1
|
Dalmau N, Andrieu-Abadie N, Tauler R, Bedia C. Phenotypic and lipidomic characterization of primary human epidermal keratinocytes exposed to simulated solar UV radiation. J Dermatol Sci 2018; 92:97-105. [PMID: 30017509 DOI: 10.1016/j.jdermsci.2018.07.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Ultraviolet (UV) radiation is known to be one of the most important environmental hazards acting on the skin. The most part of UV radiation is absorbed in the epidermis, where keratinocytes are the most abundant and exposed cell type. Lipids have an important role in skin biology, not only for their important contribution to the maintenance of the permeability barrier but also for the production and storage of energy, membrane organization and cell signalling functions. However, the effects on the lipid composition of keratinocytes under UV radiation are little explored. OBJECTIVE The present work aims to explore the effects on the phenotype and lipid content of primary human keratinocytes exposed to simulated solar UV radiation. METHODS Keratinocytes were exposed to a single (acute exposure) and repeated simulated solar UV irradiations for 4 weeks (chronic exposure). Cell viability and morphology were explored, as well as the production of reactive oxygen species. Then, lipid extracts were analysed through liquid chromatography coupled to mass spectrometry (LC-MS) and the data generated was processed using the ROIMCR chemometric methodology together with partial least squares discriminant analysis (PLS-DA), to finally reveal the most relevant lipid changes that occurred in keratinocytes upon UV irradiation. Also, the potential induction of keratinocyte differentiation was explored by measuring the increase of involucrin. RESULTS Under acute irradiation, cell viability and morphology were not altered. However, a general increase of phosphatidylcholines (PC) phosphatidylethanolamines (PE) and phosphatidylglycerol (PG) together with a slight sphingomyelin (SM) decrease were found in UV irradiated cells, among other changes. In addition, keratinocyte cultures did not present any differentiation hallmark. Contrary to acute-irradiated cells, in chronic exposures, cell viability was reduced and keratinocytes presented an altered morphology. Also, hallmarks of differentiation, such as the increase of involucrin protein and the autophagy induction were detected. Among the main lipid changes that accompanied this phenotype, the increase of long-chain ceramides, lysoPC and glycerolipid species were found. CONCLUSION Important lipid changes were detected under acute and chronic UV irradiation. The lipid profile under chronic exposure may represent a lipid fingerprint of the keratinocyte differentiation phenotype.
Collapse
Affiliation(s)
- Núria Dalmau
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain
| | - Nathalie Andrieu-Abadie
- INSERM UMR 1037, Centre de Recherches en Cancérologie de Toulouse (CRCT), 31037, Toulouse, France
| | - Romà Tauler
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain
| | - Carmen Bedia
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), c/ Jordi Girona 18-24, 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Dobrzyńska I, Szachowicz-Petelska B, Skrzydlewska E, Figaszewski ZA. Effects of UVB Radiation on the Physicochemical Properties of Fibroblasts and Keratinocytes. J Membr Biol 2016; 249:319-25. [PMID: 26809654 DOI: 10.1007/s00232-016-9870-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/01/2016] [Indexed: 10/22/2022]
Abstract
The skin is the largest human organ, providing the first line of defense to protect the body from physical and environmental effects. The aim of this study was to determine the influence of short-wave ultraviolet (UVB) radiation on the membrane electrical properties, phospholipid content, and lipid peroxidation levels of fibroblasts and keratinocytes. Changes in cell function may affect the basal electrical surface properties of cell membranes. These changes can be detected using electrokinetic measurements. In this study, the surface charge densities of fibroblasts and keratinocytes were measured as a function of pH. A four-component equilibrium model was used to describe the interaction between the ions in solution and on cell membrane surfaces. Agreement was found between the experimental and theoretical charge variation curves of leukemia cells from pH 2.5 to pH 9. Phospholipid composition was determined qualitatively and quantitatively by HPLC, and lipid peroxidation was estimated by measuring the level of malondialdehyde. The acidic functional group concentrations and average association constants with hydroxyl ions were higher, and the average association constants with hydrogen ions were smaller in UVB-treated skin cell membranes compared to those in untreated cells. Moreover, our results showed that UVB radiation is associated with increased levels of phospholipids and lipid peroxidation products in fibroblasts and keratinocytes.
Collapse
Affiliation(s)
- Izabela Dobrzyńska
- Institute of Chemistry, University in Białystok, Al. Piłsudskiego 11/4, 15-443, Białystok, Poland.
| | | | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Białystok, Mickiewicza 2, 15-230, Białystok, Poland
| | - Zbigniew A Figaszewski
- Institute of Chemistry, University in Białystok, Al. Piłsudskiego 11/4, 15-443, Białystok, Poland.,Laboratory of Electrochemical Power Sources, Faculty of Chemistry, University of Warsaw, Pasteur St. 1, 02-093, Warsaw, Poland
| |
Collapse
|
3
|
Derinat Protects Skin against Ultraviolet-B (UVB)-Induced Cellular Damage. Molecules 2015; 20:20297-311. [PMID: 26569211 PMCID: PMC6331914 DOI: 10.3390/molecules201119693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 10/29/2015] [Accepted: 11/05/2015] [Indexed: 01/12/2023] Open
Abstract
Ultraviolet-B (UVB) is one of the most cytotoxic and mutagenic stresses that contribute to skin damage and aging through increasing intracellular Ca2+ and reactive oxygen species (ROS). Derinat (sodium deoxyribonucleate) has been utilized as an immunomodulator for the treatment of ROS-associated diseases in clinics. However, the molecular mechanism by which Derinat protects skin cells from UVB-induced damage is poorly understood. Here, we show that Derinat significantly attenuated UVB-induced intracellular ROS production and decreased DNA damage in primary skin cells. Furthermore, Derinat reduced intracellular ROS, cyclooxygenase-2 (COX-2) expression and DNA damage in the skin of the BALB/c-nu mice exposed to UVB for seven days in vivo. Importantly, Derinat blocked the transient receptor potential canonical (TRPC) channels (TRPCs), as demonstrated by calcium imaging. Together, our results indicate that Derinat acts as a TRPCs blocker to reduce intracellular ROS production and DNA damage upon UVB irradiation. This mechanism provides a potential new application of Derinat for the protection against UVB-induced skin damage and aging.
Collapse
|
4
|
|
5
|
Abstract
Unraveling the signaling pathways that transmit information from the cell surface to the nucleus has been a major accomplishment of modern cell and molecular biology. The benefit to humans is seen in the multitude of new therapeutics based on the illumination of these pathways. Although considerable insight has been gained in understanding homeostatic and pathological signaling in the epidermis and other skin compartments, the translation into therapy has been lacking. This review will outline advances made in understanding fundamental signaling in several of the most prominent pathways that control cutaneous development, cell-fate decisions, and keratinocyte growth and differentiation with the anticipation that this insight will contribute to new treatments for troubling skin diseases.
Collapse
|
6
|
Reich A, Schwudke D, Meurer M, Lehmann B, Shevchenko A. Lipidome of narrow-band ultraviolet B irradiated keratinocytes shows apoptotic hallmarks. Exp Dermatol 2011; 19:e103-10. [PMID: 19845761 DOI: 10.1111/j.1600-0625.2009.01000.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND UV light triggers a variety of biological responses in irradiated keratinocytes that might be associated with global perturbation of their lipidome. However, lipids that are specifically affected and the exact molecular mechanisms involved remain poorly understood. OBJECTIVES To characterize time-dependent changes of the lipidome of cultured keratinocytes induced by narrow-band ultraviolet B (NB-UVB) irradiation. METHODS Immortalized human keratinocytes (HaCaT) were cultured under standard conditions, irradiated with NB-UVB light (311 nm) at 400 and 800 mJ/cm(2) and collected 1, 2, 3, 6, 12 and 24 h later for lipid extraction. Lipid extracts were separated on silica plates in chloroform/ethanol/water/triethylamine (35:40:9:35) and in n-hexane/ethylacetate (5:1) followed by quantitative shotgun lipidomics analysis. RESULTS Irradiation with 800 mJ/cm(2) of NB-UVB altered morphology and lipidome composition of HaCaT cells. Ceramide content increased two-fold 6- and 12-h postirradiation with 800 mJ/cm(2), followed by threefold increase in triacylglycerols (TAGs) that peaked at 24 h. In addition, we observed marked increase of various phosphatidylcholine and phosphatidylethanolamine ethers, whereas phosphatidylcholine-species with short-chain fatty acid moieties decreased. The abundance of other lipid species was altered to lesser extent or remained unchanged. CONCLUSIONS NB-UVB affected the cellular lipidome of keratinocytes in strictly apoptosis-specific manner.
