1
|
Wakabayashi H, Sakaue H, Nishimura T. Recent updates on cold adaptation in population and laboratory studies, including cross-adaptation with nonthermal factors. J Physiol Anthropol 2025; 44:7. [PMID: 39972479 PMCID: PMC11837704 DOI: 10.1186/s40101-025-00387-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025] Open
Abstract
This review aims to update our understanding of human cold adaptation. First, an overview of the thermoregulatory response to cold is provided, with some recent updates in human brown adipose tissue (BAT). Variation in BAT activity and multiorgan contributions to cold-induced thermogenesis were introduced. We found that individuals with less BAT activity rely more on shivering to compensate for less non-shivering thermogenesis (NST). The mechanisms of cold-induced vasoconstriction are summarized, including the role of arteriovenous anastomoses, adrenergic neural function, and inhibition of the nitric oxide vasodilator pathway. In addition, cold-induced vasodilation (CIVD) during cold immersion of the distal extremities is summarized with some recent updates in physiological mechanism. Furthermore, the cold shock response at the onset of cold immersion is introduced. Next, categorization of cold acclimatization/acclimation into habituation of shivering and metabolic and insulative adaptation are provided, with some recent updates. Especially, the rediscovery of human BAT has clarified metabolic acclimation, where increased NST replace shivering. Then, a greater CIVD response in populations in cold regions has been reported, whereas recent laboratory studies suggest no increase in CIVD after repeated cold exposure. To prevent cold injuries, individuals should not rely on habituation through repeated cold exposure. In addition, habituation to the cold shock response after repeated cold water immersion could help reduce the number of drownings. Furthermore, cross-adaptation between cold and nonthermal factors in the thermoregulatory response is summarized. Recent studies explored the relationship between exercise training and BAT activity, although this remains unresolved, depending on the exercise intensity and environmental conditions. The effects of exercise with cold exposure on the thermoregulatory response to cold are summarized in studies including divers working in cold water. We investigated the effect of exercise training in cold water, which resulted in increased muscle deoxygenation during submaximal exercise and greater anerobic power. Moreover, the effects of a hypoxic environment on cold adaptation are summarized. Elevated basal metabolism and higher distal skin temperature in highlanders could improve their cold tolerance. Finally, factors affecting cold adaptation are discussed. The type of cold adaptation may depend on the specific thermoregulatory responses repeated during the adaptation process.
Collapse
Affiliation(s)
- Hitoshi Wakabayashi
- Faculty of Engineering, Hokkaido University, N13 W8 Kita-Ku, Sapporo, 060-8628, Japan
| | - Hiroyuki Sakaue
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Takayuki Nishimura
- Faculty of Design, Kyushu University, 4-9-1 Shiobaru, Minami-Ku, Fukuoka, 815-8540, Japan.
| |
Collapse
|
2
|
Zhang Y, Li Y, Chen F. The Correlation Between Preoperative Perfusion Index and Intraoperative Hypothermia During Laparoscopic Radical Surgery for Urological Malignancies. Ther Hypothermia Temp Manag 2024. [PMID: 39194057 DOI: 10.1089/ther.2024.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024] Open
Abstract
This study aimed to explore the relationship between preoperative baseline perfusion index (PI) and intraoperative hypothermia during general anesthesia. PI reflects the peripheral perfusion status, which may be associated with the decrease of core temperature during general anesthesia, as the redistribution of temperature from the core compartment to the peripheral compartment depends on the peripheral perfusion status. A total of 68 patients underwent radical surgery for urological malignancies in this study. The baseline PI value was measured upon entering the operating room. Core temperature was continuously monitored using a nasal pharyngeal probe from anesthesia induction to the end of surgery, with temperature data recorded every 15 minutes. Univariate and multivariate logistic regression analyses were used to identify risk factors for intraoperative hypothermia. Intraoperative hypothermia occurred in 26 patients, whose baseline PI (2.70 ± 0.73) was significantly lower than that of the normothermic group (3.65 ± 1.05), with P<0.05. The baseline PI was independently associated with intraoperative hypothermia (PI: [OR] 0.375, 95% confidence interval [CI]: 1.584-6.876, p = 0.001). This study suggests that low baseline PI is an independent factor associated with intraoperative hypothermia. In future studies, PI value could be considered as a predictor for the treatment of intraoperative hypothermia.
Collapse
Affiliation(s)
- Yingying Zhang
- Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Yuxiao Li
- Operating Room, The First Affiliated Hospital of Harbin Medical University, Harbin Medical University, Harbin, China
| | - Fengxia Chen
- Nursing School, Sanquan College of Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
3
|
Phan TX, Sahibzada N, Ahern GP. Arteries are finely tuned thermosensors regulating myogenic tone and blood flow. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.22.532099. [PMID: 36993664 PMCID: PMC10055355 DOI: 10.1101/2023.03.22.532099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In response to changing blood pressure, arteries adjust their caliber to control perfusion. This vital autoregulatory property, termed vascular myogenic tone, stabilizes downstream capillary pressure. We discovered that tissue temperature critically determines myogenic tone. Heating steeply activates tone in skeletal muscle, gut, brain and skin arteries with temperature coefficients ( Q 10 ) of ∼11-20. Further, arterial thermosensitivity is tuned to resting tissue temperatures, making myogenic tone sensitive to small thermal fluctuations. Interestingly, temperature and intraluminal pressure are sensed largely independently and integrated to trigger myogenic tone. We show that TRPV1 and TRPM4 mediate heat-induced tone in skeletal muscle arteries. Variations in tissue temperature are known to alter vascular conductance; remarkably, thermosensitive tone counterbalances this effect, thus protecting capillary integrity and fluid balance. In conclusion, thermosensitive myogenic tone is a fundamental homeostatic mechanism regulating tissue perfusion. One-Sentence Summary Arterial blood pressure and temperature are integrated via thermosensitve ion channels to produce myogenic tone.
Collapse
|
4
|
Francisco MA, Gibson BM, Simmons GH, Halliwill JR, Minson CT. Cholinergic nerve contribution to cutaneous active vasodilation during exercise is similar to whole body passive heating. J Appl Physiol (1985) 2023; 134:933-940. [PMID: 36825647 PMCID: PMC10069983 DOI: 10.1152/japplphysiol.00299.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 01/27/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Sympathetic cholinergic nerve cotransmission is widely accepted as the mechanism of cutaneous active vasodilation (CAVD) during whole body passive heating (passive heating). However, recent research suggests that there may be mechanistic differences in CAVD to heating, depending on the modality of thermal loading. It is unknown whether sympathetic cholinergic cotransmission explains CAVD during exercise. This study sought to confirm the role of cholinergic nerves in CAVD during passive heating and expand these findings to exercise. It was hypothesized that CAVD during both exercise and passive heating would be abolished by cholinergic nerve blockade. Eight young (18-30 yr) recreationally active individuals exercised (1 h seated cycling at 60% V̇o2peak) and were passively heated (∼1 h seated passive heating with mean skin temperature clamped at 39°C by water-perfused suit), in randomized order on separate days. Cholinergic nerves were blocked via Botox ∼2 wk prior to the study. Skin blood flow was assessed using laser Doppler flowmetry and expressed as percent of maximum cutaneous vascular conductance (%CVCmax). At the end of exercise/passive heating, internal temperature had increased by ∼0.7°C. The %CVCmax at the Botox-treated sites (exercise: 19 ± 6 and passive heating: 15 ± 14%CVCmax) was significantly less (P < 0.001) than at the untreated sites (exercise: 35 ± 11 and passive heating: 38 ± 6%CVCmax), but there were no differences between exercise and passive heating (modality, P = 0.909; modality-Botox interaction, P = 0.230). We conclude that CAVD during both exercise and passive heating is mediated by sympathetic cholinergic nerves, a critical thermoregulatory mechanism that appears to be independent of the thermal loading modality.NEW & NOTEWORTHY Our study establishes the primacy of cholinergic nerves to cutaneous active vasodilation during exercise and confirms this model during passive heating using a crossover study design. In addition, the mode of heating, whether passive or exercise induced, did not change the sensitivity of the cholinergic component of the thermoeffector response to increased internal temperature. Thus, cutaneous active vasodilator nerves are responsible for similar skin blood flow responses regardless of how thermal loading is accomplished.
Collapse
Affiliation(s)
- Michael A Francisco
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Brandon M Gibson
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Grant H Simmons
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - John R Halliwill
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| | - Christopher T Minson
- Department of Human Physiology, University of Oregon, Eugene, Oregon, United States
| |
Collapse
|
5
|
Henderson ME, Brayson D, Halsey LG. The cardio-respiratory effects of passive heating and the human thermoneutral zone. Physiol Rep 2021; 9:e14973. [PMID: 34409765 PMCID: PMC8374383 DOI: 10.14814/phy2.14973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 12/31/2022] Open
Abstract
The thermoneutral zone (TNZ) defines the range of ambient temperatures at which resting metabolic rate (MR) is at a minimum. While the TNZ lower limit has been characterized, it is still unclear whether there is an upper limit, that is, beyond which MR during rest increases, and if so, what physiological upregulations explain this. We take the first step to fill this knowledge gap by measuring MR and multiple physiological variables in participants exposed to ambient heat stress while resting. Thirteen participants were exposed for an hour to 28℃-50% relative humidity (RH) air, and both 40 and 50℃ each in 25% RH and humid (50% RH) conditions. Core and skin temperatures, blood pressure, sweat-, heart-, and breathing-rate, minute ventilation, and movement levels were recorded throughout each condition. MR increased 35% (p = .015) during exposure to 40℃-25% RH compared to baseline and a further 13% (p = .000) at in 50℃-50%RH. This was not explained by increased fidgeting (p = .26), suggesting physiological upregulation. However, while greater heat stress invoked increases in heart rate (64%, p = .000), minute ventilation (78%, p = .000), and sweat rate (74%. p = .000) when comparing 50℃-50% RH with baseline, the exact size of their relative energy cost is unclear and, therefore, so is their contribution to this increase in MR. Our study shows clear evidence that resting MR increases in humans at high temperature-there is a metabolic upper critical temperature, at least as low as 40℃. Further studies should pinpoint this value and fully explain this increased MR.
