1
|
Choi DJ, Shin HY, Kim JY. Effect of cationized guar gum on stability and bioaccessibility of curcumin-loaded Pickering emulsion stabilized by starch nanoparticles. Food Chem 2025; 463:141091. [PMID: 39244998 DOI: 10.1016/j.foodchem.2024.141091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
To enhance stability and bioaccessibility of curcumin in Pickering emulsions stabilized by starch nanoparticles (SNP), cationized guar gum (CGG) was incorporated into the emulsion. Zeta potential results revealed that SNP and CGG formed electrostatic interactions, resulting in stable interfacial layer with higher hydrophobicity. Adding 0.4 % CGG maintained a homogeneous phase without significant droplet size change for up to one month. The emulsion with 0.4 % CGG demonstrated stable storage under varying pH (4-10), ionic strength (0-10 mM NaCl), and freeze-thaw cycles (up to 3). When optimized Pickering emulsion system was applied to curcumin encapsulation, curcumin-loaded emulsions were stably maintained for up to one month. The curcumin retained approximately 100 % stability under thermal (90 °C) and UV (12h) treatments. In the optimized emulsion, starch components resisted digestion in oral and gastroenteric phases but were primarily digested in small intestine, resulting in an increasing bioaccessibility from 88.23 to 96.92 %.
Collapse
Affiliation(s)
- Dan-Jung Choi
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, South Korea
| | - Hye-Young Shin
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, South Korea
| | - Jong-Yea Kim
- Department of Food Science and Biotechnology, Kangwon National University, Chuncheon 24341, South Korea; Institute of Fermentation and Brewing, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
2
|
Wang L, Wei Z, Xue C. Co-encapsulation of curcumin and fucoxanthin in solid-in-oil-in-water multilayer emulsions: Characterization, stability and programmed sequential release. Food Chem 2024; 456:139975. [PMID: 38852456 DOI: 10.1016/j.foodchem.2024.139975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
To enhance the bioavailability of bioactives with varying efficacy in the gastrointestinal tract (GIT), a co-delivery system of solid-in-oil-in-water (S/O/W) emulsion was designed for the co-encapsulation of two bioactives in this paper. S/O/W emulsions were fabricated utilizing fucoxanthin (FUC)-loaded nanoparticles (NPs) as the solid phase, coconut oil containing curcumin (Cur) as the oil phase, and carboxymethyl starch (CMS)/propylene glycol alginate (PGA) complex as the aqueous phase. The high entrapment efficiency of Cur (82.3-91.3%) and FUC (96.0-96.1%) was found in the CMS/PGA complex-stabilized S/O/W emulsions. Encapsulation of Cur and FUC within S/O/W emulsions enhanced their UV and thermal stabilities. In addition, S/O/W emulsions prepared with CMS/PGA complexes displayed good stability. More importantly, the formed S/O/W emulsion possessed programmed sequential release characteristics, delivering Cur and FUC to the small intestine and colon, respectively. These results contributed to designing co-delivery systems for the programmed sequential release of two hydrophobic nutrients in the GIT.
Collapse
Affiliation(s)
- Luhui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China
| | - Zihao Wei
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China.
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266400, China; Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China.
| |
Collapse
|
3
|
Jia G, Zhang H. Control of emulsion crystal growth in low-temperature environments. Adv Colloid Interface Sci 2024; 334:103313. [PMID: 39437491 DOI: 10.1016/j.cis.2024.103313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/25/2024]
Abstract
Currently, various types of emulsions can be applied to a wide range of systems. Emulsions are thermodynamically unstable systems, and their crystallization can be affected by a variety of factors. The nucleation and growth processes of emulsion crystal networks are determined on the basis of reported theoretical and experimental methods. The issues addressed include changes in the apparent crystal morphology of samples, changes in thermal properties with respect to temperature, changes in boundary conditions, and changes in the various applications of emulsions as feedstocks or in processing and storage methods. Changes in a variety of common emulsions during constant-temperature storage and unavoidable temperature fluctuations (e.g., multiple freeze-thaw cycles) are considered. Different methods for controlling the crystalline stability of these colloidal systems are also discussed. This review outlines the crystallization mechanism of emulsions during their food processing and storage.