Collapse
Affiliation(s)
- Adam Reich
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
7
|
Sharma A, Luke CT, Dower NA, Stone JC, Lorenzo PS. RasGRP1 is essential for ras activation by the tumor promoter 12-O-tetradecanoylphorbol-13-acetate in epidermal keratinocytes. J Biol Chem 2010; 285:15724-30. [PMID: 20308057 PMCID: PMC2871438 DOI: 10.1074/jbc.m109.100016] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 02/24/2010] [Indexed: 11/06/2022] Open
Abstract
RasGRP1 is a guanine nucleotide exchange factor for Ras that binds with high affinity to diacylglycerol analogs like the phorbol esters. Recently, we demonstrated a role for RasGRP1 in skin carcinogenesis and suggested its participation in the action of tumor-promoting phorbol esters like 12-O-tetradecanoylphorbol-13-acetate (TPA) on Ras pathways in epidermal cells. Given the importance of Ras in carcinogenesis, we sought to discern whether RasGRP1 was a critical pathway in Ras activation, using a RasGRP1 knockout (KO) mouse model to examine the response of keratinocytes to TPA. In contrast to the effect seen in wild type keratinocytes, Ras(GTP) levels were barely detected in RasGRP1 KO cells even after 60 min of exposure to phorbol esters. The lack of response was rescued by enforced expression of RasGRP1. Furthermore, small hairpin RNA-induced silencing of RasGRP1 abrogated the effect of TPA on Ras. Analysis of Ras isoforms showed that both H-Ras and N-Ras depended on RasGRP1 for activation by TPA, whereas activation of K-Ras could not be detected. Although RasGRP1 was dispensable for ERK activation in response to TPA, JNK activation was reduced in the KO keratinocytes. Notably, TPA-induced phosphorylation of JNK2, but not JNK1, was reduced by RasGRP1 depletion. These data identify RasGRP1 as a critical molecule in the activation of Ras by TPA in primary mouse keratinocytes and suggest JNK2 as one of the relevant downstream targets. Given the role of TPA as a skin tumor promoter, our findings provide additional support for a role for RasGRP1 in skin carcinogenesis.
Collapse
Affiliation(s)
- Amrish Sharma
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | - Courtney T. Luke
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| | | | - James C. Stone
- Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Patricia S. Lorenzo
- From the Cancer Research Center of Hawaii, University of Hawaii at Manoa, Honolulu, Hawaii 96813 and
| |
Collapse
|
8
|
Black AT, Gray JP, Shakarjian MP, Mishin V, Laskin DL, Heck DE, Laskin JD. UVB light upregulates prostaglandin synthases and prostaglandin receptors in mouse keratinocytes. Toxicol Appl Pharmacol 2008; 232:14-24. [PMID: 18597804 DOI: 10.1016/j.taap.2008.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 05/16/2008] [Accepted: 05/17/2008] [Indexed: 11/19/2022]
Abstract
Prostaglandins belong to a class of cyclic lipid-derived mediators synthesized from arachidonic acid via COX-1, COX-2 and various prostaglandin synthases. Members of this family include prostaglandins such as PGE(2), PGF(2alpha), PGD(2) and PGI(2) (prostacyclin) as well as thromboxane. In the present studies we analyzed the effects of UVB on prostaglandin production and prostaglandin synthase expression in primary cultures of undifferentiated and calcium-differentiated mouse keratinocytes. Both cell types were found to constitutively synthesize PGE(2), PGD(2) and the PGD(2) metabolite PGJ(2). Twenty-four hours after treatment with UVB (25 mJ/cm(2)), production of PGE(2) and PGJ(2) increased, while PGD(2) production decreased. This was associated with increased expression of COX-2 mRNA and protein. UVB (2.5-25 mJ/cm(2)) also caused marked increases in mRNA expression for the prostanoid synthases PGDS, mPGES-1, mPGES-2, PGFS and PGIS, as well as expression of receptors for PGE(2) (EP1 and EP2), PGD(2) (DP and CRTH2) and prostacyclin (IP). UVB was more effective in inducing COX-2 and DP in differentiated cells and EP1 and IP in undifferentiated cells. UVB readily activated keratinocyte PI-3-kinase (PI3K)/Akt, JNK and p38 MAP signaling pathways which are known to regulate COX-2 expression. While inhibition of PI3K suppressed UVB-induced mPGES-1 and CRTH2 expression, JNK inhibition suppressed mPGES-1, PGIS, EP2 and CRTH2, and p38 kinase inhibition only suppressed EP1 and EP2. These data indicate that UVB modulates expression of prostaglandin synthases and receptors by distinct mechanisms. Moreover, both the capacity of keratinocytes to generate prostaglandins and their ability to respond to these lipid mediators are stimulated by exposure to UVB.
Collapse
Affiliation(s)
- Adrienne T Black
- Department of Pharmacology and Toxicology, Rutgers University, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Reich A, Lehmann B, Meurer M, Muller DJ. Structural alterations provoked by narrow-band ultraviolet B in immortalized keratinocytes: assessment by atomic force microscopy. Exp Dermatol 2008; 16:1007-15. [PMID: 18031460 DOI: 10.1111/j.1600-0625.2007.00623.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We applied atomic force microscopy (AFM) to visualize ultrastructural changes of the keratinocyte morphology after narrow-band ultraviolet B (NB-UVB) irradiation. Immortalized human keratinocytes were cultured under standard conditions, irradiated with NB-UVB light at doses ranging from 50 to 800 mJ/cm2 and imaged by AFM mounted on an inverted optical microscope. It was observed, that NB-UVB irradiation provoked dose-dependent alterations of the keratinocyte morphology. While the surface of non-irradiated cells exhibited homogenously distributed crest-like shaped protrusions (height 0.16 +/- 0.05 microm), cells irradiated with a dose of 800 mJ/cm2 in addition showed round shaped protrusions (height 0.14 +/- 0.06 microm) distributed predominantly around the nucleus and bleb-like protrusions irregularly distributed on the cell surface (height 0.95 +/- 0.29 microm). These irradiated cells easily detached from the supporting glass surface, showed impaired contact with adjacent keratinocytes and significantly rearranged their cytoskeleton network. We hypothesize that these structural and functional alterations reflect ongoing apoptosis in UVB treated cells.
Collapse
Affiliation(s)
- Adam Reich
- Department of Dermatology, Venereology and Allergology, Wroclaw Medical University, Wroclaw, Poland.
| | | | | | | |
Collapse
|
10
|
Amended final report on the safety assessment of glyceryl dilaurate, glyceryl diarachidate, glyceryl dibehenate, glyceryl dierucate, glyceryl dihydroxystearate, glyceryl diisopalmitate, glyceryl diisostearate, glyceryl dilinoleate, glyceryl dimyristate, glyceryl dioleate, glyceryl diricinoleate, glyceryl dipalmitate, glyceryl dipalmitoleate, glyceryl distearate, glyceryl palmitate lactate, glyceryl stearate citrate, glyceryl stearate lactate, and glyceryl stearate succinate. Int J Toxicol 2008; 26 Suppl 3:1-30. [PMID: 18273450 DOI: 10.1080/10915810701663143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Glyceryl Dilaurate, Glyceryl Diarachidate, Glyceryl Dibehenate, Glyceryl Dierucate, Glyceryl Dihydroxystearate, Glyceryl Diisopalmitate, Glyceryl Diisostearate, Glyceryl Dilinoleate, Glyceryl Dimyristate, Glyceryl Dioleate, Glyceryl Diricinoleate, Glyceryl Dipalmitate, Glyceryl Dipalmitoleate, Glyceryl Distearate, Glyceryl Palmitate Lactate, Glyceryl Stearate Citrate, Glyceryl Stearate Lactate, and Glyceryl Stearate Succinate are diacylglycerols (also known as diglycerides or glyceryl diesters) that function as skin conditioning agents - emollients in cosmetics. Only Glyceryl Dilaurate (up to 5%), Glyceryl Diisostearate (up to 43%), Glyceryl Dioleate (up to 2%), Glyceryl Distearate (up to 7%), and Glyceryl Stearate Lactate (up to 5%) are reported to be in current use. Production proceeds from fully refined vegetable oils, which are further processed using hydrogenation and fractionation techniques, and the end products are produced by reacting selected mixtures of the partly hydrogenated, partly fractionated oils and fats with vegetable-derived glycerine to yield partial glycerides. In the final stage of the production process, the products are purified by deodorization, which effectively removes pesticide residues and lower boiling residues such as residues of halogenated solvents and aromatic solvents. Diglycerides have been approved by the Food and Drug Administration (FDA) for use as indirect food additives. Nominally, these ingredients are 1,3-diglycerides, but are easily isomerized to the 1,2-diglycerides form. The 1,3-diglyceride isomer is not a significant toxicant in acute, short-term, subchronic, or chronic animal tests. Glyceryl Dilaurate was a mild primary irritant in albino rabbits, but not a skin sensitizer in guinea pig maximization tests. Diacylglycerol Oil was not genotoxic in the Ames test, in mammalian Chinese hamster lung cells, or in a rodent bone marrow micronucleus assay. An eye shadow containing 1.5% Glyceryl Dilaurate did not induce skin irritation in a single insult patch test, but mild skin irritation reactions to a foundation containing the same concentration were observed. A trade mixture containing an unspecified concentration of Glyceryl Dibehenate did not induce irritation or significant cutaneous intolerance in a 48-h occlusive patch test. In maximization tests, neither an eye shadow nor a foundation containing 1.5% Glyceryl Dilaurate was a skin sensitizer. Sensitization was not induced in subjects patch tested with 50% w/w Glyceryl Dioleate in a repeated insult, occlusive patch test. Glyceryl Palmitate Lactate (50% w/v) did not induce skin irritation or sensitization