Collapse
Affiliation(s)
- Mary E.T. Henderson
- Centre for Research in Ecology, Evolution and BehaviourLife Sciences DepartmentWhitelands CollegeUniversity of RoehamptonLondonUnited Kingdom
| | - Daniel Brayson
- Dubowitz Neuromuscular CentreUCL, Great Ormond Street Institute of Child HealthHolborn, LondonUnited Kingdom
| | - Lewis G Halsey
- Centre for Research in Ecology, Evolution and BehaviourLife Sciences DepartmentWhitelands CollegeUniversity of RoehamptonLondonUnited Kingdom
| |
Collapse
|
6
|
MacRae BA, Spengler CM, Psikuta A, Rossi RM, Annaheim S. A Thermal Skin Model for Comparing Contact Skin Temperature Sensors and Assessing Measurement Errors. SENSORS (BASEL, SWITZERLAND) 2021; 21:4906. [PMID: 34300649 PMCID: PMC8309895 DOI: 10.3390/s21144906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/12/2021] [Accepted: 07/14/2021] [Indexed: 11/16/2022]
Abstract
To improve the measurement and subsequent use of human skin temperature (Tsk) data, there is a need for practical methods to compare Tsk sensors and to quantify and better understand measurement error. We sought to develop, evaluate, and utilize a skin model with skin-like thermal properties as a tool for benchtop Tsk sensor comparisons and assessments of local temperature disturbance and sensor bias over a range of surface temperatures. Inter-sensor comparisons performed on the model were compared to measurements performed in vivo, where 14 adult males completed an experimental session involving rest and cycling exercise. Three types of Tsk sensors (two of them commercially available and one custom made) were investigated. Skin-model-derived inter-sensor differences were similar (within ±0.4 °C) to the human trial when comparing the two commercial Tsk sensors, but not for the custom Tsk sensor. Using the skin model, all surface Tsk sensors caused a local temperature disturbance with the magnitude and direction dependent upon the sensor and attachment and linearly related to the surface-to-environment temperature gradient. Likewise, surface Tsk sensors also showed bias from both the underlying disturbed surface temperature and that same surface in its otherwise undisturbed state. This work supports the development and use of increasingly realistic benchtop skin models for practical Tsk sensor comparisons and for identifying potential measurement errors, both of which are important for future Tsk sensor design, characterization, correction, and end use.
Collapse
Affiliation(s)
- Braid A. MacRae
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland; (B.A.M.); (A.P.); (R.M.R.)
- Exercise Physiology Lab, Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland;
- Centre for Materials Innovation and Future Fashion, School of Fashion and Textiles, RMIT University, Melbourne 3056, Australia
| | - Christina M. Spengler
- Exercise Physiology Lab, Department of Health Sciences and Technology, ETH Zurich, 8057 Zurich, Switzerland;
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
| | - Agnes Psikuta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland; (B.A.M.); (A.P.); (R.M.R.)
| | - René M. Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland; (B.A.M.); (A.P.); (R.M.R.)
| | - Simon Annaheim
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, 9014 St. Gallen, Switzerland; (B.A.M.); (A.P.); (R.M.R.)
| |
Collapse
|
7
|
Okamoto LE, Celedonio JE, Smith EC, Gamboa A, Shibao CA, Diedrich A, Paranjape SY, Black BK, Muldowney JAS, Peltier AC, Habermann R, Crandall CG, Biaggioni I. Local Passive Heat for the Treatment of Hypertension in Autonomic Failure. J Am Heart Assoc 2021; 10:e018979. [PMID: 33739123 PMCID: PMC8174330 DOI: 10.1161/jaha.120.018979] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 02/03/2021] [Indexed: 12/17/2022]
Abstract
Background Supine hypertension affects a majority of patients with autonomic failure; it is associated with end-organ damage and can worsen daytime orthostatic hypotension by inducing pressure diuresis and volume loss during the night. Because sympathetic activation prevents blood pressure (BP) from falling in healthy subjects exposed to heat, we hypothesized that passive heat had a BP-lowering effect in patients with autonomic failure and could be used to treat their supine hypertension. Methods and Results In Protocol 1 (n=22), the acute effects of local heat (40-42°C applied with a heating pad placed over the abdomen for 2 hours) versus sham control were assessed in a randomized crossover fashion. Heat acutely decreased systolic BP by -19±4 mm Hg (versus 3±4 with sham, P<0.001) owing to decreases in stroke volume (-18±5% versus -4±4%, P=0.013 ) and cardiac output (-15±5% versus -2±4%, P=0.013). In Protocol 2 (proof-of-concept overnight study; n=12), we compared the effects of local heat (38°C applied with a water-perfused heating pad placed under the torso from 10 pm to 6 am) versus placebo pill. Heat decreased nighttime systolic BP (maximal change -28±6 versus -2±6 mm Hg, P<0.001). BP returned to baseline by 8 am. The nocturnal systolic BP decrease correlated with a decrease in urinary volume (r=0.57, P=0.072) and an improvement in the morning upright systolic BP (r=-0.76, P=0.007). Conclusions Local heat therapy effectively lowered overnight BP in patients with autonomic failure and supine hypertension and offers a novel approach to treat this condition. Future studies are needed to assess the long-term safety and efficacy in improving nighttime fluid loss and daytime orthostatic hypotension. Registration URL: https://www.clinicaltrials.gov; Unique identifiers: NCT02417415 and NCT03042988.
Collapse
Affiliation(s)
- Luis E. Okamoto
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Jorge E. Celedonio
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Emily C. Smith
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Alfredo Gamboa
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Cyndya A. Shibao
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - André Diedrich
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
- Department of Biomedical EngineeringVanderbilt University Medical CenterNashvilleTN
| | - Sachin Y. Paranjape
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Bonnie K. Black
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - James A. S. Muldowney
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Division of CardiologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Amanda C. Peltier
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of NeurologyVanderbilt University Medical CenterNashvilleTN
| | - Ralf Habermann
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Division of GeriatricsVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
| | - Craig G. Crandall
- Institute for Exercise and Environmental MedicineTexas Health Presbyterian Hospital and UT Southwestern Medical CenterDallasTX
| | - Italo Biaggioni
- Vanderbilt Autonomic Dysfunction CenterVanderbilt University Medical CenterNashvilleTN
- Division of Clinical PharmacologyVanderbilt University Medical CenterNashvilleTN
- Department of MedicineVanderbilt University Medical CenterNashvilleTN
- Department of PharmacologyVanderbilt University Medical CenterNashvilleTN
| |
Collapse
|
8
|
Abdelhalim NM, Abdelbasset WK, Alqahtani BA, Samhan AF. Low-Level Laser Therapy for Diabetic Dermopathy in Patients With Type 2 Diabetes: A Placebo-Controlled Pilot Study. J Lasers Med Sci 2021; 11:481-485. [PMID: 33425301 DOI: 10.34172/jlms.2020.75] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Introduction: Diabetic dermopathy (DD) is the most common cutaneous diabetes marker. Few studies have targeted DD using low-level laser therapy (LLLT). This pilot study aimed to evaluate the effect of LLLT on DD in patients with type 2 diabetes (T2D). Methods: 12 patients with T2D (9 men, 3 women) and bilateral DD were enrolled in this placebo controlled pilot study, and their ages ranged 50-65 years. One side was subjected to LLLT, three sessions weekly for one month (LLLT side), while the other side received the same treatment protocol with a laser device switched off as a placebo (placebo side). All patients were instructed to receive skincare for both sides, such as debridement, antibiotic creams, and dressings with betadine solution. The diameter of DD lesion and the cutaneous blood flow of the knees and ankles sites were assessed before and after one month at the end of the intervention. Results: At the baseline, no significant differences existed between LLLT and placebo sides in the DD and skin blood flow at the knee and ankle sites (P >0.05). Post-intervention, a significant improvement occurred in DD diameter and the skin blood flow of the knee and ankle sites in the LLLT side (P <0.05), while the placebo side showed a significant improvement only in DD diameter (P <0.05) and non-significant changes in skin blood flow (P >0.05). Comparing both sides, all measures significantly favored LLLT. Conclusion: The findings of this study indicate that LLLT has beneficial effects on decreasing DD in T2D patients. Also, it was approved that the short term of LLLT is a safe modality to control DD in T2D patients.
