condition score at parturition and microRNA profile in colostrum of dairy cows as evaluated by paired mapping programs. J Dairy Sci 2019; 102:11609-11621. [PMID: 31548065 DOI: 10.3168/jds.2019-16675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022]
Abstract
MicroRNA (miRNA) are abundant in milk, and likely have regulatory activity involving lactation and immunity. The objective of this study was to determine the miRNA profile in colostrum of overconditioned cows compared with cows of more moderate body condition score (BCS) at calving. Multiparous cows with either high (≥4.0 on a scale of 1 to 5; n = 7) or moderate BCS (2.75 to 3.50; n = 9) in the week before parturition were selected from a commercial dairy herd. Blood and colostrum were sampled within 24 h after calving. Blood serum was analyzed for free fatty acid (FFA) concentration. MicroRNA was isolated from colostrum samples after removing milk fat and cells. MicroRNA were sequenced, and reads were mapped to the bovine genome and to the existing database of miRNA at miRBase.org. Two programs, Oasis 2.0 and miRDeep2, were employed in parallel for read alignment, and analysis of miRNA count data was performed using DESeq2. Identification of differentially expressed miRNA from DESeq2 was not affected by the differences in miRNA detected by the 2 mapping programs. Most abundant miRNA included miR-30a, miR-148a, miR-181a, let-7f, miR-26a, miR-21, miR-22, and miR-92a. Large-scale shifts in miRNA profile were not observed; however, colostrum of cows with high BCS contained less miR-486, which has been linked with altered glucose metabolism. Colostrum from cows with elevated serum FFA contained less miR-885, which may be connected to hepatic function during the transition period. Potential functions of abundant miRNA suggest involvement in development and maintenance of cellular function in the mammary gland, with the additional possibility of influencing neonatal tissue and immune system development.
Collapse
Affiliation(s)
- C M Ylioja
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - M M Rolf
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - L K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506
| | - B J Bradford
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506.
| |
Collapse
|
38
|
Konečná B, Tóthová Ľ, Repiská G. Exosomes-Associated DNA-New Marker in Pregnancy Complications? Int J Mol Sci 2019; 20:ijms20122890. [PMID: 31200554 PMCID: PMC6627934 DOI: 10.3390/ijms20122890] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 12/14/2022] Open
Abstract
Despite a large number of studies, the etiology of pregnancy complications remains unknown. The involvement of cell-free DNA or fetal cell-free DNA in the pathogenesis of pregnancy complications is currently being hypothesized. Cell-free DNA occurs in different forms-free; part of neutrophil extracellular traps; or as recently discovered, carried by extracellular vesicles. Cell-free DNA is believed to activate an inflammatory pathway, which could possibly cause pregnancy complications. It could be hypothesized that DNA in its free form could be easily degraded by nucleases to prevent the inflammatory activation. However, recently, there has been a growing interest in the role of exosomes, potential protectors of cell-free DNA, in pregnancy complications. Most of the interest from recent years is directed towards the micro RNA carried by exosomes. However, exosome-associated DNA in relation to pregnancy complications has not been truly studied yet. DNA, as an important cargo of exosomes, has been so far studied mostly in cancer research. This review collects all the known information on the topic of not only exosome-associated DNA but also some information on vesicles-associated DNA and the studies regarding the role of exosomes in pregnancy complications from recent years. It also suggests possible analysis of exosome-associated DNA in pregnancy from plasma and emphasizes the importance of such analysis for future investigations of pregnancy complications. A major obstacle to the advancement in this field is the proper uniformed technique for exosomes isolation. Similarly, the sensitivity of methods analyzing a small fraction of DNA, potentially fetal DNA, carried by exosomes is variable.
