1
|
Won KJ, Lee R, Choi SH, Kim JH, Hwang SH, Nah SY. Gintonin-Induced Wound-Healing-Related Responses Involve Epidermal-Growth-Factor-like Effects in Keratinocytes. Int J Mol Sci 2023; 24:14094. [PMID: 37762395 PMCID: PMC10531430 DOI: 10.3390/ijms241814094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Epidermal growth factor (EGF) receptor activation and related downstream signaling pathways are known to be one of the major mechanisms of the proliferation and migration of keratinocytes. The heparin-binding EGF-like growth factor (HB-EGF) binds to EGF receptors and stimulates keratinocyte proliferation and migration. Gintonin, a novel ginseng compound, is a lysophosphatidic acid (LPA) receptor ligand. Gintonin has skin-wound-healing effects. However, the underlying mechanisms for these gintonin actions remain unclear. In this study, we aimed to elucidate the involvement of EGFRs in gintonin-induced wound repair in HaCaT keratinocytes. In this study, a water-soluble tetrazolium salt-based assay, a modified Boyden chamber migration assay, and immunoblotting were performed. Gintonin increased EGF receptor activation in HaCaT cells. However, the gintonin-induced phosphorylation of the EGF receptor was markedly reduced via treatment with the LPA inhibitor Ki16425 or the EGF receptor inhibitor erlotinib. Gintonin-enhanced proliferation and migration were blocked by the EGF receptor inhibitors (erlotinib and AG1478). Additionally, gintonin stimulated the expression and release of HB-EGF in HaCaT cells. EGF receptor inhibitors blocked gintonin-enhanced HB-EGF expression. These results indicate that the wound-healing effects of gintonin are closely related to the collaboration between EGF receptor activation and HB-EGF release-mediated downstream signaling pathways.
Collapse
Affiliation(s)
- Kyung-Jong Won
- Department of Physiology and Medical Science, College of Medicine, Konkuk University, Chungju 27478, Republic of Korea;
| | - Rami Lee
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Sun-Hye Choi
- Department of Animal Health, College of Health and Medical Services, Osan University, Osan 18119, Republic of Korea;
| | - Ji-Hun Kim
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| | - Sung-Hee Hwang
- Department of Pharmaceutical Engineering, College of Health Sciences, Sangji University, Wonju 26339, Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory, Department of Physiology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Republic of Korea; (R.L.); (J.-H.K.)
| |
Collapse
|
2
|
Chen M, Xu Z, Chen Y, Yang Q, Lu R, Dong Y, Li X, Xie J, Xu R, Jia H, Kang Y, Wu Y. EGFR marks a subpopulation of dermal mesenchymal cells highly expressing IGF1 which enhances hair follicle regeneration. J Cell Mol Med 2023; 27:1697-1707. [PMID: 37165726 PMCID: PMC10273066 DOI: 10.1111/jcmm.17766] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/14/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023] Open
Abstract
The skin harbours transcriptionally and functionally heterogeneous mesenchymal cells that participate in various physiological activities by secreting biochemical cues. In this study, we aimed to identify a new subpopulation of dermal mesenchymal cells that enhance hair follicle regeneration through a paracrine mechanism. Integrated single-cell RNA sequencing (scRNA-seq) data analysis revealed epidermal growth factor receptor (EGFR) as a marker of distinct fibroblast subpopulation in the neonatal murine dermis. Immunofluorescence staining and fluorescence-activated cell sorting (FACS) were used to validate the existence of the cell population in Krt14-rtTA-H2BGFP mouse. The difference of gene expression between separated cell subpopulation was examined by real-time PCR. Potential effect of the designated factor on hair follicle regeneration was observed after the application on excisional wounds in Krt14-rtTA-H2BGFP mouse. Immunofluorescence staining demonstrated the existence of dermal EGFR+ cells in neonatal and adult mouse dermis. The EGFR+ mesenchymal population, sorted by FACS, displayed a higher expression level of Igf1 (insulin-like growth factor 1). Co-localisation of IGF1 with EGFR in the mouse dermis and upregulated numbers of hair follicles in healed wounds following the application of exogenous IGF1 illustrated the contribution of EGFR+ cells in promoting wound-induced hair follicle neogenesis. Our results indicate that EGFR identifies a subpopulation of dermal fibroblasts that contribute to IGF1 promotion of hair follicle neogenesis. It broadens the understanding of heterogeneity and the mesenchymal cell function in skin and may facilitate the potential translational application of these cells.
Collapse
Affiliation(s)
- Min Chen
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Zaoxu Xu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
| | - Yu Chen
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Qingyang Yang
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
| | - Ruiqing Lu
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| | - Ren‐He Xu
- Faculty of Health SciencesUniversity of MacauTaipaChina
| | | | - Yan Kang
- Shanghai Jahwa United Co., LtdShanghaiChina
| | - Yaojiong Wu
- Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhenChina
- State Key Laboratory of Chemical Oncogenomics, and the Institute of Biopharmaceutical and Health Engineering (iBHE), Shenzhen International Graduate SchoolTsinghua UniversityShenzhenChina
| |
Collapse
|
3
|
Merecz-Sadowska A, Sitarek P, Zajdel K, Kucharska E, Kowalczyk T, Zajdel R. The Modulatory Influence of Plant-Derived Compounds on Human Keratinocyte Function. Int J Mol Sci 2021; 22:12488. [PMID: 34830374 PMCID: PMC8618348 DOI: 10.3390/ijms222212488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 11/16/2022] Open
Abstract
The plant kingdom is a rich source of secondary metabolites with numerous properties, including the potential to modify keratinocyte biology. Keratinocytes are important epithelial cells that play a protective role against various chemical, physical and biological stimuli, and participate in reactive oxygen scavenging and inflammation and wound healing processes. The epidermal cell response may be modulated by phytochemicals via changes in signal transduction pathways. Plant extracts and single secondary compounds can possess a high antioxidant capacity and may suppress reactive oxygen species release, inhibit pro-apoptotic proteins and apoptosis and activate antioxidant enzymes in keratinocytes. Moreover, selected plant extracts and single compounds also exhibit anti-inflammatory properties and exposure may result in limited production of adhesion molecules, pro-inflammatory cytokines and chemokines in keratinocytes. In addition, plant extracts and single compounds may promote keratinocyte motility and proliferation via the regulation of growth factor production and enhance wound healing. While such plant compounds may modulate keratinocyte functions, further in vitro and in vivo studies are needed on their mechanisms of action, and more specific toxicity and clinical studies are needed to ensure their effectiveness and safety for use on human skin.
