1
|
Mambwe B, Mellody KT, Kiss O, O'Connor C, Bell M, Watson REB, Langton AK. Cosmetic retinoid use in photoaged skin: A review of the compounds, their use and mechanisms of action. Int J Cosmet Sci 2024. [PMID: 39128883 DOI: 10.1111/ics.13013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/13/2024]
Abstract
The inevitable attrition of skin due to ultraviolet radiation, termed photoaging, can be partially restored by treatment with retinoid compounds. Photoaged skin in lightly pigmented individuals, clinically presents with the appearance of wrinkles, increased laxity, and hyper- and hypopigmentation. Underlying these visible signs of ageing are histological features such as epidermal thinning, dermal-epidermal junction flattening, solar elastosis and loss of the dermal fibrillin microfibrillar network, fibrillar collagen and glycosaminoglycans. Retinoid compounds are comprised of three main generations with the first generation (all-trans retinoic acid, retinol, retinaldehyde and retinyl esters) primarily used for the clinical and cosmetic treatment of photoaging, with varying degrees of efficacy, tolerance and stability. All-trans retinoic acid is considered the 'gold standard' for skin rejuvenation; however, it is a prescription-only product largely confined to clinical use. Therefore, retinoid derivatives are readily incorporated into cosmeceutical formulations. The literature reported in this review suggests that retinol, retinyl esters and retinaldehyde that are used in many cosmeceutical products, are efficacious, safe and well-tolerated. Once in the skin, retinoids utilize a complex signalling pathway that promotes remodelling of photoaged epidermis and dermis and leads to the improvement of the cutaneous signs of photoaging.
Collapse
Affiliation(s)
- Bezaleel Mambwe
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Kieran T Mellody
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Orsolya Kiss
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Clare O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - Mike Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore City, Singapore
| | - Abigail K Langton
- Centre for Dermatology Research, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
2
|
Halai P, Kiss O, Wang R, Chien AL, Kang S, O'Connor C, Bell M, Griffiths CEM, Watson REB, Langton AK. Retinoids in the treatment of photoageing: A histological study of topical retinoid efficacy in black skin. J Eur Acad Dermatol Venereol 2024; 38:1618-1627. [PMID: 38682699 DOI: 10.1111/jdv.20043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/15/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Photoageing describes complex cutaneous changes that occur due to chronic exposure to solar ultraviolet radiation (UVR). The 'gold standard' for the treatment of photoaged white skin is all-trans retinoic acid (ATRA); however, cosmetic retinol (ROL) has also proven efficacious. Recent work has identified that black skin is susceptible to photoageing, characterized by disintegration of fibrillin-rich microfibrils (FRMs) at the dermal-epidermal junction (DEJ). However, the impact of topical retinoids for repair of black skin has not been well investigated. OBJECTIVES To determine the potential of retinoids to repair photoaged black skin. METHODS An exploratory intervention study was performed using an in vivo, short-term patch test protocol. Healthy but photoaged black volunteers (>45 years) were recruited to the study, and participant extensor forearms were occluded with either 0.025% ATRA (n = 6; 4-day application due to irritancy) or ROL (12-day treatment protocol for a cosmetic) at concentrations of 0.3% (n = 6) or 1% (n = 6). Punch biopsies from occluded but untreated control sites and retinoid-treated sites were processed for histological analyses of epidermal characteristics, melanin distribution and dermal remodelling. RESULTS Treatment with ATRA and ROL induced significant acanthosis (all p < 0.001) accompanied by a significant increase in keratinocyte proliferation (Ki67; all p < 0.01), dispersal of epidermal melanin and restoration of the FRMs at the DEJ (all p < 0.01), compared to untreated control. CONCLUSIONS This study confirms that topical ATRA has utility for the repair of photoaged black skin and that ROL induces comparable effects on epidermal and dermal remodelling, albeit over a longer timeframe. The effects of topical retinoids on black photoaged skin are similar to those reported for white photoaged skin and suggest conserved biology in relation to repair of UVR-induced damage. Further investigation of topical retinoid efficacy in daily use is warranted for black skin.
Collapse
Affiliation(s)
- P Halai
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - O Kiss
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - R Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - A L Chien
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - S Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - C O'Connor
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - M Bell
- No7 Beauty Company, Walgreens Boots Alliance, Nottingham, UK
| | - C E M Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- Department of Dermatology, King's College Hospital, King's College London, London, UK
| | - R E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - A K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
3
|
Nakra T. Integrating Skincare into Medical Practice. Int Ophthalmol Clin 2024; 64:13-22. [PMID: 38910501 DOI: 10.1097/iio.0000000000000525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The integration of skincare into medical practice can enhance patient care. Understanding the anatomy and physiology of the skin is the foundation for effective skincare interventions. Genetic and inflammatory conditions play a significant role in aesthetic skin physiology. There are key active ingredients that are pivotal in addressing various skin concerns. Sunscreens provide crucial protection against UV radiation, while pigment control agents such as hydroquinone, kojic acid, and arbutin target the melanin pathway. Exfoliating agents and skin turnover enhancers such as retinoids and hydroxy acids promote skin renewal and rejuvenation. In addition, ingredients such as hyaluronic acid, ceramides, niacinamide, antioxidants, peptides, and botanicals contribute to improving skin quality. Adding skincare to medical practice requires careful product selection, patient education, and marketing strategies.
Collapse
Affiliation(s)
- Tanuj Nakra
- Department of Ophthalmology, Dell Medical School, The University of Texas at Austin, Austin, TX
| |
Collapse
|
4
|
Draelos Z, Bogdanowicz P, Saurat JH. Top weapons in skin aging and actives to target the consequences of skin cell senescence. J Eur Acad Dermatol Venereol 2024; 38 Suppl 4:15-22. [PMID: 38881445 DOI: 10.1111/jdv.19648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/13/2023] [Indexed: 06/18/2024]
Abstract
Skin aging has long been considered a purely cosmetic problem. However, as life expectancy increases, skin aging is taking on a functional dimension that goes beyond cosmetics and appearance. Preventive or therapeutic strategies are needed to target cellular senescence, a key process underlying the alterations in skin function and appearance that occur with aging, as well as to address the age-related skin changes associated with 'dermatoporosis' and chronic skin insufficiency/fragility syndrome. Thus, given the need for effective anti-aging products that improve both the appearance and function of the skin, it is essential to distinguish active ingredients that have been proven to be effective, among the large number of available over-the-counter cosmeceuticals. This brief review focuses on a core group of topical actives, describing their clinical effects on senescence and aging, and their molecular mechanisms of action. These actives include hyaluronic acid, which has hydrating and viscoelastic properties and has been shown to reduce skin atrophy; retinaldehyde, which activates retinoid receptors and increases cutaneous elasticity; vitamins C and E, which provide stable oxidative protection; and niacinamide, which reduces inflammation and mitigates the effects of senescence.
Collapse
Affiliation(s)
- Z Draelos
- Dermatology Consulting Services, PLLC, Department of dermatology Duke University School of Medicine, High Point, North Carolina, USA
| | - P Bogdanowicz
- Department of Pharmacology and Clinical Research, Pierre Fabre Dermo-Cosmétique, Toulouse, France
| | - J-H Saurat
- University of Geneva, Geneva, Switzerland
| |
Collapse
|
5
|
Goggans KR, Belyaeva OV, Klyuyeva AV, Studdard J, Slay A, Newman RB, VanBuren CA, Everts HB, Kedishvili NY. Epidermal retinol dehydrogenases cyclically regulate stem cell markers and clock genes and influence hair composition. Commun Biol 2024; 7:453. [PMID: 38609439 PMCID: PMC11014975 DOI: 10.1038/s42003-024-06160-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 04/08/2024] [Indexed: 04/14/2024] Open
Abstract
The hair follicle (HF) is a self-renewing adult miniorgan that undergoes drastic metabolic and morphological changes during precisely timed cyclic organogenesis. The HF cycle is known to be regulated by steroid hormones, growth factors and circadian clock genes. Recent data also suggest a role for a vitamin A derivative, all-trans-retinoic acid (ATRA), the activating ligand of transcription factors, retinoic acid receptors, in the regulation of the HF cycle. Here we demonstrate that ATRA signaling cycles during HF regeneration and this pattern is disrupted by genetic deletion of epidermal retinol dehydrogenases 2 (RDHE2, SDR16C5) and RDHE2-similar (RDHE2S, SDR16C6) that catalyze the rate-limiting step in ATRA biosynthesis. Deletion of RDHEs results in accelerated anagen to catagen and telogen to anagen transitions, altered HF composition, reduced levels of HF stem cell markers, and dysregulated circadian clock gene expression, suggesting a broad role of RDHEs in coordinating multiple signaling pathways.
Collapse
Affiliation(s)
- Kelli R Goggans
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Olga V Belyaeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Alla V Klyuyeva
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob Studdard
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aja Slay
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Regina B Newman
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Christine A VanBuren
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA
| | - Helen B Everts
- Department of Nutrition and Food Sciences, Texas Woman's University, Denton, TX, USA.
| | - Natalia Y Kedishvili
- Department of Biochemistry and Molecular Genetics, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
6
|
Griffiths TW, Watson REB, Langton AK. Skin ageing and topical rejuvenation strategies. Br J Dermatol 2023; 189:i17-i23. [PMID: 37903073 DOI: 10.1093/bjd/ljad282] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 11/01/2023]
Abstract
Skin ageing is a complex process involving the additive effects of skin's interaction with its external environment, predominantly chronic sun exposure, upon a background of time-dependent intrinsic ageing. Skin health and beauty is considered one of the principal factors perceived to represent overall 'health and wellbeing'; thus, the demand for skin rejuvenation strategies has rapidly increased, with a worldwide annual expenditure expected to grow from $US24.6 billion to around $US44.5 billion by 2030 (https://www.databridgemarketresearch.com/reports/global-facial-rejuvenation-market). Skin rejuvenation can be achieved in several ways, ranging from laser and device-based treatments to chemical peels and injectables; however, topical skin care regimes are a mainstay treatment for ageing skin and all patients seeking skin rejuvenation can benefit from this relatively low-risk intervention. While the most efficacious topical rejuvenation treatment is application of tretinoin (all-trans retinoic acid) - a prescription-only medicine considered to be the clinical 'gold standard' - a hybrid category of 'cosmeceutical' products at the midpoint of the spectrum of cosmetics and pharmaceutical has emerged. This article reviews the clinical manifestations of skin ageing and the available topical treatments for skin rejuvenation, including retinoids, peptides and antioxidants.