Collapse
Affiliation(s)
- Barbora Konečná
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Ľubomíra Tóthová
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81108, Slovakia.
| | - Gabriela Repiská
- Institute of Physiology, Faculty of Medicine, Comenius University in Bratislava, Bratislava 81372, Slovakia.
| |
Collapse
|
39
|
Hocaoglu M, Demirer S, Senturk H, Turgut A, Komurcu-Bayrak E. Differential expression of candidate circulating microRNAs in maternal blood leukocytes of the patients with preeclampsia and gestational diabetes mellitus. Pregnancy Hypertens 2019; 17:5-11. [PMID: 31487656 DOI: 10.1016/j.preghy.2019.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 03/20/2019] [Accepted: 04/15/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Preeclampsia (PE) is diagnosed in women presenting with new onset hypertension accompanied by proteinuria. Gestational diabetes mellitus (GDM) is the carbohydrate intolerance that can occur in pregnancy. Neutrophil activation is related to PE and GDM. Circulating microRNAs (miRs) are small, noncoding RNA molecules. The aim of this study was to verify the expression levels of three candidate miRs in blood leukocytes of the patients with PE, GDM, and PE-GDM compared to healthy controls. STUDY DESIGN We selected miR-21-3p, miR-155-5p, and miR-16-5p which have been associated with GDM and PE. Using real-time quantitative PCR, the expression levels of miR-21-3p, miR-155-5p, miR-16-5p were analyzed in PE (n = 23), GDM (n = 19), PE, and GDM (n = 9) compared to healthy controls (n = 28). MAIN OUTCOME MEASURES The relative expression of the target miR in patient samples was compared to the calibrator and the results were expressed as relative quantification values. RESULTS There was a significant decrease in the expression levels of miR-21-3p in GDM and PE and miR-155-5p in PE group. No significant differences were observed in the expression levels of miRs in PE-GDM group. On receiving operator characteristic (ROC) analysis, areas under the curve (AUC) of the expression ratio of miR-21-3p in GDM was 0.73, and miR-21-3p, miR-155-5p in PE were 0.69 and 0.81, respectively. CONCLUSIONS Our findings indicated that decreased miR-21-3p and miR-155-5p expression levels are associated with PE and miR-21-3p levels are associated with GDM. Our study for the first time revealed that miR-21-3p, miR-16-5p and miR155-5p are not related to PE-GDM group.
Collapse
Affiliation(s)
- Meryem Hocaoglu
- Department of Obstetrics and Gynecology, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey.
| | - Selin Demirer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Hilal Senturk
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Abdulkadir Turgut
- Department of Obstetrics and Gynecology, Goztepe Training and Research Hospital, Istanbul Medeniyet University, Istanbul, Turkey; Department of Obstetrics and Gynecology, Faculty of Medicine, Istanbul Medeniyet University, Istanbul, Turkey
| | - Evrim Komurcu-Bayrak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| |
Collapse
|
40
|
Tseng AM, Mahnke AH, Wells AB, Salem NA, Allan AM, Roberts VH, Newman N, Walter NA, Kroenke CD, Grant KA, Akison LK, Moritz KM, Chambers CD, Miranda RC. Maternal circulating miRNAs that predict infant FASD outcomes influence placental maturation. Life Sci Alliance 2019; 2:2/2/e201800252. [PMID: 30833415 PMCID: PMC6399548 DOI: 10.26508/lsa.201800252] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 02/06/2023] Open
Abstract
Maternal gestational circulating microRNAs, predictive of adverse infant outcomes, including growth deficits, following prenatal alcohol exposure, contribute to placental pathology by impairing the EMT pathway in trophoblasts. Prenatal alcohol exposure (PAE), like other pregnancy complications, can result in placental insufficiency and fetal growth restriction, although the linking causal mechanisms are unclear. We previously identified 11 gestationally elevated maternal circulating miRNAs (HEamiRNAs) that predicted infant growth deficits following PAE. Here, we investigated whether these HEamiRNAs contribute to the pathology of PAE, by inhibiting trophoblast epithelial–mesenchymal transition (EMT), a pathway critical for placental development. We now report for the first time that PAE inhibits expression of placental pro-EMT pathway members in both rodents and primates, and that HEamiRNAs collectively, but not individually, mediate placental EMT inhibition. HEamiRNAs collectively, but not individually, also inhibited cell proliferation and the EMT pathway in cultured trophoblasts, while inducing cell stress, and following trophoblast syncytialization, aberrant endocrine maturation. Moreover, a single intravascular administration of the pooled murine-expressed HEamiRNAs, to pregnant mice, decreased placental and fetal growth and inhibited the expression of pro-EMT transcripts in the placenta. Our data suggest that HEamiRNAs collectively interfere with placental development, contributing to the pathology of PAE, and perhaps also, to other causes of fetal growth restriction.