Collapse
Affiliation(s)
- Nermeen Mohamed Abdelhalim
- Department of Physical Therapy, New Kasr El Aini Teaching Hospital, Faculty of Medicine, Cairo University, Egypt.,Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Walid Kamal Abdelbasset
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia.,Department of Physical Therapy, Kasr Al-Aini Hospital, Cairo University, Giza, Egypt
| | - Bader Ali Alqahtani
- Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| | - Ahmed Fathy Samhan
- Department of Physical Therapy, New Kasr El Aini Teaching Hospital, Faculty of Medicine, Cairo University, Egypt.,Department of Health and Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Saudi Arabia
| |
Collapse
|
9
|
Francisco MA, Minson CT. Cutaneous active vasodilation as a heat loss thermoeffector. HANDBOOK OF CLINICAL NEUROLOGY 2019; 156:193-209. [PMID: 30454590 DOI: 10.1016/b978-0-444-63912-7.00012-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Human skin is the interface between the human body and the environment. As such, human temperature regulation relies largely on cutaneous vasomotor and sudomotor adjustments to appropriately thermoregulate. In particular, changes in skin blood flow can increase or decrease the convective heat transfer from internal tissues to the periphery where it can increase or prevent heat loss to the environment. Thermoregulatory control of the cutaneous vasculature is largely due to cutaneous sympathetic nerves. Sympathetic adrenergic nerves mediate vasoconstriction of the skin, similar to other vascular beds, whereas active vasodilator nerves in nonglabrous skin respond to changes in internal and peripheral temperatures and can profoundly increase skin blood flow. Activation of these vasodilator nerves is known as cutaneous active vasodilation and has been the subject of much recent research. This research has uncovered a highly complex system that involves the activation of multiple receptors and vasodilator pathways in a synergistic and sometimes redundant manner. This complexity and redundancy has left our understanding of cutaneous active vasodilation incomplete; however, the employment of new techniques and use of new pharmacologic agents have introduced many new insights into cutaneous active vasodilation.
Collapse
Affiliation(s)
- Michael A Francisco
- Department of Human Physiology, University of Oregon, Eugene, OR, United States
| | - Christopher T Minson
- Department of Human Physiology, University of Oregon, Eugene, OR, United States.
| |
Collapse
|
10
|
McKinley MJ, Martelli D, Pennington GL, Trevaks D, McAllen RM. Integrating Competing Demands of Osmoregulatory and Thermoregulatory Homeostasis. Physiology (Bethesda) 2019; 33:170-181. [PMID: 29616878 DOI: 10.1152/physiol.00037.2017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Mammals are characterized by a stable core body temperature. When maintenance of core temperature is challenged by ambient or internal heat loads, mammals increase blood flow to the skin, sweat and/or pant, or salivate. These thermoregulatory responses enable evaporative cooling at moist surfaces to dissipate body heat. If water losses incurred during evaporative cooling are not replaced, body fluid homeostasis is challenged. This article reviews the way mammals balance thermoregulation and osmoregulation.
Collapse
Affiliation(s)
- Michael J McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia.,Department of Physiology, University of Melbourne , Parkville , Australia
| | - Davide Martelli
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia.,University of Bologna, Bologna , Italy
| | - Glenn L Pennington
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia
| | - David Trevaks
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia
| | - Robin M McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne , Parkville , Australia
| |
Collapse
|
11
|
Kooman JP, Usvyat LA, Dekker MJE, Maddux DW, Raimann JG, van der Sande FM, Ye X, Wang Y, Kotanko P. Cycles, Arrows and Turbulence: Time Patterns in Renal Disease, a Path from Epidemiology to Personalized Medicine? Blood Purif 2018; 47:171-184. [PMID: 30448825 DOI: 10.1159/000494827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/23/2018] [Indexed: 12/13/2022]
Abstract
Patients with end-stage renal disease (ESRD) experience unique patterns in their lifetime, such as the start of dialysis and renal transplantation. In addition, there is also an intricate link between ESRD and biological time patterns. In terms of cyclic patterns, the circadian blood pressure (BP) rhythm can be flattened, contributing to allostatic load, whereas the circadian temperature rhythm is related to the decline in BP during hemodialysis (HD). Seasonal variations in BP and interdialytic-weight gain have been observed in ESRD patients in addition to a profound relative increase in mortality during the winter period. Moreover, nonphysiological treatment patters are imposed in HD patients, leading to an excess mortality at the end of the long interdialytic interval. Recently, new evidence has emerged on the prognostic impact of trajectories of common clinical and laboratory parameters such as BP, body temperature, and serum albumin, in addition to single point in time measurements. Backward analysis of changes in cardiovascular, nutritional, and inflammatory parameters before the occurrence as hospitalization or death has shown that changes may already occur within months to even 1-2 years before the event, possibly providing a window of opportunity for earlier interventions. Disturbances in physiological variability, such as in heart rate, characterized by a loss of fractal patterns, are associated with increased mortality. In addition, an increase in random variability in different parameters such as BP and sodium is also associated with adverse outcomes. Novel techniques, based on time-dependent analysis of variability and trends and interactions of multiple physiological and laboratory parameters, for which machine-learning -approaches may be necessary, are likely of help to the clinician in the future. However, upcoming research should also evaluate whether dynamic patterns observed in large epidemiological studies have relevance for the individual risk profile of the patient.
Collapse
Affiliation(s)
- Jeroen P Kooman
- Maastricht University Medical Center, Maastricht, The Netherlands,
| | - Len A Usvyat
- Fresenius Medical Care North America, Waltham, Massachusetts, USA
| | | | - Dugan W Maddux
- Fresenius Medical Care North America, Waltham, Massachusetts, USA
| | | | | | - Xiaoling Ye
- Renal Research Institute, New York, New York, USA
| | - Yuedong Wang
- Department of Statistics and Applied Probability, University of California-Santa Barbara, Santa Barbara, California, USA
| | - Peter Kotanko
- Renal Research Institute, New York, New York, USA.,Icahn School of Medicine at Mount Sinai Hospital, New York, New York, USA
| |
Collapse
|
12
|
Hermanns H, Werdehausen R, Hollmann MW, Stevens MF. Assessment of skin temperature during regional anaesthesia-What the anaesthesiologist should know. Acta Anaesthesiol Scand 2018; 62:1280-1289. [PMID: 29938773 DOI: 10.1111/aas.13176] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/22/2023]
Abstract
Body temperature homeostasis is accurately regulated by complex feedback-driven neuronal mechanisms, which involve a multitude of thermoregulatory pathways. Thus, core temperature is constantly maintained within a narrow range. As one of the most effective regulatory systems skin temperature is dependent on skin blood flow. Skin blood flow in turn is highly dependent on sympathetic activity. Regional anaesthesia leads to blockade not only of somatosensory and motor nerve fibres but also of sympathetic fibres. As a consequence, vasoconstrictor tonic activity is abrogated and a vasodilation leads to an increase in skin blood flow and temperature. The aim of this review was to summarize the general physiology of thermoregulation and skin temperature as well as the alterations during regional anaesthesia. The main focus was the usefulness of measuring skin temperature as an indicator of regional anaesthesia success. According to the available literature, assessment of skin temperature can indeed serve to predict success of regional anaesthesia. Hence, it is important to realize that relevant and reliable temperature increase is only seen in the most distal body parts, ie fingers and toes. More proximally, temperature changes are frequently small and inconsistent, which means that assessment of block levels is not possible by temperature measurement. Furthermore, relevant skin temperature increases will only be observed in patients, which are initially vasoconstricted. In conclusion, measurement of skin temperature represents a reliable and feasible diagnostic tool to assess and predict the success or failure of regional anaesthesia procedures, especially in patients in which sensory testing is impossible.
Collapse
Affiliation(s)
- H. Hermanns
- Department of Anaesthesiology; Academic Medical Center; Amsterdam The Netherlands
| | - R. Werdehausen
- Department of Anaesthesiology and Intensive Care Therapy; Medical Faculty; University of Leipzig; Leipzig Germany
| | - M. W. Hollmann
- Department of Anaesthesiology; Academic Medical Center; Amsterdam The Netherlands
| | - M. F. Stevens
- Department of Anaesthesiology; Academic Medical Center; Amsterdam The Netherlands
| |
Collapse
|
13
|
Cakmak YO, Cotofana S, Jäger C, Morawski M, Sora MC, Werner M, Hammer N. Peri-arterial Autonomic Innervation of the Human Ear. Sci Rep 2018; 8:11469. [PMID: 30065349 PMCID: PMC6068185 DOI: 10.1038/s41598-018-29839-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/19/2018] [Indexed: 12/25/2022] Open
Abstract
Auricular vasomotor responses are considered to be signs of clinical conditions including migraine. The mechanisms of auricular vasomotor control are still debatable. This study aimed at investigating perivascular co-transmitters of vasomotor control in the auricle. Another aim was to provide three-dimensional arterial maps of the auricle, as a proxy of periarterial autonomic innervation. Twelve paired human auricles were used to visualize the arteries following Spalteholz clearing and μ-CT-based reconstruction. Perivascular innervation staining was conducted using anti-tyrosine hydroxylase (TH), anti-neuropeptide Y (NPY), anti-vasoactive intestinal peptide (VIP) and anti-choline acetyl transferase (ChAT). The combined Spalteholz technique and μ-CT revealed a highly consistent arrangement of the auricular vasculature. The superficial temporal (STA) and posterior auricular artery (PAA) supply the helical rim arcade and arcade, with the STA mainly forming the superior and the PAA forming the middle and inferior auricular artery. Co-existence of sympathetic NPY+ and TH+ terminals mediating vasoconstriction, and VIP+ and ACh+ indicating cholinergic vasodilatation, was found in the perivascular zone. The presence of both sympathetic vasoconstriction and cholinergic co-innervation for active vasodilatation was shown in the perivascular auricular zone. Assuming that the highly-consistent vasculature gives way to these terminals, this periarterial innervation may be found spread out across the helix.