Collapse
Affiliation(s)
- Tamara W Griffiths
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
- A*STAR Skin Research Laboratory (A*SRL), Agency for Science, Technology and Research (A*STAR), Republic of Singapore
| | - Abigail K Langton
- Centre for Dermatology Research, The University of Manchester & Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| |
Collapse
|
7
|
Abstract
Photoaging is a complex process of skin changes associated with chronic ultraviolet exposure. Prevention with photoprotection and treatment with topical retinoids are the core components of a topical antiaging regimen. Other topicals such as hydroquinone, vitamin C, niacinamide, and alpha hydroxyl acid can be added based on specific concerns. However, caution must be used with some of these products as the stability and absorption are major considerations. A simple topical regimen will reduce irritability and enhance compliance.
Collapse
Affiliation(s)
- Katherine Berry
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Katherine Hallock
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA
| | - Charlene Lam
- Department of Dermatology, Penn State Health Hershey Medical Center, Hershey, PA, USA.
| |
Collapse
|
8
|
Torres A, Rego L, Martins MS, Ferreira MS, Cruz MT, Sousa E, Almeida IF. How to Promote Skin Repair? In-Depth Look at Pharmaceutical and Cosmetic Strategies. Pharmaceuticals (Basel) 2023; 16:ph16040573. [PMID: 37111330 PMCID: PMC10144563 DOI: 10.3390/ph16040573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Skin repair encompasses epidermal barrier repair and wound healing which involves multiple cellular and molecular stages. Therefore, many skin repair strategies have been proposed. In order to characterize the usage frequency of skin repair ingredients in cosmetics, medicines, and medical devices, commercialized in Portuguese pharmacies and parapharmacies, a comprehensive analysis of the products' composition was performed. A total of 120 cosmetic products, collected from national pharmacies online platforms, 21 topical medicines, and 46 medical devices, collected from INFARMED database, were included in the study, revealing the top 10 most used skin repair ingredients in these categories. A critical review regarding the effectiveness of the top ingredients was performed and an in-depth analysis focused on the top three skin repair ingredients pursued. Results demonstrated that top three most used cosmetic ingredients were metal salts and oxides (78.3%), vitamin E and its derivatives (54.2%), and Centella asiatica (L.) Urb. extract and actives (35.8%). Regarding medicines, metal salts and oxides were also the most used (47.4%) followed by vitamin B5 and derivatives (23.8%), and vitamin A and derivatives (26.3%). Silicones and derivatives were the most common skin repair ingredients in medical devices (33%), followed by petrolatum and derivatives (22%) and alginate (15%). This work provides an overview of the most used skin repair ingredients, highlighting their different mechanisms of action, aiming to provide an up-to-date tool to support health professionals' decisions.
Collapse
Affiliation(s)
- Ana Torres
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Liliana Rego
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Márcia S Martins
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Marta S Ferreira
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Maria T Cruz
- Faculty of Pharmacy, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, 3004-504 Coimbra, Portugal
| | - Emília Sousa
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- CIIMAR-Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Isabel F Almeida
- UCIBIO-Applied Molecular Biosciences Unit, MedTech, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| |
Collapse
|
9
|
Lim HG, Kerns ML, Brown ID, Kang S, Chien AL. Skin type specific photobiological response to visible light is mediated by constitutional melanin. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 2022. [DOI: 10.1111/phpp.12840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Affiliation(s)
| | - Michelle L. Kerns
- Department of Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Isabelle D. Brown
- Department of Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Sewon Kang
- Department of Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| | - Anna L. Chien
- Department of Dermatology Johns Hopkins University School of Medicine Baltimore Maryland USA
| |
Collapse
|
10
|
Ramchatesingh B, Martínez Villarreal A, Arcuri D, Lagacé F, Setah SA, Touma F, Al-Badarin F, Litvinov IV. The Use of Retinoids for the Prevention and Treatment of Skin Cancers: An Updated Review. Int J Mol Sci 2022; 23:ijms232012622. [PMID: 36293471 PMCID: PMC9603842 DOI: 10.3390/ijms232012622] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/21/2022] Open
Abstract
Retinoids are natural and synthetic vitamin A derivatives that are effective for the prevention and the treatment of non-melanoma skin cancers (NMSC). NMSCs constitute a heterogenous group of non-melanocyte-derived skin cancers that impose substantial burdens on patients and healthcare systems. They include entities such as basal cell carcinoma and cutaneous squamous cell carcinoma (collectively called keratinocyte carcinomas), cutaneous lymphomas and Kaposi’s sarcoma among others. The retinoid signaling pathway plays influential roles in skin physiology and pathology. These compounds regulate diverse biological processes within the skin, including proliferation, differentiation, angiogenesis and immune regulation. Collectively, retinoids can suppress skin carcinogenesis. Both topical and systemic retinoids have been investigated in clinical trials as NMSC prophylactics and treatments. Desirable efficacy and tolerability in clinical trials have prompted health regulatory bodies to approve the use of retinoids for NMSC management. Acceptable off-label uses of these compounds as drugs for skin cancers are also described. This review is a comprehensive outline on the biochemistry of retinoids, their activities in the skin, their effects on cancer cells and their adoption in clinical practice.
Collapse
Affiliation(s)
| | | | - Domenico Arcuri
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - François Lagacé
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
| | - Samy Abu Setah
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Fadi Touma
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
| | - Faris Al-Badarin
- Faculté de Médicine, Université Laval, Québec, QC G1V 0V6, Canada
| | - Ivan V. Litvinov
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H4A 3J1, Canada
- Division of Dermatology, McGill University Health Center, Montreal, QC H4A 3J1, Canada
- Correspondence:
| |
Collapse
|
11
|
Berry K, Hallock K, Lam C. Photoaging and Topical Rejuvenation. Facial Plast Surg Clin North Am 2022; 30:291-300. [DOI: 10.1016/j.fsc.2022.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
12
|
Nandy A, Saremi R, Lee E, Sharma S. Stability and Applicability of Retinyl Palmitate Loaded Beeswax Microcapsules for Cosmetic Use : Material properties and stability of microencapsulated actives. JOHNSON MATTHEY TECHNOLOGY REVIEW 2022. [DOI: 10.1595/205651322x16225611489810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In our previous study, retinyl palmitate was successfully encapsulated by melt dispersion using waxes as shell materials. Herein, the objective of the present research is to evaluate the shelf life and kinetic release of the developed microcapsules. The study was conducted by measuring
actual loading capacity over a period of time using spectroscopic analysis. The transfer percentage of particles from nonwoven facial wipes to skin-like surfaces was also investigated by simulating the rubbing mechanism with a robotic transfer replicator. Although particles stored as powder
form under room temperature showed only eight days of shelf-life, particles stored as a dispersion in a refrigerator maintained 60% of the theoretical loading capacity after one month. The kinetic release profile of the particles in ethanol with shaking at 100 rpm and 37±2°C showed
an initial burst in the first half an hour, followed by a sustained release. It also showed that 98% of the retinyl palmitate content released within 4 h. Particles incorporated into wet nonwoven wipes gave approximately 22% transfer to skin-like fabric. Thus, the study shows potentials of
delivering skincare properties by means of retinyl palmitate capsule loaded textile substrates.
Collapse
Affiliation(s)
- Aditi Nandy
- Innovative Materials Research Group, Department of Textiles, Merchandising and Interiors, University of Georgia Athens, GA 30602 USA
| | - Raha Saremi
- Innovative Materials Research Group, Department of Textiles, Merchandising and Interiors, University of Georgia Athens, GA 30602 USA
| | - Eliza Lee
- Innovative Materials Research Group, Department of Textiles, Merchandising and Interiors, University of Georgia Athens, GA 30602 USA
| | - Suraj Sharma
- Innovative Materials Research Group, Department of Textiles, Merchandising and Interiors, University of Georgia Athens, GA 30602 USA
| |
Collapse
|
13
|
Goberdhan LT, Pellacani G, Ardigo M, Schneider K, Makino ET, Mehta RC. Assessing changes in facial skin quality using noninvasive in vivo clinical skin imaging techniques after use of a topical retinoid product in subjects with moderate-to-severe photodamage. Skin Res Technol 2022; 28:604-613. [PMID: 35691012 PMCID: PMC9907699 DOI: 10.1111/srt.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Studies utilizing reflectance confocal microscopy (RCM) and dynamic optical coherence tomography (D-OCT) to assess cosmetic skin changes are limited. METHODS A 12-week, open-label study was conducted using RCM and D-OCT to evaluate the effects of a topical cosmetic retinol (RET05) on subjects with facial photodamage. Study endpoints included investigator grading, standardized (VISIA-CR) and 3D photography (Antera 3D), independent RCM (VivaScope1500) and D-OCT (VivoSight) image analysis, validated FACE-Q scales, and subject questionnaires. RESULTS Twenty-three subjects, 45- to 68-year old, with Fitzpatrick skin types II-IV completed the study. After 12 weeks of repeated application, RET05 demonstrated significant corresponding cosmetic improvements for overall photodamage, skin tone unevenness, tactile roughness, fine lines/wrinkles (forehead, periocular, and perioral), and coarse lines/wrinkles (forehead, periocular, and cheeks), and Allergan Skin Roughness Scale. FACE-Q assessments also demonstrated significant improvements from baseline at week 12. RCM analysis showed decreases in all epidermis, less compact stratum corneum (SC), more non-compact SC, decreases in coarse/huddled dermal fibers, and increases in fibrillar dermal fibers, as compared to baseline. D-OCT analysis showed significant decreases in epidermal thickness (ET), reduction of moderate/many collagen fragments and collagen bundles, and significant increases in the stroma attenuation coefficient and collagen density. Moreover, the dermal-epidermal junction was more pronounced, and vascular abundance at 300 and 500 μm depth increased. Independent evaluation of RCM and D-OCT images showed similar decreases in ET and improvements in dermal fibers. CONCLUSION This study was the first to utilize RCM and D-OCT to evaluate the cosmetic effects of a topical retinoid and further substantiate improvements in skin quality.