Collapse
Affiliation(s)
- Alexander M Tseng
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Amanda H Mahnke
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Alan B Wells
- Clinical and Translational Research Institute, University of California San Diego, San Diego, CA, USA.,Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Nihal A Salem
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | - Andrea M Allan
- Department of Neurosciences, University of New Mexico, Albuquerque, NM, USA
| | - Victoria Hj Roberts
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Natali Newman
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Nicole Ar Walter
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Christopher D Kroenke
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, USA
| | - Lisa K Akison
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Karen M Moritz
- Child Health Research Centre and School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Christina D Chambers
- Clinical and Translational Research Institute, University of California San Diego, San Diego, CA, USA .,Department of Pediatrics, University of California San Diego, San Diego, CA, USA
| | - Rajesh C Miranda
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University Health Science Center, Bryan, TX, USA
| | | |
Collapse
|
41
|
Guo L, Liu Y, Guo Y, Yang Y, Chen B. MicroRNA-423-5p inhibits the progression of trophoblast cells via targeting IGF2BP1. Placenta 2018; 74:1-8. [PMID: 30587375 DOI: 10.1016/j.placenta.2018.12.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023]
Abstract
INTRODUCTION Preeclampsia (PE) is one of the leading causes of maternal and fetal mortality globally. The imbalance of trophoblast homeostasis is closely linked with the pathogenesis of PE. MicroRNA-423-5p (miR-423-5p) has been reported to be abnormally expressed in placenta and blood plasma of pregnant women with PE. In the present study, miR-423-5p expression in blood plasma of pregnant women with PE and healthy pregnant women was detected. Also, the roles and molecular mechanisms of miR-423-5p in the development of trophoblast cells were further investigated. METHODS Expression of miR-423-5p and insulin like growth factor 2 mRNA binding protein 1 (IGF2BP1) mRNA was detected by RT-qPCR assay. Protein expression of IGF2BP1, Bcl-2 and Bax was determined using western blot assay. Cell migratory and invasive capacities were assessed by transwell migration and invasion assay. Cell apoptotic rate was determined using flow cytometry via the double-staining of Annexin V-FITC/Propidium Iodide. The interaction between miR-423-5p and IGF2BP1 was demonstrated by bioinformatics analysis and luciferase reporter assay. RESULTS MiR-423-5p was highly expressed in blood plasma of pregnant women with PE. MiR-423-5p inhibited migration, invasion and proliferation as well as induced apoptosis in HTR-8/SVneo cells. Further investigation revealed that IGF2BP1 was a target of miR-423-5p. Moreover, IGF2BP1 overexpression promoted migration, invasion and proliferation, suppressed apoptosis, and weakened miR-423-5p function in HTR-8/SVneo cells. DISCUSSION MiR-423-5p inhibited migration, invasion and proliferation as well as induced apoptosis by targeting IGF2BP1 in HTR-8/SVneo cells, presenting a novel molecular basis implicated in PE pathogenesis.