Collapse
Affiliation(s)
- Guoliang Jia
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China.
| | - Huawen Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Palà M, Lligadas G, Moreno A. Valorization of Lactate Esters and Amides into Value-Added Biobased (Meth)acrylic Polymers. Biomacromolecules 2024; 25:6338-6356. [PMID: 39258970 PMCID: PMC11480984 DOI: 10.1021/acs.biomac.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
(Meth)acrylic polymers are massively produced due to their inherently attractive properties. However, the vast majority of these polymers are derived from fossil resources, which is not aligned with the tendency to reduce gas emissions. In this context, (meth)acrylic polymers derived from biomass (biobased polymers) are gaining momentum, as their application in different areas can not only stand the comparison but even surpass, in some cases, the performance of petroleum-derived ones. In this review, we highlight the design and synthesis of (meth)acrylic polymers derived from lactate esters (LEs) and lactate amides (LAs), both derived from lactic acid. While biobased polymers have been widely studied and reviewed, the poly(meth)acrylates with pendant LE and LA moieties evolved slowly until recently when significant achievements have been made. Hence, constraints and opportunities arising from previous research in this area are presented, focusing on the synthesis of well-defined polymers for the preparation of advanced materials.
Collapse
Affiliation(s)
- Marc Palà
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Gerard Lligadas
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Adrian Moreno
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| |
Collapse
|
5
|
Kong Z, Li Z, Zhang L, Dai L, Wang Y, Sun Q, McClements DJ, Cheng Y, Zhang Z, Wang C, Xu X. Development of pea protein nanoparticle/hydrolyzed rice glutelin fibril emulsion gels for encapsulation of curcumin. Int J Biol Macromol 2024; 276:133640. [PMID: 38969047 DOI: 10.1016/j.ijbiomac.2024.133640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/22/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
The potential of using emulsion gels stabilized by binary plant protein nanoparticle mixtures for the encapsulation and delivery of lipophilic nutraceuticals was evaluated. The particle characteristics, physical stability, water diffusivity, microrheology, large amplitude oscillating shear (LAOS) properties, and in vitro digestion of emulsion gels prepared by different ratios of hydrolyzed rice glutelin fibrils (HRGFs) and pea protein nanoparticle (PNP) were characterized. The emulsion gel with P/H = 2:1 (0.84 μm) exhibited the best storage stability and freeze-thaw stability, as seen by the smaller oil droplet size (1.02 and 1.42 μm, respectively). Low-field pulsed NMR indicated that the majority of water in samples was highly mobile. All the samples were predominantly elastic-like materials. The P/H 2:1 emulsion gel had the lowest FI value (6.21 × 10-4 Hz), the highest MVI value (5.57 s/nm2), G'/ G″ values and enclosed area, showing that it had denser 3D network structures, higher stiffness values, and a high sensitivity to changes in strain. Additionally, P/H 2:1 emulsion gel had a relatively high lipid digestibility (96.1 %), curcumin bioaccessibility (58.9 %), and curcumin stability (94.2 %). This study showed that emulsion gels stabilized by binary protein nanoparticle mixtures (PNP/HRGF) have potential as edible delivery systems for lipophilic nutraceuticals.