Collapse
Affiliation(s)
| | - Giovanni Pellacani
- Department of Clinical Internal, Anesthesiological and Cardiovascular Sciences, La Sapienza University of Rome, Rome, Italy
| | - Marco Ardigo
- San Gallicano Dermatological Institute, IRCCS, Rome, Italy
| | - Katie Schneider
- Allergan Aesthetics, an AbbVie Company, Irvine, California, USA
| | | | - Rahul C Mehta
- Allergan Aesthetics, an AbbVie Company, Irvine, California, USA
| |
Collapse
|
14
|
Chien AL, Kim DJ, Cheng N, Shin J, Leung SG, Nelson AM, Zang J, Suh H, Rainer B, Wallis L, Okoye GA, Loss M, Kang S. Biomarkers of Tretinoin Precursors and Tretinoin Efficacy in Patients With Moderate to Severe Facial Photodamage: A Randomized Clinical Trial. JAMA Dermatol 2022; 158:879-886. [PMID: 35675051 DOI: 10.1001/jamadermatol.2022.1891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Topical formulations of tretinoin precursors (retinol and its ester derivatives) are widely available over the counter and may offer similar clinical benefits to those of tretinoin for treatment of photoaging. However, which of the many purported molecular effects of retinoids most strongly drives clinical improvements in tretinoin-treated skin remains unclear. Objectives To evaluate the clinical efficacy of topical tretinoin precursors (TTP) vs tretinoin (RA) in treating moderate to severe facial photodamage and to identify potential biomarkers that correlate with clinical efficacy. Design, Setting, and Participants This randomized, double-blind, single-center, parallel-arm study of 24 patients with moderate to severe facial photodamage was conducted at an academic referral center from November 2010 to December 2011, with data analysis performed from January 2012 to December 2021. Interventions Daily topical application of 0.02% RA or 1.1% TTP formulation containing retinol, retinyl acetate, and retinyl palmitate for 24 weeks. Main Outcomes and Measures Photoaging and tolerability were assessed by dermatologist evaluations and patient-reported outcomes. Target gene expression was assessed by real-time quantitative polymerase chain reaction of biopsied tissue from treated areas. Results A total of 20 White women were ultimately analyzed (9 randomized to TTP, 11 randomized to RA). At week 24, there was no significant difference in Griffiths photoaging scores among patients receiving TTP vs RA (median, 4 vs 5) (TTP - RA difference: -1; 95% CI, -2 to 1; P = .27). Treatment with TTP was associated with erythema 6 times less frequently than RA (11% vs 64%) (TTP - RA difference: -0.53; 95% CI, -0.88 to -0.17; P = .01). Target gene analysis showed significant CRABP2 messenger RNA (mRNA) induction (confirming retinoic acid receptor signaling) but no significant changes in procollagen I or MMP1/3/9 mRNA in TTP-treated samples. Instead, MMP2 mRNA, which encodes a type IV collagenase, was significantly reduced in TTP-treated samples (week 24 - baseline mRNA difference: -5; 96% CI, -33 to 1.6; P = .02), and changes in MMP2 were strongly correlated with changes in fine wrinkles (r = 0.54; 95% CI, 0.12 to 0.80; P = .01). Interestingly, patients with severe baseline wrinkles exhibited greater improvements (r = -0.74; 95% CI, -0.89 to -0.43; P < .001). This trend was mirrored in MMP2 mRNA, with initial expression strongly predicting subsequent changes (r = -0.78; 95% CI, -0.89 to -0.43; P < .001). Conclusions and Relevance In this randomized clinical trial, there was no significant difference in efficacy between this particular formulation of TTP and tretinoin 0.02%. However, the results of these mechanistic studies highlight MMP2 as a possible mediator of retinoid efficacy in photoaging. Trial Registration ClinicalTrials.gov Identifier: NCT01283464.
Collapse
Affiliation(s)
- Anna L Chien
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Daniel J Kim
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Immunology, Yale School of Medicine, New Haven, Connecticut
| | - Nancy Cheng
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Jeonghyun Shin
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Inha University, Incheon, South Korea
| | - Sherry G Leung
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Amanda M Nelson
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Pennsylvania State University College of Medicine, Hershey
| | - Julie Zang
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Weill Cornell Medicine, New York, New York
| | - Hoseok Suh
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Ulsan University Hospital, Ulsan, South Korea
| | - Barbara Rainer
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Medical University of Graz, Graz, Austria
| | - Luke Wallis
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Ginette A Okoye
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland.,Department of Dermatology, Howard University, Washington, DC
| | - Manisha Loss
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
15
|
Oluwole DO, Coleman L, Buchanan W, Chen T, La Ragione RM, Liu LX. Antibiotics-Free Compounds for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14051021. [PMID: 35631606 PMCID: PMC9143489 DOI: 10.3390/pharmaceutics14051021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
The rapid rise in the health burden associated with chronic wounds is of great concern to policymakers, academia, and industry. This could be attributed to the devastating implications of this condition, and specifically, chronic wounds which have been linked to invasive microbial infections affecting patients' quality of life. Unfortunately, antibiotics are not always helpful due to their poor penetration of bacterial biofilms and the emergence of antimicrobial resistance. Hence, there is an urgent need to explore antibiotics-free compounds/formulations with proven or potential antimicrobial, anti-inflammatory, antioxidant, and wound healing efficacy. The mechanism of antibiotics-free compounds is thought to include the disruption of the bacteria cell structure, preventing cell division, membrane porins, motility, and the formation of a biofilm. Furthermore, some of these compounds foster tissue regeneration by modulating growth factor expression. In this review article, the focus is placed on a number of non-antibiotic compounds possessing some of the aforementioned pharmacological and physiological activities. Specific interest is given to Aloevera, curcumin, cinnamaldehyde, polyhexanide, retinoids, ascorbate, tocochromanols, and chitosan. These compounds (when alone or in formulation with other biologically active molecules) could be a dependable alternative in the management or prevention of chronic wounds.
Collapse
Affiliation(s)
- David O. Oluwole
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
- Correspondence: (D.O.O.); (L.X.L.)
| | - Lucy Coleman
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
| | | | - Tao Chen
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
| | - Roberto M. La Ragione
- School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK;
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK
| | - Lian X. Liu
- Chemical and Process Engineering Department, Faculty of Engineering and Physical Science, University of Surrey, Guildford GU2 7XH, UK; (L.C.); (T.C.)
- Correspondence: (D.O.O.); (L.X.L.)
| |
Collapse
|
16
|
Bluemke A, Ring AP, Immeyer J, Hoff A, Eisenberg T, Gerwat W, Meyer F, Breitkreutz S, Klinger LM, Brandner JM, Sandig G, Seifert M, Segger D, Rippke F, Schweiger D. Multidirectional activity of bakuchiol against cellular mechanisms of facial aging - Experimental evidence for a holistic treatment approach. Int J Cosmet Sci 2022; 44:377-393. [PMID: 35514037 PMCID: PMC9328396 DOI: 10.1111/ics.12784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/25/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Objective Skin ageing is a multifactorial process involving formation of reactive oxygen species, consecutive inflammation with reduced epidermal and dermal cell viability and resulting damage to the extracellular matrix. Effective dermocosmetic treatment modalities should ideally address these hallmarks in a holistic approach. Here, we determined the corresponding activity profile of bakuchiol, a plant‐derived meroterpene, in an array of in vitro, ex vivo and in vivo studies and compared it to retinol, currently considered as gold standard in topical antiageing cosmetics. Methods The antioxidative capacity and power of bakuchiol and retinol were analysed by measuring 2,2′‐diphenyl‐1‐picrylhydrazyl (DPPH) reduction via its absorption decay and electron spin resonance spectroscopy, respectively. Effects on prostaglandin E2 (PGE2), macrophage migration inhibitory factor (MIF), fibroblast growth factor 7 (FGF7), collagen type I and VII (COL1A1, COL7A1), fibronectin (FN) levels as well as the metabolization of water‐soluble tetrazolium 1 (WST‐1) were determined in human dermal fibroblasts. Epidermal regeneration was assessed utilizing an in vitro wound healing model. FN protein levels were analysed ex vivo after treatment with a formulation containing bakuchiol, retinol or vehicle using suction blister fluid. Skin condition improvement was determined in vivo in a split‐face comparison study after application of bakuchiol or vehicle. Results In contrast to retinol, bakuchiol demonstrated high antioxidative efficacy. Levels of PGE2 and MIF were significantly decreased by both bakuchiol and retinol. Bakuchiol but not retinol significantly increased FGF7 protein levels. WST‐1 metabolization levels were significantly augmented by bakuchiol and retinol. Bakuchiol and retinol application led to a significant augmentation of COL1A1, COL7A1 and FN protein levels. Wounds supplemented with bakuchiol but not retinol displayed a significant increase in epidermis regeneration. Clinically, areas treated with a bakuchiol‐containing formulation showed a statistically significant increase in FN protein values after a 4‐week application compared to untreated areas and areas treated with vehicle. Conclusion These data provide evidence for the multidirectional efficacy of bakuchiol against cellular hallmarks of skin ageing. Its activity profile shares some common features with retinol but demonstrates several hitherto unknown biopositive effects in our studies, namely stimulation of the critical extracellular matrix component FN, and accelerated epidermal regeneration and wound healing.