Collapse
Affiliation(s)
- Anna Merecz-Sadowska
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| | - Przemysław Sitarek
- Department of Biology and Pharmaceutical Botany, Medical University of Lodz, 90-151 Lodz, Poland;
| | - Karolina Zajdel
- Department of Medical Informatics and Statistics, Medical University of Lodz, 90-645 Lodz, Poland;
| | - Ewa Kucharska
- Chair of Gerontology, Geriatrics and Social Work at the Faculty of Pedagogy, Ignatianum Academy in Cracow, 31-501 Cracow, Poland;
| | - Tomasz Kowalczyk
- Department of Molecular Biotechnology and Genetics, University of Lodz, 90-237 Lodz, Poland;
| | - Radosław Zajdel
- Department of Computer Science in Economics, University of Lodz, 90-214 Lodz, Poland;
| |
Collapse
|
4
|
Otsuka T, Kan HM, Laurencin CT. Regenerative Engineering Approaches to Scar-Free Skin Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021. [DOI: 10.1007/s40883-021-00229-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
5
|
Lee JSJ, Kim SJ, Choi JS, Eom MR, Shin H, Kwon SK. Adipose-derived mesenchymal stem cell spheroid sheet accelerates regeneration of ulcerated oral mucosa by enhancing inherent therapeutic properties. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Chen J, Bekale LA, Khomtchouk KM, Xia A, Cao Z, Ning S, Knox SJ, Santa Maria PL. Locally administered heparin-binding epidermal growth factor-like growth factor reduces radiation-induced oral mucositis in mice. Sci Rep 2020; 10:17327. [PMID: 33060741 PMCID: PMC7567084 DOI: 10.1038/s41598-020-73875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023] Open
Abstract
Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p < 0.01), ventral tongue (30,793 vs 39,095 µm2, *p < 0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| | - Kelly M Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shoucheng Ning
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| |
Collapse
|
7
|
Tan ST, Dosan R. Lessons From Epithelialization: The Reason Behind Moist Wound Environment. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1874372201913010034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wound healing consists of multiple structured mechanism and is influenced by various factors. Epithelialization is one of the major aspect in wound healing and inhibition of this mechanism will greatly impair wound healing. Epithelialization is a process where epithelial cells migrate upwards and repair the wounded area. This process is the most essential part in wound healing and occurs in proliferative phase of wound healing. Skin stem cells which reside in several locations of epidermis contribute in the re-epithelialization when the skin is damaged. Epithelialization process is activated by inflammatory signal and then keratinocyte migrate, differentiate and stratify to close the defect in the skin. Several theories of epithelialization model in wound healing have been proposed for decades and have shown the mechanism of epidermal cell migration during epithelialization even though the exact mechanism is still controversial. This process is known to be influenced by the wound environment where moist wound environment is preferred rather than dry wound environment. In dry wound environment, epithelialization is known to be inhibited because of scab or crust which is formed from dehydrated and dead cells. Moist wound environment enhances the epithelialization process by easier migration of epidermal cells, faster epithelialization, and prolonged presence of proteinases and growth factors. This article focuses on the epithelialization process in wound healing, epithelialization models, effects of wound environment on epithelialization and epithelialization as the basis for products that enhance wound healing.
Collapse
|
8
|
Brazil JC, Quiros M, Nusrat A, Parkos CA. Innate immune cell-epithelial crosstalk during wound repair. J Clin Invest 2019; 129:2983-2993. [PMID: 31329162 PMCID: PMC6668695 DOI: 10.1172/jci124618] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Skin and intestinal epithelial barriers play a pivotal role in protecting underlying tissues from harsh external environments. The protective role of these epithelia is, in part, dependent on a remarkable capacity to restore barrier function and tissue homeostasis after injury. In response to damage, epithelial wounds repair by a series of events that integrate epithelial responses with those of resident and infiltrating immune cells including neutrophils and monocytes/macrophages. Compromise of this complex interplay predisposes to development of chronic nonhealing wounds, contributing to morbidity and mortality of many diseases. Improved understanding of crosstalk between epithelial and immune cells during wound repair is necessary for development of better pro-resolving strategies to treat debilitating complications of disorders ranging from inflammatory bowel disease to diabetes. In this Review we focus on epithelial and innate immune cell interactions that mediate wound healing and restoration of tissue homeostasis in the skin and intestine.
Collapse
|
9
|
Dao DT, Anez-Bustillos L, Adam RM, Puder M, Bielenberg DR. Heparin-Binding Epidermal Growth Factor-Like Growth Factor as a Critical Mediator of Tissue Repair and Regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:2446-2456. [PMID: 30142332 PMCID: PMC6207098 DOI: 10.1016/j.ajpath.2018.07.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 06/21/2018] [Accepted: 07/13/2018] [Indexed: 11/20/2022]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family. It contains an EGF-like domain as well as a heparin-binding domain that allows for interactions with heparin and cell-surface heparan sulfate. Soluble mature HB-EGF, a ligand of human epidermal growth factor receptors 1 and 4, is cleaved from the membrane-associated pro-HB-EGF by matrix metalloproteinase or a disintegrin and metalloproteinase in a process called ectodomain shedding. Signaling through human epidermal growth factor receptors 1 and 4 results in a variety of effects, including cellular proliferation, migration, adhesion, and differentiation. HB-EGF levels increase in response to different forms of injuries as well as stimuli, such as lysophosphatidic acid, retinoic acid, and 17β-estradiol. Because it is widely expressed in many organs, HB-EGF plays a critical role in tissue repair and regeneration throughout the body. It promotes cutaneous wound healing, hepatocyte proliferation after partial hepatectomy, intestinal anastomosis strength, alveolar regeneration after pneumonectomy, neurogenesis after ischemic injury, bladder wall thickening in response to urinary tract obstruction, and protection against ischemia/reperfusion injury to many cell types. Additionally, innovative strategies to deliver HB-EGF to sites of organ injury or to increase the endogenous levels of shed HB-EGF have been attempted with promising results. Harnessing the reparatory properties of HB-EGF in the clinical setting, therefore, may produce therapies that augment the treatment of various organ injuries.
Collapse
Affiliation(s)
- Duy T Dao
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenzo Anez-Bustillos
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rosalyn M Adam
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Urological Diseases Research Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Puder
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Diane R Bielenberg
- Department of Surgery, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Vascular Biology Program, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
10
|
Andasari V, Lü D, Swat M, Feng S, Spill F, Chen L, Luo X, Zaman M, Long M. Computational model of wound healing: EGF secreted by fibroblasts promotes delayed re-epithelialization of epithelial keratinocytes. Integr Biol (Camb) 2018; 10:605-634. [PMID: 30206629 PMCID: PMC6571173 DOI: 10.1039/c8ib00048d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
It is widely agreed that keratinocyte migration plays a crucial role in wound re-epithelialization. Defects in this function contribute to wound reoccurrence causing significant clinical problems. Several in vitro studies have shown that the speed of migrating keratinocytes can be regulated by epidermal growth factor (EGF) which affects keratinocyte's integrin expression. The relationship between integrin expression (through cell-matrix adhesion) stimulated by EGF and keratinocyte migration speed is not linear since increased adhesion, due to increased integrin expression, has been experimentally shown to slow down cell migration due to the biphasic dependence of cell speed on adhesion. In our previous work we showed that keratinocytes that were co-cultured with EGF-enhanced fibroblasts formed an asymmetric migration pattern, where, the cumulative distances of keratinocytes migrating toward fibroblasts were smaller than those migrating away from fibroblasts. This asymmetric pattern is thought to be provoked by high EGF concentration secreted by fibroblasts. The EGF stimulates the expression of integrin receptors on the surface of keratinocytes migrating toward fibroblasts via paracrine signaling. In this paper, we present a computational model of keratinocyte migration that is controlled by EGF secreted by fibroblasts using the Cellular Potts Model (CPM). Our computational simulation results confirm the asymmetric pattern observed in experiments. These results provide a deeper insight into our understanding of the complexity of keratinocyte migration in the presence of growth factor gradients and may explain re-epithelialization failure in impaired wound healing.