Collapse
Affiliation(s)
- Zhihao Kong
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Zhiying Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Liwen Zhang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Lei Dai
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Yanfei Wang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China
| | | | - Yongqiang Cheng
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhao Zhang
- Shandong Sinoglory Health Food Co., Ltd, Liaocheng, Shandong Province 252400, China
| | - Caili Wang
- Shandong Sinoglory Health Food Co., Ltd, Liaocheng, Shandong Province 252400, China
| | - Xingfeng Xu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China; Qingdao Special Food Research Institute, Qingdao, Shandong 266109, China; Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Dursun Capar T, Iscimen EM, McClements DJ, Yalcin H, Hayta M. Preparation of oil-in-water emulsions stabilized by faba bean protein-grape leaf polyphenol conjugates: pH-, salt-, heat-, and freeze-thaw-stability. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6483-6493. [PMID: 38507329 DOI: 10.1002/jsfa.13472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Plant proteins are being increasingly utilized as functional ingredients in foods because of their potential health, sustainability, and environmental benefits. However, their functionality is often worse than the synthetic or animal-derived ingredients they are meant to replace. The functional performance of plant proteins can be improved by conjugating them with polyphenols. In this study, the formation and stability of oil-in-water emulsions prepared using faba bean protein-grape leaf polyphenol (FP-GLP) conjugates as emulsifiers. Initially, FP-GLP conjugates were formed using an ultrasound-assisted alkali treatment. Then, corn oil-in-water emulsions were prepared using high-intensity sonication (60% amplitude, 10 min) and the impacts of conjugate concentration, pH, ionic strength, freezing-thawing, and heating on their physicochemical properties and stability were determined. RESULTS Microscopy and light scattering analysis showed that oil-in-water emulsions containing small oil droplets could be formed at conjugate concentrations of 2% and higher. The addition of salt reduced the electrostatic repulsion between the droplets, which increased their susceptibility to aggregation. Indeed, appreciable droplet aggregation was observed at ≥ 50 mmol/L sodium chloride. The freeze-thaw stability of emulsions prepared with protein-polyphenol conjugates was better than those prepared using the proteins alone. In addition, the emulsions stabilized by the conjugates had a higher viscosity than those prepared by proteins alone. CONCLUSION This study showed that FP-GLP conjugates are effective plant-based emulsifiers for forming and stabilizing oil-in-water emulsions. Indeed, emulsions formed using these conjugates showed improved resistance to pH changes, heating, freezing, and salt addition. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tugba Dursun Capar
- Department of Food Engineering, University of Erciyes, Kayseri, Türkiye
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA, USA
| | | | | | - Hasan Yalcin
- Department of Food Engineering, University of Erciyes, Kayseri, Türkiye
| | - Mehmet Hayta
- Department of Food Engineering, University of Erciyes, Kayseri, Türkiye
| |
Collapse
|
7
|
Liu L, Shi LS, Hu CY, Gong T, Yang XY, Zhang CQ, Meng YH. Walnut protein isolate based emulsion as a promising delivery system enhanced lutein bioaccessibility. Int J Biol Macromol 2024; 275:133608. [PMID: 38960249 DOI: 10.1016/j.ijbiomac.2024.133608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Lutein, a natural pigment with multiple beneficial bioactivities, faces limitations in food processing due to its instability. In this study, we constructed four modified walnut protein isolate (WNPI) based emulsions as emulsion-based delivery systems (EBDS) for lutein fortification. The modification treatments enhanced the encapsulation efficiency of the WNPI-based EBDS on lutein. The modified WNPI-based EBDS exhibited improved storage and digestive stability, as well as increased lutein delivery capability in simulated gastrointestinal conditions. After in vitro digestion, the lutein retention in the modified WNPI-based EBDS was higher than in the untreated WNPI-based EBDS, with a maximum retention of 49.67 ± 1.10 % achieved after ultrasonic modification. Furthermore, the modified WNPI-based EBDS exhibited an elevated lutein bioaccessibility, reaching a maximum value of 40.49 ± 1.29 % after ultrasonic modification, nearly twice as high as the untreated WNPI-based EBDS. Molecular docking analysis indicated a robust affinity between WNPI and lutein, involving hydrogen bonds and hydrophobic interactions. Collectively, this study broadens WNPI's application and provides a foundation for fortifying other fat-soluble bioactive substances.
Collapse
Affiliation(s)
- Liang Liu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Lin Shan Shi
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Ching Yuan Hu
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China; Department of Human Nutrition, Food and Animal Sciences, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, 1955 East-West Road, AgSci. 415J, Honolulu, HI 96822, USA.
| | - Tian Gong
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Xue Yan Yang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Chao Qun Zhang
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| | - Yong Hong Meng
- Engineering Research Center for High-Valued Utilization of Fruit Resources in Western China, Ministry of Education; National Research & Development Center of Apple Processing Technology; College of Food Engineering and Nutritional Science, Shaanxi Normal University, 620 West Changan Avenue, Xian, Shaanxi 710119, PR China.
