1
|
Zhu W, Han L, Wu Y, Tong L, He L, Wang Q, Yan Y, Pan T, Shen J, Song Y, Shen Y, Zhu Q, Zhou J. Keratin 15 protects against cigarette smoke-induced epithelial mesenchymal transformation by MMP-9. Respir Res 2023; 24:297. [PMID: 38007424 PMCID: PMC10675954 DOI: 10.1186/s12931-023-02598-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD), a chronic inflammatory lung disease, is a leading cause of morbidity and mortality worldwide. Prolonged cigarette smoking (CS) that causes irreversible airway remodeling and significantly reduces lung function is a major risk factor for COPD. Keratin15+ (Krt15+) cells with the potential of self-renewal and differentiation properties have been implicated in the maintenance, proliferation, and differentiation of airway basal cells; however, the role of Krt15 in COPD is not clear. METHODS Krt15 knockout (Krt15-/-) and wild-type (WT) mice of C57BL/6 background were exposed to CS for six months to establish COPD models. Krt15-CrePGR;Rosa26-LSL-tdTomato mice were used to trace the fate of the Krt15+ cells. Hematoxylin and eosin (H&E) and Masson stainings were performed to assess histopathology and fibrosis, respectively. Furthermore, lentivirus-delivered short hairpin RNA (shRNA) was used to knock down KRT15 in human bronchial epithelial (HBE) cells stimulated with cigarette smoke extract (CSE). The protein expression was assessed using western blot, immunohistochemistry, and enzyme-linked immunosorbent assay. RESULTS Krt15-/- CS mice developed severe inflammatory cell infiltration, airway remodeling, and emphysema. Moreover, Krt15 knockout aggravated CS-induced secretion of matrix metalloproteinase-9 (MMP-9) and epithelial-mesenchymal transformation (EMT), which was reversed by SB-3CT, an MMP-9 inhibitor. Consistent with this finding, KRT15 knockdown promoted MMP-9 expression and EMT progression in vitro. Furthermore, Krt15+ cells gradually increased in the bronchial epithelial cells and were transformed into alveolar type II (AT2) cells. CONCLUSION Krt15 regulates the EMT process by promoting MMP-9 expression and protects the lung tissue from CS-induced injury, inflammatory infiltration, and apoptosis. Furthermore, Krt15+ cells transformed into AT2 cells to protect alveoli. These results suggest Krt15 as a potential therapeutic target for COPD.
Collapse
Affiliation(s)
- Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Linxiao Han
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ludan He
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yu Yan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Ting Pan
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Jie Shen
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai, 200540, China
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 200540, China
| | - Yuanlin Song
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China
| | - Yao Shen
- Department of Respiratory and Critical Care Medicine, Shanghai Pudong Hospital, 2800 Gongwei Rd, Shanghai, 201399, China.
| | - Qiaoliang Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Rd, Shanghai, 200032, China.
- Shanghai Engineering Research Center of Internet of Things for Respiratory Medicine, 180 Fenglin Road, Shanghai, 200032, China.
- Shanghai Key Laboratory of Lung Inflammation and Injury, 180 Fenglin Road, Shanghai, 200032, China.
- Research Center for Chemical Injury, Emergency and Critical Medicine of Fudan University, Fudan University, Shanghai, 200540, China.
- Center of Emergency and Critical Medicine in Jinshan Hospital of Fudan University, Fudan University, Shanghai, 200540, China.
- Key Laboratory of Chemical Injury, Emergency and Critical Medicine of Shanghai Municipal Health Commission, Shanghai, 200540, China.
| |
Collapse
|
2
|
Gong Z, Zou X, Xue R, Zhu X, Jiang X. Large intragenic deletion of KRT14 causes autosomal-dominant epidermolysis bullosa simplex with generalized hyperpigmentation. J Dermatol Sci 2023; 110:27-30. [PMID: 36990856 DOI: 10.1016/j.jdermsci.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/09/2023] [Accepted: 03/06/2023] [Indexed: 03/14/2023]
|
3
|
Ievlev V, Lynch TJ, Freischlag KW, Gries CB, Shah A, Pai AC, Ahlers BA, Park S, Engelhardt JF, Parekh KR. Krt14 and Krt15 differentially regulate regenerative properties and differentiation potential of airway basal cells. JCI Insight 2023; 8:162041. [PMID: 36512409 PMCID: PMC9977304 DOI: 10.1172/jci.insight.162041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Keratin expression dynamically changes in airway basal cells (BCs) after acute and chronic injury, yet the functional consequences of these changes on BC behavior remain unknown. In bronchiolitis obliterans (BO) after lung transplantation, BC clonogenicity declines, which is associated with a switch from keratin15 (Krt15) to keratin14 (Krt14). We investigated these keratins' roles using Crispr-KO in vitro and in vivo and found that Krt14-KO and Krt15-KO produce contrasting phenotypes in terms of differentiation and clonogenicity. Primary mouse Krt14-KO BCs did not differentiate into club and ciliated cells but had enhanced clonogenicity. By contrast, Krt15-KO did not alter BC differentiation but impaired clonogenicity in vitro and reduced the number of label-retaining BCs in vivo after injury. Krt14, but not Krt15, bound the tumor suppressor stratifin (Sfn). Disruption of Krt14, but not of Krt15, reduced Sfn protein abundance and increased expression of the oncogene dNp63a during BC differentiation, whereas dNp63a levels were reduced in Krt15-KO BCs. Overall, the phenotype of Krt15-KO BCs contrasts with Krt14-KO phenotype and resembles the phenotype in BO with decreased clonogenicity, increased Krt14, and decreased dNp63a expression. This work demonstrates that Krt14 and Krt15 functionally regulate BC behavior, which is relevant in chronic disease states like BO.
Collapse
Affiliation(s)
- Vitaly Ievlev
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Thomas J. Lynch
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kyle W. Freischlag
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Caitlyn B. Gries
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Anit Shah
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Albert C. Pai
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Bethany A. Ahlers
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| | - Soo Park
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - John F. Engelhardt
- Department of Anatomy & Cell Biology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, USA
| | - Kalpaj R. Parekh
- Department of Cardiothoracic Surgery, University of Iowa Hospitals and Clinics, Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
4
|
Epidermolysis Bullosa—A Different Genetic Approach in Correlation with Genetic Heterogeneity. Diagnostics (Basel) 2022; 12:diagnostics12061325. [PMID: 35741135 PMCID: PMC9222206 DOI: 10.3390/diagnostics12061325] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/25/2022] [Indexed: 11/17/2022] Open
Abstract
Epidermolysis bullosa is a heterogeneous group of rare genetic disorders characterized by mucocutaneous fragility and blister formation after minor friction or trauma. There are four major epidermolysis bullosa types based on the ultrastructural level of tissue cleavage: simplex, junctional, dystrophic, and Kindler epidermolysis bullosa. They are caused by mutations in genes that encode the proteins that are part of the hemidesmosomes and focal adhesion complex. Some of these disorders can be associated with extracutaneous manifestations, which are sometimes fatal. They are inherited in an autosomal recessive or autosomal dominant manner. This review is focused on the phenomena of heterogeneity (locus, allelic, mutational, and clinical) in epidermolysis bullosa, and on the correlation genotype–phenotype.
Collapse
|
5
|
Molecular Modeling of Pathogenic Mutations in the Keratin 1B Domain. Int J Mol Sci 2020; 21:ijms21186641. [PMID: 32927888 PMCID: PMC7555247 DOI: 10.3390/ijms21186641] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022] Open
Abstract
Keratin intermediate filaments constitute the primary cytoskeletal component of epithelial cells. Numerous human disease phenotypes related to keratin mutation remain mechanistically elusive. Our recent crystal structures of the helix 1B heterotetramer from keratin 1/10 enabled further investigation of the effect of pathologic 1B domain mutations on keratin structure. We used our highest resolution keratin 1B structure as a template for homology-modeling the 1B heterotetramers of keratin 5/14 (associated with blistering skin disorders), keratin 8/18 (associated with liver disease), and keratin 74/28 (associated with hair disorder). Each structure was examined for the molecular alterations caused by incorporating pathogenic 1B keratin mutations. Structural modeling indicated keratin 1B mutations can harm the heterodimer interface (R265PK5, L311RK5, R211PK14, I150VK18), the tetramer interface (F231LK1, F274SK74), or higher-order interactions needed for mature filament formation (S233LK1, L311RK5, Q169EK8, H128LK18). The biochemical changes included altered hydrophobic and electrostatic interactions, and altered surface charge, hydrophobicity or contour. Together, these findings advance the genotype-structurotype-phenotype correlation for keratin-based human diseases.