Collapse
Affiliation(s)
- Vivi Andasari
- Boston University, Department of Biomedical Engineering, 44 Cummington Mall, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Epithelial separation theory for post-tonsillectomy secondary hemorrhage: evidence in a mouse model and potential heparin-binding epidermal growth factor-like growth factor therapy. Eur Arch Otorhinolaryngol 2017; 275:569-578. [PMID: 29188436 DOI: 10.1007/s00405-017-4810-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To provide histological evidence to investigate a theory for post-tonsillectomy secondary hemorrhage (PTH) in a mouse model and to evaluate the potential for heparin-binding epidermal growth factor-like growth factor (HB-EGF) treatment on wound healing in this model. METHODS A prospective randomized single-blinded cohort study. A uniform tongue wound was created in 84 mice (day 0). Mice were randomized to HB-EGF (treatment, n = 42) or saline (control, n = 42). In treatment mice, HB-EGF 5 µg/ml was administered intramuscularly into the wound daily (days 0-14). In control mice, normal saline was administered daily. Three mice from each group were sacrificed daily through day 14 and the wounds evaluated histologically by blinded reviewers. RESULTS Key stages of wound healing, including keratinocyte proliferation and migration, wound contraction, epithelial separation, and neoangiogenesis, are defined with implications for post-tonsillectomy wound healing. Epithelial separation (59 vs. 100%, p = 0.003) and wound reopening (8 vs. 48%, p < 0.001) were reduced with HB-EGF. Epithelial thickness (220 vs. 30 µm, p = 0.04) was greater with HB-EGF. Wound closure (days 4-5 vs. day 6, p = 0.01) occurred earlier with HB-EGF. CONCLUSIONS In healing of oral keratinocytes on muscle epithelial separation secondary to muscle, contraction occurs concurrently with neoangiogenesis in the base of the wound, increasing the risk of hemorrhage. This potentially explains why post-tonsillectomy secondary hemorrhage occurs and its timing. HB-EGF-treated wounds showed greater epithelial thickness, less frequent epithelial separation and wound reopening, and earlier wound closure prior to neovascularization, suggesting that HB-EGF may be a potential preventative therapy for PTH. LEVEL OF EVIDENCE NA-animal studies or basic research.
Collapse
|
12
|
Razzak MA, Hossain MS, Radzi ZB, Yahya NAB, Czernuszka J, Rahman MT. Cellular and Molecular Responses to Mechanical Expansion of Tissue. Front Physiol 2016; 7:540. [PMID: 27899897 PMCID: PMC5111402 DOI: 10.3389/fphys.2016.00540] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Accepted: 10/27/2016] [Indexed: 01/08/2023] Open
Abstract
The increased use of tissue expander in the past decades and its potential market values in near future give enough reasons to sum up the consequences of tissue expansion. Furthermore, the patients have the right to know underlying mechanisms of adaptation of inserted biomimetic, its bioinspired materials and probable complications. The mechanical strains during tissue expansion are related to several biological phenomena. Tissue remodeling during the expansion is highly regulated and depends on the signal transduction. Any alteration may lead to tumor formation, necrosis and/or apoptosis. In this review, stretch induced cell proliferation, apoptosis, the roles of growth factors, stretch induced ion channels, and roles of second messengers are organized. It is expected that readers from any background can understand and make a decision about tissue expansion.
Collapse
Affiliation(s)
- Muhammad Abdur Razzak
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Md Sanower Hossain
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Zamri Bin Radzi
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Noor Azlin B Yahya
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| | - Jan Czernuszka
- Department of Materials, University of Oxford Oxford, UK
| | - Mohammad T Rahman
- Department of Children's Dentistry and Orthodontics, Faculty of Dentistry, University of Malaya Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Johnson NR, Wang Y. Coacervate delivery of HB-EGF accelerates healing of type 2 diabetic wounds. Wound Repair Regen 2015; 23:591-600. [PMID: 26032846 PMCID: PMC5957479 DOI: 10.1111/wrr.12319] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
Chronic wounds such as diabetic ulcers pose a significant challenge as a number of underlying deficiencies prevent natural healing. In pursuit of a regenerative wound therapy, we developed a heparin-based coacervate delivery system that provides controlled release of heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) within the wound bed. In this study, we used a polygenic type 2 diabetic mouse model to evaluate the capacity of HB-EGF coacervate to overcome the deficiencies of diabetic wound healing. In full-thickness excisional wounds on NONcNZO10 diabetic mice, HB-EGF coacervate enhanced the proliferation and migration of epidermal keratinocytes, leading to accelerated epithelialization. Furthermore, increased collagen deposition within the wound bed led to faster wound contraction and greater wound vascularization. Additionally, in vitro assays demonstrated that HB-EGF released from the coacervate successfully increased migration of diabetic human keratinocytes. The multifunctional role of HB-EGF in the healing process and its enhanced efficacy when delivered by the coacervate make it a promising therapy for diabetic wounds.
Collapse
Affiliation(s)
- Noah R. Johnson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yadong Wang
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Chemical and Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Materials Science and Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Mechanical Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Achar RAN, Silva TC, Achar E, Martines RB, Machado JLM. Use of insulin-like growth factor in the healing of open wounds in diabetic and non-diabetic rats. Acta Cir Bras 2014; 29:125-31. [PMID: 24604317 DOI: 10.1590/s0102-86502014000200009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 01/21/2014] [Indexed: 11/22/2022] Open
Abstract
PURPOSE To analyze the effects of application of 1% and 3% insulin-like growth factor I (IGF-1) cream on the process of wound healing in induced skin lesions in diabetic and non-diabetic rats and evaluate its effect on expression of myofibroblasts. METHODS Ninety-six Wistar adult male rats were divided into six groups, with 16 rats in each group, as follows: group 1: non-diabetic, untreated; group 2: non-diabetic, treated with 1% IGF-1 cream; group 3: non-diabetic, treated with 3% IGF-1 cream; group 4: diabetic, untreated; group 5: diabetic, treated with 1% IGF-1 cream; and group 6: diabetic, treated with 3% IGF-1 cream. In groups 4, 5, and 6, diabetes was induced by intravenous injection of alloxan. After diabetes had been induced, animals were mantained for 3 months. The experimental procedure consisted of the creation of a circular incision of 0.9 mm in diameter using a metal punch. Following this, wounds were treated daily according to the assigned treatment regimen. Groups 2 and 5 were treated with 1% IGF-1 cream, groups 3 and 6 with 3% IGF-1 cream, and groups 1 and 4 and the untreated groups with 0.9% saline solution. From each group, samples from 4 rats were taken at three, seven, 14, and 21 days after the injury. Samples were fixed in 10% formalin to prepare slides for histological analysis. Slides stained with hematoxylin-eosin (H&E) and Masson were observed vascular proliferation, mononuclear cells, polymorphonuclear cells, fibroblast proliferation, re-epithelialization, and collagen fibers. This study analyzed the expression of α-smooth muscle actin using specific antibodies to correlate the temporal expression of α-smooth muscle-specific actin (α-SM actin), a molecular marker for myofibroblast transformation. RESULTS Macroscopic observation of wounds showed a more rapid re-epithelialization of wounds treated with IGF. Regarding acute inflammatory reactions, the results of the analysis of vascular proliferation and polymorphonuclear and mononuclear cells showed no statistically significant differences in any of the periods studied (according to the results of a Mann-Whitney test). The initial immunohistochemical analysis of tissue samples conducted to compare the expression of α-smooth muscle actin between groups showed a relevant response in the expression of myofibroblasts. Data were analyzed using ANOVA and were found to be statistically significant. CONCLUSION The topical application of 1% and 3% IGF-1 creams increases the expression of myofibroblasts in the process of wound healing in rats.