| |
Collapse
|
8
|
Chen Y, Zhang Z, Chen Y, Li T, Zhang W. The role of fat content in coconut milk: Stability and digestive properties. Food Chem 2024; 446:138900. [PMID: 38428074 DOI: 10.1016/j.foodchem.2024.138900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/24/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
The fat in coconut milk contributes to unique flavour, while increasing fat content affects stability of the coconut milk. In this study, coconut water and fat were separated, recombined, and homogenized to obtain coconut milk with different fat contents (0-20 %). Emulsifying properties, stability, and digestibility of coconut milk with different fat contents were comprehensively evaluated. The results showed that as the fat content increased from 0 to 20 %, the droplet size increased from 2.18 to 4.70 μm and the viscosity showed an increasing trend. During storage and freeze-thaw, coconut milk with 5 % and 10 % fat content showed excellent stability. In addition, coconut milk with 10 % fat content had superior fat digestibility, which was related to high affinity of pancrelipase. In short, this study revealed that fat content below 10 % can withstand environmental factors such as storage, lipid oxidation, and freeze-thaw, which can be accurately developed as coconut milk products.
Collapse
Affiliation(s)
- Yang Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Zihan Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Yile Chen
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Tian Li
- School of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Weimin Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, Hainan Institute for Food Control, Haikou, Hainan 570228, China.
| |
Collapse
|
9
|
Xia X, Yang X, Zhu Y, Sun Y, Zhu X. Effect and mechanism of freezing on the quality and structure of soymilk gel induced by different salt ions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5284-5295. [PMID: 38308594 DOI: 10.1002/jsfa.13354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/23/2023] [Accepted: 02/01/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND The increasing attention toward frozen soy-based foods has sparked interest. Variations exist in the quality and structure of soymilk gels induced by different salt ions, leading to diverse changes post-freezing. This study compared and analyzed the effects of calcium chloride (CC), magnesium chloride (MC) and calcium sulfate (CS) on the quality characteristics and protein structure changes of soymilk gels (CC-S, MC-S and CS-S) before and after freezing, and clarified the mechanisms of freezing on soymilk gel. RESULTS The formation rate of soymilk gel is influenced by the type of salt ions. In comparison to CS and MC, soymilk gel induced by CC exhibited the fastest formation rate, highest gel hardness, lowest moisture content, and smaller gel pores. However, freezing treatment deteriorated the quality of soymilk gel induced by different salt ions, leading to a decline in textural properties (hardness and chewiness). Among these, the textual state of CC-induced soymilk gel remained optimal, exhibiting the least apparent damage and minimal cooking loss. Freezing treatments prompt a transition of soymilk gel secondary structure from β-turns to β-sheets, disrupting the protein's tertiary structure. Furthermore, freezing treatments also fostered the crosslinking between soymilk gel protein, increasing the content of disulfide bonds. CONCLUSION The quality of frozen soymilk gel is influenced by the rate of gel formation induced by salt ions. After freezing, soymilk gel with faster gelation rates exhibited a greater tendency for the transformation of protein-water interactions into protein-protein interactions. They showed a higher degree of disulfide bond formation, resulting in a more tightly knit and firm frozen gel network structure with denser and more uniformly distributed pores. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaoyu Xia
- College of Food Engineering, Harbin University of Commerce, Harbin, China
- Soybean Research Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xinxin Yang
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ying Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Ying Sun
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| | - Xiuqing Zhu
- College of Food Engineering, Harbin University of Commerce, Harbin, China
| |
Collapse
|
10
|
Liao Z, Wang X, Lu M, Zhong R, Xiao J, Rogers MA, Cao Y, Lan Y. Interfacial crystallized oleogel emulsion with improved freeze-thaw stability and tribological properties: Influence of cooling rate. Food Chem 2024; 445:138704. [PMID: 38401308 DOI: 10.1016/j.foodchem.2024.138704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
In this study, the influence of cooling rate on the freeze-thaw stability, rheological and tribological properties of interfacial crystalized oleogel emulsion was investigated. Results showed that slower cooling rate could promote formation of larger crystals and stronger network in oleogels. Additionally, oleogel emulsions showed higher freeze-thaw stability than those stabilized solely by emulsifiers. The slower cooling rate resulted in larger crystals adsorbed at the droplet surface. This led to greater steric hindrance that prevented the migration of oil droplets with higher resistance to disruption by ice crystals. The rheological and tribological measurements suggested that with appropriate amount of crystals, the tribological properties were better maintained for emulsions prepared at slow cooling rate after freeze-thaw treatment. This strategy greatly enriched oleogel emulsion formulations and provided important clues for potential applications in food products involved with freeze-thaw treatment.