Collapse
|
6
|
The monoclonal antibody EPR1614Y against the stem cell biomarker keratin K15 lacks specificity and reacts with other keratins. Sci Rep 2019; 9:1943. [PMID: 30760780 PMCID: PMC6374370 DOI: 10.1038/s41598-018-38163-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 12/17/2022] Open
Abstract
Keratin 15 (K15), a type I keratin, which pairs with K5 in epidermis, has been used extensively as a biomarker for stem cells. Two commercial antibodies, LHK15, a mouse monoclonal and EPR1614Y, a rabbit monoclonal, have been widely employed to study K15 expression. Here we report differential reactivity of these antibodies on epithelial cells and tissue sections. Although the two antibodies specifically recognised K15 on western blot, they reacted differently on skin sections and cell lines. LHK15 reacted in patches, whereas EPR1614Y reacted homogenously with the basal keratinocytes in skin sections. In cultured cells, LHK15 did not react with K15 deficient NEB-1, KEB-11, MCF-7 and SW13 cells expressing only exogenous K8 and K18 but reacted when these cells were transduced with K15. On the other hand, EPR1614Y reacted with these cells even though they were devoid of K15. Taken together these results suggest that EPR1614Y recognises a conformational epitope on keratin filaments which can be reconstituted by other keratins as well as by K15. In conclusion, this report highlights that all commercially available antibodies may not be equally specific in identifying the K15 positive stem cell.
Collapse
|
7
|
Khani P, Ghazi F, Zekri A, Nasri F, Behrangi E, Aghdam AM, Mirzaei H. Keratins and epidermolysis bullosa simplex. J Cell Physiol 2018; 234:289-297. [PMID: 30078200 DOI: 10.1002/jcp.26898] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 06/12/2018] [Indexed: 11/10/2022]
Abstract
Keratin intermediate filaments play an important role in maintaining the integrity of the skin structure. Understanding the importance of this subject is possible with the investigation of keratin defects in epidermolysis bullosa simplex (EBS). Nowadays, in addition to clinical criteria, new molecular diagnostic methods, such as next generation sequencing, can help to distinguish the subgroups of EBS more precisely. Because the most important and most commonly occurring molecular defects in these patients are the defects of keratins 5 and14 (KRT5 and KRT14), comprehending the nature structure of these proteins and their involved processes can be very effective in understanding the pathophysiology of this disease and providing new and effective therapeutic platforms to treat it. Here, we summarized the various aspects of the presence of KRT5 and KRT14 in the epidermis, their relation to the incidence and severity of EBS phenotypes, and the processes with which these proteins can affect them.
Collapse
Affiliation(s)
- Pouria Khani
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farideh Ghazi
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ali Zekri
- Department of Medical Genetics and Molecular Biology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Farzad Nasri
- Department of Medical Immunology, Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Elham Behrangi
- Department of Dermatology and Laser Surgery, Clinical Research Center, Rasoul-e-Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Arad Mobasher Aghdam
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Elango T, Sun J, Zhu C, Zhou F, Zhang Y, Sun L, Yang S, Zhang X. Mutational analysis of epidermal and hyperproliferative type I keratins in mild and moderate psoriasis vulgaris patients: a possible role in the pathogenesis of psoriasis along with disease severity. Hum Genomics 2018; 12:27. [PMID: 29784039 PMCID: PMC5963134 DOI: 10.1186/s40246-018-0158-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/09/2018] [Indexed: 02/08/2023] Open
Abstract
Background Mutations in keratin proteins have been vastly associated with a wide array of genodermatoses; however, mutations of keratins in psoriasis have not been fully investigated. The main aim of the current research was to identify the mutation in K14, K10, K16, and K17 genes in two stages of psoriasis patients. Methods Ninety-six psoriatic skin biopsies were collected. mRNA transcript of K14, K10, K16, and K17 was prepared, amplified, and sequenced. Sanger sequences of all keratins were further validated for mutational analysis using Mutation Surveyor and Alamut Visual. Then, in silico analysis of protein stability and protein and gene expression of all keratins was performed and validated. Results Out of 44 mutations, about 75% of keratins are highly pathogenic and deleterious. Remaining 25% mutations are less pathogenic and tolerated in nature. In these 33 deleterious mutations were immensely found to decrease keratin protein stability. We also found a correlation between keratin and Psoriasis Area and Severity Index score which added that alteration in keratin gene in skin causes severity of psoriasis. Conclusions We strongly concluded that acanthosis and abnormal terminal differentiation was mainly due to the mutation in epidermal keratins. In turn, disease severity and relapsing of psoriasis are mainly due to the mutation of hyperproliferative keratins. These novel keratin mutations in psoriatic epidermis might be one of the causative factors for psoriasis. Electronic supplementary material The online version of this article (10.1186/s40246-018-0158-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tamilselvi Elango
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China. .,Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China.
| | - Jingying Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Caihong Zhu
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Fusheng Zhou
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China
| | - Yaohua Zhang
- Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Liangdan Sun
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.,Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, China
| | - Sen Yang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China.,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China.,Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, China
| | - Xuejun Zhang
- Institute and Department of Dermatology, The First Affiliated Hospital, Anhui Medical University, Hefei, China. .,Key Laboratory of Dermatology, Ministry of Education, Anhui Medical University, Hefei, China. .,Collaborative Innovation Center for Complex and Severe Dermatosis, Anhui Medical University, Hefei, China. .,Institute of Dermatology, Huashan Hospital, Fudan University, Shanghai, China. .,Anhui Medical University, 81 Meishan Road, Hefei, Anhui Province, China.
| |
Collapse
|
9
|
Diociaiuti A, Castiglia D, Naim M, Condorelli A, Zambruno G, El Hachem M. Autosomal recessive epidermolysis bullosa simplex due to KRT14
mutation: two large Palestinian families and literature review. J Eur Acad Dermatol Venereol 2017; 32:e149-e151. [DOI: 10.1111/jdv.14639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- A. Diociaiuti
- Dermatology Unit; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - D. Castiglia
- Laboratory of Molecular and Cell Biology; Istituto Dermopatico dell'Immacolata; IRCCS; Rome Italy
| | - M. Naim
- Dermatology Section; Shifa Hospital; Gaza State of Palestine
| | - A.G. Condorelli
- Genetic and Rare Diseases Research Area; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - G. Zambruno
- Genetic and Rare Diseases Research Area; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| | - M. El Hachem
- Dermatology Unit; Bambino Gesù Children's Hospital; IRCCS; Rome Italy
| |
Collapse
|
10
|
He Y, Maier K, Leppert J, Hausser I, Schwieger-Briel A, Weibel L, Theiler M, Kiritsi D, Busch H, Boerries M, Hannula-Jouppi K, Heikkilä H, Tasanen K, Castiglia D, Zambruno G, Has C. Monoallelic Mutations in the Translation Initiation Codon of KLHL24 Cause Skin Fragility. Am J Hum Genet 2016; 99:1395-1404. [PMID: 27889062 DOI: 10.1016/j.ajhg.2016.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022] Open
Abstract
The genetic basis of epidermolysis bullosa, a group of genetic disorders characterized by the mechanically induced formation of skin blisters, is largely known, but a number of cases still remain genetically unsolved. Here, we used whole-exome and targeted sequencing to identify monoallelic mutations, c.1A>G and c.2T>C, in the translation initiation codon of the gene encoding kelch-like protein 24 (KLHL24) in 14 individuals with a distinct skin-fragility phenotype and skin cleavage within basal keratinocytes. Remarkably, mutation c.1A>G occurred de novo and was recurrent in families originating from different countries. The striking similarities of the clinical features of the affected individuals point to a unique and very specific pathomechanism. We showed that mutations in the translation initiation codon of KLHL24 lead to the usage of a downstream translation initiation site with the same reading frame and formation of a truncated polypeptide. The pathobiology was examined in keratinocytes and fibroblasts of the affected individuals and via expression of mutant KLHL24, and we found mutant KLHL24 to be associated with abnormalities of intermediate filaments in keratinocytes and fibroblasts. In particular, KLHL24 mutations were associated with irregular and fragmented keratin 14. Recombinant overexpression of normal KLHL24 promoted keratin 14 degradation, whereas mutant KLHL24 showed less activity than the normal molecule. These findings identify KLHL24 mutations as a cause of skin fragility and identify a role for KLHL24 in maintaining the balance between intermediate filament stability and degradation required for skin integrity.