in subjects patch tested in a repeat-insult patch test. Phototoxicity or photoallergenicity was not induced in healthy volunteers tested with a lipstick containing 1.0% Glyceryl Rosinate. Two diacylglycerols, 1-oleoyl-2-acetoyl-sn-glycerol and 1,2-dipalmitoyl-sn-glycerol, did not alter cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 microg/ml. In the absence of initiation, Glyceryl Distearate induced a moderate hyperplastic response in randomly bred mice of a tumor-resistant strain, and with 9,10-dimethyl-1,2-benzanthracene (DMBA) initiation, an increase in the total cell count was observed. In a glyceryl monoester study, a single application of DMBA to the skin followed by 5% Glyceryl Stearate twice weekly produced no tumors, but slight epidermal hyperplasia at the site of application. Glyceryl Dioleate induced transformation in 3-methylcholanthrene-initiated BALB/3T3 A31-1-1 cloned cells in vitro. A tumor-promoting dosing regimen that consisted of multiple applications of 10 mumol of a 1,2-diacylglycerol (sn-1,2-didecanoylglycerol) to female mice twice daily for 1 week caused more than a 60% decrease in protein kinase C (PKC) activity and marked epidermal hyperplasia. Applications of 10 micromol sn-1,2-didecanoylglycerol twice weekly for 1 week caused a decrease in cytosolic PKC activity, an increase in particulate PKC activity, and no epidermal hyperplasia. In studies of the tumor-promoting activity of 1,2-diacylglycerols, dose and the exposure regimen by which the dose is delivered play a role in tumor promotion. The 1,2-diacylglycerol-induced activation of PKC may also relate to the saturation of the fatty acid in the 1 or 2 position; 1,2-Diacylglycerols with two saturated fatty acids are less effective. Also, the activity of 1,2-diacylglycerols may be reduced when the fatty acid moiety in the structure is a long-chain fatty acid. A histological evaluation was performed on human skin from female volunteers (18 to 56 years old) who had applied a prototype lotion or placebo formulation, both containing 0.5% Glyceryl Dilaurate, consecutively for 16 weeks or 21 weeks. Skin irritation was not observed in any of the subjects tested. Biopsies (2 mm) taken from both legs of five subjects indicated no recognizable abnormalities of the skin; the epidermis was normal in thickness, and there was no evidence of scaling, inflammation, or neoplasms in any of the tissues that were evaluated. The Cosmetic Ingredient Review (CIR) Expert Panel considered that the available safety test data indicate that diglycerides in the 1,3-diester form do not present any significant acute toxicity risk, nor are these ingredients irritating, sensitizing, or photosensitizing. Whereas no data are available regarding reproductive or developmental toxicity, there is no reason to suspect any such toxicity because the dermal absorption of these chemicals is negligible. The Panel noted that these nominally 1,3-diglycerides contain 1,2-diglycerides, raising the concern that 1,2-diglycerides could potentially induce hyperplasia. Data regarding the induction of PKC and the tumor promotion potential of 1,2-diacylglycerols increased the level of concern. Most of the diglycerides considered in this safety assessment, however, have fatty acid chains longer than 14 carbons and none have mixed saturated/unsaturated fatty acid moieties. The Panel considered it particularly important that a 21-week use study of a prototype lotion containing 0.5% Glyceryl Dilaurate (a 14-carbon chain fatty acid) indicated no evidence of scaling, inflammation, or neoplasms in biopsy specimens. Also, DNA synthesis assays on Glyceryl Dilaurate and Glyceryl Distearate indicated that neither chemical altered cell proliferation (as determined by DNA synthesis) in normal human dermal fibroblasts in vitro at doses up to 10 microg/ml. The Panel understands that use testing is a common practice in industry and, if histopathology data are collected, the Panel believes that such an approach can demonstrate an absence of epidermal hyperplasia. Because the concentration of these ingredients can vary (up to 43% for Glyceryl Diisostearate in lipstick), the frequency of application can be several times daily, and the proportion of diglycerides that are inactive 1,3 isomers versus potentially biologically active 1,2 isomers is unknown, the Panel believes that each use should be examined to ensure the absence of epidermal hyperplasia during product development and testing. In the absence of inhalation toxicity data on the Glyceryl Diesters in this safety assessment, the Panel determined that these ingredients can be used safely in aerosolized products because they are not respirable. The Panel recognizes that certain ingredients in this group are reportedly used in a given product category, but the concentration of use is not available. For other ingredients in this group, information regarding use concentration for specific product categories is provided, but the number of such products is not known. In still other cases, an ingredient is not in current use, but may be used in the future. Although there are gaps in knowledge about product use, the overall information available on the types of products in which these ingredients are used and at what concentration indicate a pattern of use. Within this overall pattern of use, the CIR Expert Panel considers all ingredients in this group to be safe.
Collapse
|
11
|
Won YK, Ong CN, Shen HM. Parthenolide sensitizes ultraviolet (UV)-B-induced apoptosis via protein kinase C-dependent pathways. Carcinogenesis 2005; 26:2149-56. [PMID: 16051639 DOI: 10.1093/carcin/bgi194] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Parthenolide (PN) is the principal sesquiterpene lactone in feverfew (Tanacetum parthenium) with proven anti-inflammatory properties. We have previously reported that PN possesses strong anticancer activity in ultraviolet B (UVB)-induced skin cancer in SKH-1 hairless mice. In order to further understand the mechanism(s) involved in the anticancer activity of PN, we investigated the role of protein kinase C (PKC) in the sensitization activity of PN on UVB-induced apoptosis. Several subtypes of PKC have been reported to be involved in UVB-induced signaling cascade with both pro- and anti-apoptotic activities. Here we focused on two isoforms of PKC: novel PKCdelta and atypical PKCzeta. In JB6 murine epidermal cells, UVB induces the membrane translocations of both PKCs, and PN pre-treatment enhances the membrane translocation of PKCdelta, but inhibits the translocation of PKCzeta. Similar results were also detected when the activities of these PKCs were tested with the PKC kinase assay. Moreover, pre-treatment with a specific PKCdelta inhibitor, rotterlin, completely diminishes the sensitization effect of PN on UVB-induced apoptosis. When cells were transiently transfected with dominant negative PKCdelta or wild-type PKCzeta, the sensitization effect of PN on UVB-induced apoptosis was also drastically reduced. Further mechanistic study revealed that PKCzeta, but not PKCdelta, is required for UVB-induced p38 MAPK activation and PN is likely to act through PKCzeta to suppress p38 activation in UVB-treated JB6 cells. In conclusion, we demonstrated that PN sensitizes UVB-induced apoptosis via PKC-dependent pathways.
Collapse
Affiliation(s)
- Yen-Kim Won
- Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| | | | | |
Collapse
|
12
|
Park HY, Wu H, Killoran CE, Gilchrest BA. The receptor for activated C-kinase-I (RACK-I) anchors activated PKC-beta on melanosomes. J Cell Sci 2005; 117:3659-68. [PMID: 15252133 DOI: 10.1242/jcs.01219] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein kinase C (PKC), a family of at least eleven isoforms, mediates numerous cell functions. In human melanocytes, alpha, beta, delta, epsilon and zeta isoforms of PKC are expressed, but uniquely PKC-beta activates tyrosinase, the key and the rate-limiting enzyme in melanogenesis, by phosphorylating specific serine residues on its cytoplasmic domain. To investigate the mechanism by which only PKC-beta phosphorylates tyrosinase, we examined the expression of receptor for activated C-kinase-I (RACK-I), a receptor specific for activated PKC-beta, on the surface of melanosomes, the specialized organelle in which melanogenesis occurs. Immunoblot analysis of purified melanosomes revealed that RACK-I is readily detectable. Immunoprecipitation of RACK-I from purified melanosomes, followed by immunoblot analysis using antibody against PKC-beta, revealed abundant PKC-beta, whereas PKC-alpha was not detected when immunoblot analysis was performed using antibody against PKC-alpha. Activation of PKC in melanocytes increased the level of PKC-beta co-immunoprecipitated with RACK-I, while the level of melanosome-associated RACK-I decreased when melanocytes were treated chronically with the 12-0-tetradecanoyl-phorbol 13-Acetate (TPA), a condition known to deplete PKC and reduce tyrosinase activity. Immunoprecipitation with RACK-I antibody co-precipitated fewer PKC-beta in the presence of UV-activated 1, 1'-decamethylenebis-4-aminoquinaldinium di-iodide (DECA), known to disrupt the interaction between activated PKC-beta and RACK-I. Treatment of intact melanocytes with DECA also decreased tyrosinase activity. Moreover, suppression of RACK-I expression by transfecting melanocytes with siRNA against RACK-I reduced the basal tyrosinase activity and blocked TPA-induced increases in tyrosinase activity. Taken together, these results demonstrate that RACK-I anchors activated PKC-beta on the melanosome membrane, allowing PKC-beta to phosphorylate tyrosinase.