Collapse
Affiliation(s)
- Ziying Liao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China; Guangdong Marubi Biotechnology Co., Ltd, Guangzhou, Guangdong, PR China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Muwen Lu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Ruimin Zhong
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, Guangdong, PR China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Michael A Rogers
- Department of Food Science, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
11
|
Zhao D, Sun L, Wang Y, Liu S, Cao J, Li H, Liu X. Salt ions improve soybean protein isolate/curdlan complex fat substitutes: Effect of molecular interactions on freeze-thaw stability. Int J Biol Macromol 2024; 272:132774. [PMID: 38823735 DOI: 10.1016/j.ijbiomac.2024.132774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
Although emulsion gels show significant potential as fat substitutes, they are vulnerable to degreasing, delamination, and other undesirable processes during freezing, storage, and thawing, leading to commercial value loss in terms of juiciness, flavor, and texture. This study investigated the gel strength and freeze-thaw stability of soybean protein isolate (SPI)/curdlan (CL) composite emulsion gels after adding sodium chloride (NaCl). Analysis revealed that adding low salt ion concentrations promoted the hardness and water-holding capacity (WHC) of fat substitutes, while high levels displayed an inhibitory effect. With 40 mM NaCl as the optimum concentration, the hardness increased from 259.33 g (0 mM) to 418.67 g, the WHC increased from 90.59 % to 93.18 %, exhibiting good freeze-thaw stability. Confocal laser scanning microscopy (CLSM) and particle size distribution were used to examine the impact of salt ion concentrations on protein particle aggregation and the damaging effect of freezing and thawing on the proteoglycan complex network structure. Fourier-transform infrared spectroscopy (FTIR) and protein solubility evaluation indicated that the composite gel network structure consisted of covalent contacts between the proteoglycan molecules and hydrogen bonds, playing a predominant role in non-covalent interaction. This study showed that the salt ion concentration in the emulsion gel affected its molecular interactions.
Collapse
Affiliation(s)
- Di Zhao
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Luyao Sun
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, NSW 2052, Australia.
| | - Shuqi Liu
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Jinnuo Cao
- Puluting (Hebei) Protein Biotechnology Research Limited Company, Handan, China
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xinqi Liu
- National Soybean Processing Industry Technology Innovation Center, Key Laboratory of Geriatric Nutrition and Health Ministry of Education, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
12
|
Xie H, Sha XM, Yuan P, Li JL, Hu ZZ, Tu ZC. Rheology, physicochemical properties, and microstructure of fish gelatin emulsion gel modified by γ-polyglutamic acid. Front Nutr 2024; 11:1343394. [PMID: 38571750 PMCID: PMC10987959 DOI: 10.3389/fnut.2024.1343394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/26/2024] [Indexed: 04/05/2024] Open
Abstract
In this work, the effect of the addition of γ-polyglutamic acid (γ-PGA) on the rheology, physicochemical properties, and microstructure of fish gelatin (FG) emulsion gel was investigated. Samples of the emulsion gel were evaluated for rheological behavior and stability prior to gelation. The mechanical properties and water-holding capacity (WHC) of the emulsion were determined after gelation. The microstructure of the emulsion gel was further examined using confocal laser scanning microscopy (CLSM). The results indicated a gradual increase in the apparent viscosity and gelation temperature of the emulsion at a higher concentration of γ-PGA. Additionally, frequency scan results revealed that on the addition of γ-PGA, FG emulsion exhibited a stronger structure. The emulsion containing 0.1% γ-PGA exhibited higher stability than that of the control samples. The WHC and gel strength of the emulsion gel increased on increasing the γ-PGA concentration. CLSM images showed that the addition of γ-PGA modified the structure of the emulsion gel, and the droplets containing 0.1% γ-PGA were evenly distributed. Moreover, γ-PGA could regulate the droplet size of the FG emulsion and its size distribution. These findings suggest that the viscoelasticity and structure of FG emulsion gels could be regulated by adjusting the γ-PGA concentration. The γ-PGA-modified FG emulsion gel also exhibited improved rheology and physicochemical properties. The results showed that γ-PGA-modified FG emulsion gel may find potential applications in food, medicine, cosmetics, and other industries.