Collapse
Affiliation(s)
- Yinghong He
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Kristin Maier
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Juna Leppert
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Ingrid Hausser
- Department of Pathology, University of Heidelberg, Heidelberg 69120, Germany
| | - Agnes Schwieger-Briel
- Department of Paediatric Dermatology, University Children's Hospital Zurich, Zurich 8091, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Lisa Weibel
- Department of Paediatric Dermatology, University Children's Hospital Zurich, Zurich 8091, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Martin Theiler
- Department of Paediatric Dermatology, University Children's Hospital Zurich, Zurich 8091, Switzerland; Department of Dermatology, University Hospital Zurich, Zurich 8091, Switzerland
| | - Dimitra Kiritsi
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany
| | - Hauke Busch
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Comprehensive Cancer Center Freiburg, Freiburg 79106, Germany
| | - Melanie Boerries
- Systems Biology of the Cellular Microenvironment Group, Institute of Molecular Medicine and Cell Research, Albert-Ludwigs-University Freiburg, Freiburg 79104, Germany; German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg 69120, Germany; Comprehensive Cancer Center Freiburg, Freiburg 79106, Germany
| | - Katariina Hannula-Jouppi
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland; Folkhälsan Institute of Genetics, University of Helsinki, Helsinki 00014, Finland
| | - Hannele Heikkilä
- Department of Dermatology and Allergology, University of Helsinki and Helsinki University Hospital, Helsinki 00014, Finland
| | - Kaisa Tasanen
- Department of Dermatology, PEDEGO Research Unit, Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu 90014, Finland
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico, Rome 00167, Italy
| | - Giovanna Zambruno
- Genetic and Rare Diseases Research Area, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome 00165, Italy
| | - Cristina Has
- Department of Dermatology, University Medical Center Freiburg, Freiburg 79104, Germany.
| |
Collapse
|
11
|
Turcan I, Jonkman MF. Blistering disease: insight from the hemidesmosome and other components of the dermal-epidermal junction. Cell Tissue Res 2014; 360:545-69. [PMID: 25502077 DOI: 10.1007/s00441-014-2021-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2014] [Accepted: 09/25/2014] [Indexed: 02/07/2023]
Abstract
The hemidesmosome is a specialized transmembrane complex that mediates the binding of epithelial cells to the underlying basement membrane. In the skin, this multiprotein structure can be regarded as the chief adhesion unit at the site of the dermal-epidermal junction. Focal adhesions are additional specialized attachment structures located between hemidesmosomes. The integrity of the skin relies on well-assembled and functional hemidesmosomes and focal adhesions (also known as integrin adhesomes). However, if these adhesion structures are impaired, e.g., as a result of circulating autoantibodies or inherited genetic mutations, the mechanical strength of the skin is compromised, leading to blistering and/or tissue inflammation. A particular clinical presentation emerges subject to the molecule that is targeted. None of these junctional complexes are simply compounds of adhesion molecules; they also play a significant role in signalling pathways involved in the differentiation and migration of epithelial cells such as during wound healing and in tumour invasion. We summarize current knowledge about hereditary and acquired blistering diseases emerging from pathologies of the hemidesmosome and its neighbouring proteins as components of the dermal-epidermal junction.
Collapse
Affiliation(s)
- Iana Turcan
- Centre for Blistering Diseases, Department of Dermatology, University Medical Centre Groningen, University of Groningen, P.O. Box 30.001, 9700 RB, Groningen, The Netherlands,
| | | |
Collapse
|
12
|
Bose A, Teh MT, Mackenzie IC, Waseem A. Keratin k15 as a biomarker of epidermal stem cells. Int J Mol Sci 2013; 14:19385-98. [PMID: 24071939 PMCID: PMC3821562 DOI: 10.3390/ijms141019385] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 09/05/2013] [Accepted: 09/10/2013] [Indexed: 01/21/2023] Open
Abstract
Keratin 15 (K15) is type I keratin protein co-expressed with the K5/K14 pair present in the basal keratinocytes of all stratified epithelia. Although it is a minor component of the cytoskeleton with a variable expression pattern, nonetheless its expression has been reported as a stem cell marker in the bulge of hair follicles. Conversely, suprabasal expression of K15 has also been reported in both normal and diseased tissues, which is inconsistent with its role as a stem cell marker. Our recently published work has given evidence of the molecular pathways that seem to control the expression of K15 in undifferentiated and differentiated cells. In this article, we have critically reviewed the published work to establish the reliability of K15 as an epidermal stem cell marker.
Collapse
Affiliation(s)
- Amrita Bose
- Centre for Clinical and Diagnostic Oral Sciences, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Turner Street, London E1 2AD, UK.
| | | | | | | |
Collapse
|
13
|
Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis. J Invest Dermatol 2013; 134:754-763. [PMID: 23962810 PMCID: PMC3923277 DOI: 10.1038/jid.2013.356] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 11/12/2022]
Abstract
Keratin 9 (K9) is a type I intermediate filament protein whose expression is confined to the suprabasal layers of the palmoplantar epidermis. Although mutations in the K9 gene are known to cause epidermolytic palmoplantar keratoderma, a rare dominant-negative skin disorder, its functional significance is poorly understood. To gain insight into the physical requirement and importance of K9, we generated K9-deficient (Krt9−/−) mice. Here, we report that adult Krt9−/−mice develop calluses marked by hyperpigmentation that are exclusively localized to the stress-bearing footpads. Histological, immunohistochemical, and immunoblot analyses of these regions revealed hyperproliferation, impaired terminal differentiation, and abnormal expression of keratins K5, K14, and K2. Furthermore, the absence of K9 induces the stress-activated keratins K6 and K16. Importantly, mice heterozygous for the K9-null allele (Krt9+/−) show neither an overt nor histological phenotype, demonstrating that one Krt9 allele is sufficient for the developing normal palmoplantar epidermis. Together, our data demonstrate that complete ablation of K9 is not tolerable in vivo and that K9 is required for terminal differentiation and maintaining the mechanical integrity of palmoplantar epidermis.
Collapse
|
14
|
Chamcheu JC, Wood GS, Siddiqui IA, Syed DN, Adhami VM, Teng JM, Mukhtar H. Progress towards genetic and pharmacological therapies for keratin genodermatoses: current perspective and future promise. Exp Dermatol 2012; 21:481-9. [PMID: 22716242 PMCID: PMC3556927 DOI: 10.1111/j.1600-0625.2012.01534.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Hereditary keratin disorders of the skin and its appendages comprise a large group of clinically heterogeneous disfiguring blistering and ichthyotic diseases, primarily characterized by the loss of tissue integrity, blistering and hyperkeratosis in severely affected tissues. Pathogenic mutations in keratins cause these afflictions. Typically, these mutations in concert with characteristic features have formed the basis for improved disease diagnosis, prognosis and most recently therapy development. Examples include epidermolysis bullosa simplex, keratinopathic ichthyosis, pachyonychia congenita and several other tissue-specific hereditary keratinopathies. Understanding the molecular and genetic events underlying skin dysfunction has initiated alternative treatment approaches that may provide novel therapeutic opportunities for affected patients. Animal and in vitro disease modelling studies have shed more light on molecular pathogenesis, further defining the role of keratins in disease processes and promoting the translational development of new gene and pharmacological therapeutic strategies. Given that the molecular basis for these monogenic disorders is well established, gene therapy and drug discovery targeting pharmacological compounds with the ability to reinforce the compromised cytoskeleton may lead to promising new therapeutic strategies for treating hereditary keratinopathies. In this review, we will summarize and discuss recent advances in the preclinical and clinical modelling and development of gene, natural product, pharmacological and protein-based therapies for these disorders, highlighting the feasibility of new approaches for translational clinical therapy.