Collapse
Affiliation(s)
- Yusuf Ozgur Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.,Brain Health Research Centre, Dunedin, New Zealand.,Medical Technologies Centre of Research Excellence, Auckland, New Zealand
| | | | - Carsten Jäger
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | - Markus Morawski
- University of Leipzig, Paul-Flechsig-Institute for Brain Research, Leipzig, Germany
| | - Mircea-Constantin Sora
- Sigmund-Freud Private University Vienna, Centre for Anatomy and Molecular Medicine, Vienna, Austria.,Medical University of Vienna, Zentrum für Anatomie und Zellbiologie, Vienna, Austria
| | - Michael Werner
- Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany
| | - Niels Hammer
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand. .,Fraunhofer Institute for Machine Tools and Forming Technology, Dresden, Germany. .,Department of Trauma, Orthopedic and Plastic Surgery, University Hospital of Leipzig, Leipzig, Germany.
| |
Collapse
|
14
|
Kooman JP, Katzarski K, van der Sande FM, Leunissen KM, Kotanko P. Hemodialysis: A model for extreme physiology in a vulnerable patient population. Semin Dial 2018; 31:500-506. [DOI: 10.1111/sdi.12704] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jeroen P. Kooman
- Division of Nephrology; Department of Internal Medicine; Maastricht University Medical Center; Maastricht The Netherlands
| | - Krassimir Katzarski
- Dialysis Unit Solna Gate; Diaverum AB; and Division of Renal Medicine; Department of Clinical Science; Intervention and Technology; Karolinska Institutet; Stockholm Sweden
| | - Frank M. van der Sande
- Division of Nephrology; Department of Internal Medicine; Maastricht University Medical Center; Maastricht The Netherlands
| | - Karel M. Leunissen
- Division of Nephrology; Department of Internal Medicine; Maastricht University Medical Center; Maastricht The Netherlands
| | - Peter Kotanko
- Renal Research Institute; New York NY USA
- Icahn School of Medicine at Mount Sinai; New York NY USA
| |
Collapse
|
15
|
van der Sande FM, Dekker MJ, Leunissen KML, Kooman JP. Novel Insights into the Pathogenesis and Prevention of Intradialytic Hypotension. Blood Purif 2018; 45:230-235. [PMID: 29478062 DOI: 10.1159/000485160] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Intradialytic hypotension (IDH) is a common complication of haemodialysis (HD) and associated with adverse outcomes, especially when a nadir definition (systolic blood pressure <90 mm Hg) is used. The pathogenesis of IDH is directly linked to the discontinuous nature of the HD treatment, in combination with patient-related factors such as age, diabetes mellitus and cardiac failure. SUMMARY Although the decline in blood volume due to removal of fluid by ultrafiltration is the prime mover, thermally induced reflex vasodilation compromises the haemodynamic response to hypovolemia. Recent studies have stressed the relevance of changes in tissue perfusion during HD, which may translate in long-term organ damage. Monitoring changes in tissue perfusion, for which emerging evidence becomes available, appears to have great promise in the fine-tuning of the dialysis procedure. Key Messages: While it is unlikely that IDH can be completely prevented, reduction in inter-dialytic weight gain, prevention of an increase in core temperature by adjusting the dialysate temperature and more frequent or prolonged dialysis treatment remain cornerstones in providing a more comfortable and safe treatment.
Collapse
|
16
|
Ioannou S, Morris PH, Baker M, Reddy V, Gallese V. Seeing a Blush on the Visible and Invisible Spectrum: A Functional Thermal Infrared Imaging Study. Front Hum Neurosci 2017; 11:525. [PMID: 29163105 PMCID: PMC5675873 DOI: 10.3389/fnhum.2017.00525] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 10/17/2017] [Indexed: 11/29/2022] Open
Abstract
So far blushing has been examined in the context of a negative rather than a positive reinforcement where visual displays of a blush were based on subjective measures. The current study used infrared imaging to measure thermal patterns of the face while with the use of a video camera quantified on the visible spectrum alterations in skin color related to a compliment. To elicit a blush a three-phase dialog was adopted ending or starting with a compliment on a female sample (N = 22). When the dialog ended with a compliment results showed a linear increase in temperature for the cheek, and forehead whereas for the peri-orbital region a linear decrease was observed. The compliment phase marked the highest temperature on the chin independent of whether or not the experiment started with a compliment contrary to other facial regions, which did not show a significant change when the experiment started with a compliment. Analyses on the visible spectrum showed that skin pigmentation was getting deep red in the compliment condition compared to the serious and social dialog conditions for both the forehead and the cheeks. No significant association was observed between temperature values and erythrocyte displays on the forehead and cheek. Heat is the physiological product of an arousing social scenario, however, preconceived notions about blushing propensity seem to drive erythrocyte displays and not necessarily conscious awareness of somatic sensations.
Collapse
Affiliation(s)
- Stephanos Ioannou
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Paul H Morris
- Department of Psychology, Centre for Situated Action and Communication, University of Portsmouth, Portsmouth, United Kingdom
| | - Marc Baker
- Department of Psychology, Centre for Situated Action and Communication, University of Portsmouth, Portsmouth, United Kingdom
| | - Vasudevi Reddy
- Department of Psychology, Centre for Situated Action and Communication, University of Portsmouth, Portsmouth, United Kingdom
| | - Vittorio Gallese
- Section of Human Physiology, Department of Neuroscience, Parma University, Parma, Italy.,Institute of Philosophy, School of Advanced Study, University of London, London, United Kingdom
| |
Collapse
|
17
|
Kozłowska A, Mikołajczyk A, Majewski M. Detailed Characterization of Sympathetic Chain Ganglia (SChG) Neurons Supplying the Skin of the Porcine Hindlimb. Int J Mol Sci 2017; 18:ijms18071463. [PMID: 28686209 PMCID: PMC5535954 DOI: 10.3390/ijms18071463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 11/16/2022] Open
Abstract
It is generally known that in the skin sympathetic fibers innervate various dermal structures, including sweat glands, blood vessels, arrectores pilorum muscles and hair follicles. However, there is a lack of data about the distribution and chemical phenotyping of the sympathetic chain ganglia (SChG) neurons projecting to the skin of the pig, a model that is physiologically and anatomically very representative for humans. Thus, the present study was designed to establish the origin of the sympathetic fibers supplying the porcine skin of the hind leg, and the pattern(s) of putative co-incidence of dopamine-β-hydroxylase (DβH) with pituitary adenylate cyclase-activating polypeptide (PACAP), somatostatin (SOM), neuronal nitric oxide synthase, substance P, vasoactive intestinal peptide, neuropeptide Y (NPY), leu5-enkephalin and galanin (GAL) using combined retrograde tracing and double-labeling immunohistochemistry. The Fast Blue-positive neurons were found in the L₂-S₂ ganglia. Most of them were small-sized and contained DβH with PACAP, SOM, NPY or GAL. The findings of the present study provide a detailed description of the distribution and chemical coding of the SChG neurons projecting to the skin of the porcine hind leg. Such data may be the basis for further studies concerning the plasticity of these ganglia under experimental or pathological conditions.
Collapse
Affiliation(s)
- Anna Kozłowska
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Anita Mikołajczyk
- Department of Public Health, Epidemiology and Microbiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| | - Mariusz Majewski
- Department of Human Physiology, Faculty of Medical Sciences, University of Warmia and Mazury Olsztyn, Olsztyn 10-082, Poland.
| |
Collapse
|
18
|
Al Dera H, Brock JA. Changes in sympathetic neurovascular function following spinal cord injury. Auton Neurosci 2017; 209:25-36. [PMID: 28209424 DOI: 10.1016/j.autneu.2017.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 01/31/2017] [Accepted: 02/09/2017] [Indexed: 12/31/2022]
Abstract
The effects of spinal cord injury (SCI) on sympathetic neurovascular transmission have generally been ignored. This review describes changes in sympathetic nerve-mediated activation of arterial vessels to which ongoing sympathetic activity has been reduced or silenced following spinal cord transection in rats. In all vessels studied in rats, SCI markedly enhanced their contractile responses to nerve activity. However, the mechanisms that augment neurovascular transmission differ between the rat tail artery and mesenteric artery. In tail artery, the enhancement of neurovascular transmission cannot be attributed to changes in sensitivity of the vascular muscle to α1- or α2-adrenoceptor agonists. Instead the contribution of L-type Ca2+ channels to activation of the smooth muscle by nerve-released noradrenaline is greatly increased following SCI. By contrast, mesenteric arteries from SCI rats had increased sensitivity to phenylephrine but not to methoxamine. While both phenylephrine and methoxamine are α1-adrenoceptor agonists, only phenylephrine is a substrate for the neuronal noradrenaline transporter. Therefore the selective increase in sensitivity to phenylephrine suggests that the activity of the neuronal noradrenaline transporter is reduced. While present evidence suggests that sympathetic vasoconstrictor neurons do not contribute to the normal regulation of peripheral resistance below a complete SCI in humans, the available evidence does indicate that these experimental findings in animals are likely to apply after SCI in humans and contribute to autonomic dysreflexia.