Collapse
Affiliation(s)
- Anika Bluemke
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Annika P Ring
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | | | - Anke Hoff
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | | | - Wolfram Gerwat
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | | | | | - Lina M Klinger
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | - Johanna M Brandner
- Department of Dermatology and Venerology, University Hospital Hamburg- Eppendorf, Germany
| | | | | | | | - Frank Rippke
- Research and Development, Beiersdorf AG, Hamburg, Germany
| | | |
Collapse
|
17
|
Silva L, Dambros R, Leonardi G, Perrechil F. Biopolymer‐based microparticles for encapsulation of all‐
trans
‐retinoic acid. J Appl Polym Sci 2021. [DOI: 10.1002/app.51335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Letícia Silva
- Departamento de Engenharia Química Universidade Federal de São Paulo – UNIFESP Diadema Brazil
| | - Roberta Dambros
- Departamento de Engenharia Química Universidade Federal de São Paulo – UNIFESP Diadema Brazil
| | - Gislaine Leonardi
- Faculty of Pharmaceutical Sciences University of Campinas Campinas Brazil
| | - Fabiana Perrechil
- Departamento de Engenharia Química Universidade Federal de São Paulo – UNIFESP Diadema Brazil
| |
Collapse
|
18
|
Aşkın Ö, Uzunçakmak TKÜ, Altunkalem N, Tüzün Y. Vitamin deficiencies/hypervitaminosis and the skin. Clin Dermatol 2021; 39:847-857. [PMID: 34785012 DOI: 10.1016/j.clindermatol.2021.05.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vitamins are an indispensable food source and important owing to the enzyme cofactor and catalytic roles they play in the body. Fat-soluble vitamins A, D, E, K, and B12, are stored in the body and can cause problems with their excessive accumulation. Other vitamins rarely accumulate in the body because they dissolve in water and are excreted through the kidneys. Alcoholism, strict diets, insufficient parental nutrition, and gastrointestinal absorption problems may be included in the causes of vitamin deficiencies. Although clinical findings of vitamin deficiencies display different characteristics depending on the vitamins, the signs that generally occur are cutaneous pigmentation, pigmentation on mucous membranes, palmoplantar keratoderma characterized by fissures, palmar streaking, yellow streaking on the nails, nail layering, and intranail hemorrhage.
Collapse
Affiliation(s)
- Özge Aşkın
- Dermatology Department, İstanbul University Cerrahpaşa, Cerrahpaşa, İstanbul, Turkey.
| | | | - Neval Altunkalem
- Dermatology Department, İstanbul University Cerrahpaşa, Cerrahpaşa, İstanbul, Turkey
| | - Yalçın Tüzün
- Altınbaş University, Medical Park Bahçelievler Hospital, İstanbul, Turkey
| |
Collapse
|
19
|
Albanova VI. The role of local retinoids in eliminating signs of skin aging. VESTNIK DERMATOLOGII I VENEROLOGII 2021. [DOI: 10.25208/vdv1220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Skin aging is a complex process involving both internal (chronological aging) and external (biological aging) factors. Slowing down the proliferative and immune processes in the epidermis, reducing the activity of fibroblasts and vascularization of the dermis during chronological aging lead to thinning, dryness, hypersensitivity, vulnerability and superficial wrinkles. Exposure to ultraviolet rays, pollutants, climate, and thermal factors cause keratinocyte disorganization, enhanced melanogenesis, collagen dystrophy, solar elastosis, and disorder of microcirculation. The main signs of external skin aging are deep wrinkles, sagging, pigmentation, telangiectasia, skin neoplasms.
Among the local anti-aging agents, retinoids occupy a leading place, as they eliminate the main signs of skin aging. Of the entire group of retinoids, retinoic acids are the most active. However, the possibility of skin irritation limits their use. Therapeutic and cosmetic products with retinol esters (retinol palmitate) have a minimal irritating effect and can be used both for the prevention of skin aging and the elimination of its signs. Oral use of isotretinoin as an anti-aging agent is undesirable due to the many side effects and contraindications.
Collapse
|
20
|
Thulabandu V, Nehila T, Ferguson JW, Atit RP. Dermal EZH2 orchestrates dermal differentiation and epidermal proliferation during murine skin development. Dev Biol 2021; 478:25-40. [PMID: 34166654 PMCID: PMC8384472 DOI: 10.1016/j.ydbio.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 10/21/2022]
Abstract
Skin development and patterning is dependent on factors that regulate the stepwise differentiation of dermal fibroblasts concomitant with dermal-epidermal reciprocal signaling, two processes that are poorly understood. Here we show that dermal EZH2, the methyltransferase enzyme of the epigenetic Polycomb Repressive Complex 2 (PRC2), is a new coordinator of both these processes. Dermal EZH2 activity is present during dermal fibroblast differentiation and is required for spatially restricting Wnt/β-catenin signaling to reinforce dermal fibroblast cell fate. Later in development, dermal EZH2 regulates the expression of reticular dermal markers and initiation of secondary hair follicles. Embryos lacking dermal Ezh2 have elevated epidermal proliferation and differentiation that can be rescued by small molecule inhibition of retinoic acid (RA) signaling. Together, our study reveals that dermal EZH2 is acting like a rheostat to control the levels of Wnt/β-catenin and RA signaling to impact fibroblast differentiation cell autonomously and epidermal keratinocyte development non-cell autonomously, respectively.
Collapse
Affiliation(s)
| | - Timothy Nehila
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - James W Ferguson
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Radhika P Atit
- Dept. of Biology, Case Western Reserve University, Cleveland, OH, USA; Dept. of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA; Dept. of Dermatology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Bioactive Compounds for Skin Health: A Review. Nutrients 2021; 13:nu13010203. [PMID: 33445474 PMCID: PMC7827176 DOI: 10.3390/nu13010203] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/19/2023] Open
Abstract
Human skin is continually changing. The condition of the skin largely depends on the individual’s overall state of health. A balanced diet plays an important role in the proper functioning of the human body, including the skin. The present study draws attention to bioactive substances, i.e., vitamins, minerals, fatty acids, polyphenols, and carotenoids, with a particular focus on their effects on the condition of the skin. The aim of the study was to review the literature on the effects of bioactive substances on skin parameters such as elasticity, firmness, wrinkles, senile dryness, hydration and color, and to define their role in the process of skin ageing.
Collapse
|
22
|
Bjerke DL, Li R, Price JM, Dobson RLM, Rodrigues M, Tey C, Vires L, Adams RL, Sherrill JD, Styczynski PB, Goncalves K, Maltman V, Przyborski S, Oblong JE. The vitamin A ester retinyl propionate has a unique metabolic profile and higher retinoid-related bioactivity over retinol and retinyl palmitate in human skin models. Exp Dermatol 2020; 30:226-236. [PMID: 33098193 DOI: 10.1111/exd.14219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 12/13/2022]
Abstract
Human skin is exposed daily to environmental stressors, which cause acute damage and inflammation. Over time, this leads to morphological and visual appearance changes associated with premature ageing. Topical vitamin A derivatives such as retinol (ROL), retinyl palmitate (RPalm) and retinyl propionate (RP) have been used to reverse these changes and improve the appearance of skin. This study investigated a stoichiometric comparison of these retinoids using in vitro and ex vivo skin models. Skin biopsies were treated topically to compare skin penetration and metabolism. Treated keratinocytes were evaluated for transcriptomics profiling and hyaluronic acid (HA) synthesis and treated 3D epidermal skin equivalents were stained for epidermal thickness, Ki67 and filaggrin. A retinoic acid receptor-alpha (RARα) reporter cell line was used to compare retinoid activation levels. Results from ex vivo skin found that RP and ROL have higher penetration levels compared with RPalm. RP is metabolized primarily into ROL in the viable epidermis and dermis whereas ROL is esterified into RPalm and metabolized into the inactive retinoid 14-hydroxy-4,14-retro-retinol (14-HRR). RP treatment yielded higher RARα activation and HA synthesis levels than ROL whereas RPalm had a null effect. In keratinocytes, RP and ROL stimulated similar gene expression patterns and pathway theme profiles. In conclusion, RP and ROL show a similar response directionality whereas RPalm response was inconsistent. Additionally, RP has a consistently higher magnitude of response compared with ROL or RPalm.
Collapse
Affiliation(s)
| | - Rui Li
- Department of Biosciences, Procter and Gamble International Operations SA SG Branch, Singapore, Singapore
| | | | | | - MyriamRubecca Rodrigues
- Department of Biosciences, Procter and Gamble International Operations SA SG Branch, Singapore, Singapore
| | - ChingSiang Tey
- Department of Biosciences, Procter and Gamble International Operations SA SG Branch, Singapore, Singapore
| | - Laura Vires
- The Procter and Gamble Company, Cincinnati, OH, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Retinol Has a Skin Dehydrating Effect That Can Be Improved by a Mixture of Water-Soluble Polysaccharides. COSMETICS 2020. [DOI: 10.3390/cosmetics7040080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
It is common that retinoids used in skincare can cause skin dryness, irritation and redness which is a complaint for the use of these molecules in skincare formulations. Objective: to investigate the influence of a mixture of polysaccharides to improve retinol-based formulations in a 12-day inner volar forearm study. Methods: in total, 22 inner volar forearms were treated over a 12-day topical application of a Placebo formulation containing 0.5% retinol verses a formulation containing 0.5% retinol and 3.0% of a complex of polysaccharides. Application occurred 2X/day in the morning and evening. Skin testing included barrier disruption, erythema, and skin hydration. After a 3-day regression of treatment, skin hydration was measured again. Results: the 0.5% retinol Placebo formulation showed a significant impact on skin dehydration compared to untreated control or polysaccharide-treated areas. The formulation containing retinol and 3.0% of the polysaccharides, maintained skin hydration levels comparable to the untreated control. Neither formulation had a statistically significant impact on skin erythema or barrier disruption. After the 3-day regression, the polysaccharide mixture continued to demonstrate significant moisturization benefits superior to the untreated and active-treated sites. Conclusions: a mixture of polysaccharides was able to mitigate the short-term skin drying effects of retinol and continued to moisturize the skin after a 3-Day regression.