Collapse
Affiliation(s)
- Hee-Young Park
- Department of Dermatology, Boston University School of Medicine, 609 Albany Street, Boston, MA 02118, USA.
| | | | | | | |
Collapse
|
13
|
Bode AM, Dong Z. Signal transduction pathways in cancer development and as targets for cancer prevention. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:237-97. [PMID: 16096030 DOI: 10.1016/s0079-6603(04)79005-4] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | |
Collapse
|
14
|
Pospísilová S, Brázda V, Kucharíková K, Luciani MG, Hupp TR, Skládal P, Palecek E, Vojtesek B. Activation of the DNA-binding ability of latent p53 protein by protein kinase C is abolished by protein kinase CK2. Biochem J 2004; 378:939-47. [PMID: 14640983 PMCID: PMC1224005 DOI: 10.1042/bj20030662] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2003] [Revised: 12/01/2003] [Accepted: 12/02/2003] [Indexed: 02/02/2023]
Abstract
p53 is one of the most important regulators of cell proliferation and differentiation and of programmed cell death, triggering growth arrest and/or apoptosis in response to different cellular stress signals. The sequence-specific DNA-binding function of p53 protein can be activated by several different stimuli that modulate the C-terminal domain of this protein. The predominant mechanism of activation of p53 sequence-specific DNA binding is phosphorylation at specific sites. For example, phosphorylation of p53 by PKC (protein kinase C) occurs in undamaged cells, resulting in masking of the epitope recognized by monoclonal antibody PAb421, and presumably promotes steady-state levels of p53 activity in cycling cells. In contrast, phosphorylation by cdk2 (cyclin-dependent kinase 2)/cyclin A and by the protein kinase CK2 are both enhanced in DNA-damaged cells. We determined whether one mechanism to account for this mutually exclusive phosphorylation may be that each phosphorylation event prevents modification by the other kinase. We used non-radioactive electrophoretic mobility shift assays to show that C-terminal phosphorylation of p53 protein by cdk2/cyclin A on Ser315 or by PKC on Ser378 can efficiently stimulate p53 binding to DNA in vitro, as well as binding of the monoclonal antibody Bp53-10, which recognizes residues 371-380 in the C-terminus of p53. Phosphorylation of p53 by CK2 on Ser392 induces its DNA-binding activity to a much lower extent than phosphorylation by cdk2/cyclin A or PKC. In addition, phosphorylation by CK2 strongly inhibits PKC-induced activation of p53 DNA binding, while the activation of p53 by cdk2/cyclin A is not affected by CK2. The presence of CK2-mediated phosphorylation promotes PKC binding to its docking site within the p53 oligomerization domain, but decreases phosphorylation by PKC, suggesting that competition between CK2 and PKC does not rely on the inhibition of PKC-p53 complex formation. These results indicate the crucial role of p53 C-terminal phosphorylation in the regulation of its DNA-binding activity, but also suggest that antagonistic relationships exist between different stress signalling pathways.
Collapse
Affiliation(s)
- Sárka Pospísilová
- Masaryk Memorial Cancer Institute, Zlutý kopec 7, CZ-656 53 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Heck DE, Gerecke DR, Vetrano AM, Laskin JD. Solar ultraviolet radiation as a trigger of cell signal transduction. Toxicol Appl Pharmacol 2004; 195:288-97. [PMID: 15020191 DOI: 10.1016/j.taap.2003.09.028] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2003] [Accepted: 09/12/2003] [Indexed: 10/26/2022]
Abstract
Ultraviolet light radiation in sunlight is known to cause major alterations in growth and differentiation patterns of exposed human tissues. The specific effects depend on the wavelengths and doses of the light, and the nature of the exposed tissue. Both growth inhibition and proliferation are observed, as well as inflammation and immune suppression. Whereas in the clinical setting, these responses may be beneficial, for example, in the treatment of psoriasis and atopic dermatitis, as an environmental toxicant, ultraviolet light can induce significant tissue damage. Thus, in the eye, ultraviolet light causes cataracts, while in the skin, it induces premature aging and the development of cancer. Although ultraviolet light can damage many tissue components including membrane phospholipids, proteins, and nucleic acids, it is now recognized that many of its cellular effects are due to alterations in growth factor- and cytokine-mediated signal transduction pathways leading to aberrant gene expression. It is generally thought that reactive oxygen intermediates are mediators of some of the damage induced by ultraviolet light. Generated when ultraviolet light is absorbed by endogenous photosensitizers in the presence of molecular oxygen, reactive oxygen intermediates and their metabolites induce damage by reacting with cellular electrophiles, some of which can directly initiate cell signaling processes. In an additional layer of complexity, ultraviolet light-damaged nucleic acids initiate signaling during the activation of repair processes. Thus, mechanisms by which solar ultraviolet radiation triggers cell signal transduction are multifactorial. The present review summarizes some of the mechanisms by which ultraviolet light alters signaling pathways as well as the genes important in the beneficial and toxic effects of ultraviolet light.
Collapse
Affiliation(s)
- Diane E Heck
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
16
|
Park HY, Lee J, González S, Middelkamp-Hup MA, Kapasi S, Peterson S, Gilchrest BA. Topical Application of a Protein Kinase C Inhibitor Reduces Skin and Hair Pigmentation. J Invest Dermatol 2004; 122:159-66. [PMID: 14962104 DOI: 10.1046/j.0022-202x.2003.22134.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To determine whether inhibition of PKC-beta activity decreases pigmentation, paired cultures of primary human melanocytes were first pretreated with bisindolylmaleimide (Bis), a selective PKC inhibitor, or vehicle alone for 30 min, and then treated with TPA for an additional 90 min to activate PKC in the presence of Bis. Bis blocked the expected induction of tyrosinase activity by activation of PKC. Addition of a peptide corresponding to amino acids 501-511 of tyrosinase containing its PKC-beta phosphorylation site, a presumptive PKC-beta pseudosubstrate, gave similar results. To determine whether Bis reduces pigmentation in vivo, the backs of four shaved and depilated pigmented guinea pigs were UV irradiated with a solar simulator for 2 wk excluding weekends. Compared to vehicle alone, Bis (300 microM), applied twice daily to paired sites for various periods encompassing the irradiation period, decreased tanning. Bis also, although less strikingly, reduced basal epidermal melanin when topically applied twice daily, 5 d per wk, for 3 wk to shaved and depilated unirradiated skin. Moreover, topical application of Bis (100 microM) once daily for 9 d to the freshly depilated backs of 8-wk-old mice markedly lightened the color of regrowing hair. These results demonstrate that inhibiting PKC activity in vivo selectively blocks tanning and reduces basal pigmentation in the epidermis and in anagen hair shafts.
Collapse
Affiliation(s)
- Hee-Young Park
- Department of Dermatology, Boston University School of Medicine, Massachusetts 02118, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
|
18
|
Bode AM, Dong Z. Mitogen-activated protein kinase activation in UV-induced signal transduction. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2003; 2003:RE2. [PMID: 12554854 DOI: 10.1126/stke.2003.167.re2] [Citation(s) in RCA: 171] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Experimental evidence supported by epidemiological findings suggests that solar ultraviolet (UV) irradiation is the most important environmental carcinogen leading to the development of skin cancers. Because the ozone layer blocks UVC (wavelength, 180 to 280 nm) exposure, UVA (UVA I, 340 to 400 nm; UVA II, 320 to 340 nm) and UVB (280 to 320 nm) are probably the chief carcinogenic components of sunlight with relevance for human skin cancer. Substantial contributions to the elucidation of the specific signal transduction pathways involved in UV-induced skin carcinogenesis have been made over the past few years, and most evidence suggests that the cellular signaling response is UV wavelength-dependent. The mitogen-activated protein kinase (MAPK) signaling cascades are targets for UV and are important in the regulation of the multitude of UV-induced cellular responses. Experimental studies have used a range of UVA, UVB, UVC, and various combinations in multiple doses, and the observed effects on activation and phosphorylation of MAPKs are varied. This review focuses on the mechanistic data supporting a role for MAPKs in UV-induced skin carcinogenesis. Progress in understanding the mechanisms of UV-induced signal transduction could lead to the use of these protein kinases as specific targets for the prevention and control of skin cancer.
Collapse
Affiliation(s)
- Ann M Bode
- Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | | |
Collapse
|
19
|
Abstract
The highest incidences of cancer are found in the skin, but endogenous pigmentation is associated with markedly reduced risk. Agents that enhance skin pigmentation have the potential to reduce both photodamage and skin cancer incidence. The purpose of this review is to evaluate agents that have the potential to increase skin pigmentation. These include topically applied substances that simulate natural pigmentation: dihydroxyacetone and melanins; and substances that stimulate the natural pigmentation process: psoralens with UVA (PUVA), dimethylsulfoxide (DMSO), L-tyrosine, L-Dopa, lysosomotropic agents, diacylglycerols, thymidine dinucleotides, DNA fragments, melanocyte stimulating hormone (MSH) analogs, 3-isobutyl-1-methylxanthine (IBMX), nitric oxide donors, and bicyclic monoterpene (BMT) diols. These agents are compared with regards to efficacy when administered to melanoma cells, normal human epidermal melanocytes, animal skin, and human skin. In addition, mechanisms of action are reviewed since these may reveal issues related to both efficacy and safety. Both dihydroxyacetone and topically applied melanins are presently available to the consumer, and both of these have been shown to provide some photoprotection. Of the pigmentation stimulators, only PUVA and MSH analogs have been tested extensively on humans, but there are concerns about the safety and side effects of both. At least some of the remaining pigmentation stimulators under development have the potential to safely induce a photoprotective tan.