Collapse
Affiliation(s)
- Hussain Al Dera
- Basic Medical Sciences, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - James A Brock
- Department of Anatomy and Neuroscience, University of Melbourne, Victoria 3010, Australia.
| |
Collapse
|
19
|
Tfelt-Hansen P, Eickhoff JH. Reduced Autoregulation of Subcutaneous Blood Flow in Migraine Patients. Cephalalgia 2016. [DOI: 10.1177/03331024850050s3194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Peer Tfelt-Hansen
- Department of Neurology and Surgical Laboratory of Circulation Research, Rigshospitalet, Copenhagen, Denmark
| | - Jens H. Eickhoff
- Department of Neurology and Surgical Laboratory of Circulation Research, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
20
|
Stanhewicz AE, Greaney JL, Alexander LM, Kenney WL. Blunted increases in skin sympathetic nerve activity are related to attenuated reflex vasodilation in aged human skin. J Appl Physiol (1985) 2016; 121:1354-1362. [PMID: 27789772 DOI: 10.1152/japplphysiol.00730.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/06/2016] [Accepted: 10/21/2016] [Indexed: 11/22/2022] Open
Abstract
Reflex cutaneous vasodilation in response to passive heating is attenuated in human aging. This diminished response is mediated, in part, by age-associated reductions in endothelial function; however, the contribution of altered skin sympathetic nervous system activity (SSNA) is unknown. We hypothesized that 1) healthy older adults would demonstrate blunted SSNA responses to increased core temperature compared with young adults and 2) the decreased SSNA response would be associated with attenuated cutaneous vasodilation. Reflex vasodilation was elicited in 13 young [23 ± 1 (SE) yr] and 13 older (67 ± 2 yr) adults using a water-perfused suit to elevate esophageal temperature by 1.0°C. SSNA (peroneal microneurography) and red cell flux (laser Doppler flowmetry) in the innervated dermatome (the dorsum of foot) were continuously measured. SSNA was normalized to, and expressed as, a percentage of baseline. Cutaneous vascular conductance (CVC) was calculated as flux/mean arterial pressure and expressed as a percentage of maximal CVC (local heating, 43°C). Reflex vasodilation was attenuated in older adults (P < 0.001). During heating, SSNA increased in both groups (P < 0.05); however, the response was significantly blunted in older adults (P = 0.01). The increase in SSNA during heating was linearly related to cutaneous vasodilation in both young (R2 = 0.87 ± 0.02, P < 0.01) and older (R2 = 0.76 ± 0.05, P < 0.01) adults; however, slope of the linear regression between ΔSSNA and ΔCVC was reduced in older compared with young (older: 0.05 ± 0.01 vs. young: 0.08 ± 0.01; P < 0.05). These data demonstrate that age-related impairments in reflex cutaneous vasodilation are mediated, in part, by blunted efferent SSNA during hyperthermia.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Jody L Greaney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - W Larry Kenney
- Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
21
|
Blessing W, McAllen R, McKinley M. Control of the Cutaneous Circulation by the Central Nervous System. Compr Physiol 2016; 6:1161-97. [PMID: 27347889 DOI: 10.1002/cphy.c150034] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016.
Collapse
Affiliation(s)
- William Blessing
- Human Physiology, Centre for Neuroscience, Flinders University, Adelaide, S.A., Australia
| | - Robin McAllen
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| | - Michael McKinley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Vic., Australia
| |
Collapse
|
22
|
Walløe L. Arterio-venous anastomoses in the human skin and their role in temperature control. Temperature (Austin) 2015; 3:92-103. [PMID: 27227081 PMCID: PMC4861183 DOI: 10.1080/23328940.2015.1088502] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 10/30/2022] Open
Abstract
Arterio-venous anastomoses (AVAs) are direct connections between small arteries and small veins. In humans they are numerous in the glabrous skin of the hands and feet. The AVAs are short vessel segments with a large inner diameter and a very thick muscular wall. They are densely innervated by adrenergic axons. When they are open, they provide a low-resistance connection between arteries and veins, shunting blood directly into the venous plexuses of the limbs. The AVAs play an important role in temperature regulation in humans in their thermoneutral zone, which for a naked resting human is about 26°C to 36°C, but lower when active and clothed. From the temperature control center in the hypothalamus, bursts of nerve impulses are sent simultaneously to all AVAs. The AVAs are all closed near the lower end and all open near the upper end of the thermoneutral zone. The small veins in the skin of the arms and legs are also contracted near the lower end of the thermoneutral zone and relax to a wider cross section as the ambient temperature rises. At the cold end of the thermoneutral range, the blood returns to the heart through the deep veins and cools the arterial blood through a countercurrent mechanism. As the ambient temperature rises, more blood is returned through the superficial venous plexuses and veins and heats the skin surface of the full length of the 4 limbs. This skin surface is responsible for a large part of the loss of heat from the body toward the upper end of the thermoneutral zone.
Collapse
Affiliation(s)
- Lars Walløe
- Department of Physiology, Institute of Basic Medical Sciences, University of Oslo , Oslo, Norway
| |
Collapse
|
23
|
Petrofsky J, Lee H, Khowailed IA. Sudomotor and vasomotor activity during the menstrual cycle with global heating. Clin Physiol Funct Imaging 2015; 37:366-371. [PMID: 26442634 DOI: 10.1111/cpf.12309] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/02/2015] [Indexed: 11/30/2022]
Abstract
Many studies have reported that there are changes in sympathetic activity throughout the menstrual cycle as there are oestrogen receptor in the hypothalamus and all other parts of the sympathetic nervous system. The purpose of this study was to see whether there were variations in sympathetic activity, skin vasomotor and sweat gland sudomotor rhythms during the menstrual cycle. Eight young female subjects with a regular menstrual cycle participated in the study. Subjects were tested once during the follicular phase and once during the luteal phase. Skin blood flow and sweat rate were significantly higher in the luteal phase compared with the follicular phase (p < .05), but the frequency and magnitude of sudomotor and vasomotor rhythms were significantly greater in the follicular phase (p < .05). In contrast, spectral data showed less sympathetic activity in the luteal phase. A significant finding here is that the sudomotor rhythm of sweat glands is altered by the menstrual cycle.
Collapse
Affiliation(s)
- Jerrold Petrofsky
- Department of Physical Therapy, Loma Linda University, Loma Linda, CA, USA
| | - Haneul Lee
- Departments of Physical Therapy, College of Health Science, Gachon University, Incheon, South Korea
| | | |
Collapse
|
24
|
Temperature-Modulated Photodynamic Therapy for the Treatment of Actinic Keratosis on the Extremities. Dermatol Surg 2014; 40:1094-102. [DOI: 10.1097/01.dss.0000452662.69539.57] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
25
|
Responses in acral and non-acral skin vasomotion and temperature during lowering of ambient temperature. J Therm Biol 2014; 45:168-74. [DOI: 10.1016/j.jtherbio.2014.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 11/20/2022]
|
26
|
Del Rosso JQ. Management of facial erythema of rosacea: what is the role of topical α-adrenergic receptor agonist therapy? J Am Acad Dermatol 2014; 69:S44-56. [PMID: 24229637 DOI: 10.1016/j.jaad.2013.06.009] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/11/2013] [Accepted: 06/16/2013] [Indexed: 12/19/2022]
Abstract
Several more recent advances have led to a better understanding of the pathophysiologic mechanisms involved in rosacea and therapeutic modalities used for treatment. Although the clinical features may vary among patients, there are some unifying mechanisms that appear to relate to the more common presentations of rosacea. Both neurovascular dysregulation and augmented immune detection and response appear to play central roles that lead to many of the signs and symptoms of rosacea. Diffuse central facial erythema is a very common finding that intensifies during flares and persists to varying degrees between flares. This background of facial redness occurs secondary to vasodilation and fixed vascular changes that develop over time. Physical modalities are commonly used to treat the erythema that persists as a result of fixed changes in superficial cutaneous vasculature that do not remit after treatment with agents whose mechanisms are active primarily against some of the inflammatory processes operative in rosacea (ie metronidazole, azelaic acid, tetracyclines). As enlarged superficial cutaneous vessels that contribute to the fixed background facial redness of rosacea remain vasoactive to sympathetic nervous system innervation, topical α-adrenergic receptor agonists, namely brimonidine and oxymetazoline, are currently under evaluation for the treatment of facial erythema of rosacea. This article focuses on the clinical differentiation of facial erythema of rosacea and its management.