Collapse
Affiliation(s)
- Huan Xie
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Xiao-Mei Sha
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
- Jiangxi Deshang Pharmaceutical Co., Ltd., Yichun, Jiangxi, China
| | - Ping Yuan
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Jia-Le Li
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zi-Zi Hu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
| | - Zong-Cai Tu
- National R&D Center for Freshwater Fish Processing, College of Chemistry and Chemical Engineering & College of Life Science, Jiangxi Normal University, Nanchang, China
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Xu W, Jia Y, Li J, Sun H, Cai L, Wu G, Kang M, Zang J, Luo D. Pickering emulsion with high freeze-thaw stability stabilized by xanthan gum/lysozyme nanoparticles and konjac glucomannan. Int J Biol Macromol 2024; 261:129740. [PMID: 38281516 DOI: 10.1016/j.ijbiomac.2024.129740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
In this study, freeze-thaw cycle experiments were conducted on food-grade Pickering emulsions co-stabilized with konjac glucomannan (KGM) and xanthan gum/lysozyme nanoparticles (XG/Ly NPs). The rheological properties, particle size, flocculation degree (FD), coalescence degree (CD), centrifugal stability, Differential scanning calorimetry (DSC), X-ray diffraction (XRD) and microstructure of Pickering emulsion stabilized by KGM before and after freeze-thaw were characterized. It was found that as the concentration of KGM increased, the flocculation degree (FD) and coalescence degree (CD) of the emulsion decreased after the freeze-thaw cycle compared to the control sample, and the microscopic images showed that the droplets became smaller and less affected by the freeze-thaw cycles. The rheological and water-holding properties also confirmed that the KGM-added emulsions still had a strong gel network structure and prevented the separation of the continuous and dispersed phases of the droplets after freezing and thawing. Freeze-thaw treatments had a negative effect on the stable emulsion of XG/Ly NPs, while the addition of KGM improved the freeze-thaw stability of the emulsion, which provided a theoretical basis for the development of emulsion products with high freeze-thaw stability.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Yin Jia
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Jingyi Li
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Liwen Cai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Guanchen Wu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Mengyao Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Jiaxiang Zang
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
14
|
Szymanska I, Zbikowska A, Onacik-Gür S. New Insight into Food-Grade Emulsions: Candelilla Wax-Based Oleogels as an Internal Phase of Novel Vegan Creams. Foods 2024; 13:729. [PMID: 38472842 DOI: 10.3390/foods13050729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Cream-type emulsions containing candelilla wax-based oleogels (EC) were analyzed for their physicochemical properties compared to palm oil-based creams (EP). The microstructure, rheological behavior, stability, and color of the creams were determined by means of non-invasive and invasive techniques. All the formulations exhibited similar color parameters in CIEL*a*b* space, unimodal-like size distribution of lipid particles, and shear-thinning properties. Oleogel-based formulations were characterized by higher viscosity (consistency index: 172-305 mPa·s, macroscopic viscosity index: 2.19-3.08 × 10-5 nm-2) and elasticity (elasticity index: 1.09-1.45 × 10-3 nm-2), as well as greater resistance to centrifugal force compared to EP. Creams with 3, 4, or 5% wax (EC3-5) showed the lowest polydispersity indexes (PDI: 0.80-0.85) 24 h after production and the lowest instability indexes after environmental temperature changes (heating at 90 °C, or freeze-thaw cycle). EC5 had particularly high microstructural stability. In turn, candelilla wax content ≥ 6% w/w accelerated the destabilization processes of the cream-type emulsions due to disintegration of the interfacial layer by larger lipid crystals. It was found that candelilla wax-based lipids had great potential for use as palm oil substitutes in the development of novel vegan cream analogues.