Collapse
|
24
|
Spierings NMK. Cosmetic commentary: Is bakuchiol the new "skincare hero"? J Cosmet Dermatol 2020; 19:3208-3209. [DOI: 10.1111/jocd.13708] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/16/2020] [Accepted: 08/27/2020] [Indexed: 02/05/2023]
|
25
|
Imhof L, Leuthard D. Topical Over-the-Counter Antiaging Agents: An Update and Systematic Review. Dermatology 2020; 237:217-229. [PMID: 32882685 DOI: 10.1159/000509296] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/03/2020] [Indexed: 11/19/2022] Open
Abstract
Over-the-counter antiaging formulations aim to prevent or minimize the signs of aging skin, and to maintain the benefits obtained from different cosmetic procedures. Even though a huge selection of such products is available on the market, evidence and good clinical practice of the data supporting their use are oftentimes lacking. In this systematic review, the authors reviewed scientific data available in the published literature on the most common ingredients used in antiaging cosmetics, with a particular focus on in vivo studies.
Collapse
Affiliation(s)
- Laurence Imhof
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland,
| | - Deborah Leuthard
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Veit JGS, De Glas V, Balau B, Liu H, Bourlond F, Paller AS, Poumay Y, Diaz P. Characterization of CYP26B1-Selective Inhibitor, DX314, as a Potential Therapeutic for Keratinization Disorders. J Invest Dermatol 2020; 141:72-83.e6. [PMID: 32505549 DOI: 10.1016/j.jid.2020.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 01/15/2023]
Abstract
Inhibition of CYP450-mediated retinoic acid (RA) metabolism by RA metabolism blocking agents increases endogenous retinoids and is an alternative to retinoid therapy. Currently available RA metabolism blocking agents (i.e., liarozole and talarozole) tend to have fewer adverse effects than traditional retinoids but lack target specificity. Substrate-based inhibitor DX314 has enhanced selectivity for RA-metabolizing enzyme CYP26B1 and may offer an improved treatment option for keratinization disorders such as congenital ichthyosis and Darier disease. In this study, we used RT-qPCR, RNA sequencing, pathway, upstream regulator, and histological analyses to demonstrate that DX314 can potentiate the effects of all-trans-RA in healthy and diseased reconstructed human epidermis. We unexpectedly discovered that DX314, but not all-trans-RA or previous RA metabolism blocking agents, appears to protect epidermal barrier integrity. In addition, DX314-induced keratinization and epidermal proliferation effects are observed in a rhino mice model. Altogether, the results indicate that DX314 inhibits all-trans-RA metabolism with minimal off-target activity and shows therapeutic similarity to topical retinoids in vitro and in vivo. Findings of a barrier-protecting effect require further mechanistic study but may lead to a unique strategy in barrier-reinforcing therapies. DX314 is a promising candidate compound for further study and development in the context of keratinization disorders.
Collapse
Affiliation(s)
- Joachim G S Veit
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA
| | | | - Benoît Balau
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Haoming Liu
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Florence Bourlond
- Service de Dermatologie, Hôpital Erasme, Université Libre de Bruxelles, Belgique
| | - Amy S Paller
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yves Poumay
- URPHYM-NARILIS, University of Namur, Namur, Belgium
| | - Philippe Diaz
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, Montana, USA; DermaXon LLC, Missoula, Montana, USA.
| |
Collapse
|
27
|
Cellular retinoic acid binding protein-II expression and its potential role in skin aging. Aging (Albany NY) 2020; 11:1619-1632. [PMID: 30888968 PMCID: PMC6461173 DOI: 10.18632/aging.101813] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 02/01/2019] [Indexed: 12/17/2022]
Abstract
Skin aging is an intricate biological process consisting of intrinsic and extrinsic alterations of epidermal and dermal structures. Retinoids play an important role in epidermal cell growth and differentiation and are beneficial to counteract skin aging. Cellular retinoic acid binding protein-II (CRABP-II) selectively binds all trans-retinoic acid, the most active retinoid metabolite, contributing to regulate intracytoplasmic retinoid trafficking and keratinocyte differentiation. Immunohistochemistry revealed a reduced epidermal and dermal CRABP-II expression in aged human and mouse skin. To better clarify the role of CRABP-II, we investigated age-related skin changes in CRABP-II knock-out mice. We documented an early reduction of keratinocyte layers, proliferation and differentiation rate, dermal and hypodermal thickness, pilosebaceous units and dermal vascularity in CRABP-II knock-out compared with wild-type mice. Ultrastructural investigation documented reduced number and secretion of epidermal lamellar bodies in CRABP-II knock-out compared with wild-type mice. Cultured CRABP-II knock-out-derived dermal fibroblasts proliferated less and showed reduced levels of TGF-β signal-related genes, Col1A1, Col1A2, and increased MMP2 transcripts compared with those from wild-type. Our data strongly support the hypothesis that a reduction of CRABP-II expression accelerates and promotes skin aging, and suggest CRABP-II as a novel target to improve the efficacy of retinoid-mediated anti-aging therapies.
Collapse
|
28
|
Swindell WR, Bojanowski K, Chaudhuri RK. A Zingerone Analog, Acetyl Zingerone, Bolsters Matrisome Synthesis, Inhibits Matrix Metallopeptidases, and Represses IL-17A Target Gene Expression. J Invest Dermatol 2020; 140:602-614.e15. [DOI: 10.1016/j.jid.2019.07.715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/02/2019] [Accepted: 07/30/2019] [Indexed: 01/27/2023]
|
29
|
Silva S, Ferreira M, Oliveira AS, Magalhães C, Sousa ME, Pinto M, Sousa Lobo JM, Almeida IF. Evolution of the use of antioxidants in anti-ageing cosmetics. Int J Cosmet Sci 2020; 41:378-386. [PMID: 31220359 DOI: 10.1111/ics.12551] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/17/2019] [Indexed: 12/23/2022]
Abstract
OBJECTIVE Skin health and beauty are a cornerstone of general well-being in humans. Anti-ageing cosmetics are used to provide a healthy and youthful appearance. Among the different cosmetic actives, antioxidants are incorporated in anti-ageing products due to their beneficial effects in preventing and minimizing the signs of skin ageing. This work aims to understand how anti-ageing formulations changed in the past 7 years regarding pure antioxidants composition. METHODS Data were collected from anti-ageing formulations commercialized in main stores and pharmacies in the Portuguese market. The study started on 2011 and was updated with products launched or whose composition has been renewed on 2013, 2015 or 2018. RESULTS Ascorbic acid and tocopherol and their derivatives were consistently the most used antioxidants in anti-ageing formulations; followed by niacinamide and retinyl palmitate. Seven ascorbic acid derivatives are currently used in anti-ageing formulations while only three tocopherol derivatives were identified in this study. Several combinations of antioxidants were routinely found, mainly tocopherol (or tocopherol derivatives) with other antioxidants and tocopherol with tocopherol derivatives. We have not identified emerging antioxidants with great impact in anti-ageing formulations even though niacinamide and retinyl palmitate exhibited over 10% more usage in 2018. CONCLUSION This insight is relevant to the cosmetic industry providing a better understanding of the scientific-based formulation of modern cosmetics and supports the need for innovative antioxidants in anti-ageing cosmetics.
Collapse
Affiliation(s)
- S Silva
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - M Ferreira
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - A S Oliveira
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - C Magalhães
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - M E Sousa
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n4050-208, Matosinhos, Portugal
| | - M Pinto
- Laboratório de Química Orgânica e Farmacêutica, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Porto, 4050-313, Portugal.,Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Edifício do Terminal de Cruzeiros do Porto de Leixões, Universidade do Porto, Av. General Norton de Matos s/n4050-208, Matosinhos, Portugal
| | - J M Sousa Lobo
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| | - I F Almeida
- Laboratory of Pharmaceutical Echnology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal.,UCIBIO, REQUIMTE, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, Porto, 4050-313, Portugal
| |
Collapse
|
30
|
Khunger N, Mehrotra K. Menopausal Acne - Challenges And Solutions. Int J Womens Health 2019; 11:555-567. [PMID: 31754313 PMCID: PMC6825478 DOI: 10.2147/ijwh.s174292] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022] Open
Abstract
Although acne is a disease predominant in adolescence, it is being increasingly observed in adult life, including the menopausal period. The etiology of menopausal acne is multifactorial, with hormonal imbalance being the major culprit. There is a relative increase of androgens in the menopausal female that leads to clinical hyperandrogenism manifesting as acne, hirsutism and androgenetic alopecia. Other endocrine disorders including thyroid abnormalities, hyperprolactinemia and insulin resistance also play a role. Genetics, stress, dietary changes, lack of sleep and exercise and other lifestyle changes are implicated as trigger factors. Most menopausal women with isolated few acne lesions have normoandrogenic serum levels and do not require extensive investigations. However, baseline investigations including total testosterone are useful. Patients must also be evaluated for associated comorbidities such as obesity, diabetes, hypertension and dyslipidemia. A detailed history can help to exclude polycystic ovarian syndrome, late-onset congenital adrenal hyperplasia or medications as a cause of acne. The evaluation of menopausal acne and the approach to treatment depend on the severity of acne and associated features. In patients with mild acne without virilization, prolonged topical therapy is the mainstay of treatment. Though combined oral contraceptives are effective, they are relatively contraindicated in the postmenopausal period. Spironolactone is the first choice of therapy in the subset of patients that require oral anti-androgen therapy. Procedural treatment can be useful as it can also help in the treatment of associated acne scars and concomitant skin aging. It is also important to focus on lifestyle changes such as reducing stress, controlling obesity, having a healthy diet, exercise and proper skin care routine to reduce acne. The focus of this article is on the clinical presentation and management challenges of menopausal acne, which represents a special subtype of acne.