Collapse
Affiliation(s)
- James Q Del Rosso
- Dermatology Residency Program, Valley Hospital Medical Center Las Vegas, Las Vegas, Nevada; Dermatology, Touro University College of Osteopathic Medicine, Henderson, Nevada; Dermatology and Cutaneous Surgery, Las Vegas Skin and Cancer Clinics, Las Vegas and Henderson, Nevada.
| |
Collapse
|
27
|
Blunted cutaneous vasoconstriction and increased frequency of presyncope during an orthostatic challenge under moderate heat stress in the morning. Eur J Appl Physiol 2013; 114:629-38. [DOI: 10.1007/s00421-013-2795-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 12/09/2013] [Indexed: 10/25/2022]
|
28
|
Petrofsky JS, Alshammari F, Bains GS, Khowailed IA, Lee H, Kuderu YN, Lodha RD, Rodrigues S, Nguyen D, Potnis PA, Deshpande PP, Yim JE, Berk L. What is more damaging to vascular endothelial function: Diabetes, age, high BMI, or all of the above? Med Sci Monit 2013; 19:257-63. [PMID: 23666370 PMCID: PMC3659113 DOI: 10.12659/msm.883878] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Accepted: 12/10/2012] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND It is well established that there is a reduction in the skin blood flow (SBF) in response to heat with age and diabetes. While it is known that high BMI creates a stress on the cardiovascular system and increases the risk of all cause of morbidity and mortality, little is known of the effect of high BMI on SBF response to heat. Since diabetes is associated with age and a higher BMI, the interrelationship between age, BMI and SBF needs to be investigated to better understand the contribution diabetes alone has to endothelial impairment. MATERIAL AND METHODS This study examined the SBF to heat in young and old people with low and high BMI and people with diabetes with high BMI to determine the contribution these variables have on SBF. Subjects were ten young and older people with BMI <20 and ten young and older people with BMI >20 and ten subjects with diabetes with BMI >20. The SBF response, above the quadriceps, was determined during a 6 minutes exposure to heat at 44°C. RESULTS Even in young people, SBF after the stress of heat exposure was reduced in subjects with a high BMI. The effect of BMI was greatest in young people and lowest in older people and people with diabetes; in people with diabetes, BMI was a more significant variable than diabetes in causing impairment of blood flow to heat. BMI, for example, was responsible for 49% of the reduction in blood flow after stress heat exposure (R=-0.7) while ageing only accounted for 16% of the blood flow reduction (R=-0.397). CONCLUSIONS These results would suggest the importance of keeping BMI low not only in people with diabetes to minimize further circulatory vascular damage, but also in young people to diminish long term circulatory vascular compromise.
Collapse
Affiliation(s)
- Jerrold Scott Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma LInda, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Cui J, Boehmer JP, Blaha C, Lucking R, Kunselman AR, Sinoway LI. Chronic heart failure does not attenuate the total activity of sympathetic outflow to skin during whole-body heating. Circ Heart Fail 2013; 6:271-8. [PMID: 23395933 DOI: 10.1161/circheartfailure.112.000135] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Previous studies show that the rise in skin blood flow and cutaneous vascular conductance during heat stress is substantially attenuated in chronic heart failure (CHF) patients. The mechanisms responsible for this finding are not clear. In particular, little is known regarding the responses of skin sympathetic nerve activity (SSNA) that control the skin blood flow during heat stress in CHF patients. We examined the effects of a modest heat stress to test the hypothesis that SSNA responses could be attenuated in CHF. METHODS AND RESULTS We assessed SSNA (microneurography) from the peroneal nerve and skin blood flow (forearm laser Doppler) in 9 patients with stable class II-III CHF and in matched healthy subjects during passive whole-body heating with a water-perfused suit. Whole-body heating induced similar increases in internal temperature (≈0.6 °C) in both groups. Whole-body heat stress evoked similar SSNA activation in CHF patients (Δ891±110 U/min) and the control subjects (Δ787±84 U/min; P=0.66), whereas the elevation in forearm cutaneous vascular conductance in patients with CHF was significantly lower than that in healthy control subjects (Δ131±29% vs. Δ623±131%; P=0.001). CONCLUSIONS The present data show that SSNA activation during a modest whole-body heat stress is not attenuated in CHF. Thus, the attenuated skin vasodilator response in CHF patients is not attributable to a reduction in total activity of sympathetic outflow to skin.
Collapse
Affiliation(s)
- Jian Cui
- Penn State Hershey Heart and Vascular Institute, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
30
|
Harker M. Psychological Sweating: A Systematic Review Focused on Aetiology and Cutaneous Response. Skin Pharmacol Physiol 2013; 26:92-100. [DOI: 10.1159/000346930] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/27/2012] [Indexed: 11/19/2022]
|
31
|
Gifford JR, Heal C, Bridges J, Goldthorpe S, Mack GW. Changes in dermal interstitial ATP levels during local heating of human skin. J Physiol 2012; 590:6403-11. [PMID: 23045344 DOI: 10.1113/jphysiol.2012.240523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Heating skin is believed to activate vanilloid type III and IV transient receptor potential ion channels (TRPV3, TRPV4, respectively), resulting in the release of ATP into the interstitial fluid. We examined the hypothesis that local skin heating would result in an accumulation of ATP in the interstitial fluid that would be related with a rise in skin blood flow (SkBF) and temperature sensation. Two microdialysis probes were inserted into the dermis on the dorsal aspect of the forearm in 15 young, healthy subjects. The probed skin was maintained at 31°C, 35°C, 39°C and 43°C for 8 min periods, during which SkBF was monitored as cutaneous vascular conductance (CVC). Dialysate was collected and analysed for ATP ([ATP](d)) using a luciferase-based assay, and ratings of perceived warmth were taken at each temperature. At a skin temperature of 31°C, [ATP](d) averaged 18.93 ± 4.06 nm and CVC averaged 12.57 ± 1.59% peak. Heating skin to 35°C resulted in an increase in CVC (17.63 ± 1.27% peak; P < 0.05), but no change in [ATP](d). Heating skin to 39°C and 43°C resulted in a decreased [ATP](d) (5.88 ± 1.68 nm and 8.75 ± 3.44 nm, respectively; P < 0.05), which was accompanied by significant elevations in CVC (38.90 ± 1.37% peak and 60.32 ± 1.95% peak, respectively; P < 0.05). Ratings of perceived warmth increased in proportion to the increase in skin temperature (r(2) = 0.75, P < 0.05). In conclusion, our data indicate that an accumulation of interstitial ATP does not occur during local heating, and therefore does not have a role in temperature sensation or the dilator response in human skin. Nevertheless, the low threshold of dilatation (35°C) indicates a possible role for the TRPV3, TRPV4 channels or the sensitization of other ion channels in mediating the dilator response.
Collapse
Affiliation(s)
- Jayson R Gifford
- Department of Exercise Sciences, Brigham Young University, Provo, UT, USA.
| | | | | | | | | |
Collapse
|
32
|
Kräuchi K, Gompper B, Hauenstein D, Flammer J, Pflüger M, Studerus E, Schötzau A, Orgül S. Diurnal Blood Pressure Variations Are Associated with Changes in Distal–Proximal Skin Temperature Gradient. Chronobiol Int 2012; 29:1273-83. [DOI: 10.3109/07420528.2012.719961] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
33
|
Petrofsky JS, Berk L, Alshammari F, Lee H, Hamdan A, Yim JE, Kodawala Y, Patel D, Nevgi B, Shetye G, Moniz H, Chen WT, Alshaharani M, Pathak K, Neupane S, Somanaboina K, Shenoy S, Cho S, Dave B, Desai R, Malthane S, Al-Nakhli H. The interrelationship between air temperature and humidity as applied locally to the skin: the resultant response on skin temperature and blood flow with age differences. Med Sci Monit 2012; 18:CR201-8. [PMID: 22460091 PMCID: PMC3560817 DOI: 10.12659/msm.882619] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Most studies of the skin and how it responds to local heat have been conducted with either water, thermodes, or dry heat packs. Very little has been accomplished to look at the interaction between air humidity and temperature on skin temperature and blood flow. With variable air temperatures and humidity's around the world, this, in many ways, is a more realistic assessment of environmental impact than previous water bath studies. MATERIAL/METHODS Eight young and 8 older subjects were examined in an extensive series of experiments where on different days, air temperature was 38, 40, or 42°C. and at each temperature, humidity was either 0%, 25%, 50%, 75%, or 100% humidity. Over a 20 minute period of exposure, the response of the skin in terms of its temperature and blood flow was assessed. RESULTS For both younger and older subjects, for air temperatures of 38 and 40°C., the humidity of the air had no effect on the blood flow response of the skin, while skin temperature at the highest humidity was elevated slightly. However, for air temperatures of 42°C., at 100% humidity, there was a significant elevation in skin blood flow and skin temperature above the other four air humidity's (p<0.05). In older subjects, the blood flow response was less and the skin temperature was much higher than younger individuals for air at 42°C. and 100% humidity (p<0.05). CONCLUSIONS Thus, in older subjects, warm humid air caused a greater rise in skin temperature with less protective effect of blood flow to protect the skin from overheating than is found in younger subjects.