Collapse
Affiliation(s)
- Jean Christopher Chamcheu
- Department of Dermatology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Bose A, Teh MT, Hutchison IL, Wan H, Leigh IM, Waseem A. Two mechanisms regulate keratin K15 expression in keratinocytes: role of PKC/AP-1 and FOXM1 mediated signalling. PLoS One 2012; 7:e38599. [PMID: 22761689 PMCID: PMC3384677 DOI: 10.1371/journal.pone.0038599] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 05/08/2012] [Indexed: 01/24/2023] Open
Abstract
Background Keratin 15 (K15) is a type I keratin that is used as a marker of stem cells. Its expression is restricted to the basal layer of stratified epithelia, and the bulge in hair follicles. However, in certain clinical situations including oral lichen planus, K15 is induced in suprabasal layers, which is inconsistent with the role of a stem cell marker. This study provides insights into the mechanisms of K15 expression in the basal and differentiating keratinocytes. Methodology/Principal Findings Human keratinocytes were differentiated by three different methods; suspension in methylcellulose, high cell density and treatment with phorbol ester. The expression of mRNA was determined by quantitative PCR and protein by western blotting and immunostaining. Keratinocytes in suspension suppressed β1-integrin expression, induced differentiation-specific markers and K15, whereas FOXM1 (a cell cycle regulated protein) and K14 were downregulated. Rescuing β1-integrin by either fibronectin or the arginine-glycine-aspartate peptide suppressed K15 but induced K14 and FOXM1 expression. Specific inhibition of PKCδ, by siRNA, and AP-1 transcription factor, by TAM67 (dominant negative c-Jun), suppressed K15 expression, suggesting that PKC/AP-1 pathway plays a role in the differentiation-specific expression of K15. The basal cell-specific K15 expression may involve FOXM1 because ectopic expression of the latter is known to induce K15. Using chromatin immunoprecipitation, we have identified a single FOXM1 binding motif in the K15 promoter. Conclusions/Significance The data suggests that K15 is induced during terminal differentiation mediated by the down regulation of β1-integrin. However, this cannot be the mechanism of basal/stem cell-specific K15 expression in stratified epithelia, because basal keratinocytes do not undergo terminal differentiation. We propose that there are two mechanisms regulating K15 expression in stratified epithelia; differentiation-specific involving PKC/AP-1 pathway, and basal-specific mediated by FOXM1, and therefore the use of K15 expression as a marker of stem cells must be viewed with caution.
Collapse
Affiliation(s)
- Amrita Bose
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Muy-Teck Teh
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Iain L. Hutchison
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Hong Wan
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Irene M. Leigh
- Division of Cancer, Medical Research Institute, University of Dundee, Dundee, United Kingdom
| | - Ahmad Waseem
- Centre for Clinical and Diagnostic Oral Sciences, Institute of Dentistry, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- * E-mail:
| |
Collapse
|
16
|
Coulombe PA, Lee CH. Defining keratin protein function in skin epithelia: epidermolysis bullosa simplex and its aftermath. J Invest Dermatol 2012; 132:763-75. [PMID: 22277943 PMCID: PMC3279600 DOI: 10.1038/jid.2011.450] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Epidermolysis bullosa simplex (EBS) is a rare genetic condition typified by superficial bullous lesions following incident frictional trauma to the skin. Most cases of EBS are due to dominantly acting mutations in keratin 14 (K14) or K5, the type I and II intermediate filament (IF) proteins that copolymerize to form a pancytoplasmic network of 10 nm filaments in basal keratinocytes of epidermis and related epithelia. Defects in K5-K14 filament network architecture cause basal keratinocytes to become fragile, and account for their rupture upon exposure to mechanical trauma. The discovery of the etiology and pathophysiology of EBS was intimately linked to the quest for an understanding of the properties and function of keratin filaments in skin epithelia. Since then, continued cross-fertilization between basic science efforts and clinical endeavors has highlighted several additional functional roles for keratin proteins in the skin, suggested new avenues for effective therapies for keratin-based diseases, and expanded our understanding of the remarkable properties of the skin as an organ system.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
17
|
García M, Santiago JL, Terrón A, Hernández-Martín A, Vicente A, Fortuny C, De Lucas R, López JC, Cuadrado-Corrales N, Holguín A, Illera N, Duarte B, Sánchez-Jimeno C, Llames S, García E, Ayuso C, Martínez-Santamaría L, Castiglia D, De Luca N, Torrelo A, Mechan D, Baty D, Zambruno G, Escámez MJ, Del Río M. Two novel recessive mutations in KRT14 identified in a cohort of 21 Spanish families with epidermolysis bullosa simplex. Br J Dermatol 2012; 165:683-92. [PMID: 21623745 DOI: 10.1111/j.1365-2133.2011.10428.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Basal epidermolysis bullosa simplex (EBS) is a group of blistering genodermatoses mostly caused by mutations in the keratin genes, KRT5 and KRT14. Recessive mutations represent about 5% of all EBS mutations, being common and specific in populations with high consanguinity, where affected patients show severe phenotypes. OBJECTIVES To accomplish the first mutational analysis in patients of Spanish origin with EBS and to delineate a comprehensive genotype-phenotype correlation. METHODS Twenty-one EBS families were analysed. Immunofluorescence mapping at the dermoepidermal junction level was performed on skin biopsies from patients. Mutation screening of the entire coding sequences of KRT5 and KRT14 in genomic DNA was assessed by polymerase chain reaction and direct sequencing. RESULTS KRT5 or KRT14 causative mutations were identified in 18 of the 21 EBS families. A total of 14 different mutations were disclosed, of which 12 were dominant missense mutations and two truncating recessive mutations. Five of the 14 mutations were novel including three dominant in KRT5 (p.V186E, p.T321P and p.A428T) and two recessive in KRT14 (p.K116X and p.K250RfsX8). The two patients with EBS carrying homozygous recessive mutations were affected by severe phenotypes and belonged to consanguineous families. All five families with the EBS Dowling-Meara subtype carried recurrent mutations affecting the highly conserved ends of the α-helical rod domain of K5 and K14. The seven mutations associated with the localized EBS subtype were widely distributed along the KRT5 and KRT14 genes. Two families with mottled pigmentation carried the P25L mutation in KRT5, commonly associated with this subtype. CONCLUSIONS This study further confirms the genotype-phenotype correlation established for EBS in other ethnic groups, and is the first in a Mediterranean country (excluding Israel). This study adds two novel recessive mutations to the worldwide record to date, which includes a total of 14 mutations. As in previous reports, the recessive mutations resulted in a lack of keratin K14, giving rise to a generalized and severe presentation.
Collapse
Affiliation(s)
- M García
- Regenerative Medicine Unit, Epithelial Biomedicine Division, Basic Research Department, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Av. Complutense 22, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bowden PE. Gene therapy for keratin genodermatoses: striving forward but obstacles persist. J Invest Dermatol 2011; 131:1403-5. [PMID: 21673708 DOI: 10.1038/jid.2011.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
D'Alessandro and colleagues have investigated stress responses in keratinocyte cell lines lacking keratin 14 (K14-null mutation). In this issue, they describe the use of this model to assess the extent of phenotypic rescue achievable by wild-type K14 in the absence of a dominant negative mutation. This work provides proof that, in principle, transfection of wild-type K14 on a null background can significantly normalize the cell and reduce stress responses. However, hurdles to gene therapy in vivo persist because the majority of patients with keratin genodermatoses have heterozygous dominant negative mutations, which are more disruptive than those of the null state. Although correction in the laboratory is now relatively routine, gene delivery to the skin of patients and stable correction of mutations remain major challenges.
Collapse
Affiliation(s)
- Paul E Bowden
- Department of Dermatology and Wound Healing, School of Medicine, Cardiff University, Heath Park, Cardiff, UK.
| |
Collapse
|
19
|
A new case of keratin 14 functional knockout causes severe recessive EBS and questions the haploinsufficiency model of Naegeli-Franceschetti-Jadassohn syndrome. J Invest Dermatol 2011; 131:2131-3. [PMID: 21734713 DOI: 10.1038/jid.2011.166] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
20
|
Bolling MC, Lemmink HH, Jansen GHL, Jonkman MF. Mutations in KRT5 and KRT14 cause epidermolysis bullosa simplex in 75% of the patients. Br J Dermatol 2011; 164:637-44. [PMID: 21375516 DOI: 10.1111/j.1365-2133.2010.10146.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Epidermolysis bullosa simplex (EBS) is a mechanobullous genodermatosis that may be caused by mutations in the genes KRT5 and KRT14 encoding the basal epidermal keratins 5 (K5) and 14 (K14). Three main clinical subtypes of EBS exist, differing in onset, distribution and severity of skin blistering. Previous reports of KRT5 and KRT14 mutations suggest a correlation between the location of the mutation and the severity of the associated EBS phenotype. OBJECTIVES The prevalence of KRT5/KRT14 mutations and the genotype-phenotype correlation in the largest tissue-confirmed EBS population is investigated. METHODS KRT5 and KRT14 genomic DNA and cDNA sequences of 76 clinically well-defined unrelated EBS probands were amplified and then subjected to direct sequencing and product length analysis. Immunofluorescence microscopy on patients' skin biopsies with antibodies against K5 and K14 was performed to study protein expression. RESULTS In 57 of 76 (75%) probands 41 different KRT5 and KRT14 mutations were identified, of which 12 were novel. Mutations affecting the highly conserved helix boundary motifs of the rod domains of K5 and K14, and the K14 helix initiation motif in particular, were associated with the severest, EBS Dowling-Meara, phenotype. In 21 EBS probands (37%) the mutation was de novo. In 19 probands (25%) KRT5 or KRT14 mutations were excluded. CONCLUSIONS The phenotype-genotype correlation observed in this large EBS population underscores the importance of helix boundary motifs for keratin assembly. Only three-quarters of biopsy-confirmed EBS probands have KRT5 or KRT14 mutations, indicating genetic heterogeneity in EBS. Alternative gene candidates are discussed.