Collapse
Affiliation(s)
- Niti Khunger
- Department of Dermatology and STD, Vardhman Mahavir Medical College, Safdarjang Hospital, New Delhi, India
| | - Krati Mehrotra
- Department of Dermatology and STD, Vardhman Mahavir Medical College, Safdarjang Hospital, New Delhi, India
| |
Collapse
|
31
|
Rozanowska M, Edge R, Land EJ, Navaratnam S, Sarna T, Truscott TG. Scavenging of Retinoid Cation Radicals by Urate, Trolox, and α-, β-, γ-, and δ-Tocopherols. Int J Mol Sci 2019; 20:ijms20112799. [PMID: 31181693 PMCID: PMC6600601 DOI: 10.3390/ijms20112799] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/17/2022] Open
Abstract
Retinoids are present in human tissues exposed to light and under increased risk of oxidative stress, such as the retina and skin. Retinoid cation radicals can be formed as a result of the interaction between retinoids and other radicals or photoexcitation with light. It has been shown that such semi-oxidized retinoids can oxidize certain amino acids and proteins, and that α-tocopherol can scavenge the cation radicals of retinol and retinoic acid. The aim of this study was to determine (i) whether β-, γ-, and δ-tocopherols can also scavenge these radicals, and (ii) whether tocopherols can scavenge the cation radicals of another form of vitamin A—retinal. The retinoid cation radicals were generated by the pulse radiolysis of benzene or aqueous solution in the presence of a selected retinoid under oxidizing conditions, and the kinetics of retinoid cation radical decays were measured in the absence and presence of different tocopherols, Trolox or urate. The bimolecular rate constants are the highest for the scavenging of cation radicals of retinal, (7 to 8) × 109 M−1·s−1, followed by retinoic acid, (0.03 to 5.6) × 109 M−1·s−1, and retinol, (0.08 to 1.6) × 108 M−1·s−1. Delta-tocopherol is the least effective scavenger of semi-oxidized retinol and retinoic acid. The hydrophilic analogue of α-tocopherol, Trolox, is substantially less efficient at scavenging retinoid cation radicals than α-tocopherol and urate, but it is more efficient at scavenging the cation radicals of retinoic acid and retinol than δ-tocopherol. The scavenging rate constants indicate that tocopherols can effectively compete with amino acids and proteins for retinoid cation radicals, thereby protecting these important biomolecules from oxidation. Our results provide another mechanism by which tocopherols can diminish the oxidative damage to the skin and retina and thereby protect from skin photosensitivity and the development and/or progression of changes in blinding retinal diseases such as Stargardt’s disease and age-related macular degeneration (AMD).
Collapse
Affiliation(s)
- Malgorzata Rozanowska
- Cardiff Institute of Tissue Engineering and Repair, Cardiff University, Wales CF10 3AX, UK.
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales CF24 4HQ, UK.
| | - Ruth Edge
- Dalton Cumbrian Facility, The University of Manchester, Westlakes Science Park, Moor Row, Cumbria CA24 3HA, UK.
| | - Edward J Land
- Free Radical Research Facility, Science and Technology Facilities Council (STFC) Daresbury Laboratory, Warrington WA4 4AD, UK.
| | - Suppiah Navaratnam
- Biomedical Sciences Research Institute, University of Salford, Manchester M5 4WT, UK.
| | - Tadeusz Sarna
- Department of Biophysics, Faculty of Biotechnology, Jagiellonian University, 30-387 Krakow, Poland.
| | - T George Truscott
- School of Chemical and Physical Sciences, Lennard-Jones Building, Keele University, Staffordshire ST5 5BG, UK.
| |
Collapse
|
32
|
Spada F, Lui AH, Barnes TM. Use of formulations for sensitive skin improves the visible signs of aging, including wrinkle size and elasticity. Clin Cosmet Investig Dermatol 2019; 12:415-425. [PMID: 31239745 PMCID: PMC6559254 DOI: 10.2147/ccid.s212240] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Accepted: 05/15/2019] [Indexed: 01/01/2023]
Abstract
Background: Sensitive skin affects an increasingly large proportion of the population and is less tolerant to frequent and prolonged use of cosmetics. This study investigates the antiaging effects of a skin care system developed for use on sensitive skin. Methods: A total of 30 healthy Caucasian females, aged 32-72, were enrolled in this double-blind randomized placebo-controlled split-face study. A routine consisting of twice daily topical applications of the test cleanser and test moisturizer or placebo or positive control products was followed for 28 days, with parameters measured at baseline and at 7-day intervals. Objective skin assessments for hydration, transepidermal water loss (TEWL), skin surface topography, elasticity and safety assessment were conducted. Results: Wrinkle surface, length and depth significantly improved by 34.8±4.7% (P<0.001), 19.0±3.2% (P<0.05) and 24.3±3.5% (P<0.05), respectively, after 28 days of skin care treatment with the test cleanser and test moisturizer. R2 (gross elasticity), R5 (net elasticity) and R7 (biological elasticity) significantly increased by 32.8±6.5% (P<0.001), 47.3±8.6% (P<0.001) and 50.6±5.1% (P<0.001), respectively, while R6 (viscoelastic portion) significantly decreased by 33.4±4.6% (P<0.001) after 28 days. Skin hydration was also found to increase significantly after 28 days by 42.2±8.5% (P<0.01), but there was no change in TEWL. No adverse events were reported. Conclusions: A novel skin care routine developed for use on sensitive skin significantly improves the signs of aging including hydration, wrinkle size and elasticity without significant adverse effects.
Collapse
Affiliation(s)
- Fabrizio Spada
- Research & Development, Ego Pharmaceuticals, Braeside, Victoria 3195, Australia
| | - Ada H Lui
- Research & Development, Ego Pharmaceuticals, Braeside, Victoria 3195, Australia
| | - Tanya M Barnes
- Research & Development, Ego Pharmaceuticals, Braeside, Victoria 3195, Australia
| |
Collapse
|
33
|
Shin JW, Kwon SH, Choi JY, Na JI, Huh CH, Choi HR, Park KC. Molecular Mechanisms of Dermal Aging and Antiaging Approaches. Int J Mol Sci 2019; 20:ijms20092126. [PMID: 31036793 PMCID: PMC6540032 DOI: 10.3390/ijms20092126] [Citation(s) in RCA: 329] [Impact Index Per Article: 65.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 04/22/2019] [Accepted: 04/28/2019] [Indexed: 01/08/2023] Open
Abstract
The dermis is primarily composed of the extracellular matrix (ECM) and fibroblasts. During the aging process, the dermis undergoes significant changes. Collagen, which is a major component of ECM, becomes fragmented and coarsely distributed, and its total amount decreases. This is mainly due to increased activity of matrix metalloproteinases, and impaired transforming growth factor-β signaling induced by reactive oxygen species generated during aging. The reduction in the amount of collagen hinders the mechanical interaction between fibroblasts and the ECM, and consequently leads to the deterioration of fibroblast function and further decrease in the amount of dermal collagen. Other ECM components, including elastic fibers, glycosaminglycans (GAGs), and proteoglycans (PGs), also change during aging, ultimately leading to a reduction in the amount of functional components. Elastic fibers decrease in intrinsically aged skin, but accumulate abnormally in photoaged skin. The changes in the levels of GAGs and PGs are highly diverse, and previous studies have reported conflicting results. A reduction in the levels of functional dermal components results in the emergence of clinical aging features, such as wrinkles and reduced elasticity. Various antiaging approaches, including topicals, energy-based procedures, and dermal fillers, can restore the molecular features of dermal aging with clinical efficacy. This review summarizes the current understanding of skin aging at the molecular level, and associated treatments, to put some of the new antiaging technology that has emerged in this rapidly expanding field into molecular context.
Collapse
Affiliation(s)
- Jung-Won Shin
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Soon-Hyo Kwon
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Ji-Young Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea.
| | - Jung-Im Na
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Chang-Hun Huh
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Hye-Ryung Choi
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
| | - Kyung-Chan Park
- Department of Dermatology, Seoul National University Bundang Hospital, Seongnam 13620, Korea.
- Department of Dermatology, Seoul National University College of Medicine, Seoul 03080, Korea.
| |
Collapse
|
34
|
Romana‐Souza B, Silva‐Xavier W, Monte‐Alto‐Costa A. Topical retinol attenuates stress‐induced ageing signs in human skin ex vivo, through
EGFR
activation via
EGF
, but not
ERK
and
AP
‐1 activation. Exp Dermatol 2018; 28:906-913. [DOI: 10.1111/exd.13675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2018] [Indexed: 01/20/2023]
Affiliation(s)
- Bruna Romana‐Souza
- Laboratory of Tissue RepairDepartment of Histology and EmbryologyState University of Rio de Janeiro Rio de Janeiro Brazil
| | - Welker Silva‐Xavier
- Laboratory of Tissue RepairDepartment of Histology and EmbryologyState University of Rio de Janeiro Rio de Janeiro Brazil
| | - Andréa Monte‐Alto‐Costa
- Laboratory of Tissue RepairDepartment of Histology and EmbryologyState University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
35
|
Affiliation(s)
- Wilbur Johnson
- 1 Senior Scientific Writer/Analyst, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
36
|
Hawkins S, Adamus J, Chiang CY, Covell E, O'Leary J, Lee JM. Retinyl propionate and climbazole combination demonstrates clinical improvement to the appearance of hyperpigmentation and deep wrinkling with minimal irritation. Int J Cosmet Sci 2017; 39:589-599. [DOI: 10.1111/ics.12412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/20/2017] [Indexed: 11/30/2022]
Affiliation(s)
- S. Hawkins
- Unilever Research and Development; Trumbull CT 06611 USA
| | - J. Adamus
- Unilever Research and Development; Trumbull CT 06611 USA
| | - C.-y. Chiang
- Unilever Research and Development; Trumbull CT 06611 USA
| | - E. Covell
- Unilever Research and Development; Trumbull CT 06611 USA
| | - J. O'Leary
- Unilever Research and Development; Trumbull CT 06611 USA
| | - J.-m. Lee
- Unilever Research and Development; Trumbull CT 06611 USA
| |
Collapse
|
37
|
|
38
|
Abstract
The use of cosmeceuticals by patients with acne is common; however, their role is unclear and confusing, with many asking, "Do they really help acne?" Cosmeceuticals are intermediate products between prescription medications and cosmetics, available to consumers over the counter. These products are popular and may be used without the direct supervision of a dermatologist, creating a practice gap in educating patients. Herein, a variety of cosmeceuticals are discussed, including retinoids, niacinamide, and glycolic acid. The evidence for and against cosmeceutical use in patients with acne is reviewed.