Collapse
Affiliation(s)
- D A Brown
- AGI Dermatics, 205 Buffalo Avenue, Freeport, NY 11520, USA.
| |
Collapse
|
20
|
Bregoli L, Baldassare JJ, Raben DM. Nuclear diacylglycerol kinase-theta is activated in response to alpha-thrombin. J Biol Chem 2001; 276:23288-95. [PMID: 11309392 DOI: 10.1074/jbc.m101501200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Currently, there is substantial evidence that nuclear lipid metabolism plays a critical role in a number of signal transduction cascades. Previous work from our laboratory showed that stimulation of quiescent fibroblasts with alpha-thrombin leads to the production of two lipid second messengers in the nucleus: an increase in nuclear diacylglycerol mass and an activation of phospholipase D, which catalyzes the hydrolysis of phosphatidylcholine to generate phosphatidic acid. Diacylglycerol kinase (DGK) catalyzes the conversion of diacylglycerol to phosphatidic acid, making it an attractive candidate for a signal transduction component. There is substantial evidence that this activity is indeed regulated in a number of signaling cascades (reviewed by van Blitterswijk, W. J., and Houssa, B. (1999) Chem. Phys. Lipids 98, 95-108). In this report, we show that the addition of alpha-thrombin to quiescent IIC9 fibroblasts results in an increase in nuclear DGK activity. The examination of nuclei isolated from quiescent IIC9 cells indicates that DGK-theta and DGK-delta are both present. We took advantage of the previous observations that phosphatidylserine inhibits DGK-delta (reviewed by Sakane, F., Imai, S., Kai, M., Wada, I., and Kanoh, H. (1996) J. Biol. Chem. 271, 8394-8401), and constitutively active RhoA inhibits DGK-theta (reviewed by Houssa, B., de Widt, J., Kranenburg, O., Moolenaar, W. H., and van Blitterswijk, W. J. (1999) J. Biol. Chem. 274, 6820-6822) to identify the activity induced by alpha-thrombin. Constitutively active RhoA inhibited the nuclear stimulated activity, whereas phosphatidylserine did not have an inhibitory effect. In addition, a monoclonal anti-DGK-theta antibody inhibited the alpha-thrombin-stimulated nuclear activity in vitro. These results demonstrate that DGK-theta is the isoform responsive to alpha-thrombin stimulation. Western blot and immunofluorescence microscopy analyses showed that alpha-thrombin induced the translocation of DGK-theta to the nucleus, implicating that this translocation is at least partly responsible for the increased nuclear activity. Taken together, these data are the first to demonstrate an agonist-induced activity of nuclear DGK-theta activity and a nuclear localization of DGK-delta.
Collapse
Affiliation(s)
- L Bregoli
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
21
|
Mazière C, Conte MA, Leborgne L, Levade T, Hornebeck W, Santus R, Mazière JC. UVA radiation stimulates ceramide production: relationship to oxidative stress and potential role in ERK, JNK, and p38 activation. Biochem Biophys Res Commun 2001; 281:289-94. [PMID: 11181043 DOI: 10.1006/bbrc.2001.4348] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Exposure of human keratinocytes to UVA radiation induced an increase in ceramide (CER) intracellular content, with a dose-dependent effect within the range of 4-9 J/cm(2). The production of CER reached a maximum 2 h after UVA irradiation. The increase of CER was proportional to the intracellular content of reactive oxygen species, was prevented by the antioxidant vitamin E, and enhanced by the prooxidant buthionine-sulfoximine, suggesting the involvement of an oxidative stress. UVA decreased both neutral and acid sphingomyelinase activities measured in vitro. A direct cleavage of sphingomyelin to CER by UVA, recently described, was not observed under our experimental conditions. We also show that, downstream of CER, UVA activated the Ser/Thr kinases ERK, JNK, and p38. Since ceramide has been shown to play a role in stress kinase activation, our results provide a possible mechanism for UVA-induced activation of stress kinases via ceramide formation. However, the actual mechanisms whereby CER is produced in cultured cells under UVA exposure remain to be specified.
Collapse
Affiliation(s)
- C Mazière
- Laboratoire de Biochimie, CHRU d'Amiens, 80054 Amiens Cedex 1, France.
| | | | | | | | | | | | | |
Collapse
|
22
|
Mazière C, Dantin F, Dubois F, Santus R, Mazière J. Biphasic effect of UVA radiation on STAT1 activity and tyrosine phosphorylation in cultured human keratinocytes. Free Radic Biol Med 2000; 28:1430-7. [PMID: 10924861 DOI: 10.1016/s0891-5849(00)00264-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The effect of ultraviolet A (UVA) radiation on the DNA-binding activity of the transcription factor STAT1 was studied by electromobility shift assay in the human keratinocyte cell line NCTC 2544. The STAT1-binding activity exhibited a biphasic pattern as a function of UVA doses. For UVA doses lower than 0.6 J/cm(2), a dose-dependent increase in STAT1 activity was observed. In a second phase, with higher UVA doses (1.5 to 9 J/cm(2)), the activity decreased and reached control value at 6 J/cm2. The enhancement of STAT1 activity was transient, peaked at 1 h after UV irradiation, and regularly decreased to control value 24 h after UV. Genistein, a tyrosine kinase inhibitor, H7, a serine/threonine kinase inhibitor, and PD 98059, a MEK inhibitor, prevented the UVA-induced enhancement of STAT1-binding activity, suggesting the involvement of Tyr, Ser/Thr kinases, and MEK in the observed effect. Immunoblot analysis directly demonstrated that the amount of Tyr-phosphorylated STAT1 was parallel to its DNA-binding activity. Immunoblot analysis also demonstrated the nuclear transport of STAT1 after UVA irradiation at low doses. At high doses, a decrease in the STAT1 level was observed both in the cytoplasmic and the nuclear compartments, suggesting that the inactivation was due to a degradation process. UVA irradiation initiated a dose-dependent increase in lipid peroxidation products and reactive oxygen species. Furthermore, the involvement of the oxidative stress in the UVA-induced effect on STAT1 activity is suggested by the protective action of the antioxidants alpha-tocopherol and N-acetylcysteine on both the activation phase (UVA doses lower than 1.5 J/cm(2)) and the inhibitory phase. By contrast, the pro-oxidant drug buthionine sulfoximine enhanced the effect of UVA on STAT1-binding activity. Since STATs are known as transducers of cytokine action, the enhancement of STAT1 activity by low doses of UVA might be related to the proinflammatory effect of solar radiations at the skin level.
Collapse
Affiliation(s)
- C Mazière
- Laboratoire de Biochimie, CHU d'Amiens Hôpital Nord, Université de Picardie-Jules Verne, Amiens Cedex, France.
| | | | | | | | | |
Collapse
|
23
|
Hindenes JO, Nerdal W, Guo W, Di L, Small DM, Holmsen H. Physical properties of the transmembrane signal molecule, sn-1-stearoyl 2-arachidonoylglycerol. Acyl chain segregation and its biochemical implications. J Biol Chem 2000; 275:6857-67. [PMID: 10702245 DOI: 10.1074/jbc.275.10.6857] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
sn-1,2-diacylglycerol (DAG), a key intermediate in lipid metabolism, activates protein kinase C and is a fusogen. Phosphoinositides, the main sources of DAG in cell signaling, contain mostly stearoyl and arachidonoyl in the sn-1 and -2 positions, respectively. The polymorphic behavior of sn-1-stearoyl-2-arachidonoylglycerol (SAG) was studied by differential scanning calorimetry, x-ray powder diffraction, and solid state magic angle spinning (MAS) (13)C NMR. Three alpha phases were found in the dry state. X-ray diffraction indicated that the acyl chains packed in a hexagonal array in the alpha phase, and the two sub-alpha phases packed with pseudo-hexagonal symmetry. In the narrow angle range strong diffractions of approximately 31 and approximately 62 A were present. High power proton-decoupled MAS (13)C NMR of isotropic SAG gave 16 distinct resonances of the 20 arachidonoyl carbons and 5 distinct resonances of the 18 stearoyl carbons. Upon cooling, all resonances of stearoyl weakened and vanished in the sub-alpha(2) phase, whereas arachidonoyl carbons from 8/9 to 20 gave distinct resonances in the frozen phases. Remarkably, the omega-carbon of the two acyl chains had different chemical shifts in alpha, sub-alpha(1), and sub-alpha(2) phases. Large differences in spin lattice relaxation of the stearoyl and arachidonoyl methene and methyl groups were demonstrated by contact time (cross-polarization) MAS (13)C NMR experiments in the solid phases alpha, sub-alpha(1), and sub-alpha(2). This shows that stearoyl and arachidonoyl in SAG have different environments in the solid states (alpha, sub-alpha(1), and sub-alpha(2) phases) and may segregate during cooling. The NMR and long spacing x-ray diffraction results suggest that SAG does not pack in a conventional double layer with the two acyls in a hairpin fashion. Our findings thus provide a physicochemical basis for DAG hexagonal phase domain separation within membrane bilayers.