Collapse
Affiliation(s)
- M C Bolling
- Center for Blistering Diseases, Department of Dermatology, University Medical Center Groningen, the Netherlands.
| | | | | | | |
Collapse
|
21
|
D'Alessandro M, Coats SE, Jonkman MF, Jonkmann MF, Leigh IM, Lane EB. Keratin 14-null cells as a model to test the efficacy of gene therapy approaches in epithelial cells. J Invest Dermatol 2011; 131:1412-9. [PMID: 21326298 DOI: 10.1038/jid.2011.19] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Skin fragility disorders caused by keratin mutations are incurable, and a better understanding of their etiology is needed to find new ways to improve and treat these conditions. The best-studied skin fragility disorder is epidermolysis bullosa simplex (EBS), an autosomal dominant condition caused by mutations in keratin 5 (K5) or K14. To analyze disease mechanisms and develop gene therapy strategies, we have used keratinocyte cell lines derived from EBS patients as model systems. Here, we describe two cell lines established from EBS patients with K14-null mutations. We analyze the responses of these cells to stress assays previously shown to discriminate between wild-type and keratin-mutant keratinocytes, to directly evaluate the efficacy of rescuing K14-null cells by supplementation with wild-type K14 complementary DNA (cDNA). The K14-null cells show elevated levels of stress correlating with reduced normal keratin function. By transfecting wild-type K14 into these cells, we demonstrate "proof of principle" that an add-back approach can significantly rescue the normal keratinocyte behavior profile. These K14-null cell lines provide a disease model for studying the effects of keratin ablation in EBS patients and to test the efficacy of gene add-back and other therapy approaches in keratinocytes.
Collapse
Affiliation(s)
- Mariella D'Alessandro
- CR UK Cell Structure Research Group, Division of Molecular Medicine, College of Life Sciences, University of Dundee, Dundee, UK.
| | | | | | | | | | | |
Collapse
|
22
|
Tiede S, Bohm K, Meier N, Funk W, Paus R. Endocrine controls of primary adult human stem cell biology: thyroid hormones stimulate keratin 15 expression, apoptosis, and differentiation in human hair follicle epithelial stem cells in situ and in vitro. Eur J Cell Biol 2010; 89:769-77. [PMID: 20656376 DOI: 10.1016/j.ejcb.2010.06.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 06/17/2010] [Accepted: 06/21/2010] [Indexed: 01/08/2023] Open
Abstract
Here we demonstrate that physiological concentrations of the thyroid hormones T3 and T4 enhance the KERATIN 15 promoter activity and expression in epithelial stem cells of adult human scalp hair follicles in situ and in vitro. Additionally, T3 and T4 stimulate expression of the immuno-inhibitory surface molecule CD200. Subsequently, T3 and T4 induce apoptosis and differentiation and inhibit clonal growth of these progenitor cells in vitro. These data suggest that human hair follicle bulge-derived epithelial stem cells underlie profound, previously unknown hormonal regulation by thyroid hormones, and show that primary human keratin 15-GFP+ progenitor cells can be exploited to further elucidate fundamental endocrine controls of human epithelial stem cells.
Collapse
Affiliation(s)
- S Tiede
- Department of Dermatology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | |
Collapse
|
23
|
Jeřábková B, Marek J, Bučková H, Kopečková L, Veselý K, Valíčková J, Fajkus J, Fajkusová L. Keratin mutations in patients with epidermolysis bullosa simplex: correlations between phenotype severity and disturbance of intermediate filament molecular structure. Br J Dermatol 2010; 162:1004-13. [DOI: 10.1111/j.1365-2133.2009.09626.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
24
|
Jeřábková B, Marek J, Bučková H, Kopečková L, Veselý K, Valíčková J, Fajkus J, Fajkusová L. Keratin mutations in patients with epidermolysis bullosa simplex: correlations between phenotype severity and disturbance of intermediate filament molecular structure. Br J Dermatol 2010. [DOI: 10.1111/j.1365-2133.2010.09626.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
|
26
|
Coulombe PA, Kerns ML, Fuchs E. Epidermolysis bullosa simplex: a paradigm for disorders of tissue fragility. J Clin Invest 2009; 119:1784-93. [PMID: 19587453 PMCID: PMC2701872 DOI: 10.1172/jci38177] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Epidermolysis bullosa (EB) simplex is a rare genetic condition typified by superficial bullous lesions that result from frictional trauma to the skin. Most cases are due to dominantly acting mutations in either keratin 14 (K14) or K5, the type I and II intermediate filament (IF) proteins tasked with forming a pancytoplasmic network of 10-nm filaments in basal keratinocytes of the epidermis and in other stratified epithelia. Defects in K5/K14 filament network architecture cause basal keratinocytes to become fragile and account for their trauma-induced rupture. Here we review how laboratory investigations centered on keratin biology have deepened our understanding of the etiology and pathophysiology of EB simplex and revealed novel avenues for its therapy.
Collapse
Affiliation(s)
- Pierre A Coulombe
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
27
|
The molecular basis of human keratin disorders. Hum Genet 2009; 125:355-73. [DOI: 10.1007/s00439-009-0646-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2009] [Accepted: 02/18/2009] [Indexed: 01/01/2023]
|
28
|
Yiasemides E, Trisnowati N, Su J, Dang N, Klingberg S, Marr P, Melbourne W, Tran K, Chow CW, Orchard D, Varigos G, Murrell DF. Clinical heterogeneity in recessive epidermolysis bullosa due to mutations in the keratin 14 gene,KRT14. Clin Exp Dermatol 2008; 33:689-97. [DOI: 10.1111/j.1365-2230.2008.02858.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
MELLERIO J, SMITH F, McMILLAN J, McLEAN W, McGRATH J, MORRISON G, TIERNEY P, ALBERT D, WICHE G, LEIGH I, GEDDES J, LANE E, UITTO J, EADY R. Recessive epidermolysis bullosa simplex associated with plectin mutations: infantile respiratory complications in two unrelated cases. Br J Dermatol 2008. [DOI: 10.1046/j.1365-2133.1997.19832064.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Mild recessive bullous congenital ichthyosiform erythroderma due to a previously unidentified homozygous keratin 10 nonsense mutation. J Invest Dermatol 2008; 128:1648-52. [PMID: 18219278 DOI: 10.1038/sj.jid.5701257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have identified a previously unreported homozygous nonsense mutation p.Cys427X in the keratin 10 (K10) gene (KRT10) in a Turkish girl with recessive bullous congenital ichthyosiform erythroderma (BCIE) showing superficial blistering. p.Cys427X is located upstream of the previously reported homozygous truncation mutation within the same exon 6 causing mRNA decay. Immunohistochemical examination showed a complete absence of K10 protein in the patient's epidermis. The findings of this study suggest that K10 knockout patients show unique clinicopathological features of clinically mild BCIE with blisters occurring within the granular layer. In addition, the unaffected, heterozygous carriers of the mutation indicate that the K10 peptide from one normal allele alone is sufficient for keratin network formation.
Collapse
|
31
|
Lugassy J, McGrath JA, Itin P, Shemer R, Verbov J, Murphy HR, Ishida-Yamamoto A, Digiovanna JJ, Bercovich D, Karin N, Vitenshtein A, Uitto J, Bergman R, Richard G, Sprecher E. KRT14 haploinsufficiency results in increased susceptibility of keratinocytes to TNF-alpha-induced apoptosis and causes Naegeli-Franceschetti-Jadassohn syndrome. J Invest Dermatol 2007; 128:1517-24. [PMID: 18049449 DOI: 10.1038/sj.jid.5701187] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Naegeli-Franceschetti-Jadassohn syndrome (NFJS) is a rare autosomal dominant disorder characterized by loss of dermatoglyphics, reticulate hyperpigmentation of the skin, palmoplantar keratoderma, abnormal sweating, and other developmental anomalies of the teeth, hair, and skin. We recently demonstrated that NFJS is caused by heterozygous nonsense or frameshift mutations in the E1/V1-encoding region of KRT14, but the mechanisms for their deleterious effects in NFJS remain elusive. In this study, we further expand the spectrum of NFJS-causing mutations and demonstrate that these mutations result in haploinsufficiency for keratin 14 (K14). As increased apoptotic activity was observed in the epidermal basal cell layer in NFJS patients and as previous data suggested that type I keratins may confer resistance to tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis in epithelial tissues, we assessed the effect of down-regulation of KRT14 expression on apoptotic activity in keratinocytes. Using a HaCaT cell-based assay, we found that decreased KRT14 expression is associated with increased susceptibility to TNF-alpha-induced apoptosis. This phenomenon was not observed when cells were cultured in the presence of doxycycline, a known negative regulator of TNF-alpha-dependant pro-apoptotic signaling. Collectively, our results indicate that NFJS results from haploinsufficiency for K14 and suggest that increased susceptibility of keratinocytes to pro-apoptotic signals may be involved in the pathogenesis of this ectodermal dysplasia syndrome.