Collapse
Affiliation(s)
- Jerrold S Petrofsky
- Department of Physical Therapy, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Petrofsky JS. Resting blood flow in the skin: does it exist, and what is the influence of temperature, aging, and diabetes? J Diabetes Sci Technol 2012; 6:674-85. [PMID: 22768900 PMCID: PMC3440047 DOI: 10.1177/193229681200600324] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Measurement of resting blood flow to the skin and other organs is an important indicator of health and disease and a way to assess the reaction to various stimuli and pharmaceutical interventions. However, unlike plasma ions such as sodium or potassium, it is difficult to determine what the proper value for resting blood flow really is. Part of the problem is in the measurement of blood flow; various techniques yield very different measures of skin blood flow even in the same area. Even if there were common techniques, resting blood flow to tissue, such as the skin, is determined by the interaction of a plurality of factors, including the sympathetic nervous system, temperature, pressure, shear forces on blood vessels, tissue osmolality, and a variety of other stimuli. Compounding this variability, the blood flow response to any stressor is reduced by free radicals in the blood and diminished by aging and diabetes. Race also has an effect on resting blood flow to the skin. All these factors interact to make the exact resting blood flow difficult to determine in any one individual and at any one time. This review examines the main techniques to assess blood flow, the factors that alter blood flow in the skin, and how aging and diabetes affect blood flow. Recommendations for the measurement of resting blood flow are presented.
Collapse
Affiliation(s)
- Jerrold Scott Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, California 92350, USA.
| |
Collapse
|
35
|
The influence of autonomic dysfunction associated with aging and type 2 diabetes on daily life activities. EXPERIMENTAL DIABETES RESEARCH 2012; 2012:657103. [PMID: 22566994 PMCID: PMC3332074 DOI: 10.1155/2012/657103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 01/28/2012] [Accepted: 01/30/2012] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes (T2D) and ageing have well documented effects on every organ in the body. In T2D the autonomic nervous system is impaired due to damage to neurons, sensory receptors, synapses and the blood vessels. This paper will concentrate on how autonomic impairment alters normal daily activities. Impairments include the response of the blood vessels to heat, sweating, heat transfer, whole body heating, orthostatic intolerance, balance, and gait. Because diabetes is more prevalent in older individuals, the effects of ageing will be examined. Beginning with endothelial dysfunction, blood vessels have impairment in their ability to vasodilate. With this and synaptic damage, the autonomic nervous system cannot compensate for effectors such as pressure on and heating of the skin. This and reduced ability of the heart to respond to stress, reduces autonomic orthostatic compensation. Diminished sweating causes the skin and core temperature to be high during whole body heating. Impaired orthostatic tolerance, impaired vision and vestibular sensing, causes poor balance and impaired gait. Overall, people with T2D must be made aware and counseled relative to the potential consequence of these impairments.
Collapse
|
36
|
Murata J, Matsukawa K, Komine H, Tsuchimochi H. Modulation of radial blood flow during Braille character discrimination task. ACTA PHYSIOLOGICA HUNGARICA 2012; 99:25-32. [PMID: 22425805 DOI: 10.1556/aphysiol.99.2012.1.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
PURPOSE Human hands are excellent in performing sensory and motor function. We have hypothesized that blood flow of the hand is dynamically regulated by sympathetic outflow during concentrated finger perception. To identify this hypothesis, we measured radial blood flow (RBF), radial vascular conductance (RVC), heart rate (HR), and arterial blood pressure (AP) during Braille reading performed under the blind condition in nine healthy subjects. The subjects were instructed to read a flat plate with raised letters (Braille reading) for 30 s by the forefinger, and to touch a blank plate as control for the Braille discrimination procedure. RESULTS HR and AP slightly increased during Braille reading but remained unchanged during the touching of the blank plate. RBF and RVC were reduced during the Braille character discrimination task (decreased by -46% and -49%, respectively). Furthermore, the changes in RBF and RVC were much greater during the Braille character discrimination task than during the touching of the blank plate (decreased by -20% and -20%, respectively). CONCLUSIONS These results have suggested that the distribution of blood flow to the hand is modulated via sympathetic nerve activity during concentrated finger perception.
Collapse
Affiliation(s)
- Jun Murata
- Nagasaki University Department of Physical and Occupational Therapy, Graduate School of Biomedical Sciences 1-7-1 Sakamoto Nagasaki 852-8520 Japan.
| | | | | | | |
Collapse
|
37
|
Tew GA, Saxton JM, Hodges GJ. Exercise training and the control of skin blood flow in older adults. J Nutr Health Aging 2012; 16:237-41. [PMID: 22456779 DOI: 10.1007/s12603-011-0156-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The ability to control skin blood flow decreases with primary aging, making older adults less able to adequately thermoregulate and repair cutaneous wounds. Lifestyle factors such as physical activity, diet, and smoking might interact with the aging process to modulate "normal" age-associated changes in the cutaneous microcirculation. The main focus of this brief review is the effects of exercise training on the control of skin blood flow in older adults.
Collapse
Affiliation(s)
- G A Tew
- Centre for Sport and Exercise Science, Sheffield Hallam University, UK.
| | | | | |
Collapse
|
38
|
Al Dera H, Habgood MD, Furness JB, Brock JA. Prominent contribution of L-type Ca2+ channels to cutaneous neurovascular transmission that is revealed after spinal cord injury augments vasoconstriction. Am J Physiol Heart Circ Physiol 2011; 302:H752-62. [PMID: 22081708 DOI: 10.1152/ajpheart.00745.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In patients with spinal cord injury (SCI), somatosympathetic reflexes produce exaggerated decreases in skin blood flow below the lesion. This hypoperfusion appears to result from an increased responsiveness of cutaneous arterial vessels to neural activation. Here we investigated the mechanisms that underlie SCI-induced enhancement of neurovascular transmission in a cutaneous vessel, the rat tail artery. Isometric contractions of arterial segments from T11 spinal cord transected and sham-operated rats were compared 6 wk postoperatively. SCI more than doubled the amplitudes of contractions of arteries in response to moderate frequencies of nerve stimulation (0.1 to 1 Hz). In arteries from SCI rats, but not those from sham-operated rats, the L-type Ca(2+) channel blocker nifedipine (1 μM) reduced the amplitudes of nerve-evoked contractions. Furthermore, while the sensitivity to the agonists phenylephrine (α(1)-adrenoceptor selective) and clonidine (α(2)-adrenoceptor selective) did not differ significantly between arteries from SCI and sham-operated rats, nifedipine had a greater inhibitory effect on contractions to both agents in arteries from SCI rats. Although sensitivity to clonidine was unchanged, SCI selectively reduced the contribution of postjunctional α(2)-adenceptors to nerve-evoked contractions. In arteries from unoperated rats, the L-type channel agonist BAY K 8644 (0.1 μM) produced a similar enhancement of nerve-evoked contraction to that produced by SCI and also selectively reduced the contribution of α(2)-adrenceptors to these responses. Together the findings demonstrate that the SCI-induced enhancement of neurovascular transmission in the rat tail artery can largely be accounted for by an increased contribution of L-type Ca(2+) channels to activation of the vascular smooth muscle.
Collapse
Affiliation(s)
- Hussain Al Dera
- Dept. of Anatomy and Cell Biology, Univ. of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | |
Collapse
|
39
|
Petrofsky J, Alshahmmari F, Yim JE, Hamdan A, Lee H, Neupane S, Shetye G, Moniz H, Chen WT, Cho S, Pathak K, Malthane S, Shenoy S, Somanaboina K, Alshaharani M, Nevgi B, Dave B, Desai R. The interrealtionship between locally applied heat, ageing and skin blood flow on heat transfer into and from the skin. J Med Eng Technol 2011; 35:262-74. [PMID: 21605003 DOI: 10.3109/03091902.2011.580039] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In response to a thermal stress, skin blood flow (BF) increases to protect the skin from damage. When a very warm, noxious, heat source (44 °C) is applied to the skin, the BF increases disproportionately faster than the heat stress that was applied, creating a safety mechanism for protecting the skin. In the present investigation, the rate of rise of BF in response to applied heat at temperatures between 32 °C and 40 °C was examined as well as the thermal transfer to and from the skin with and without BF in younger and older subjects to see how the skin responds to a non-noxious heat source. Twenty male and female subjects (10 - 20-35 years, 10 - 40-70 years) were examined. The arms of the subjects were passively heated for 6 min with and without vascular occlusion by a thermode at temperatures of 32, 36, 38 or 40 °C. When occlusion was not used during the 6 min exposure to heat, there was an exponential rise in skin temperature and BF in both groups of subjects over the 6-min period. However, the older subjects achieved similar skin temperatures but with the expenditure of fewer calories from the thermode than was seen for the younger subjects (p<0.05). BF was significantly less in the older group than the younger group at rest and after exposure to each of the three warmest thermode temperatures (p<0.05). As was seen for noxious temperatures, after a delay, the rate of rise of BF at the three warmest thermode temperatures was faster than the rise in skin temperature in the younger group but less in the older group of subjects. Thus, a consequence of ageing is reduced excess BF in response to thermal stress increasing susceptibility to thermal damage. This must be considered in modelling of BF.