Collapse
Affiliation(s)
- Rosi Aparecida Nunes Achar
- Sao Paulo City University, Sao PauloSP, Brazil, Fellow Master degree, Postgraduate Program in Health Sciences, Sao Paulo State Public Servant Hospital (IAMSPE). Associate Professor, Experimental Surgery, Sao Paulo City University (UNICID), Sao Paulo-SP, Brazil. Conception, design, scientific and intellectual content of the study; manuscript writing
| | - Thiago Couto Silva
- UNICID, Medical School, Sao PauloSP, Brazil, Graduate student, Medical School, UNICID, Grant from Institutional Program for Scientific Initiation (PIBIC) of the National Council of Technological and Scientific Development (CNPq), Ministry of Science, Technology and Inovation, Sao Paulo-SP, Brazil. Acquisition of data, technical procedures
| | - Eduardo Achar
- UNICID, Sao PauloSP, Brazil, PhD, Associate Professor, Experimental Surgery, UNICID, Sao Paulo-SP, Brazil. Technical procedures, critical revision
| | - Roosecelis Brasil Martines
- Adolfo Lutz Institute, Sao PauloSP, Brazil, PhD, Medical Pathologist, Adolfo Lutz Institute, Sao Paulo-SP, Brazil. Histological analysis
| | - José Lucio Martins Machado
- UNICID, Sao PauloSP, Brazil, PhD, Associate Professor, Postgraduate Program in Health Sciences, IAMSPE. Associate Professor, Experimental Surgery, UNICID, Sao Paulo-SP, Brazil. Manuscript writing, supervised all phases of the study
| |
Collapse
|
15
|
Pastar I, Stojadinovic O, Yin NC, Ramirez H, Nusbaum AG, Sawaya A, Patel SB, Khalid L, Isseroff RR, Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv Wound Care (New Rochelle) 2014; 3:445-464. [PMID: 25032064 DOI: 10.1089/wound.2013.0473] [Citation(s) in RCA: 857] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/20/2013] [Indexed: 12/20/2022] Open
Abstract
Significance: Keratinocytes, a major cellular component of the epidermis, are responsible for restoring the epidermis after injury through a process termed epithelialization. This review will focus on the pivotal role of keratinocytes in epithelialization, including cellular processes and mechanisms of their regulation during re-epithelialization, and their cross talk with other cell types participating in wound healing. Recent Advances: Discoveries in epidermal stem cells, keratinocyte immune function, and the role of the epidermis as an independent neuroendocrine organ will be reviewed. Novel mechanisms of gene expression regulation important for re-epithelialization, including microRNAs and histone modifications, will also be discussed. Critical Issues: Epithelialization is an essential component of wound healing used as a defining parameter of a successful wound closure. A wound cannot be considered healed in the absence of re-epithelialization. The epithelialization process is impaired in all types of chronic wounds. Future Directions: A comprehensive understanding of the epithelialization process will ultimately lead to the development of novel therapeutic approaches to promote wound closure.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Natalie C. Yin
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Horacio Ramirez
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Aron G. Nusbaum
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew Sawaya
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Shailee B. Patel
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Laiqua Khalid
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | | | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
16
|
Dommisch H, Winter J, Götz W, Miesen J, Klein A, Hierse L, Deschner J, Jäger A, Eberhard J, Jepsen S. Effect of growth factors on antimicrobial peptides and pro-inflammatory mediators during wound healing. Clin Oral Investig 2014; 19:209-20. [DOI: 10.1007/s00784-014-1239-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 03/25/2014] [Indexed: 12/26/2022]
|
17
|
Taylor S, Markesbery M, Harding P. Heparin-binding epidermal growth factor-like growth factor (HB-EGF) and proteolytic processing by a disintegrin and metalloproteinases (ADAM): A regulator of several pathways. Semin Cell Dev Biol 2014; 28:22-30. [DOI: 10.1016/j.semcdb.2014.03.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 02/25/2014] [Accepted: 03/03/2014] [Indexed: 12/11/2022]
|
18
|
Enhanced keratinocyte proliferation and migration in co-culture with fibroblasts. PLoS One 2012; 7:e40951. [PMID: 22911722 PMCID: PMC3401236 DOI: 10.1371/journal.pone.0040951] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 06/19/2012] [Indexed: 12/31/2022] Open
Abstract
Wound healing is primarily controlled by the proliferation and migration of keratinocytes and fibroblasts as well as the complex interactions between these two cell types. To investigate the interactions between keratinocytes and fibroblasts and the effects of direct cell-to-cell contact on the proliferation and migration of keratinocytes, keratinocytes and fibroblasts were stained with different fluorescence dyes and co-cultured with or without transwells. During the early stage (first 5 days) of the culture, the keratinocytes in contact with fibroblasts proliferated significantly faster than those not in contact with fibroblasts, but in the late stage (11(th) to 15(th) day), keratinocyte growth slowed down in all cultures unless EGF was added. In addition, keratinocyte migration was enhanced in co-cultures with fibroblasts in direct contact, but not in the transwells. Furthermore, the effects of the fibroblasts on keratinocyte migration and growth at early culture stage correlated with heparin-binding EGF-like growth factor (HB-EGF), IL-1α and TGF-β1 levels in the cultures where the cells were grown in direct contact. These effects were inhibited by anti-HB-EGF, anti-IL-1α and anti-TGF-β1 antibodies and anti-HB-EGF showed the greatest inhibition. Co-culture of keratinocytes and IL-1α and TGF-β1 siRNA-transfected fibroblasts exhibited a significant reduction in HB-EGF production and keratinocyte proliferation. These results suggest that contact with fibroblasts stimulates the migration and proliferation of keratinocytes during wound healing, and that HB-EGF plays a central role in this process and can be up-regulated by IL-1α and TGF-β1, which also regulate keratinocyte proliferation differently during the early and late stage.
Collapse
|
19
|
Herman IM, Leung A. Creation of human skin equivalents for the in vitro study of angiogenesis in wound healing. Methods Mol Biol 2009; 467:241-248. [PMID: 19301675 DOI: 10.1007/978-1-59745-241-0_14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In our efforts aimed at studying the cellular responses to injury, including the angiogenesis of wound healing, we have developed a novel three-dimensional (3D) skin equivalent that is comprised of multiple cell types found in normal human skin or chronic wound beds. The in vitro model contains a microvascular component within the dermis-like extracellular matrix and possesses an intact epithelial covering comprised of skin-derived epithelial cells. Capillary endothelial cells can be labeled with fluorescent vital tracers prior to being embedded within a 3D matrix and overlaid with a monolayer of keratinocytes (normal or transformed). Once embedded in the matrix, the endothelial cells demonstrate capillary-like tube formation mimicking the microvasculature of true skin. Angiogenesis and the reepithelialization, which occur in response to injury and during wound healing, can be quantified using fluorescence-based and bright-field digital imaging microscopic, biochemical, or molecular approaches.
Collapse
Affiliation(s)
- Ira M Herman
- Department of Physiology, Center for Innovations in Wound Healing Research, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
20
|
Todorović V, Pesko P, Micev M, Bjelović M, Budec M, Mićić M, Brasanac D, Ilić-Stojanović O. Insulin-like growth factor-I in wound healing of rat skin. ACTA ACUST UNITED AC 2008; 150:7-13. [PMID: 18597865 DOI: 10.1016/j.regpep.2008.05.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 12/19/2007] [Accepted: 05/15/2008] [Indexed: 11/26/2022]
Abstract
Growth factors play an important role in orchestrating and enabling the cellular responses required for successful wound healing. In the present study, rat surgical incision was used to investigate insulin-like growth factor-I (IGF-I) expression in skin cells as well as its systemic and cutaneous tissue concentrations during acute phase of wound healing. Thirty two animals were sacrificed at days 2, 3, 5 and 9 after surgery. Eight animals were used as control. Tissue expression of IGF-I in both incisional and periincisional skin areas, as well as in skin of control unwounded animals was determined by immunohistochemistry. Serum and tissue concentrations of IGF-I were measured using RIA. Immunohistochemical analysis revealed enhanced IGF-I immunostaining in the incisional area at day 2 post-wounding. Presence of IGF-I immunoreactivity in the epidermis, as well as in dermal fibroblasts and monocytes within perivascular inflammatory infiltrate suggests its local synthesis. Although serum levels of IGF-I were not altered during wound healing, their tissue contents in the incisional area were significantly increased compared with periincisional area at days 2 and 3 after injury, as well as compared with skin content of unwounded control rats in all examined time points. Obtained results support a paracrine role of IGF-I during the acute phase of wound healing by primary intention in the rat.