Collapse
Affiliation(s)
- Jennie Lugassy
- Laboratory of Molecular Dermatology and Department of Dermatology, Rambam Health Care Campus, Haifa, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kerns ML, DePianto D, Dinkova-Kostova AT, Talalay P, Coulombe PA. Reprogramming of keratin biosynthesis by sulforaphane restores skin integrity in epidermolysis bullosa simplex. Proc Natl Acad Sci U S A 2007; 104:14460-5. [PMID: 17724334 PMCID: PMC1964870 DOI: 10.1073/pnas.0706486104] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epidermolysis bullosa simplex (EBS) is a rare inherited condition in which the epidermis loses its integrity after mechanical trauma. EBS is typified by the dysfunction of intermediate filaments in basal keratinocytes of epidermis. Most cases of EBS are due to mutations in the keratin 5 or 14 gene (K5 and K14), whose products copolymerize to form intermediate filaments in basal keratinocytes. Available treatments for this disorder are only palliative. Here we exploit functional redundancy within the keratin gene family as the basis for therapy. We show that genetic activation of Gli2 or treatment with a pharmacological activator of Nrf2, two transcription factors eliciting distinct transcriptional programs, alleviates the blistering caused by a K14 deficiency in an EBS mouse model, correlating with K17 induction in basal epidermal keratinocytes. Nrf2 induction is brought about by treatment with sulforaphane, a natural product. Sulforaphane thus represents an attractive option for the prevention of skin blistering associated with K14 mutations in EBS.
Collapse
Affiliation(s)
| | | | | | - Paul Talalay
- Pharmacology and Molecular Sciences, and
- To whom correspondence may be addressed. E-mail: or
| | - Pierre A. Coulombe
- Departments of *Biological Chemistry
- Dermatology, 725 North Wolfe Street, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
33
|
Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res 2007; 313:2021-32. [PMID: 17434482 DOI: 10.1016/j.yexcr.2007.03.005] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2007] [Revised: 03/02/2007] [Accepted: 03/06/2007] [Indexed: 12/11/2022]
Abstract
The diversity of epithelial functions is reflected by the expression of distinct keratin pairs that are responsible to protect epithelial cells against mechanical stress and to act as signaling platforms. The keratin cytoskeleton integrates these functions by forming a supracellular scaffold that connects at desmosomal cell-cell adhesions. Multiple human diseases and murine knockouts in which the integrity of this system is destroyed testify to its importance as a mechanical stabilizer in certain epithelia. Yet, surprisingly little is known about the precise mechanisms responsible for assembly and disease pathology. In addition to these structural aspects of keratin function, experimental evidence accumulating in recent years has led to a much more complex view of the keratin cytoskeleton. Distinct keratins emerge as highly dynamic scaffolds in different settings and contribute to cell size determination, translation control, proliferation, cell type-specific organelle transport, malignant transformation and various stress responses. All of these properties are controlled by highly complex patterns of phosphorylation and molecular associations.
Collapse
Affiliation(s)
- Thomas M Magin
- Institute for Physiological Chemistry, Division of Cell Biochemistry, Bonner Forum Biomedizin and LIMES, Universität Bonn, Nussallee 11, 53115 Bonn, Germany.
| | | | | |
Collapse
|
34
|
Has C, Chang YR, Volz A, Hoeping D, Kohlhase J, Bruckner-Tuderman L. Novel keratin 14 mutations in patients with severe recessive epidermolysis bullosa simplex. J Invest Dermatol 2006; 126:1912-4. [PMID: 16614722 DOI: 10.1038/sj.jid.5700312] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
Müller FB, Huber M, Kinaciyan T, Hausser I, Schaffrath C, Krieg T, Hohl D, Korge BP, Arin MJ. A human keratin 10 knockout causes recessive epidermolytic hyperkeratosis. Hum Mol Genet 2006; 15:1133-41. [PMID: 16505000 DOI: 10.1093/hmg/ddl028] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Epidermolytic hyperkeratosis (EHK) is a blistering skin disease inherited as an autosomal-dominant trait. The disease is caused by genetic defects of the epidermal keratin K1 or K10, leading to an impaired tonofilament network of differentiating epidermal cells. Here, we describe for the first time a kindred with recessive inheritance of EHK. Sequence analysis revealed a homozygous nonsense mutation of the KRT10 gene in the affected family members, leading to a premature termination codon (p.Q434X), whereas the clinically unaffected consanguineous parents were both heterozygous carriers of the mutation. Semi-quantitative RT-PCR and western blot analysis demonstrated degradation of the KRT10 transcript, resulting in complete absence of keratin K10 protein in the epidermis and cultured keratinocytes of homozygous patients. This K10 null mutation leads to a severe phenotype, clinically resembling autosomal-dominant EHK, but differing in form and distribution of keratin aggregates on ultrastructural analysis. Strong induction of the wound-healing keratins K6, K16 and K17 was found in the suprabasal epidermis, which are not able to compensate for the lack of keratin 10. We demonstrate that a recessive mutation in KRT10 leading to a complete human K10 knockout can cause EHK. Identification of the heterogeneity of this disorder has a major impact for the accurate genetic counseling of patients and their families and also has implications for gene-therapy approaches.
Collapse
Affiliation(s)
- Felix B Müller
- Department of Dermatology, University of Cologne, 50924 Köln, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Barnhart KF, Credille KM, Ambrus A, Dunstan RW. Preservation of phenotype in an organotypic cell culture model of a recessive keratinization defect of Norfolk terrier dogs. Exp Dermatol 2005; 14:481-90. [PMID: 15946235 DOI: 10.1111/j.0906-6705.2005.00306.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The purpose of this study is to reproduce in vitro a recessive keratinization defect of Norfolk terrier dogs characterized by a lack of keratin 10 (K10) production. Keratinocytes from skin biopsy samples of four normal dogs and two affected dogs were cultured organotypically with growth factor-supplemented media in order to stimulate cornification. The cultured epidermis from the normal dogs closely resembled the normal epidermis in vivo and cornified. The cultured epidermis from the affected dogs displayed many phenotypic alterations identified in skin biopsies from dogs with this heritable defect. Immunohistochemistry and immunoblotting showed a marked decrease in K10 from the cultures of the affected keratinocytes, compared to that in K10 from the cultures of the normal keratinocytes. Real-time reverse transcription polymerase chain reaction quantitation showed a 31-fold decrease in K10, a 1.75-fold increase in K1 and a 136-fold increase in K2e between the affected and the normal epidermis. Organotypic keratinocytes showed a 241-fold decrease in K10, a 31-fold decrease in K1 and a 1467-fold decrease in K2e between the affected and normal cultures. Although in vitro keratin expression did not precisely simulate in vivo, the morphology of the normal and the affected epidermis was largely preserved; thus, this culture system may provide an alternative to in vivo investigations for cutaneous research involving cornification.
Collapse
Affiliation(s)
- Kirstin F Barnhart
- Department of Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA.
| | | | | | | |
Collapse
|
38
|
Královičová J, Christensen MB, Vořechovský I. Biased exon/intron distribution of cryptic and de novo 3' splice sites. Nucleic Acids Res 2005; 33:4882-98. [PMID: 16141195 PMCID: PMC1197134 DOI: 10.1093/nar/gki811] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We compiled sequences of previously published aberrant 3′ splice sites (3′ss) that were generated by mutations in human disease genes. Cryptic 3′ss, defined here as those resulting from a mutation of the 3′YAG consensus, were more frequent in exons than in introns. They clustered in ∼20 nt region adjacent to authentic 3′ss, suggesting that their under-representation in introns is due to a depletion of AG dinucleotides in the polypyrimidine tract (PPT). In contrast, most aberrant 3′ss that were induced by mutations outside the 3′YAG consensus (designated ‘de novo’) were in introns. The activation of intronic de novo 3′ss was largely due to AG-creating mutations in the PPT. In contrast, exonic de novo 3′ss were more often induced by mutations improving the PPT, branchpoint sequence (BPS) or distant auxiliary signals, rather than by direct AG creation. The Shapiro–Senapathy matrix scores had a good prognostic value for cryptic, but not de novo 3′ss. Finally, AG-creating mutations in the PPT that produced aberrant 3′ss upstream of the predicted BPS in vivo shared a similar ‘BPS-new AG’ distance. Reduction of this distance and/or the strength of the new AG PPT in splicing reporter pre-mRNAs improved utilization of authentic 3′ss, suggesting that AG-creating mutations that are located closer to the BPS and are preceded by weaker PPT may result in less severe splicing defects.