Collapse
Affiliation(s)
- Li Guo
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China; Department of Obstetrics, 215 Hospital of Shaanxi Nuclear Industry, China
| | - Yu Liu
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China
| | - Ying Guo
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China
| | - Yongkang Yang
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Shaanxi University of Chinese Medicine, China.
| | - Biliang Chen
- Department of Obstetrics and Gynecology, Xijing Hospital,the Military Medical University of PLA Airforce (Fourth Military Medical University), China.
| |
Collapse
|
42
|
Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, Lv M. Roles of microRNAs in preeclampsia. J Cell Physiol 2018; 234:1052-1061. [PMID: 30256424 DOI: 10.1002/jcp.27291] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/31/2018] [Indexed: 12/15/2022]
Abstract
Preeclampsia (PE) is a complex disorder that is characterized by hypertension and proteinuria after the 20th week of pregnancy, and it causes most neonatal morbidity and perinatal mortality. Most studies suggest that placental dysfunction is the main cause of PE. However, genetic factors, immune factors, and systemic inflammation are also related to the pathophysiology of this syndrome. Thus far, the exact pathogenesis of PE is not yet fully understood, and intense research efforts are focused on PE to elucidate the pathophysiological mechanisms. MicroRNAs (miRNAs) refer to small single-stranded and noncoding molecules that can negatively regulate gene expression, and miRNA regulatory networks play an important role in diverse pathological processes. Many studies have confirmed deregulated miRNA in pregnant patients with PE, and the function and mechanism of these differentially expressed miRNA are gradually being revealed. In this review, we summarize the current research about miRNA involved in PE, including placenta-specific miRNA, their predictive value, and their function in the development of PE. This review will provide fundamental evidence of miRNA in PE, and further studies are necessary to explore the roles of miRNA in the early diagnosis and treatment of PE.
Collapse
Affiliation(s)
- Yan Lv
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Cheng Lu
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Xiaohong Ji
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Zhijing Miao
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Wei Long
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Hongjuan Ding
- Department of Obstetrics, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Mingming Lv
- Department of Breast, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China.,Nanjing Maternal and Child Health Institute, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
43
|
Mohseni Z, Spaanderman MEA, Oben J, Calore M, Derksen E, Al-Nasiry S, de Windt LJ, Ghossein-Doha C. Cardiac remodeling and pre-eclampsia: an overview of microRNA expression patterns. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2018; 52:310-317. [PMID: 28466998 DOI: 10.1002/uog.17516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 03/13/2017] [Accepted: 03/31/2017] [Indexed: 06/07/2023]
Abstract
Pre-eclampsia (PE) is strongly associated with heart failure (HF) later in life. During PE pregnancy, the left ventricle undergoes concentric remodeling which often persists after delivery. This aberrant remodeling can induce a molecular signature that can be evaluated in terms of microRNAs (miRNAs) and which may help to explain the associated increased risk of HF. For this review, we performed a literature search of PubMed (National Center for Biotechnology Information), identifying studies on miRNA expression in concentric remodeling and on miRNA expression in PE. The miRNA data were stratified based on origin (isolated from humans or animals and from tissue or the circulation) and both datasets compared in order to generate a list of miRNA expression patterns in concentric remodeling and in PE. The nine miRNAs identified in both concentric remodeling and PE-complicated pregnancy were: miR-1, miR-18, miR-21, miR-29b, miR-30, miR-125b, miR-181b, miR-195 and miR-499-5p. We found five of these miRNAs (miR-18, miR-21, miR-125b, miR-195 and miR-499-5p) to be upregulated in both PE pregnancy and cardiac remodeling and two (miR-1 and miR-30) to be downregulated in both; the remaining two miRNAs (miR-29b and miR-181b) showed upregulation during PE but downregulation in cardiac remodeling. This innovative approach may be a step towards finding relevant biomarkers for complicated pregnancy and elucidating their relationship with remote cardiovascular disease. Copyright © 2017 ISUOG. Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Z Mohseni
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M E A Spaanderman