Collapse
Affiliation(s)
- Vera Todorović
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Pietramaggiori G, Kaipainen A, Czeczuga JM, Wagner CT, Orgill DP. Freeze-dried platelet-rich plasma shows beneficial healing properties in chronic wounds. Wound Repair Regen 2006; 14:573-80. [PMID: 17014669 DOI: 10.1111/j.1743-6109.2006.00164.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fresh platelet concentrates are used in many centers to treat recalcitrant wounds. To extend the therapeutic shelf-life of platelets, we analyzed the wound-healing effects of fresh-frozen and freeze-dried (FD) platelet-rich plasma (PRP) using a diabetic mouse model. Db/db mice with 1.0 cm2 dorsal excisional wounds (n = 15/group) were treated with a single application of FD PRP (1.2 x 10(6) platelets/microL) with or without a stabilization solution, and compared with wounds treated with fresh-frozen, sonicated PRP, and untreated wounds. Granulation tissue area, thickness, and wound size were analyzed 9 days posttreatment. Immunostained sections were quantified for vascularity and proliferation using antiplatelet endothelial cell adhesion molecule I and antiproliferating cell nuclear antigen antibodies. The results showed that all PRP preparations increased granulation tissue formation as assessed by surface coverage, thickness, and angiogenic response, when compared with untreated wounds. In addition, wounds treated with FD PRP, and biochemically stabilized FD PRP, exhibited higher proliferative levels. The possibility to deliver growth factors using platelets, and the potential to extend the shelf-life of platelet concentrates makes freeze-drying methods particularly suitable for enhanced wound care.
Collapse
Affiliation(s)
- Giorgio Pietramaggiori
- Division of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
22
|
Netto EM, Takahashi D, de Fátima Paim de Oliveira M, Barbosa P, Ferraz N, Paixão A, Oyafuso LK, Bortoletto C, Matos D, Paixão M, da Silva AOP, Badaro R. Phase II randomized, placebo-controlled trial of M. vaccae-derived protein (PVAC) for the treatment of psoriasis. Vaccine 2006; 24:5056-63. [PMID: 16621200 DOI: 10.1016/j.vaccine.2006.03.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2005] [Revised: 03/05/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
The treatment effect against psoriasis of an antigen (delipidated, deglycolipidated form of M. vaccae-PVAC) was investigated. One hundred and sixty-five patients were enrolled in three arms (50 or 15 microg or placebo), each receiving a total of two intradermal injections (days 0 and 21). At week 12, a 75% decrease in psoriasis area and severity index was similar among the studied groups (13, 9 and 18%, p=0.429). The overall incidence of adverse events was significantly higher in the PVAC treated groups when compared to placebo (98.2, 87.3 and 70.9%; p<0.001) largely due to local reactions that were limited for the most part to grades 1 and 2 in severity and were self-limiting. Despite its overall safety, PVAC was not clearly indicated to be superior to placebo in the treatment of psoriasis in this study.
Collapse
|
23
|
Edmondson SR, Thumiger SP, Werther GA, Wraight CJ. Epidermal homeostasis: the role of the growth hormone and insulin-like growth factor systems. Endocr Rev 2003; 24:737-64. [PMID: 14671001 DOI: 10.1210/er.2002-0021] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
GH and IGF-I and -II were first identified by their endocrine activity. Specifically, IGF-I was found to mediate the linear growth-promoting actions of GH. It is now evident that these two growth factor systems also exert widespread activity throughout the body and that their actions are not always interconnected. The literature highlights the importance of the GH and IGF systems in normal skin homeostasis, including dermal/epidermal cross-talk. GH activity, sometimes mediated via IGF-I, is primarily evident in the dermis, particularly affecting collagen synthesis. In contrast, IGF action is an important feature of the dermal and epidermal compartments, predominantly enhancing cell proliferation, survival, and migration. The locally expressed IGF binding proteins play significant and complex roles, primarily via modulation of IGF actions. Disturbances in GH and IGF signaling pathways are implicated in the pathophysiology of several skin perturbations, particularly those exhibiting epidermal hyperplasia (e.g., psoriasis, carcinomas). Additionally, many studies emphasize the potential use of both growth factors in the treatment of skin wounds; for example, burn patients. This overview concerns the role and mechanisms of action of the GH and IGF systems in skin and maintenance of epidermal integrity in both health and disease.
Collapse
Affiliation(s)
- Stephanie R Edmondson
- Centre for Hormone Research, Murdoch Children's Research Institute, Royal Children's Hospital, University of Melbourne, Parkville, Victoria, Australia 3052.
| | | | | | | |
Collapse
|
24
|
Abstract
Cutaneous wound healing is a complex process involving blood clotting, inflammation, new tissue formation, and finally tissue remodeling. It is well described at the histological level, but the genes that regulate skin repair have only partially been identified. Many experimental and clinical studies have demonstrated varied, but in most cases beneficial, effects of exogenous growth factors on the healing process. However, the roles played by endogenous growth factors have remained largely unclear. Initial approaches at addressing this question focused on the expression analysis of various growth factors, cytokines, and their receptors in different wound models, with first functional data being obtained by applying neutralizing antibodies to wounds. During the past few years, the availability of genetically modified mice has allowed elucidation of the function of various genes in the healing process, and these studies have shed light onto the role of growth factors, cytokines, and their downstream effectors in wound repair. This review summarizes the results of expression studies that have been performed in rodents, pigs, and humans to localize growth factors and their receptors in skin wounds. Most importantly, we also report on genetic studies addressing the functions of endogenous growth factors in the wound repair process.
Collapse
Affiliation(s)
- Sabine Werner
- Institute of Cell Biology, ETH Zurich, Hönggerberg, HPM D42, CH-8093 Zurich, Switzerland.
| | | |
Collapse
|
25
|
Mulligan C, Rochford J, Denyer G, Stephens R, Yeo G, Freeman T, Siddle K, O'Rahilly S. Microarray analysis of insulin and insulin-like growth factor-1 (IGF-1) receptor signaling reveals the selective up-regulation of the mitogen heparin-binding EGF-like growth factor by IGF-1. J Biol Chem 2002; 277:42480-7. [PMID: 12213819 DOI: 10.1074/jbc.m206206200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin and insulin-like growth factor-1 (IGF-1) act through highly homologous receptors that engage similar intracellular signaling pathways, yet these hormones serve largely distinct physiological roles in the control of metabolism and growth, respectively. In an attempt to uncover the molecular mechanisms underlying their divergent functions, we compared insulin receptor (IR) and IGF-1 receptor (IGF-1R) regulation of gene expression by microarray analysis, using 3T3-L1 cells expressing either TrkC/IR or TrkC/IGF-1R chimeric receptors to ensure the highly selective activation of each receptor tyrosine kinase. Following stimulation of the chimeric receptors for 4 h, we detected 11 genes to be differentially regulated, of which 10 were up-regulated to a greater extent by the IGF-1R. These included genes involved in adhesion, transcription, transport, and proliferation. The expression of mRNA encoding heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent mitogen, was markedly increased by IGF-1R but not IR activation. This effect was dependent on MAPK, but not phosphatidylinositol 3-kinase, and did not require an autocrine loop through the epidermal growth factor receptor. HB-EGF mitogenic activity was detectable in the medium of 3T3-L1 preadipocytes expressing activated IGF-1R but not IR, indicating that the transcriptional response is accompanied by a parallel increase in mature HB-EGF protein. The differential abilities of the IR and IGF-1R tyrosine kinases to stimulate the synthesis and release of a growth factor may provide, at least in part, an explanation for the greater role of the IGF-1R in the control of cellular proliferation.