Collapse
Affiliation(s)
| | | | - Igor Vořechovský
- To whom correspondence should be addressed. Tel: +44 2380 796425; Fax: +44 2380 794264;
| |
Collapse
|
39
|
Abstract
In the years following the initial reports of keratin gene mutations in epidermolysis bullosa simplex, great strides have been made in understanding the basic biology of human keratins and in understanding the etiology and pathogenesis of a number of specific human single gene disorders. A total of 19 human keratin genes is now linked to specific diseases. This article summarizes current knowledge in relation to basic keratin biology, known disease associations, and genotype correlation in this diverse and complex group of conditions.
Collapse
Affiliation(s)
- Alan D Irvine
- Department of Paediatric Dermatology, Our Lady's Hospital for Sick Children, Crumlin Dublin 12, Ireland.
| |
Collapse
|
40
|
Li R, Johnson AB, Salomons G, Goldman JE, Naidu S, Quinlan R, Cree B, Ruyle SZ, Banwell B, D'Hooghe M, Siebert JR, Rolf CM, Cox H, Reddy A, Gutiérrez-Solana LG, Collins A, Weller RO, Messing A, van der Knaap MS, Brenner M. Glial fibrillary acidic protein mutations in infantile, juvenile, and adult forms of Alexander disease. Ann Neurol 2005; 57:310-26. [PMID: 15732097 DOI: 10.1002/ana.20406] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alexander disease is a progressive, usually fatal neurological disorder defined by the widespread and abundant presence in astrocytes of protein aggregates called Rosenthal fibers. The disease most often occurs in infants younger than 2 years and has been labeled a leukodystrophy because of an accompanying severe myelin deficit in the frontal lobes. Later onset forms have also been recognized based on the presence of abundant Rosenthal fibers. In these cases, clinical signs and pathology can be quite different from the infantile form, raising the question whether they share the same underlying cause. Recently, we and others have found pathogenic, de novo missense mutations in the glial fibrillary acidic protein gene in most infantile patients examined and in a few later onset patients. To obtain further information about the role of glial fibrillary acidic protein mutations in Alexander disease, we analyzed 41 new patients and another 3 previously described clinically, including 18 later onset patients. Our results show that dominant missense glial fibrillary acidic protein mutations account for nearly all forms of this disorder. They also significantly expand the catalog of responsible mutations, verify the value of magnetic resonance imaging diagnosis, indicate an unexpected male predominance for the juvenile form, and provide insights into phenotype-genotype relations.
Collapse
Affiliation(s)
- Rong Li
- Department of Neurobiology and Civitan International Research Center, University of Alabama-Birmingham, Birmingham, AL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hafner M, Wenk J, Nenci A, Pasparakis M, Scharffetter-Kochanek K, Smyth N, Peters T, Kess D, Holtkötter O, Shephard P, Kudlow JE, Smola H, Haase I, Schippers A, Krieg T, Müller W. Keratin 14 Cre transgenic mice authenticate keratin 14 as an oocyte-expressed protein. Genesis 2005; 38:176-81. [PMID: 15083518 DOI: 10.1002/gene.20016] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Three mouse lines expressing Cre recombinase under the control of the human K14 promoter induced specific deletion of loxP flanked target sequences in the epidermis, in tongue, and thymic epithelium of the offspring where the Cre allele was inherited from the father. Where the mother carried the Cre allele, loxP flanked sequences were completely deleted in all tissues of the offspring, even in littermates that did not inherit the Cre allele. This maternally inherited phenotype indicates that the human K14 promoter is transcriptionally active in murine oocytes and that the enzyme remains active until after fertilization, even when the Cre allele becomes transmitted to the polar bodies during meiosis. Detection of K14 mRNA by RT-PCR in murine ovaries and immunohistochemical identification of the K14 protein in oocytes demonstrates that the human K14 promoter behaves like its murine homolog, thus identifying K14 as an authentic oocytic protein.
Collapse
|
42
|
Affiliation(s)
- M Bishr Omary
- From the Department of Medicine, Palo Alto Veterans Affairs Medical Center and Stanford University, Palo Alto, Calif 94304, USA
| | | | | |
Collapse
|
43
|
Tao GZ, Toivola DM, Zhong B, Michie SA, Resurreccion EZ, Tamai Y, Taketo MM, Omary MB. Keratin-8 null mice have different gallbladder and liver susceptibility to lithogenic diet-induced injury. J Cell Sci 2004; 116:4629-38. [PMID: 14576356 DOI: 10.1242/jcs.00782] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Keratin transgenic mouse models and the association of human keratin mutations with liver disease highlight the importance of keratins in protecting the liver from environmental insults, but little is known regarding keratins and their function in the gallbladder. We characterized keratin expression pattern and filament organization in normal and keratin polypeptide-8 (K8)-null, K18-null and K19-null gallbladders, and examined susceptibility to liver and gallbladder injury induced by a high-fat lithogenic diet (LD) in K8-null mice. The major keratins of normal mouse gallbladder are K8>K19>K18 which become markedly depleted in K8-null mice with minor K18/K19 remnants and limited K7 over-expression. Compensatory K18/K20 protein and RNA overexpression occur in K19-null but not in K18-null gallbladders, probably because of the higher levels of K19 than K18 in normal gallbladder. LD challenge causes more severe liver injury in K8-null than wild-type mice without altering keratin protein levels. In contrast, wild-type and K8-null gallbladders are equally susceptible to LD-induced injury and stone formation, but wild-type gallbladders do overexpress keratins upon LD challenge. LD-induced injury triggers keratin hyperphosphorylation in wild-type livers and gallbladders. Hence, mouse gallbladder K8/K18/K19 expression is induced in response to cholelithiasis injury. A high-fat LD increases the susceptibility of K8-null mice to liver but not gallbladder injury, which suggests that keratin mutations may increase the risk of liver damage in patients with steatohepatitis. Differences between K8-null mouse gallbladder and hepatocyte susceptibility to injury may be related to their minimal versus absent keratin expression, respectively.
Collapse
Affiliation(s)
- Guo-Zhong Tao
- Palo Alto VA Medical Center, Palo Alto, Mail code 154J, 3801 Miranda Avenue, Palo Alto, CA 94304 and Stanford University School of Medicine Digestive Disease Center, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Smith FJD, Morley SM, McLean WHI. Novel Mechanism of Revertant Mosaicism in Dowling–Meara Epidermolysis Bullosa Simplex. J Invest Dermatol 2004; 122:73-7. [PMID: 14962092 DOI: 10.1046/j.0022-202x.2003.22129.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The severe Dowling-Meara form of epidermolysis bullosa simplex is caused by dominant-negative mutations in keratins 5 and 14, which are specifically expressed in the basal keratinocytes of the epidermis. The most common mutation in the Dowling-Meara form of epidermolysis bullosa simplex patients is the missense mutation R125C in exon 1 of the K14 gene. We made a primary keratinocyte cell line from a sporadic case known to carry the R125C mutation as part of an ongoing gene therapy initiative. The full-length K14 cDNA was sequenced using keratinocyte mRNA. Unexpectedly, a second mutation was identified in K14: a heterozygous 1 bp insertion mutation (242insG) upstream of the R125C mutation. This frameshift mutation creates a premature termination codon immediately downstream, thereby nullifying the dominant-negative allele. The second mutation was only present in DNA derived from keratinocytes and was absent from lymphocyte DNA. This case represents a novel mechanism of revertant mosaicism and is an example of "natural gene therapy".