Collapse
|
39
|
Adamus J, Feng L, Hawkins S, Kalleberg K, Lee JM. Climbazole boosts activity of retinoids in skin. Int J Cosmet Sci 2017; 39:411-418. [DOI: 10.1111/ics.12390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/14/2017] [Indexed: 12/20/2022]
Affiliation(s)
| | - L. Feng
- Unilever R&D; Trumbull CT 06611 USA
| | | | | | - J-M. Lee
- Unilever R&D; Trumbull CT 06611 USA
| |
Collapse
|
40
|
Topical stabilized retinol treatment induces the expression of HAS genes and HA production in human skin in vitro and in vivo. Arch Dermatol Res 2017; 309:275-283. [PMID: 28247017 DOI: 10.1007/s00403-017-1723-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/24/2017] [Accepted: 01/30/2017] [Indexed: 10/20/2022]
Abstract
Skin Aging manifests primarily with wrinkles, dyspigmentations, texture changes, and loss of elasticity. During the skin aging process, there is a loss of moisture and elasticity in skin resulting in loss of firmness finally leading to skin sagging. The key molecule involved in skin moisture is hyaluronic acid (HA), which has a significant water-binding capacity. HA levels in skin decline with age resulting in decrease in skin moisture, which may contribute to loss of firmness. Clinical trials have shown that topically applied ROL effectively reduces wrinkles and helps retain youthful appearance. In the current study, ROL was shown to induce HA production and stimulates the gene expression of all three forms of hyaluronic acid synthases (HAS) in normal human epidermal keratinocytes monolayer cultures. Moreover, in human skin equivalent tissues and in human skin explants, topical treatment of tissues with a stabilized-ROL formulation significantly induced the gene expression of HAS mRNA concomitant with an increased HA production. Finally, in a vehicle-controlled human clinical study, histochemical analysis confirmed increased HA accumulation in the epidermis in ROL-treated human skin as compared to vehicle. These results show that ROL increases skin expression of HA, a significant contributing factor responsible for wrinkle formation and skin moisture, which decrease during aging. Taken together with the activity to increase collagen, elastin, and cell proliferation, these studies establish that retinol provides multi-functional activity for photodamaged skin.
Collapse
|
41
|
Rouvrais C, Bacqueville D, Bogdanowicz P, Haure MJ, Duprat L, Coutanceau C, Castex-Rizzi N, Duplan H, Mengeaud V, Bessou-Touya S. A new dermocosmetic containing retinaldehyde, delta-tocopherol glucoside and glycylglycine oleamide for managing naturally aged skin: results from in vitro to clinical studies. Clin Cosmet Investig Dermatol 2017; 10:35-42. [PMID: 28203099 PMCID: PMC5295789 DOI: 10.2147/ccid.s123575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Natural aging of skin tissues, the addition of the cumulative action of the time and radiation exposure result in skin atrophy, wrinkles and degeneration of the extracellular matrix (ECM). The aim of the study was to investigate the beneficial effect of a combination containing retinaldehyde (RAL), delta-tocopherol glucoside (delta-TC) and glycylglycine ole-amide (GGO) and of a dermocosmetic containing the combination. MATERIALS AND METHODS The protective effect of the combination was assessed through in vitro gene expression of ultraviolet (UV)-irradiated fibroblasts. A skin aging assay using UV light on ex vivo skin samples and a clinical study conducted in 36 women aged from 35 to 55 years with a minimum of level 4 to a maximum of level 6 on the crow's feet photoscale assessed the antiaging effect of the dermocosmetic. RESULTS When added to UV-irradiated fibroblasts, the combination substantially improved the ECM in activating the elastin fiber production (fibrillin 2, fibulin 1 and 5 and lysyl oxidase-like 2) as well as that of proteins involved in the cellular ECM interactions (integrin b1, paxillin and actin a2). An ex vivo photodamaged human skin model showed that the dermocosmetic formulation containing the combination of the active ingredients protected the elastic network against UV-induced alterations including both elastin and fibrillin-rich fibers in the dermis. A daily application of the dermocosmetic for 2 months on naturally aged skin resulted in a statistically significant improvement (p<0.05) of visible signs of aging comprising crow's feet, wrinkles and periocular fine lines. Finally, the formulation was well tolerated. CONCLUSION The dermocosmetic containing RAL, delta-TC and GGO provides a substantial benefit in the daily care of naturally aged skin in women aged 35-55 years.
Collapse
Affiliation(s)
| | | | | | - Marie-José Haure
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse
| | - Laure Duprat
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse
| | | | | | - Hélène Duplan
- Department of Pharmacology, Pierre Fabre Dermo-Cosmétique, Toulouse
| | | | | |
Collapse
|
42
|
Jeon H, Kim DH, Nho YH, Park JE, Kim SN, Choi EH. A Mixture of Extracts of Kochia scoparia and Rosa multiflora with PPAR α/γ Dual Agonistic Effects Prevents Photoaging in Hairless Mice. Int J Mol Sci 2016; 17:ijms17111919. [PMID: 27854351 PMCID: PMC5133916 DOI: 10.3390/ijms17111919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/30/2016] [Accepted: 11/07/2016] [Indexed: 01/15/2023] Open
Abstract
Activation of peroxisome proliferator-activated receptors (PPAR) α/γ is known to inhibit the increases in matrix metalloproteinase (MMP) and reactive oxygen species (ROS) induced by ultraviolet light (UV). Extracts of natural herbs, such as Kochia scoparia and Rosa multiflora, have a PPAR α/γ dual agonistic effect. Therefore, we investigated whether and how they have an antiaging effect on photoaging skin. Eighteen-week-old hairless mice were irradiated with UVA 14 J/cm² and UVB 40 mJ/cm² three times a week for 8 weeks. A mixture of extracts of Kochia scoparia and Rosa multiflora (KR) was topically applied on the dorsal skin of photoaging mice twice a day for 8 weeks. Tesaglitazar, a known PPAR α/γ agonist, and vehicle (propylene glycol:ethanol = 7:3, v/v) were applied as positive and negative controls, respectively. Dermal effects (including dermal thickness, collagen density, dermal expression of procollagen 1 and collagenase 13) and epidermal effects (including skin barrier function, epidermal proliferation, epidermal differentiation, and epidermal cytokines) were measured and compared. In photoaging murine skin, KR resulted in a significant recovery of dermal thickness as well as dermal fibroblasts, although it did not change dermal collagen density. KR increased the expression of dermal transforming growth factor (TGF)-β. The dermal effects of KR were explained by an increase in procollagen 1 expression, induced by TGF-β, and a decrease in MMP-13 expression. KR did not affect basal transepidermal water loss (TEWL) or stratum corneum (SC) integrity, but did decrease SC hydration. It also did not affect epidermal proliferation or epidermal differentiation. KR decreased the expression of epidermal interleukin (IL)-1α. Collectively, KR showed possible utility as a therapeutic agent for photoaging skin, with few epidermal side effects such as epidermal hyperplasia or poor differentiation.
Collapse
Affiliation(s)
- Hyerin Jeon
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Dong Hye Kim
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| | - Youn-Hwa Nho
- Skin Research Team, Cosmax R&I Center, Seongnam 13486, Korea.
| | - Ji-Eun Park
- Skin Research Team, Cosmax R&I Center, Seongnam 13486, Korea.
| | - Su-Nam Kim
- Natural Skinomics Team, KIST Gangneung Institute of Natural Products, Gangneung 25451, Korea.
| | - Eung Ho Choi
- Department of Dermatology, Yonsei University Wonju College of Medicine, Wonju 26426, Korea.
| |
Collapse
|
43
|
García-Mariscal A, Peyrollier K, Basse A, Pedersen E, Rühl R, van Hengel J, Brakebusch C. RhoA controls retinoid signaling by ROCK dependent regulation of retinol metabolism. Small GTPases 2016; 9:433-444. [PMID: 27754752 DOI: 10.1080/21541248.2016.1248272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The ubiquitously expressed small GTPase RhoA is essential for embryonic development and mutated in different cancers. Functionally, it is well described as a regulator of the actin cytoskeleton, but its role in gene regulation is less understood. Using primary mouse keratinocytes with a deletion of the RhoA gene, we have now been exploring how the loss of RhoA affects gene expression. Performing transcription factor reporter assays, we found a significantly decreased activity of a RAR luciferase reporter in RhoA-null keratinocytes. Inhibition of the RhoA effector ROCK in control cells reproduced this phenotype. ATRA and retinal, but not retinol increased RAR reporter activity of keratinocytes with impaired RhoA/ROCK signaling, suggesting that retinol metabolism is regulated by RhoA/ROCK signaling. Furthermore a significant percentage of known ATRA target genes displayed altered expression in RhoA-null keratinocytes. These data reveal an unexpected link between the cytoskeletal regulator RhoA and retinoid signaling and uncover a novel pathway by which RhoA regulates gene expression.