Collapse
Affiliation(s)
- Claire Mulligan
- University of Cambridge, Department of Clinical Biochemistry, Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QR, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Marikovsky M, Rosenblum CI, Faltin Z, Friedman-Einat M. Appearance of leptin in wound fluid as a response to injury. Wound Repair Regen 2002; 10:302-7. [PMID: 12406166 DOI: 10.1046/j.1524-475x.2002.10505.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The adiposity hormone leptin regulates food intake, body weight, reproduction and other metabolic and endocrine functions mainly through signaling to the hypothalamus. Leptin signaling to peripheral tissues other than the hypothalamus has been suggested for a number of processes such as immunity, bone metabolism, hematopoiesis, angiogenesis, and wound healing. It was previously shown that exogenously applied leptin accelerated wound healing and that leptin mRNA is expressed at the wound site, but there is no published evidence showing that it is translated into leptin protein that is available at the site of repair. To address this question we analyzed pig wound fluids collected from partial-thickness excisional wounds during the first 9 days after injury. Leptin was measured using a modified culture of HEK-293 cells, expressing both the human leptin receptor gene and the firefly luciferase gene driven by a STAT-inducible promoter. Relatively high levels of leptin activity (50-250 ng/ml) were detected in wound fluids using the leptin receptor expressing HEK-293 cells. Our results suggest that leptin is normally induced (4.8- to 10.2-fold) in wound tissue during the first few days following injury and may operate in a paracrine or autocrine circuit during the wound repair process.
Collapse
Affiliation(s)
- Moshe Marikovsky
- Department of Animal Sciences, Faculty of Agricultural Food and Environmental Quality Sciences, Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | | |
Collapse
|
27
|
Marikovsky M. Thiram inhibits angiogenesis and slows the development of experimental tumours in mice. Br J Cancer 2002; 86:779-87. [PMID: 11875743 PMCID: PMC2375322 DOI: 10.1038/sj.bjc.6600078] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2001] [Revised: 11/12/2001] [Accepted: 11/13/2001] [Indexed: 11/09/2022] Open
Abstract
Thiram-tetramethylthiuram disulphide--a chelator of heavy metals, inhibited DNA synthesis and induced apoptosis in cultured bovine capillary endothelial cells. Bovine capillary endothelial cells were 10-60-fold more sensitive to thiram than other cell types. These effects were prevented by addition of antioxidants, indicating involvement of reactive oxygen species. Exogenously added Cu2+ impeded specifically and almost completely the inhibitory effect of thiram for bovine capillary endothelial cells. Moreover, thiram had markedly inhibited human recombinant Cu/Zn superoxide dismutase enzymatic activity (85%) in vitro. Moreover, PC12-SOD cells with elevated Cu/Zn superoxide dismutase were less sensitive to thiram treatment than control cells. These data indicate that the effects of thiram are mediated by inhibition of Cu/Zn superoxide dismutase activity. Oral administration of thiram (13-30 microg mouse(-1)), inhibited angiogenesis in CD1 nude mice. Tumour development is known to largely depend on angiogenesis. We found that oral administration of thiram (30 microg) to mice caused significant inhibition of C6 glioma tumour development (60%) and marked reduction (by 3-5-fold) in metastatic growth of Lewis lung carcinoma. The data establish thiram as a potential inhibitor of angiogenesis and raise the possibility for its use as therapy in pathologies in which neovascularisation is involved, including neoplasia.
Collapse
Affiliation(s)
- M Marikovsky
- Department of Animal Sciences, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Artuc M, Steckelings UM, Henz BM. Mast cell-fibroblast interactions: human mast cells as source and inducers of fibroblast and epithelial growth factors. J Invest Dermatol 2002; 118:391-5. [PMID: 11874475 DOI: 10.1046/j.0022-202x.2001.01705.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
As mast cells have been implicated in cutaneous repair processes, we have examined the ability of human mast cells to produce important epithelial and fibroblast growth factors or to stimulate the production of such factors in dermal fibroblasts. Isolated, highly purified human dermal mast cells and human leukemic mast cells were examined for mRNA and partly also for protein expression of these molecules as such or after preincubation with interleukin-4, stem cell factor, or with phorbol myristate acetate. In addition, mast cells were studied for their ability to induce fibroblast growth factor 2 and fibroblast growth factor 7 secretion from dermal fibroblasts. Both dermal and leukemic mast cells expressed fibroblast growth factor 2, fibroblast growth factor 7, and heparin-binding epidermal growth factor, but not hepatocyte growth factor at mRNA level, and dermal mast cells expressed fibroblast growth factor 10 in addition. At protein level, spontaneous fibroblast growth factor 2 secretion was noted that was markedly enhanced by phorbol myristate acetate, whereas no fibroblast growth factor 7 protein was detected under these conditions. Instead, human mast cell-1 supernatants induced enhanced fibroblast growth factor 7 secretion from dermal fibroblasts, with phorbol-myristate-acetate-stimulated supernatants being more effective. This effect could be reproduced with histamine and was H1-receptor mediated. Tryptase was ineffective but stimulated instead fibroblast growth factor 2 secretion from fibroblasts. These data demonstrate for the first time the ability of mast cells to express and/or secrete several growth factors of the fibroblast growth factor family as well as heparin-binding epidermal growth factor directly or indirectly via stimulation of fibroblasts, underlining the potentially pivotal role of these cells during human tissue repair and homeostasis.
Collapse
Affiliation(s)
- Metin Artuc
- Department of Dermatology and Allergy, Humboldt University, Charité, Berlin, Germany.
| | | | | |
Collapse
|
29
|
Marikovsky M, Nevo N, Vadai E, Harris-Cerruti C. Cu/Zn superoxide dismutase plays a role in angiogenesis. Int J Cancer 2002; 97:34-41. [PMID: 11774241 DOI: 10.1002/ijc.1565] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Endothelial cells produce oxygen radicals spontaneously and this process is augmented by hypoxia/reoxygenation. Cu/Zn superoxide dismutase (SOD-1) is an important enzyme in cellular oxygen metabolism. To determine whether alterations in SOD-1 activity affect angiogenesis we used transgenic SOD-1 (Tg-SOD) mice with elevated level of SOD-1. Angiogenesis induced subcutaneously by bFGF in Tg-SOD mice was 3-fold higher than in control non-transgenic (ntg) mice. Oral administration of disulfiram (DSF), an inhibitor of SOD-1, inhibited angiogenesis in Tg-SOD mice as well as in CD1 nude mice. Effects of DSF on cultured cells were also tested. Application of DSF to cultured bovine capillary endothelial (BCE) cells caused inhibition of DNA synthesis and induction of apoptosis. These effects were prevented by addition of antioxidants, further indicating involvement of reactive oxygen species. DSF also reduced the level of glutathione and the production of H(2)O(2) in BCE cells. Moreover, PC12-SOD cells with elevated SOD-1 were less sensitive to DSF treatment then control cells. These data indicate that the effects of DSF are mediated by inhibition of SOD-1 activity. Tumor development is known to largely depend on angiogenesis. We found that oral administration of DSF to mice caused significant inhibition of C6 glioma tumor development and marked reduction (by 10-19-fold) in metastatic growth of Lewis lung carcinoma. The data suggest a role for SOD-1 in angiogenesis, establish DSF as a potential inhibitor of angiogenesis and raise the possibility that attenuating SOD-1 activity may be important in treatment of angiogenesis-dependent pathologies.