Collapse
Affiliation(s)
- Frances J D Smith
- Epithelial Genetics Group, Human Genetics Unit, Ninewells Medical School, University of Dundee, UK.
| | | | | |
Collapse
|
45
|
Smith FJD, Sandilands A, McLean WHI. Molecular genetics methods for human intermediate filament diseases. Methods Cell Biol 2004; 78:131-61. [PMID: 15646618 DOI: 10.1016/s0091-679x(04)78006-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Frances J D Smith
- Epithelial Genetics Group, Human Genetics Unit, Ninewells Medical School, University of Dundee, Dundee, Scotland, UK
| | | | | |
Collapse
|
46
|
El Ghalbzouri A, Jonkman M, Kempenaar J, Ponec M. Recessive epidermolysis bullosa simplex phenotype reproduced in vitro: ablation of keratin 14 is partially compensated by keratin 17. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1771-9. [PMID: 14578178 DOI: 10.1016/s0002-9440(10)63537-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Recessive epidermolysis bullosa simplex (REBS) is characterized by generalized cutaneous blistering in response to mechanical trauma. This results from fragility of the basal keratinocytes that lack keratin tonofilaments because of homozygote null mutation in the keratin 14 gene. REBS patients display in addition focal dyskeratotic skin lesions with histology of epidermolytic hyperkeratosis (EHK) and tonofilament clumping in the suprabasal layers of the epidermis. In this study we examined whether it is possible to mimic in vitro the bullous and dyskeratotic cellular phenotype. For this purpose, fibroblasts from nondyskeratotic (K14-/-) and dyskeratotic (K14-/-) skin of a REBS patient and fibroblasts from a healthy donor (K14+/+) were isolated and incorporated into collagen matrices. Subsequently, fresh biopsies originating from the nondyskeratotic and dyskeratotic skin of the patient and from a healthy donor were placed onto the collagen matrices and cultured at the air-liquid interface. Epidermal morphogenesis was evaluated on the basis of tissue morphology and the expression of a series of keratins. The results of the present study indicate that basal cell vacuolization in REBS can be mimicked in vitro but not the EHK. Fibroblasts seem to play an important regulatory role in establishing the REBS phenotype. These findings suggest that wild-type fibroblasts may enhance the stability of K14-/- keratinocytes in vitro.
Collapse
Affiliation(s)
- Abdoelwaheb El Ghalbzouri
- Department of Dermatology, Leiden University Medical Center, Sylvius Laboratory, 2300 RA Leiden, The Netherlands
| | | | | | | |
Collapse
|
47
|
Herrmann H, Hesse M, Reichenzeller M, Aebi U, Magin TM. Functional complexity of intermediate filament cytoskeletons: from structure to assembly to gene ablation. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 223:83-175. [PMID: 12641211 DOI: 10.1016/s0074-7696(05)23003-6] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The cell biology of intermediate filament (IF) proteins and their filaments is complicated by the fact that the members of the gene family, which in humans amount to at least 65, are differentially expressed in very complex patterns during embryonic development. Thus, different tissues and cells express entirely different sets and amounts of IF proteins, the only exception being the nuclear B-type lamins, which are found in every cell. Moreover, in the course of evolution the individual members of this family have, within one species, diverged so much from each other with regard to sequence and thus molecular properties that it is hard to envision a unifying kind of function for them. The known epidermolytic diseases, caused by single point mutations in keratins, have been used as an argument for a role of IFs in mechanical "stress resistance," something one would not have easily ascribed to the beaded chain filaments, a special type of IF in the eye lens, or to nuclear lamins. Therefore, the power of plastic dish cell biology may be limited in revealing functional clues for these structural elements, and it may therefore be of interest to go to the extreme ends of the life sciences, i.e., from the molecular properties of individual molecules including their structure at the atomic level to targeted inactivation of their genes in living animals, mouse, and worm to define their role more precisely in metazoan cell physiology.
Collapse
Affiliation(s)
- Harald Herrmann
- Division of Cell Biology, German Cancer Research Center, D-69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
48
|
Abstract
Keratins are the type I and II intermediate filament proteins which form a cytoskeletal network within all epithelial cells. They are expressed in pairs in a tissue- and differentiation-specific fashion. Epidermolysis bullosa simplex (EBS) was the first human disorder to be associated with keratin mutations. The abnormal keratin filament aggregates observed in basal cell keratinocytes of some EBS patients are composed of keratins K5 and K14. Dominant mutations in the genes encoding these proteins were shown to disrupt the keratin filament cytoskeleton resulting in cells that are less resilient and blister with mild physical trauma. Identification of mutations in other keratin genes soon followed with attention focussed on disorders showing abnormal clumping of keratin filaments in specific cells. For example, in bullous congenital ichthyosiform erythroderma, clumping of filaments in the suprabasal cells led to the identification of mutations in the suprabasal keratins, K1 and K10. Mutations have now been identified in 18 keratins, all of which produce a fragile cell phenotype. These include ichthyosis bullosa of Siemens (K2e), epidermolytic palmoplantar keratoderma (K1, K9), pachyonychia congenita (K6a, K6b, K16, K17), white sponge nevus (K4, K13), Meesmann's corneal dystrophy (K3, K12), cryptogenic cirrhosis (K8, K18) and monilethrix (hHb6, hHb1).In general, these disorders are inherited as autosomal dominant traits and the mutations act in a dominant-negative manner. Therefore, treatment in the form of gene therapy is difficult, as the mutant gene needs to be inactivated. Ways of achieving this are actively being studied. Reliable mutation detection methods from genomic DNA are now available. This enables rapid screening of patients for keratin mutations. For some of the more severe phenotypes, prenatal diagnosis may be requested and this can now be performed from chorionic villus samples at an early stage of the pregnancy. This review article describes the discovery of, to date, mutations in 18 keratin genes associated with inherited human diseases.
Collapse
Affiliation(s)
- Frances Smith
- Epithelial Genetics Group, Human Genetics Unit, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK.
| |
Collapse
|
49
|
Pfendner EG, Nakano A, Pulkkinen L, Christiano AM, Uitto J. Prenatal diagnosis for epidermolysis bullosa: a study of 144 consecutive pregnancies at risk. Prenat Diagn 2003; 23:447-56. [PMID: 12813757 DOI: 10.1002/pd.619] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Epidermolysis bullosa (EB) is a group of inherited disorders characterized by increased skin fragility, resulting in blisters and erosions after minor trauma. Mutations in 10 structural genes expressed in the cutaneous basement membrane zone have been reported. The DebRA Molecular Diagnostics Laboratory at Jefferson Medical College has performed 144 DNA-based prenatal diagnoses since 1993 in families at risk for recurrence of the most severe forms of EB, including the recessive dystrophic EB (RDEB), junctional EB (JEB), EB with pyloric atresia (EB-PA), and EB simplex (EBS). A mutation-detection strategy using either conformation-sensitive gel electrophoresis (CSGE) or denaturing high-performance liquid chromatography (dHPLC) scanning analysis, followed by nucleotide sequencing, was applied to most cases with DEB and to all JEB, EB-PA, and EBS families. For some RDEB families, linkage analysis was performed, either alone when the inheritance pattern was clear or in combination with one mutation. Among the 144 prenatal diagnoses, 63 were for RDEB, 69 for JEB, 6 for EB-PA, and 6 for EBS. Twenty-eight normal, 73 heterozygous carrier, and 28 affected RDEB, JEB, and EB-PA pregnancies were reported in these recessively inherited diseases. Two affected and four normal pregnancies were predicted in dominantly inherited EBS. Among the 144 pregnancies, 9 were terminated without confirmation, 13 cases were lost to follow-up, and 6 pregnancies are ongoing. There were 6 families with inconclusive results due either to recombination events between flanking markers, absence of informative markers for one allele, or lack of sample from the previously affected child. There were three discordant results, one that was explained by maternal contamination of the chorionic villus sample and two that were unresolved. Overall, the availability, relative ease, and over 98% success rate make molecular DNA-based prenatal diagnosis a viable option for EB families at risk.
Collapse
Affiliation(s)
- Ellen G Pfendner
- Department of Dermatology, Jefferson Medical College and The Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia 19107, USA
| | | | | | | | | |
Collapse
|
50
|
Lanschuetzer CM, Klausegger A, Pohla-Gubo G, Hametner R, Richard G, Uitto J, Hintner H, Bauer JW. A novel homozygous nonsense deletion/insertion mutation in the keratin 14 gene (Y248X; 744delC/insAG) causes recessive epidermolysis bullosa simplex type Köbner. Clin Exp Dermatol 2003; 28:77-9. [PMID: 12558637 DOI: 10.1046/j.1365-2230.2003.01218.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report the sixth case of a human keratin 14 'knockout' mutation resulting in recessive epidermolysis bullosa simplex (EBS). A novel, homozygous nonsense mutation resulting from a deletion/insertion mutation (744delC/insAG) leads to a premature termination codon in the KRT14 gene (Y248X). The patient suffers from generalized cutaneous blistering since birth, mild nail dystrophy, involvement of mucous membranes and multiple epidermolysis bullosa naevi. The clinical variability noted in K14-deficient EBS patients suggests phenotypic modulation by additional genetic and/or epigenetic factors.
Collapse
Affiliation(s)
- C M Lanschuetzer
- Department of Dermatology, General Hospital Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | | |
Collapse
|