Collapse
Affiliation(s)
- Iwona Szymanska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Anna Zbikowska
- Department of Food Technology and Assessment, Institute of Food Science, Warsaw University of Life Sciences-SGGW, 159C Nowoursynowska Street, 02-776 Warsaw, Poland
| | - Sylwia Onacik-Gür
- Department of Meat and Fat Technology, Prof. Waclaw Dabrowski Institute of Agriculture and Food Biotechnology-State Research Institute, 36 Rakowiecka Street, 02-532 Warsaw, Poland
| |
Collapse
|
15
|
Hei X, Liu Z, Li S, Wu C, Jiao B, Hu H, Ma X, Zhu J, Adhikari B, Wang Q, Shi A. Freeze-thaw stability of Pickering emulsion stabilized by modified soy protein particles and its application in plant-based ice cream. Int J Biol Macromol 2024; 257:128183. [PMID: 37977455 DOI: 10.1016/j.ijbiomac.2023.128183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
Pickering emulsions are of great interest to the food industry and their freeze-thaw stability important when used in frozen foods. Particles of soybean isolate (SPI) were heat treated and then crosslinked with transglutaminase (TG) enzyme to produce Pickering emulsions. The protein particles produced using unheated and uncrosslinked SPI (NSPI) was used as the benchmark. The mean particle size, absolute zeta potential, and surface hydrophobicity of protein particles produced using heat treatment and TG crosslinking (at 40 U/g) SPI (HSPI-TG-40) were the highest and substantially higher than those produced using NSPI. The thermal treatment of protein particles followed by crosslinking with TG enzyme improved the freeze-thaw stability of Pickering emulsions stabilized by them. The Pickering emulsions produced using HSPI-TG-40 had the lowest temperature for ice crystal formation and they had better freeze-thaw stability. The plant-based ice cream prepared by HSPI-TG-40 particle-stabilized Pickering emulsions had suitable texture and freeze-thaw stability compared to the ice cream produced using NSPI. The Pickering particles produced using heat treatment of SPI followed by crosslinking with TG (at 40 U/g) produced the most freeze-thaw stable Pickering emulsions. These Pickering particles and Pickering emulsions could be used in frozen foods such as ice cream.
Collapse
Affiliation(s)
- Xue Hei
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Zhe Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Shanshan Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Chao Wu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Bo Jiao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Hui Hu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Xiaojie Ma
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Jinjin Zhu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China
| | - Benu Adhikari
- School of Science, RMIT University, Melbourne, 3083, VIC, Australia
| | - Qiang Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| | - Aimin Shi
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193, China.
| |
Collapse
|
16
|
Kawecki NS, Norris SCP, Xu Y, Wu Y, Davis AR, Fridman E, Chen KK, Crosbie RH, Garmyn AJ, Li S, Mason TG, Rowat AC. Engineering multicomponent tissue by spontaneous adhesion of myogenic and adipogenic microtissues cultured with customized scaffolds. Food Res Int 2023; 172:113080. [PMID: 37689860 DOI: 10.1016/j.foodres.2023.113080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 09/11/2023]
Abstract
The integration of intramuscular fat-or marbling-into cultured meat will be critical for meat texture, mouthfeel, flavor, and thus consumer appeal. However, culturing muscle tissue with marbling is challenging since myocytes and adipocytes have different media and scaffold requirements for optimal growth and differentiation. Here, we present an approach to engineer multicomponent tissue using myogenic and adipogenic microtissues. The key innovation in our approach is the engineering of myogenic and adipogenic microtissues using scaffolds with customized physical properties; we use these microtissues as building blocks that spontaneously adhere to produce multicomponent tissue, or marbled cultured meat. Myocytes are grown and differentiated on gelatin nanofiber scaffolds with aligned topology that mimic the aligned structure of skeletal muscle and promotes the formation of myotubes in both primary rabbit skeletal muscle and murine C2C12 cells. Pre-adipocytes are cultured and differentiated on edible gelatin microbead scaffolds, which are customized to have a physiologically-relevant stiffness, and promote lipid accumulation in both primary rabbit and murine 3T3-L1 pre-adipocytes. After harvesting and stacking the individual myogenic and adipogenic microtissues, we find that the resultant multicomponent tissues adhere into intact structures within 6-12 h in culture. The resultant multicomponent 3D tissue constructs show behavior of a solid material with a Young's modulus of ∼ 2 ± 0.4 kPa and an ultimate tensile strength of ∼ 23 ± 7 kPa without the use of additional crosslinkers. Using this approach, we generate marbled cultured meat with ∼ mm to ∼ cm thickness, which has a protein content of ∼ 4 ± 2 g/100 g that is comparable to a conventionally produced Wagyu steak with a protein content of ∼ 9 ± 4 g/100 g. We show the translatability of this layer-by-layer assembly approach for microtissues across primary rabbit cells, murine cell lines, as well as for gelatin and plant-based scaffolds, which demonstrates a strategy to generate edible marbled meats derived from different species and scaffold materials.