Collapse
Affiliation(s)
- Moshe Marikovsky
- Department of Animal Sciences, Faculty of Agriculture, Hebrew University of Jerusalem, Rehovot, Israel.
| | | | | | | |
Collapse
|
30
|
Paria BC, Ma W, Tan J, Raja S, Das SK, Dey SK, Hogan BL. Cellular and molecular responses of the uterus to embryo implantation can be elicited by locally applied growth factors. Proc Natl Acad Sci U S A 2001; 98:1047-52. [PMID: 11158592 PMCID: PMC14706 DOI: 10.1073/pnas.98.3.1047] [Citation(s) in RCA: 264] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The implantation of a blastocyst into a receptive uterus is associated with a series of events, namely the attachment reaction followed by decidualization of the stroma. Previous studies established that the gene encoding heparin-binding EGF-like growth factor (HB-EGF) is expressed in the luminal epithelium solely at the site of blastocyst apposition preceding the attachment reaction. We report here the expression during implantation of 21 genes encoding other signaling proteins, including those belonging to the Bone morphogenetic protein (BMP), fibroblast growth factor (FGF), WNT, and Hedgehog (HH) pathways. We find that the attachment reaction is associated with a localized stromal induction of genes encoding BMP-2, FGF-2, and WNT-4. Despite efforts by many investigators, a simple in vitro model of implantation is not yet available to study either the hierarchy of the events triggered in the uterus by the embryo or the function of individual signaling proteins. We have therefore approached these questions by introducing beads loaded with purified factors into the receptive uterus. We show that beads soaked in HB-EGF or insulin-like growth factor-1 (IGF-1), but not other proteins, induce many of the same discrete local responses elicited by the blastocyst, including increased localized vascular permeability, decidualization, and expression of Bmp2 at the sites of the beads. By contrast, the expression domains of Indian hedgehog (Ihh), patched, and noggin become restricted as decidualization proceeds. Significantly, beads containing BMP-2 do not themselves elicit an implantation response but affect the spacing of implantation sites induced by blastocysts cotransferred with the beads.
Collapse
Affiliation(s)
- B C Paria
- Department of Pediatrics, University of Kansas Medical Center, Ralph L. Smith Research Center, Kansas City, KS 66160-7338, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Heparin-binding EGF-like growth factor (HB-EGF), which belongs to the EGF-family growth factors, is synthesized as a membrane-anchored form (proHB-EGF). Proteolytic cleavage of proHB-EGF at the extracellular domain yields the soluble form of HB-EGF (sHB-EGF). ProHB-EGF is not only the precursor molecule for sHB-EGF but also a biologically active molecule itself. Recent studies indicate that proHB-EGF has unique properties distinct from the soluble form. ProHB-EGF forms a complex with membrane proteins including a tetramembrane spanning protein: CD9, an adhesion molecule integrin: alpha3beta1, and heparan sulfate proteoglycans. The complex is localized at the cell-cell contact site, suggesting that proHB-EGF may function in cell-to-cell signaling by a juxtacrine mechanism. In an in vitro model system, proHB-EGF showed growth inhibitory activity, while sHB-EGF was growth stimulatory. Ectodomain shedding, conversion of the membrane-anchored form into the soluble form, is regulated by multiple signaling pathways. All these characteristics imply that proHB-EGF and sHB-EGF are used in different ways. In vivo functions of sHB-EGF and proHB-EGF have been largely undefined, but recent studies implicate them in a variety of physiological processes including blastocyst implantation and wound healing.
Collapse
Affiliation(s)
- R Iwamoto
- Research Institute for Microbial Diseases, Osaka University, Suita, 565-0871, Osaka, Japan
| | | |
Collapse
|
32
|
Nanney LB, Paulsen S, Davidson MK, Cardwell NL, Whitsitt JS, Davidson JM. Boosting epidermal growth factor receptor expression by gene gun transfection stimulates epidermal growth in vivo. Wound Repair Regen 2000; 8:117-27. [PMID: 10810038 DOI: 10.1046/j.1524-475x.2000.00117.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Expression constructs encoding a full-length cDNA encoding the human epidermal growth factor receptor, or reporter gene for green fluorescent protein or luciferase were coated onto gold particles and driven into porcine skin using a gene gun delivery system. Strategies for epidermal growth factor receptor boosting were tested in two types of wounds. For grafted wounds, intact porcine skin was pretreated by the introduction of the epidermal growth factor receptor expression construct 24 hours before its harvesting as a split-thickness skin graft. Partial-thickness excisional wound beds (donor sites) were transfected at the time of their creation. Wound healing parameters were subsequently tested in the presence or absence of excess epidermal growth factor ligand. Initial distributions of gene gun delivered gold particles as well as luciferase expression levels suggested that optimal skin penetrations and expression levels were achieved at 500 psi for intact epidermis and 300 psi for exposed wound beds. At 2 days after gene delivery, visualization of green fluorescent protein by fluorescence microscopy showed focal expression of green fluorescent protein at the advancing epithelial outgrowths found at wound edges or surviving epithelial remnants. Green fluorescent protein expression appeared transient since no green fluorescent protein was noted in specimens removed at 4 days after injury. Northern blot analysis on mRNA isolated from wounds 2 days after introduction of epidermal growth factor receptor coated gold particles by gene gun confirmed the expression of the human epidermal growth factor receptor transgene in both skin grafts and excisional wounds. Skin grafts showed subsequent biological responses to the introduction of excessive epidermal growth factor receptor as well as expression of the human epidermal growth factor receptor construct within healing epidermis. While control autografts (reporter gene treated, epidermal growth factor alone, placebo formula, no treatment) showed few 5'-bromodeoxyuridine-labeled cells, epidermal growth factor receptor autografts showed 5'-bromodeoxyuridine labeling of nearly every basal cell. Favorable wound healing outcomes were also shown within excisional wounds following in vivo boosting of epidermal growth factor receptor. Four days after receiving epidermal growth factor receptor particle growth factor receptor transgene. Application of topical epidermal growth factor ligand resulted in the highest percentage of resurfacing. Maximal re-epithelialization was noted in wound beds receiving both receptor boosting and excessive daily epidermal growth factor ligand. A modest increase in the thickness of the granulation tissue followed gene therapy with epidermal growth factor receptor. In summary these in vivo data suggest that it is possible to boost in vivo expression of a tyrosine kinase receptor during wound repair. Increased epidermal growth factor receptor expression has an integral impact on cell proliferation, rates of resurfacing and dermal components and merits consideration as a possible therapeutic agent.
Collapse
Affiliation(s)
- L B Nanney
- Department of Plastic Surgery, Vanderbilt University School of Medicine, and Research Service, Department of Veterans Affairs Medical Center, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
33
|
Castagnino P, Lorenzi MV, Yeh J, Breckenridge D, Sakata H, Munz B, Werner S, Bottaro DP. Neu differentiation factor/heregulin induction by hepatocyte and keratinocyte growth factors. Oncogene 2000; 19:640-8. [PMID: 10698509 DOI: 10.1038/sj.onc.1203357] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth-factor (HGF) is a potent, widely produced, pleiotropic mediator of mesenchymal-epithelial interaction. In a study of changes in gene expression initiated by HGF in Balb/MK keratinocytes, we observed the induction of Neu-differentiation factor (NDF) mRNA (also known as heregulin, or HRG). Further characterization of the regulation of NDF expression in Balb/MK keratinocytes revealed potent induction by keratinocyte growth factor (KGF) and epidermal growth factor (EGF), but not by HGF/NK2, an alternative HGF isoform with motogenic but not mitogenic or morphogenic activities. Sustained treatment (8 h) of Balb/MK cells with KGF stimulated secretion of mature NDF protein into the culture medium, and Balb/ MK cells treated with purified recombinant NDF protein showed increased DNA synthesis. We also found evidence of NDF induction in two models of tissue repair in mice: in full-thickness skin wounds, following locally increased KGF production, and in kidney after partial hepatectomy, following elevation of circulating HGF levels. These results reveal that mesenchymally-derived HGF and KGF can activate autocrine NDF signaling in their epithelial targets, and suggest that this mechanism contributes to the coordination of stages of wound repair, and possibly development, where these growth factors act in concert to direct epithelial proliferation, morphogenesis and differentiation.