Collapse
Affiliation(s)
- J O Hindenes
- Department of Biochemistry and Molecular Biology, University of Bergen, Bergen, Norway
| | | | | | | | | | | |
Collapse
|
24
|
Park HY, Perez JM, Laursen R, Hara M, Gilchrest BA. Protein kinase C-beta activates tyrosinase by phosphorylating serine residues in its cytoplasmic domain. J Biol Chem 1999; 274:16470-8. [PMID: 10347209 DOI: 10.1074/jbc.274.23.16470] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that protein kinase C-beta (PKC-beta) is required for activation of tyrosinase (Park, H. Y., Russakovsky, V., Ohno, S., and Gilchrest, B. A. (1993) J. Biol. Chem. 268, 11742-11749), the rate-limiting enzyme in melanogenesis. We now examine its mechanism of activation in human melanocytes. In vivo phosphorylation experiments revealed that tyrosinase is phosphorylated through the PKC-dependent pathway and that introduction of PKC-beta into nonpigmented human melanoma cells lacking PKC-beta lead to the phosphorylation and activation of tyrosinase. Preincubation of intact melanosomes with purified active PKC-beta in vitro increased tyrosinase activity 3-fold. By immunoelectron microscopy, PKC-beta but not PKC-alpha was closely associated with tyrosinase on the outer surface of melanosomes. Western blot analysis confirmed the association of PKC-beta with melanosomes. Only the cytoplasmic (extra-melanosomal) domain of tyrosinase, which contains two serines but no threonines, was phosphorylated by the serine/threonine kinase PKC-beta. These two serines at positions 505 and 509 both are present in the C-terminal peptide generated by trypsin digestion of tyrosinase. Co-migration experiments comparing synthetic peptide standards of all three possible phosphorylated tryptic peptides, a diphosphopeptide and two monophosphopeptides, to tyrosinase-phosphorylated in intact melanocytes by PKC-beta and then subjected to trypsin digestion revealed that both serine residues are phosphorylated by PKC-beta. We conclude that PKC-beta activates tyrosinase directly by phosphorylating serine residues at positions 505 and 509 in the cytoplasmic domain of this melanosome-associated protein.
Collapse
Affiliation(s)
- H Y Park
- Department of Dermatology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | | | | | | | |
Collapse
|
25
|
Chen N, Ma WY, Huang C, Dong Z. Translocation of protein kinase Cepsilon and protein kinase Cdelta to membrane is required for ultraviolet B-induced activation of mitogen-activated protein kinases and apoptosis. J Biol Chem 1999; 274:15389-94. [PMID: 10336426 DOI: 10.1074/jbc.274.22.15389] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
UV-induced signal transduction may be involved in tumor promotion and induction of apoptosis. The role of protein kinase C (PKC) in UVB-induced signal transduction is not well understood. This study showed that UVB markedly induced translocation of membrane-associated PKCepsilon and PKCdelta, but not PKCalpha, from cytosol to membrane. Dominant negative mutant (DNM) PKCepsilon or PKCdelta inhibited UVB-induced translocation of PKCepsilon and PKCdelta, respectively. UVB-induced activation of extracellular signal-regulated protein kinases (Erks) and c-Jun NH2-terminal kinases (JNKs) was strongly inhibited by DNM PKCepsilon and PKCdelta, whereas the DNM of PKCalpha was less effective on the UVB-induced phosphorylation of Erks and JNKs. Among the PKC inhibitors used only rottlerin, a selective inhibitor of PKCdelta, markedly inhibited the UVB-induced activation of Erks and JNKs, but not p38 kinases. Safingol, a selective inhibitor for PKCalpha, did not show any inhibitory effect on UVB-induced mitogen-activated protein kinase activation. GF109203X is a stronger inhibitor of classical PKC than novel PKC. Lower concentrations of GF109203X (<10 microM) had no effect on UVB-induced activation of Erks or JNKs. However, at higher concentrations (over 20 microM), GF109203X inhibited UVB-induced activation of JNKs, Erks, and even p38 kinases. Meanwhile, rottlerin and GF109203X markedly inhibited UVB-induced apoptosis of JB6 cells, whereas safingol had little inhibitory effect. DNM-Erk2 cells and PD98059, a selective inhibitor for mitogen-activated protein kinase/extracellular signal-regulated kinase 1 that directly activates Erks, inhibited UVB-induced apoptosis. DNM-JNK1 cells also blocked UVB-induced apoptosis, whereas SB202190, a specific inhibitor for p38 kinases, did not produce the inhibitory effect. These data demonstrate that PKCdelta and PKCepsilon, but not PKCalpha, mediate UVB-induced signal transduction and apoptosis in JB6 cells through activation of Erks and JNKs.
Collapse
Affiliation(s)
- N Chen
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | |
Collapse
|
26
|
Pedeux R, Al-Irani N, Marteau C, Pellicier F, Branche R, Ozturk M, Franchi J, Doré JF. Thymidine dinucleotides induce S phase cell cycle arrest in addition to increased melanogenesis in human melanocytes. J Invest Dermatol 1998; 111:472-7. [PMID: 9740243 DOI: 10.1046/j.1523-1747.1998.00324.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the induction of pigmentation following exposure of melanocytes to ultraviolet light in vivo and in vitro is well documented, the intracellular mechanisms involved in this response are not yet fully understood. Exposure to UV-B radiation leads to the production of DNA damage, mainly cyclobutane pyrimidine dimers, and it was recently suggested that the thymidine dinucleotide pTpT, mimicking small DNA fragments released in the course of excision repair mechanisms, could trigger melanin synthesis. We now report that the thymidine dinucleotide pTpT induces melanogenesis both in human normal adult melanocytes and in human melanoma cells. Thus, the SOS-like response suggested by Gilchrest's work to be evolutionary conserved, based primarily on work in murine cells and guinea pigs, is also apparently present in the human. Thymidine dinucleotide is nontoxic to melanoma cells and does not induce apoptosis in these cells, but induces S phase cell cycle arrest and a proliferation slow down. Because thymidine excess in culture medium leads to the synchronization of cells in S phase, we investigated whether this phenomenon was involved in the increase in melanin synthesis. We show that melanin synthesis is specifically triggered by the dimeric form of the thymidine and not by the monomeric form pT. Thus, our data strongly support that thymidine dinucleotides pTpT mimic at least part of the effects of ultraviolet irradiation, and may hence represent an invaluable model in the study of the molecular events involved in melanogenesis induction triggered through DNA damage.
Collapse
Affiliation(s)
- R Pedeux
- INSERM U453, Center Léon Bérard, Lyon, France
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Courtois SJ, Segaert S, Degreef H, Bouillon R, Garmyn M. Ultraviolet B suppresses vitamin D receptor gene expression in keratinocytes. Biochem Biophys Res Commun 1998; 246:64-9. [PMID: 9600069 DOI: 10.1006/bbrc.1998.8573] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Keratinocytes not only produce vitamin D3 in response to ultraviolet B light (UVB) and convert 25-hydroxyvitamin D3 to 1 alpha, 25-dihydroxyvitamin D3 (1,25(OH)2D) but also possess the vitamin D receptor (VDR) and respond to 1,25(OH)2D. We characterized the regulation of the expression of the VDR gene in primary human keratinocytes following UVB irradiation. We report a marked dose-dependent down-regulation of the VDR mRNA and protein within a few hours after irradiation. This occurs independently of de novo protein synthesis and is not due to a change in the half-life of the VDR mRNA. Interestingly, treatment of the cells with sodium salicylate, caffeic acid phenethyl ester and tosylphenylchloromethylketone inhibited this down-regulation. Our results strongly suggest the existence of a feedback mechanism in that UVB initiates vitamin D synthesis in keratinocytes and at the same time limits VDR abundance. They also provide a rational explanation for the reported lack of any additive effect between 1,25(OH)2D and UVB phototherapy in the treatment of psoriasis.