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - J Oben
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - M Calore
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - E Derksen
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - S Al-Nasiry
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| | - L J de Windt
- Department of Cardiology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands
| | - C Ghossein-Doha
- Department of Obstetrics and Gynecology, Maastricht University Medical Centre (MUMC), Maastricht, The Netherlands
| |
Collapse
|
44
|
Preeclamptic plasma stimulates the expression of miRNAs, leading to a decrease in endothelin-1 production in endothelial cells. Pregnancy Hypertens 2018; 12:75-81. [PMID: 29674204 DOI: 10.1016/j.preghy.2018.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/28/2018] [Accepted: 03/09/2018] [Indexed: 01/31/2023]
Abstract
Preeclampsia is a major cause of maternal and fetal morbidity and mortality worldwide. It is a multisystem pregnancy syndrome characterized by general endothelial dysfunction caused mainly by plasma factors and debris in endothelial cells. It is widely accepted that endothelin-1 (ET-1) is involved in the pathophysiology of preeclampsia, and so it is of interest to ascertain whether the ET-1 gene (EDN1) can be targeted with tools such as miRNAs. Therefore, we investigated the relationship between the expression of miRNAs that putatively target EDN1 (and so affect ET-1 levels) in HUVECs incubated with plasma from preeclamptic women. EDN1 expression and ET-1 levels in HUVECs incubated with plasma from women with preeclampsia were similar to those in plasma from healthy pregnant women. Expression of miRNAs let-7a, -7b, and -7c, and to a lesser degree 125a and 125b, was increased in preeclampsia. Expression of miRNAs of the let-7 family was significantly negatively correlated with ET-1 levels in preeclampsia. Transfection of the preeclampsia cultures with mimic miRNA let-7 decreased ET-1 levels. Our findings show that preeclamptic plasma stimulates the expression of miRNAs in HUVECs, leading to a decrease in ET-1levels, which suggests that therapeutic miRNAs may aid in the management of preeclampsia.
Collapse
|
45
|
Chiarello DI, Salsoso R, Toledo F, Mate A, Vázquez CM, Sobrevia L. Foetoplacental communication via extracellular vesicles in normal pregnancy and preeclampsia. Mol Aspects Med 2017; 60:69-80. [PMID: 29222068 DOI: 10.1016/j.mam.2017.12.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
Intercellular communication is a critical process in biological mechanisms. During pregnancy foetoplacental tissues release a heterogeneous group of extracellular vesicles (EVs) that include exosomes, microvesicles, apoptotic bodies, and syncytial nuclear aggregates. These vesicles contain a complex cargo (proteins, DNA, mRNA transcripts, microRNAs, noncoding RNA, lipids, and other molecules) that actively participate in the maternal-foetal communication by modulating different processes during gestation for a successful foetal development. Each stage of human gestation is marked by events such as immunomodulation, proliferation, invasion, migration, and differentiation, among others, requiring EVs-mediated signalling to be nearby or distant target cells. Furthermore, EVs also associate with pregnancy pathologies such as preeclampsia and intrauterine growth restriction. This review addresses the role of EVs in human foetomaternal communication in normal pregnancy and preeclampsia.
Collapse
Affiliation(s)
- Delia I Chiarello
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Rocío Salsoso
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad Del Bío-Bío, Chillán 3780000, Chile
| | - Alfonso Mate
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Carmen M Vázquez
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston, QLD 4029 Queensland, Australia.
| |
Collapse
|
46
|
Abstract
Hypertensive disorders in pregnancy have been the cause of much clinical dilemma, affecting up to 10 % of all pregnancies. The precise blood pressure to achieve in a pregnant woman is usually a battle between minimizing end organ damage to the mother and providing adequate perfusion to the placenta and the fetus. This predicament is becoming more, not less, frequent as maternal ages increase in high resource nations. Biomarkers to predict preeclampsia, a subcategory of hypertension in pregnancy, have always been elusive. The discovery of angiogenic factors relevant to preeclampsia in the last decade, however, has propelled much needed research, both in the basic science and clinical arenas. In this review, we summarize the latest clinical studies and international guidelines on blood pressure goals in pregnancy, and discuss the most promising of biomarkers to predict or diagnose preeclampsia.