Collapse
Affiliation(s)
- P Castagnino
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, National Cancer Institute, Bethesda, Maryland 20892-4255, USA
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
The goal of this work was to determine the molecular basis for the induction of tumour vascularization and progression by injury. Magnetic resonance imaging (MRI) studies demonstrated that administration of wound fluid derived from cutaneous injuries in pigs reduced the lag for vascularization and initiation of growth of C6 glioma spheroids, implanted in nude mice, and accelerated tumour doubling time. The former effect can be attributed to the angiogenic capacity of wound fluid as detected in vivo by MRI, and in vitro in promoting endothelial cell proliferation. The latter effect, namely the induced rate of tumour growth, is consistent with the angiogenic activity of wound fluid as well as with the finding that wound fluid was directly mitogenic to the tumour cells, and accelerated growth of C6 glioma in spheroid culture. Of the multiple growth factors present in wound fluid, two key factors, heparin-binding epidermal growth factor (EGF)-like growth factor (HB-EGF) and platelet-derived growth factor (PDGF), were identified as the dominant mitogens for C6 glioma, and inhibition of their activity using specific neutralizing antibodies suppressed the mitogenic effect of wound fluid on DNA synthesis in C6 glioma. This study suggests that the stimulatory effect of injury on tumour progression can possibly be attenuated by therapeutic targeting directed against a limited number of specific growth factors.
Collapse
Affiliation(s)
- R Abramovitch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | |
Collapse
|
35
|
Bos JD, De Rie MA. The pathogenesis of psoriasis: immunological facts and speculations. IMMUNOLOGY TODAY 1999; 20:40-6. [PMID: 10081229 DOI: 10.1016/s0167-5699(98)01381-4] [Citation(s) in RCA: 189] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- J D Bos
- Dept of Dermatology, Academic Medical Center, University of Amsterdam, The Netherlands
| | | |
Collapse
|
36
|
Abramovitch R, Neeman M, Reich R, Stein I, Keshet E, Abraham J, Solomon A, Marikovsky M. Intercellular communication between vascular smooth muscle and endothelial cells mediated by heparin-binding epidermal growth factor-like growth factor and vascular endothelial growth factor. FEBS Lett 1998; 425:441-7. [PMID: 9563510 DOI: 10.1016/s0014-5793(98)00283-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent mitogen and migration factor for vascular smooth muscle cells (SMC), promoted neovascularization in vivo in the rabbit cornea. MRI demonstrated quantitatively the angiogenic effect of HB-EGF when introduced subcutaneously into nude mice. HB-EGF is not directly mitogenic to endothelial cells but it induced the migration of bovine endothelial cells and release of endothelial cell mitogenic activity from bovine vascular SMC. This mitogenic activity was specifically blocked by neutralizing anti-vascular endothelial growth factor (VEGF) antibodies. In contrast, EGF or transforming growth factor-alpha (TGF-alpha) had almost no effect on release of endothelial mitogenicity from SMC. In addition, RT-PCR analysis demonstrated that VEGF165 mRNA levels were increased in vascular SMC 4-10-fold by 0.35-2 nM of HB-EGF, respectively. Our data suggest that HB-EGF, as a mediator of intercellular communication, may play a new important role in supporting wound healing, tumor progression and atherosclerosis by stimulating angiogenesis.
Collapse
Affiliation(s)
- R Abramovitch
- Department of Biological Regulation, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Vogt PM, Lehnhardt M, Wagner D, Steinau HU. Growth factors and insulin-like growth factor binding proteins in acute wound fluid. Growth Horm IGF Res 1998; 8 Suppl B:107-9. [PMID: 10990142 DOI: 10.1016/s1096-6374(98)80031-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- P M Vogt
- Department of Plastic Surgery, Ruhr University, Bochum, Germany
| | | | | | | |
Collapse
|
38
|
Abstract
HB-EGF is a heparin-binding member of the EGF family that was initially identified in the conditioned medium of human macrophages. Soluble mature HB-EGF is proteolytically processed from a larger membrane-anchored precursor and is a potent mitogen and chemotactic factor for fibroblasts, smooth muscle cells but not endothelial cells. HB-EGF activates two EGF receptor subtypes, HER1 and HER4 and binds to cell surface HSPG. The transmembrane form of HB-EGF is a juxtacrine growth and adhesion factor and is uniquely the receptor for diphtheria toxin. HB-EGF gene expression is highly regulated, for example by cytokines, growth factors, and transcription factors such as MyoD. HB-EGF has been implicated as a participant in a variety of normal physiological processes such as blastocyst implantation and wound healing, and in pathological processes such as tumor growth, SMC hyperplasia and atherosclerosis.
Collapse
Affiliation(s)
- G Raab
- Department of Surgery, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
39
|
Downing MT, Brigstock DR, Luquette MH, Crissman-Combs M, Besner GE. Immunohistochemical localization of heparin-binding epidermal growth factor-like growth factor in normal skin and skin cancers. THE HISTOCHEMICAL JOURNAL 1997; 29:735-44. [PMID: 9429077 DOI: 10.1023/a:1026417202351] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Heparin-binding epidermal growth factor (EGF)-like growth factor is a 22-kDa glycoprotein that was originally identified as a secreted product of cultured human macrophages. Although the growth factor mRNA has been identified in various cells and tissues, the tissue distribution of the protein itself has rarely been demonstrated. In this study, the EGF-like growth factor was detected immunohistochemically in a variety of human skin samples by indirect immunofluorescence using a polyclonal rabbit antiserum raised against residues 26-41 of mature heparin-binding EGF. The keratinocytes of a variety of epithelium-derived structures demonstrated reproducible, specific staining for the EGF. In normal tissues, this staining was prominent in the basal cells of the epidermis and in the epithelial cells lining epidermal appendages such as hair follicles, sebaceous sweat glands and eccrine sweat glands. In addition, specific staining was detected in skin cancers derived from the basal epithelial cell layer, including basal and squamous cell carcinomas of the skin, with no staining detected in melanoma specimens. Immunoreactive heparin-binding EGF was characteristically associated with the surface of cells. With minor exceptions, the immunoreactive sites are identical to the known EGF receptor distribution in the skin, and suggest that keratinocyte-derived heparin-binding EGF may act in concert with other EGF family members in processes such as skin morphogenesis and wound repair, as well as in the development of skin cancers.
Collapse
Affiliation(s)
- M T Downing
- Department of Surgery, Ohio State University, Columbus 43205, USA
| | | | | | | | | |
Collapse
|
40
|
Stoll S, Garner W, Elder J. Heparin-binding ligands mediate autocrine epidermal growth factor receptor activation In skin organ culture. J Clin Invest 1997; 100:1271-81. [PMID: 9276746 PMCID: PMC508305 DOI: 10.1172/jci119641] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exogenous EGF and TGF-alpha accelerate wound healing, but treatment effects are often modest. Using short-term human skin organ culture, we found that autocrine EGF receptor activation could account for this observation. Amphiregulin and heparin-binding EGF-like growth factor (HB-EGF) transcripts were rapidly and markedly induced, whereas EGF and TGF-alpha mRNAs were undetectable or only slightly increased. Vascular permeability factor and keratin 6 transcripts were also strongly induced, albeit with a >/= 3 h delay relative to HB-EGF and amphiregulin. All four transcripts were upregulated in actual healing skin wounds, HB-EGF and keratin 6 being the most prominent. The highly EGF receptor-specific tyrosine kinase inhibitor PD153035 strongly inhibited induction of all four transcripts in organ culture, as well as release of immunoreactive HB-EGF into the medium. These effects were confirmed using the anti-EGF receptor mAb 225 IgG. Neither PD153035 nor 225 IgG was toxic to keratinocytes, as judged by calcein-AM uptake. PD153035 completely abrogated the proliferative phase of keratinocyte outgrowth in skin explant cultures, whereas it had no effect on the antecedent migratory phase. Based on these results, we conclude that EGF receptor activation by highly inducible, keratinocyte-derived heparin-binding ligands is an important mechanism for amplification and transmission of the cutaneous wound healing signal.
Collapse
Affiliation(s)
- S Stoll
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | |
Collapse
|