Collapse
Affiliation(s)
- S J Courtois
- Department of Dermatology, Katholieke Universiteit Leuven, Louvain, Belgium
| | | | | | | | | |
Collapse
|
28
|
Isoherranen K, Peltola V, Laurikainen L, Punnonen J, Laihia J, Ahotupa M, Punnonen K. Regulation of copper/zinc and manganese superoxide dismutase by UVB irradiation, oxidative stress and cytokines. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1997; 40:288-93. [PMID: 9372618 DOI: 10.1016/s1011-1344(97)00071-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have examined the effects of UVB irradiation, oxidative stress and cytokines on the antioxidant enzymes copper/zinc and manganese superoxide dismutase (CuZnSOD and MnSOD) in HeLa cells. A single dose of UVB irradiation regulated dose-dependently the expression of the 4 kb transcript of MnSOD although it did not have any significant effect on MnSOD enzymatic activity. In contrast, UVB irradiation reduced both the enzymatic activity and the expression of the 0.7 and 0.9 kb mRNA transcripts of CuZnSOD. The cytokines TNF-alpha (1 ng ml-1 and 10 ng ml-1) and IL-6 (100 U ml-1) induced MnSOD activity, and TNF-alpha also upregulated MnSOD mRNA expression. Interestingly, genistein, a soy isoflavone and a tyrosine kinase inhibitor, was able to inhibit the induction of Mn-SOD activity and mRNA expression by TNF-alpha. Enzymatic CuZnSOD activity was depressed by a high dose of H2O2 while IL-6 or TNF-alpha had no effect on CuZnSOD activity. Our results demonstrate that, in addition to enzyme activity level, UVB irradiation can regulate the superoxide dismutases at the mRNA level. We also suggest that UVB irradiation, oxidative stress and cytokines regulate differentially CuZnSOD and MnSOD, and that the activities and expression of these antioxidant enzymes are controlled by distinct mechanisms.
Collapse
Affiliation(s)
- K Isoherranen
- Department of Clinical Chemistry, University of Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Matsui MS, Wang N, DeLeo VA. Ultraviolet radiation B induces differentiation and protein kinase C in normal human epidermal keratinocytes. PHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE 1996; 12:103-8. [PMID: 8956359 DOI: 10.1111/j.1600-0781.1996.tb00185.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mid-wave ultraviolet radiation (UVB, 280-320 nm) is highly efficient at inducing erythema, pyrimidine dimers in DNA, oncogene expression and initiation of cutaneous tumors. These UVB-induced responses of epidermal cells have been correlated with the direct effects of UVB on DNA. However, UVB has also been shown to have biologic effects at the cellular level that appear to mimic some of the membrane-associated effects produced by phorbol ester tumor promoters such as 12-O-tetradecanoyl phorbol-13-acetate (TPA). For example, we have previously shown that both UVB irradiation and TPA treatment are followed by release of arachidonic acid and a rapid, dose-dependent inhibition of epidermal growth factor (EGF) binding. TPA generates cellular responses through activation of a phospholipid-dependent, calcium-sensitive protein kinase, protein kinase C (PKC). The primary goal of the studies described here was to compare the cellular effects of TPA with those of UVB with special regard to PKC and keratinocyte growth control, using normal human epidermal keratinocytes. The results obtained showed that both TPA and UVB radiation induced differentiation in normal human keratinocytes. UVB radiation, however, increased both cytosolic and membrane-associated levels of PKC, in contrast to TPA, which increased PKC primarily in the membrane fraction. PKC is probably not the initial chromophore or target molecule of UVB, but because activation of PKC has been shown to be essential for keratinocyte differentiation, differentiation induced by UVB may be caused by activation of PKC by UVB-induced release of diacylglycerol or arachidonic acid.
Collapse
Affiliation(s)
- M S Matsui
- Department of Dermatology, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
30
|
Abstract
Work in the past 8 years, particularly in the past 1-2 years, has greatly expanded our understanding of the mechanisms by which ultraviolet irradiation stimulates melanogenesis in the skin. A direct effect of UV photons on DNA results in up-regulation of the gene for tyrosinase, the rate-limiting enzyme in melanin synthesis, as well as an increase in cell surface expression of receptors for at least one of the several known keratinocyte-derived melanogenic factors, MSH. Direct effects of UV on melanocyte membranes, releasing DAG and arachidonic acid, may also play a role in the tanning response. Diacylglycerol may activate PKC-beta, which in turn phosphorylates and activates tyrosinase protein; the pathways by which products of other inflammatory mediator cascades may act on melanogenesis are unknown. The tanning response also relies heavily on UV-stimulated increased production and release of numerous keratinocyte-derived factors including bFGF, NGF, endothelin-1 and the POMC-derived peptides MSH, ACTH, beta-LPH and beta-endorphin. These factors variably induce melanocyte mitosis, increase melanogenesis, enhance dendricity and prevent apoptotic cell death following the UV injury. Thus, events within the epidermal melanin unit conspire to maintain or increase melanocyte number, increase melanin pigment throughout the epidermis. Overall, ultraviolet-induced melanogenesis may be one part of a eukaryotic SOS response to damaging ultraviolet irradiation that has evolved over time to provide a protective tan in skin at risk of further injury from sun exposure. These recent insights into the mechanisms underlying ultraviolet-induced melanogenesis offer the opportunity for novel therapeutic approaches to minimizing acute and chronic photodamage in human skin.
Collapse
Affiliation(s)
- B A Gilchrest
- Department of Dermatology, Boston University School of Medicine, MA 02118-2394, USA
| | | | | | | |
Collapse
|
31
|
Allan AE, Archambault M, Messana E, Gilchrest BA. Topically applied diacylglycerols increase pigmentation in guinea pig skin. J Invest Dermatol 1995; 105:687-92. [PMID: 7594645 DOI: 10.1111/1523-1747.ep12324466] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Exposure of human and murine melanocytes in vitro to the diacylglycerol (DAG) 1-oleoyl-2-acetyl-sn-glycerol (OAG) markedly increases melanin production within 24 h. To determine whether OAG can increase melanin production in vivo, increasing concentrations of OAG (10-60 mg/ml) in propylene glycol were applied daily for 5 d to shaved guinea pigs. Dose-dependent increased pigmentation was visible first on days 17-22 and persisted for 10-14 weeks. Peak epidermal melanin content in OAG-treated sites was more than twice that of untreated or vehicle-treated sites, as assessed by computerized image analysis of Fontana-Masson stained biopsy cross sections. In another experiment to assess the mechanism of DAG-mediated pigmentation, guinea pigs received twice daily separate applications of OAG, dipalmitoylglycerol (diC16), dioctanoylglycerol (diC8), each 50 mg/ml, 20 microliters/application, and propylene glycol vehicle alone for 5 d. Increased pigmentation was visible after 10 d in the OAG and diC8 sites but not in diC16 or vehicle sites. These results correlate with the reported ability of these compounds to activate protein kinase C in vitro. In a final experiment, guinea pigs received OAG 25 mg/ml three times daily to one test site, and once daily ultraviolet B (70 mJ/cm2, equivalent to 0.6 minimal erythemal dose) radiation to another for 10 d. The OAG and ultraviolet B test sites developed comparable pigmentation by both clinical and histologic criteria. Our data demonstrate that topically applied DAGs can produce a long-lasting increase in epidermal pigmentation, presumably through protein kinase C activation, which clinically and histologically closely resembles ultraviolet-induced tanning.
Collapse
Affiliation(s)
- A E Allan
- Department of Dermatology, Boston University School of Medicine, Massachusetts 02118, USA
| | | | | | | |
Collapse
|
32
|
Punnonen K, Lehtola K, Autio P, Kiistala U, Ahotupa M. Chronic UVB irradiation induces superoxide dismutase activity in human epidermis in vivo. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 1995; 30:43-8. [PMID: 8558362 DOI: 10.1016/1011-1344(95)07131-k] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In order to study the effects of repeated UVB exposures on the epidermal antioxidant defence system, we obtained epidermis samples from male volunteers who were exposed to chronic UVB irradiation. Chronic UVB irradiation was shown to be accompanied by induction of epidermal superoxide dismutase (SOD) activity in vivo, while the activities of the other antioxidant enzymes were not significantly changed. The repeated exposure of the epidermis to UVB irradiation was not accompanied by accumulation of products of lipid peroxidation reactions. As superoxide dismutase is of major importance in scavenging the reactive oxygen species, the UVB-induced changes in SOD activity might provide the epidermis a way of defending itself against the effects of chronic UVB irradiation.
Collapse
Affiliation(s)
- K Punnonen
- Department of Clinical Chemistry, University Central Hospital of Turku, Finland
| | | | | | | | | |
Collapse
|
33
|
Lehtola K, Laurikainen L, Leino L, Ahotupa M, Punnonen K. Antioxidant enzymes are elevated in dimethylbenz[a]anthracene-induced neoplastic murine keratinocytes containing an active rasHa oncogene. J Cancer Res Clin Oncol 1995; 121:402-6. [PMID: 7635869 DOI: 10.1007/bf01212946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Antioxidant enzyme activities and peroxidation potential were measured in primary mouse keratinocytes and neoplastic keratinocytes containing an active rasHa oncogene. In neoplastic cell lines, SP-1 and 308, the activities of Cu, Zn-superoxide dismutase, catalase, and glutathione transferase were significantly elevated. The peroxidation potential was lower in cell homogenates prepared from neoplastic keratinocytes than in those prepared from normal keratinocytes. Consistently, the neoplastic 308 cell line was found to be more resistant than the normal keratinocytes to cytotoxicity induced by UV-B irradiation. The present study suggests that the enhanced antioxidant defense system protects the initiated cells from UV-B-induced oxidative stress, and that the enhanced enzymic antioxidant defense system is potentially a mechanism favoring the selective growth of neoplastic keratinocytes.