Collapse
|
47
|
Zheng Q, Zhang D, Yang YU, Cui X, Sun J, Liang C, Qin H, Yang X, Liu S, Yan Q. MicroRNA-200c impairs uterine receptivity formation by targeting FUT4 and α1,3-fucosylation. Cell Death Differ 2017; 24:2161-2172. [PMID: 28914881 PMCID: PMC5686352 DOI: 10.1038/cdd.2017.136] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/12/2022] Open
Abstract
Successful embryo implantation requires the establishment of a receptive endometrium. Poor endometrial receptivity has generally been considered as a major cause of infertility. Protein glycosylation is associated with many physiological and pathological processes. The fucosylation is catalyzed by the specific fucosyltransferases. Fucosyltransferase IV (FUT4) is the key enzyme for the biosynthesis of α1,3-fucosylated glycans carried by glycoproteins, and the previous studies showed FUT4 expression changed dynamically during perimplantation. MicroRNAs (miRNAs) are known to regulate specific gene expression. However, the relationship between specific miRNA and FUT4, as well as the role of miRNA/FUT4 in the establishment of uterine receptivity remains elusive. In the current study, we reported that the levels of miR-200 family members were significantly increased in serum from infertility and abortion patients relative to healthy non-pregnancy and early-pregnancy women. Among these, miR-200c was the most sensitive diagnostic criterion for infertility by receiver operating characteristic curve analysis. FUT4 was lower in the serum from infertility and abortion patients compared with the healthy non-pregnancy and early-pregnancy women. Using endometrial cell lines and a mouse model, we demonstrated that miR-200c targeted and inhibited FUT4 expression, leading to the dysfunction of uterine receptivity. Our results also revealed that miR-200c decreased α1.3-fucosylation on glycoprotein CD44, which further inactivated Wnt/β-catenin signaling pathway. Taken together, miR-200c hampers uterine receptivity formation by targeting FUT4 and α1.3-fucosylation on CD44. miR-200c and FUT4 may be applied together as the potential markers for endometrial receptivity, and useful diagnostic and therapeutic targets for infertility.
Collapse
Affiliation(s)
- Qin Zheng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Dandan Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Y U Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Xinyuan Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Jiaqi Sun
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Caixia Liang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Huamin Qin
- Department of Pathology, the Secondary Affiliated Hospital of Dalian Medical University, Dalian 116000, People's Republic of China
| | - Xuesong Yang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Shuai Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| | - Qiu Yan
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Liaoning Provincial Core Lab of Glycobiology and Glycoengineering, Dalian 116044, China
| |
Collapse
|
48
|
Barchitta M, Maugeri A, Quattrocchi A, Agrifoglio O, Agodi A. The Role of miRNAs as Biomarkers for Pregnancy Outcomes: A Comprehensive Review. Int J Genomics 2017; 2017:8067972. [PMID: 28884117 PMCID: PMC5572592 DOI: 10.1155/2017/8067972] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022] Open
Abstract
Several studies showed that altered expression of the miRNA-ome in maternal circulation or in placental tissue may reflect not only gestational disorders, such as preeclampsia, spontaneous abortion, preterm birth, low birth weight, or macrosomia, but also prenatal exposure to environmental pollutants. Generally, the relationships between environmental exposure, changes in miRNA expression, and gestational disorders are explored separately, producing conflicting findings. However, validation of tissue-accessible biomarkers for the monitoring of adverse pregnancy outcomes needs a systematic methodological approach that takes also into account early-life environmental exposure. To achieve this goal, exposure to xenochemicals, endogenous agents, and diet should be assessed. This study has the aim to provide a comprehensive review on the role of miRNAs as potential biomarkers for adverse pregnancy outcomes and prenatal environmental exposure.