Collapse
Affiliation(s)
- Jerrold Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, California, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Tripovic D, Al Abed A, Rummery NM, Johansen NJ, McLachlan EM, Brock JA. Nerve-Evoked Constriction of Rat Tail Veins Is Potentiated and Venous Diameter Is Reduced after Chronic Spinal Cord Transection. J Neurotrauma 2011; 28:821-9. [DOI: 10.1089/neu.2008.0788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Diana Tripovic
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
| | - Amr Al Abed
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
- Current address: Graduate School of Biomedical Engineering, University of New South Wales, Kensington, Australia
| | - Nicole M. Rummery
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
| | - Niloufer J. Johansen
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
- Current address: Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| | - Elspeth M. McLachlan
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
| | - James A. Brock
- Prince of Wales Medical Research Institute, University of New South Wales, Randwick, Australia
- Current address: Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Australia
| |
Collapse
|
41
|
Petrofsky JS. The effect of type-2-diabetes-related vascular endothelial dysfunction on skin physiology and activities of daily living. J Diabetes Sci Technol 2011; 5:657-67. [PMID: 21722580 PMCID: PMC3192631 DOI: 10.1177/193229681100500319] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A common factor contributing to organ damage in type 2 diabetes mellitus (T2DM) is impaired tissue blood flow caused by damage to vascular endothelial cells (VECs). Damage can occur even before the clinical diagnosis of diabetes. It can be caused by both a high average blood glucose concentration and/or large daily spikes in blood glucose. While much of the present literature focuses on the damage to VECs and organs from these large glucose excursions, this review will focus on the consequence of this damage, that is, how endothelial cell damage in diabetes affects normal daily activities (e.g., exercise, reaction to typical stimuli) and various treatment modalities (e.g.. contrast baths and electrical stimulation therapy). It is important to understand the effects of VEC damage such as poor skin blood flow, compromised thermoregulation, and altered response to skin pressure in designing diabetes technologies as simple as heating pads and as complex as continuous glucose monitors. At the simplest level, people with diabetes have poor circulation to the skin and other organs. In the skin, even the blood flow response to locally applied pressure, such as during standing, is different than for people who do not have T2DM. Simple weight bearing on the foot can occlude the skin circulation. This makes the skin more susceptible to damage. In addition, endothelial damage has far-reaching effects on the whole body during normal activities of daily living, including an impaired response to local heat, such as hot packs and contrast baths, and higher body temperatures during whole body heating due to impaired blood flow and a reduced ability to sweat. Finally, because of multiple organ damage, people with T2DM have poor balance and gait and impaired exercise performance.
Collapse
Affiliation(s)
- Jerrold Scott Petrofsky
- Department of Physical Therapy, School of Allied Health Professions, Loma Linda University, Loma Linda, California, USA.
| |
Collapse
|
42
|
Skin blood flow abnormalities in diabetic dermopathy. J Am Acad Dermatol 2011; 65:559-563. [PMID: 21531041 DOI: 10.1016/j.jaad.2010.06.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 06/03/2010] [Accepted: 06/04/2010] [Indexed: 01/14/2023]
Abstract
BACKGROUND Diabetic dermopathy is the most common specific cutaneous finding in diabetes. OBJECTIVE Using laser Doppler technology, we tested the hypothesis that diabetic dermopathy arises from abnormal local skin blood flow. METHODS We measured cutaneous blood flow in patients with type 1 diabetes without dermopathy and compared values with those in a control group of patients with type 1 diabetes without diabetic dermopathy and in a nondiabetic group. We measured at 3 separate sites on the pretibial area on the legs of each participant, at dermopathy lesions, and at a number of standard sites on the upper and lower extremities. RESULTS We studied 25 patients with diabetes and diabetic dermopathy, average age 51 ± 2 years, mean duration of diabetes 28 ± 3 years. In all, 58 patients with type 1 diabetes without diabetic dermopathy served as control patients, average age 41 ± 2 years, mean duration of diabetes 23 ± 2 years. There were 67 nondiabetic control subjects, average age 47 ± 3 years. The patients with diabetic dermopathy showed a marked reduction in skin blood flow at 35°C at normal-appearing skin areas on the pretibial surface of the legs (1.1 ± 0.1 mL/min/100 g) compared with 1.7 ± 0.1 mL/min/100 g (P = .01) in the type 1 diabetic control group and 2.1 ± 0.3 mL/min/100 g (P < .01) in the nondiabetic group. The dermopathy lesions themselves showed markedly higher blood flow: 2.5 ± 0.3 mL/min/100 g. LIMITATIONS Our diabetic dermopathy patients were somewhat older than the control type 1 diabetes subjects, but were of comparable age to the nondiabetic subjects. CONCLUSIONS These results suggest that patients susceptible to diabetic dermopathy have a functional abnormality in blood flow leading to this scarring process.
Collapse
|
43
|
Petrofsky J, Goraksh N, Alshammari F, Mohanan M, Soni J, Trivedi M, Lee H, Hudlikar AN, Yang CH, Agilan B, Pai N, Chindam T, Murugesan V, Eun Yim J, Katrak V. The ability of the skin to absorb heat; the effect of repeated exposure and age. Med Sci Monit 2011; 17:CR1-8. [PMID: 21169905 PMCID: PMC3524686 DOI: 10.12659/msm.881315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background When heat is applied to the skin, it is dissipated due to conductive heat flow in the tissue and the blood. While heat flow has been studied after applying a single heat exposure, the physiology of repeated exposures to local heat has not been well investigated. Material/Methods Twenty male and female subjects in the age range of 20–65 years old participated in a series of experiments during which a thermode was placed on their leg above the quadriceps muscle for 20 minutes, and on 3 sequential days, to see the effect of repeated local heat on skin blood flow, skin temperature, and on caloric transfer from a thermode used to raise skin temperature. Results The results of the experiment showed that, for young subjects, to raise skin temperature to 40 degrees C required more than double the calories required in older subjects. Further, in the younger subjects, the blood flow response in the first 20 minutes of heat exposure was over 30% higher than that seen in the older subjects. However, on the 2nd and 3rd day, the blood flow response of the younger subjects, was not significantly different between day 2 and 3, but was significantly less than day 1. There was no statistical difference in the blood flow response between day 1, 2 and 3 in the older subjects. In the younger subjects, in the 2 and 3rd day, the number of calories needed to warm the skin was also significantly less than that seen in the first day. Conclusions In younger subjects but not older subjects, there appears to be some degree of acclimatization with an enhanced blood flow response in the first day that was protective to the skin which was not seen in repeated heat exposure.
Collapse
Affiliation(s)
- Jerrold Petrofsky
- Department of Physical Therapy, Loma Linda University, Loma Linda, CA 92350, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Simmons GH, Fieger SM, Wong BJ, Minson CT, Halliwill JR. No effect of systemic isocapnic hypoxia on α-adrenergic vasoconstrictor responsiveness in human skin. Acta Physiol (Oxf) 2011; 201:339-47. [PMID: 20946237 DOI: 10.1111/j.1748-1716.2010.02193.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
UNLABELLED Hypoxia impairs body temperature regulation and abolishes the decline in skin temperature associated with cold exposure, suggesting that cutaneous vasoconstriction is impaired. AIM The purpose of this study was to test the hypothesis that cutaneous vasoconstriction to intradermal tyramine, an index of post-junctional vasoconstrictor responsiveness, is reduced during hypoxia. METHODS Twelve subjects (six males, six females) had three microdialysis fibres placed in the ventral forearm. Fibres received either lactated ringers, 5 mm yohimbine (α-adrenergic blockade), or 10.5 μm BIBP-3226 (to antagonize neuropeptide Y Y(1) receptors). Skin blood flow was assessed at each site (laser-Doppler flowmetry) and cutaneous vascular conductance (CVC) was calculated (red blood cell flux/mean arterial pressure) and scaled to baseline. Vasoconstrictor responses to tyramine (173 μm) were tested during normoxia and steady-state isocapnic hypoxia (SaO(2) = 80%) in random order. RESULTS During normoxia, tyramine reduced CVC by 56.0±5.6 and 50.3±8.0% in control and BIBP-3226 sites (both P<0.05 vs. pre-tyramine; P=0.445 between sites) whereas CVC in the yohimbine site did not change (P=0.398 vs. pre-tyramine). During isocapnic hypoxia, tyramine reduced CVC by 55.9±5.1 and 54.2±5.4% in control and BIBP-3226 sites (both P<0.05 vs. pre-tyramine; P=0.814 between sites) whereas CVC was unchanged in the yohimbine site (P=0.732 vs. pre-tyramine). Isocapnic hypoxia did not affect vasoconstrictor responses at any site (all P>0.05 vs. normoxia). CONCLUSION We conclude that post-junctional α-adrenergic vasoconstrictor responsiveness is not affected by hypoxia in non-acral skin.
Collapse
Affiliation(s)
- G H Simmons
- Department of Human Physiology, University of Oregon, Eugene, OR 97403, USA
| | | | | | | | | |
Collapse
|
45
|
|
46
|
|
47
|
|
48
|
|
49
|
FLOURIS ANDREASD, CHEUNG STEPHENS. Thermal Basis of Finger Blood Flow Adaptations During Abrupt Perturbations in Thermal Homeostasis. Microcirculation 2010; 18:56-62. [DOI: 10.1111/j.1549-8719.2010.00068.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia. Eur J Appl Physiol 2010; 111:1391-404. [DOI: 10.1007/s00421-010-1744-8] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2010] [Indexed: 10/18/2022]
|