Collapse
Affiliation(s)
- K Lehtola
- Department of Clinical Chemistry, University Central Hospital of Turku, Finland
| | | | | | | | | |
Collapse
|
34
|
Carsberg CJ, Jones KT, Sharpe GR, Friedmann PS. Intracellular calcium modulates the responses of human melanocytes to melanogenic stimuli. J Dermatol Sci 1995; 9:157-64. [PMID: 8664212 DOI: 10.1016/0923-1811(94)00372-l] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ultraviolet radiation (UVR), the synthetic diacyglycerol (DAG), 1-oleoyl-2-acetylglycerol (OAG), and cyclic AMP (cAMP) stimulants, including cholera toxin (CT) have all been shown to increase melanogenesis in cultured human melanocytes. Indirect evidence suggests that an increase in intracellular free Ca2+ ([Ca2+]i) may be important in stimulated melanogenesis. Therefore, to determine whether melanogenic responses are modulated by [Ca2+]i, the Ca2+ in the culture medium of melanocytes ([Ca2+]o) was raised from 70 microM to 1 mM. This switch in [Ca2+]o was associated with a biphasic increase in [Ca2+]i, with an early transient rise, over minutes, and a delayed sustained rise in [Ca2+]i, over hours. The early increase was blocked by nickel chloride (NiCl2), but not affected by depletion of [Ca2+]i stores by thapsigargin, suggesting that this [Ca2+]i rise was due to Ca2+ entry across the plasma membrane. Melanocytes cultured in the absence of CT had a reduced basal melanin content following the switch to 1 mM [Ca2+]o, but in the presence of CT, which acts by stimulating cAMP synthesis, the basal level was increased. Raising [Ca2+]o resulted in enhanced melanogenic responses to UVR and OAG, in the presence or absence of CT, suggesting that Ca(2+)-dependent mechanisms are important. UVR also stimulated a delayed rise in [Ca2+]i, over 24 h, but OAG did not. These results indicate that while [Ca2+]i is not essential for melanogenesis, it plays an important role in modulating the responses of melanocytes to melanogenic stimuli.
Collapse
Affiliation(s)
- C J Carsberg
- University Department of Dermatology, Liverpool, UK
| | | | | | | |
Collapse
|
35
|
Dittmann K, Löffler H, Bamberg M, Rodemann HP. Bowman-Birk proteinase inhibitor (BBI) modulates radiosensitivity and radiation-induced differentiation of human fibroblasts in culture. Radiother Oncol 1995; 34:137-43. [PMID: 7597212 DOI: 10.1016/0167-8140(94)01494-n] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The radiosensitivity and differentiation pattern of cultured normal human fibroblasts was analysed as a function of treatment of the cells with the Bowman-Birk proteinase inhibitor (BBI). Upon irradiation with doses from 0 to 8 Gy normal human fibroblasts are induced to a premature terminal differentiation within 14-21 days of postirradiation incubation. Treatment of the cells with 10 microM BBI for 2 h prior to the irradiation procedure resulted in a significant shift of the radiation survival curve, increased SF2 values 0.63 vs. 0.84 and the cell type composition of the test fibroblast cultures. Upon pretreatment with BBI the radiation-induced premature terminal differentiation of progenitor fibroblasts to postmitotic fibrocytes could significantly be inhibited. Based on this data, it can be postulated that BBI may serve as a radioprotector of normal fibroblasts which are involved in radiation-induced tissue injuries like radiation fibrosis.
Collapse
Affiliation(s)
- K Dittmann
- Department of Radiotherapy, Eberhard-Karls-University, Tübingen, Germany
| | | | | | | |
Collapse
|
36
|
Carsberg CJ, Ohanian J, Friedmann PS. Ultraviolet radiation stimulates a biphasic pattern of 1,2-diacylglycerol formation in cultured human melanocytes and keratinocytes by activation of phospholipases C and D. Biochem J 1995; 305 ( Pt 2):471-7. [PMID: 7832762 PMCID: PMC1136386 DOI: 10.1042/bj3050471] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ultraviolet radiation (UVR) induces melanin synthesis by human epidermal melanocytes, and phospholipid-derived 1,2-diacylglycerols (DAGs) have been implicated in mediating this response. In previous experiments, addition of the synthetic DAG 1-oleoyl-2-acetylglycerol to cultured pigment cells stimulated melanogenesis. The purpose of the present study was to analyse the effects of UVR on the endogenous generation of DAGs. It was found that in a number of cultured cell types, including human melanocytes and B16 mouse melanoma cells, but also human keratinocytes and Swiss 3T3 fibroblasts, exposure to a single dose of UVR stimulated a biphasic increase in endogenous DAG formation. An early transient rise, over seconds, was followed by a more sustained delayed rise over minutes. The early rise in DAG levels was accompanied by a transient rise in inositol trisphosphate formation, indicating activation of phosphatidylinositol-specific phospholipase C. The delayed rise was accompanied by activation of phospholipase D. This endogenous DAG formation by pigment cells is further evidence for the involvement of DAGs in UVR-induced epidermal melanin synthesis. Since DAG formation is also seen in other cells types, it is possible that DAGs may be involved in an array of UVR-induced responses.
Collapse
Affiliation(s)
- C J Carsberg
- Department of Dermatology, University of Liverpool, U.K
| | | | | |
Collapse
|
37
|
Harriger MD, Hull BE. Characterization of ultraviolet radiation-induced damage to keratinocytes in a skin equivalent in vitro. Arch Dermatol Res 1994; 286:319-24. [PMID: 7979547 DOI: 10.1007/bf00402222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The human skin equivalent (HSE) provides a convenient model for studying the dermatological effects of exposure to ultraviolet (UV) radiation. HSEs, constructed by overlaying a collagen-fibroblast matrix with epidermal cells, were maintained submerged for 1 week after the addition of epidermal cells and then raised to the air-liquid interface for an additional 3 weeks. HSEs were exposed to sublethal doses of UV radiation ranging from 0 to 500 J/m2, incubated up to 48 h in medium containing 3H-thymidine and fixed for ultrastructural and autoradiographic analysis. Exposure to radiation doses greater than 50 J/m2 led to vacuolation of the cornified envelopes and enlargement of intercellular spaces. These doses also led to the formation of dense cytoplasmic bodies, and separation and vesiculation of the nuclear envelope in the basal cells. DNA synthesis in the basal cells was analyzed autoradiographically. Maximal numbers of labeled basal cells were observed 24 h after exposure to UV radiation at 50 J/m2. Although the proportions of labeled cells varied among different epidermal donors, the maximal responses and time-course of 3H-thymidine incorporation remained consistent, supporting the usefulness of the HSE in studying the effects of UV irradiation on human skin.
Collapse
Affiliation(s)
- M D Harriger
- Biomedical Sciences Ph.D. Program, Wright State University, Dayton, Ohio 45435
| | | |
Collapse
|
38
|
Ultraviolet B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Evidence for UVB-induced epidermal growth factor receptor activation. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41895-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
39
|
Djavaheri-Mergny M, Mazière C, Santus R, Dubertret L, Mazière JC. Ultraviolet A decreases epidermal growth factor (EGF) processing in cultured human fibroblasts and keratinocytes: inhibition of EGF-induced diacylglycerol formation. J Invest Dermatol 1994; 102:192-6. [PMID: 8106748 DOI: 10.1111/1523-1747.ep12371761] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The binding, uptake, and degradation of epidermal growth factor (EGF) has been studied in MRC5 human fibroblasts and NCTC 2544 human keratinocytes following ultraviolet A (UVA) irradiation at doses up to 18.9 J/cm2, which are not lethal to cells under our experimental conditions. A dose-dependent reduction in EGF binding was observed, with an approximately 75% decrease at the maximal studied UVA dose. At lower doses (6 to 12 J/cm2), EGF binding was more affected by ultraviolet A in fibroblasts than in keratinocytes. In both cell types, this effect of UVA appeared to be related to a reduction of the affinity of the EGF receptor for EGF. Kinetic studies by pulse-chase experiments indicated that EGF is more rapidly internalized by keratinocytes than by fibroblasts, and that UVA exposure resulted in a slower decay of EGF intracellular content. A 24-h pretreatment of cells with 5 x 10(-5) M vitamin E strongly reduced the appearance of light-induced lipid peroxidation products, measured via assay of thiobarbituric acid reactive substances formation, but only partially prevented the UVA-induced alterations of EGF processing by cells. Finally, UVA exposure almost completely abolished the EGF-induced increase in diacylglycerol production from 14C-arachidonic acid-labeled lipids in both cell types. These results demonstrate that UVA radiation induces important changes in EGF processing and could participate in the light-induced degenerative processes of the skin.
Collapse
Affiliation(s)
- M Djavaheri-Mergny
- Laboratoire de Physico-Chimie de l'Adaptation Biologique, INSERM U312, Muséum National d'Histoire Naturelle de Paris, France
| | | | | | | | | |
Collapse
|