Collapse
Affiliation(s)
| | - Karine Peyrollier
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Astrid Basse
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Esben Pedersen
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| | - Ralph Rühl
- b Laboratory of Nutritional Bioactivation and Bioanalysis, Research Center of Molecular Medicine, University of Debrecen , Hungary
| | - Jolanda van Hengel
- c Department of Basic Medical Sciences , Faculty of Medicine and Health Sciences, Ghent University , Ghent , Belgium
| | - Cord Brakebusch
- a Department of Biomedical Sciences , BRIC, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
44
|
Characterization of human short chain dehydrogenase/reductase SDR16C family members related to retinol dehydrogenase 10. Chem Biol Interact 2016; 276:88-94. [PMID: 27793605 DOI: 10.1016/j.cbi.2016.10.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/22/2016] [Accepted: 10/24/2016] [Indexed: 01/09/2023]
Abstract
All-trans-retinoic acid (RA) is a bioactive derivative of vitamin A that serves as an activating ligand for nuclear transcription factors, retinoic acid receptors. RA biosynthesis is initiated by the enzymes that oxidize retinol to retinaldehyde. It is well established that retinol dehydrogenase 10 (RDH10, SDR16C4), which belongs to the 16C family of the short chain dehydrogenase/reductase (SDR) superfamily of proteins, is the major enzyme responsible for the oxidation of retinol to retinaldehyde for RA biosynthesis during embryogenesis. However, several lines of evidence point towards the existence of additional retinol dehydrogenases that contribute to RA biosynthesis in vivo. In close proximity to RDH10 gene on human chromosome 8 are located two genes that are phylogenetically related to RDH10. The predicted protein products of these genes, retinol dehydrogenase epidermal 2 (RDHE2, SDR16C5) and retinol dehydrogenase epidermal 2-similar (RDHE2S, SDR16C6), share 59% and 56% sequence similarity with RDH10, respectively. Previously, we showed that the single ortholog of the human RDHE2 and RDHE2S in frogs, Xenopus laevis rdhe2, oxidizes retinol to retinaldehyde and is essential for frog embryonic development. In this study, we explored the potential of each of the two human proteins to contribute to RA biosynthesis. The results of this study demonstrate that human RDHE2 exhibits a relatively low but reproducible activity when expressed in either HepG2 or HEK293 cells. Expression of the native RDHE2 is downregulated in the presence of elevated levels of RA. On the other hand, the protein encoded by the human RDHE2S gene is unstable when expressed in HEK293 cells. RDHE2S protein produced in Sf9 cells is stable but has no detectable catalytic activity towards retinol. We conclude that the human RDHE2S does not contribute to RA biosynthesis, whereas the low-activity RA-sensitive human RDHE2 may have a role in adjusting the cellular levels of RA in accord with specific physiological conditions.
Collapse
|
45
|
Buchanan PJ, Gilman RH. Retinoids: Literature Review and Suggested Algorithm for Use Prior to Facial Resurfacing Procedures. J Cutan Aesthet Surg 2016; 9:139-144. [PMID: 27761082 PMCID: PMC5064676 DOI: 10.4103/0974-2077.191653] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Vitamin A-containing products have been used topically since the early 1940s to treat various skin conditions. To date, there are four generations of retinoids, a family of Vitamin A-containing compounds. Tretinoin, all-trans-retinoic acid, is a first-generation, naturally occurring, retinoid. It is available, commercially, as a gel or cream. The authors conducted a complete review of all studies, clinical- and basic science-based studies, within the literature involving tretinoin treatment recommendations for impending facial procedures. The literature currently lacks definitive recommendations for the use of tretinoin-containing products prior to undergoing facial procedures. Tretinoin pretreatment regimens vary greatly in terms of the strength of retinoid used, the length of the pre-procedure treatment, and the ideal time to stop treatment before the procedure. Based on the current literature and personal experience, the authors set forth a set of guidelines for the use of tretinoin prior to various facial procedures.
Collapse
Affiliation(s)
- Patrick J Buchanan
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| | - Robert H Gilman
- Department of Surgery, Section of Plastic and Reconstructive Surgery, University of Michigan Health Systems, Ann Arbor, Michigan, USA
| |
Collapse
|
46
|
Topical Retinol Restores Type I Collagen Production in Photoaged Forearm Skin within Four Weeks. COSMETICS 2016. [DOI: 10.3390/cosmetics3040035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
47
|
Pisetpackdeekul P, Supmuang P, Pan-In P, Banlunara W, Limcharoen B, Kokpol C, Wanichwecharungruang S. Proretinal nanoparticles: stability, release, efficacy, and irritation. Int J Nanomedicine 2016; 11:3277-86. [PMID: 27499622 PMCID: PMC4959592 DOI: 10.2147/ijn.s111748] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Despite many potent biological activities, retinoids such as retinoic acid (RA) and retinal possess dose-related broad side effects. In this study, we show that this problem, which has been unsolvable for a long time, can be tackled through a controlled release strategy in which retinal is continuously delivered to the skin via sustained release from proretinal nanoparticles. The water dispersible proretinal nanoparticles are stable when kept in water at neutral pH and at room temperature for 8 months under light-proof conditions, and show sustained release of retinal into human synthetic sebum at a pH of 5. In the daily topical application tests performed for 4 weeks on rats' skin, the nanoparticles showed superior ability to increase epidermal thickness compared to RA and retinal, with no skin irritation observed for the proretinal particles, but severe skin irritation observed for RA and free retinal. When tested under occlusion conditions in human volunteers, insignificant skin irritation was observed for the proretinal nanoparticles. The 12-week, double-blind, split-face study on human volunteers indicates better antiaging efficacy of the particles as compared to the free RA.
Collapse
Affiliation(s)
| | | | | | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University
| | | | - Chayada Kokpol
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Ramathibodi Hospital
| | - Supason Wanichwecharungruang
- Department of Chemistry, Faculty of Science; Nanotec-Chulalongkorn University Center of Excellence on Food and Agriculture, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
48
|
Yan J, Xia Q, Wamer WG, Boudreau MD, Warbritton A, Howard PC, Fu PP. Levels of retinyl palmitate and retinol in the skin of SKH-1 mice topically treated with retinyl palmitate and concomitant exposure to simulated solar light for thirteen weeks. Toxicol Ind Health 2016; 23:581-9. [DOI: 10.1177/0748233708090904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- J Yan
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - Q Xia
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - WG Wamer
- Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland, USA
| | - MD Boudreau
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - A Warbritton
- Toxicological Pathology Associates, Jefferson, Arkansas, USA
| | - PC Howard
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| | - PP Fu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, Arkansas, USA
| |
Collapse
|
49
|
Yan J, Xia Q, Webb P, Warbritton AR, Wamer WG, Howard PC, Boudreau M, Fu PP. Levels of retinyl palmitate and retinol in stratum corneum, epidermis and dermis of SKH-1 mice. Toxicol Ind Health 2016; 22:103-12. [PMID: 16716039 DOI: 10.1191/0748233706th252oa] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Vitamin A (retinol) regulates many biological functions, including epidermal cell growth. Retinyl palmitate (RP) is the major esterified form of retinol and the predominant component of retinoids in the skin; however, how endogenous levels of RP and retinol in the skin are affected by the age of the animal remains unknown. Furthermore, the levels of retinol and RP in the various skin layers- the stratum corneum, epidermis and dermis of skin- have not been reported. In this paper, we report the development of a convenient method for separation of the skin from SKH-1 female mice into the stratum corneum, epidermis, and dermis and the determination of the levels of RP and retinol in the three fractions by HPLC analysis. The total quantities of RP and retinol from the stratum corneum, epidermis, and dermis are comparable to those extracted from the same amount of intact skin from the same mouse. There was an age-related effect on the levels of RP and retinol in the skin and liver of female mice. An age-related effect was also observed in the stratum corneum, epidermis, and dermis. The levels of RP and retinol were highest in the epidermis of 20-week-old mice, and decreased when the age increased to 60- and 68-weeks. The total amount of RP at 20 weeks of age was found to be 1.52 ng/mg skin, and decreased about 4-fold at 60- and 68-weeks of age. A similar trend was found for the effects of age on the levels of retinol.
Collapse
Affiliation(s)
- Jian Yan
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Yan J, Wamer WG, Howard PC, Boudreau MD, Fu PP. Levels of retinyl palmitate and retinol in the stratum corneum, epidermis, and dermis of female SKH-1 mice topically treated with retinyl palmitate. Toxicol Ind Health 2016; 22:181-91. [PMID: 16786840 DOI: 10.1191/0748233706th253oa] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Retinyl esters are the storage form of vitamin A in skin, and retinyl palmitate (RP) accounts for the majority of the retinyl esters endogenously formed in skin. RP is also obtained exogenously through the topical application of cosmetic and skin care products that contain RP. There is limited information on the penetration and distribution of RP and vitamin Awithin the stratified layers of the skin. The purpose of these studies was to determine the time course for accumulation and disappearance of RP and retinol in the stratified layers of skin from female SKH-1 mice that received single or repeated topical applications of creams containing 0.5 or 2% of RP. We developed an HPLC method with detection limits of 5.94 and 1.62 ng, to simultaneously quantify the amount of RP and retinol, respectively, in skin samples. Our results showed that RP rapidly diffuses into the stratum corneum and epidermal skin layers within 24 h following the application of RP-containing creams. Of the three skin layers, the highest level of RP and retinol per weight unit (ng/mg) at all time points was found in the epidermis. Levels of RP and retinol were lowest in the dermal layer and intermediate in the stratum corneum. The levels of RP and retinol in the separated skin layers and in the intact skin decreased with time, but levels of RP remained higher than control values for a period of up to 18 days. Our results indicate that the application of RP to mouse skin alters the normal physiological levels of RP and retinol in the skin.
Collapse
Affiliation(s)
- Jian Yan
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR 72079, USA
| | | | | | | | | |
Collapse
|