Collapse
Affiliation(s)
- Martina Barchitta
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Andrea Maugeri
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Annalisa Quattrocchi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Ottavia Agrifoglio
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| | - Antonella Agodi
- Department of Medical and Surgical Sciences and Advanced Technologies “GF Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
49
|
Espino Y Sosa S, Flores-Pliego A, Espejel-Nuñez A, Medina-Bastidas D, Vadillo-Ortega F, Zaga-Clavellina V, Estrada-Gutierrez G. New Insights into the Role of Matrix Metalloproteinases in Preeclampsia. Int J Mol Sci 2017; 18:ijms18071448. [PMID: 28726716 PMCID: PMC5535939 DOI: 10.3390/ijms18071448] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/20/2022] Open
Abstract
Preeclampsia is a severe pregnancy complication globally, characterized by poor placentation triggering vascular dysfunction. Matrix metalloproteinases (MMPs) exhibit proteolytic activity implicated in the efficiency of trophoblast invasion to the uterine wall, and a dysregulation of these enzymes has been linked to preeclampsia. A decrease in MMP-2 and MMP-9 interferes with the normal remodeling of spiral arteries at early pregnancy stages, leading to the initial pathophysiological changes observed in preeclampsia. Later in pregnancy, an elevation in MMP-2 and MMP-9 induces abnormal release of vasoactive factors conditioning hypertension. Although these two enzymes lead the scene, other MMPs like MMP-1 and MMP-14 seem to have a role in this pathology. This review gathers published recent evidence about the implications of different MMPs in preeclampsia, and the potential use of these enzymes as emergent biomarkers and biological therapeutic targets, focusing on studies involving human subjects.
Collapse
Affiliation(s)
- Salvador Espino Y Sosa
- Clinical Research Branch, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Arturo Flores-Pliego
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Aurora Espejel-Nuñez
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Diana Medina-Bastidas
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Felipe Vadillo-Ortega
- Unidad de Vinculacion de la Facultad de Medicina, UNAM en el Instituto Nacional de Medicina Genomica, Mexico City 14610, Mexico.
| | - Veronica Zaga-Clavellina
- Department of Immunobiochemistry, Instituto Nacional de Perinatologia, Mexico City 11000, Mexico.
| | - Guadalupe Estrada-Gutierrez
- Guadalupe Estrada-Gutierrez, Research Division, Instituto Nacional de Perinatologia Isidro Espinosa de los Reyes, Mexico City 11000, Mexico.
| |
Collapse
|
50
|
Fang M, Du H, Han B, Xia G, Shi X, Zhang F, Fu Q, Zhang T. Hypoxia-inducible microRNA-218 inhibits trophoblast invasion by targeting LASP1: Implications for preeclampsia development. Int J Biochem Cell Biol 2017; 87:95-103. [PMID: 28412444 DOI: 10.1016/j.biocel.2017.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/31/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022]
Abstract
Preeclampsia (PE) is a major contributor to maternal morbidity and mortality. However, the molecular mechanisms underlying PE progression are not well characterized. Here, we investigated the role of miR-218 in PE development. The expression of miR-218 and its host genes SLIT2 and SLIT3 was up-regulated in preeclamptic placentae compared to normal placentae. miR-218 expression was induced by hypoxia and decreased after knockdown of HIF-1α in an extravillous trophoblast cell line (HTR-8/SVneo). Chromatin immunoprecipitation assays showed direct binding of HIF-1α to the promoters of SLIT2 and SLIT3. Bioinformatics analysis identified LASP1 as a direct target of miR-218. Overexpression of miR-218 repressed the expression of LASP1 at both the mRNA and protein level. Meanwhile, miR-218 repressed the activity of a luciferase reporter containing the 3'-untranslated region of the LASP1 gene. Furthermore, expression of LASP1 rescued the inhibitory effect of miR-218 on HTR-8/SVneo cell invasion. Together, these results indicated that miR-218 contributes to PE by targeting LASP1 to inhibit trophoblast invasion.
Collapse
Affiliation(s)
- Min Fang
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Hechun Du
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Bing Han
- Department of Public Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Guiyu Xia
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Xiaoliang Shi
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Feng Zhang
- Obstetrical Department, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Qiqin Fu
- Genetic Laboratory, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China
| | - Tao Zhang
- Genetic Laboratory, Shaoxing Women and Children's Hospital, Shaoxing, Zhejiang, China.
| |
Collapse
|