Collapse
Affiliation(s)
- N Stephanie Kawecki
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Sam C P Norris
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yixuan Xu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yifan Wu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ashton R Davis
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ester Fridman
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Kathleen K Chen
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Rachelle H Crosbie
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Neurology, David Geffen School of Medicine, University of California LA, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Andrea J Garmyn
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Thomas G Mason
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amy C Rowat
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Broad Stem Cell Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
17
|
Tang M, Sun Y, Feng X, Ma L, Dai H, Fu Y, Zhang Y. Regulation mechanism of ionic strength on the ultra-high freeze-thaw stability of myofibrillar protein microgel emulsions. Food Chem 2023; 419:136044. [PMID: 37011570 DOI: 10.1016/j.foodchem.2023.136044] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/14/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
The regulation mechanism of ionic strength (0-1000 mM) on the freeze-thaw (FT) stability of emulsions stabilized by myofibrillar protein microgel particles (MMP) was systematically investigated. High ionic strength emulsions (300-1000 mM) exhibited stability after five FT cycles. With ionic strength increasing, the repulsive force between particles gradually reduced, the flocculation degree (20.72 ∼ 75.60%) and apparent viscosity of emulsions gradually rose (69 ∼ 170 mPa·s), promoting the formation of protein network structures in the continuous phase. Concurrently, the interfacial proteins rearranged (18.8 ∼ 104.2 s-1) and aggregated rapidly, facilitating the formation of a stable interface network structure, ultimately improving its stability. Besides, scanning electron microscopy (SEM) images revealed that the interfacial proteins gradually aggregated, further forming a network with the MMP in the continuous phase, allowing MMP emulsions with enhanced FT stability at high ionic strength (300-1000 mM). This study was beneficial to produce emulsion-based sauces with ultra-high FT stability.
Collapse
|
18
|
Bernal-Chávez SA, Romero-Montero A, Hernández-Parra H, Peña-Corona SI, Del Prado-Audelo ML, Alcalá-Alcalá S, Cortés H, Kiyekbayeva L, Sharifi-Rad J, Leyva-Gómez G. Enhancing chemical and physical stability of pharmaceuticals using freeze-thaw method: challenges and opportunities for process optimization through quality by design approach. J Biol Eng 2023; 17:35. [PMID: 37221599 DOI: 10.1186/s13036-023-00353-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
The freeze-thaw (F/T) method is commonly employed during the processing and handling of drug substances to enhance their chemical and physical stability and obtain pharmaceutical applications such as hydrogels, emulsions, and nanosystems (e.g., supramolecular complexes of cyclodextrins and liposomes). Using F/T in manufacturing hydrogels successfully prevents the need for toxic cross-linking agents; moreover, their use promotes a concentrated product and better stability in emulsions. However, the use of F/T in these applications is limited by their characteristics (e.g., porosity, flexibility, swelling capacity, drug loading, and drug release capacity), which depend on the optimization of process conditions and the kind and ratio of polymers, temperature, time, and the number of cycles that involve high physical stress that could change properties associated to quality attributes. Therefore, is necessary the optimization of F/T conditions and variables. The current research regarding F/T is focused on enhancing the formulations, the process, and the use of this method in pharmaceutical, clinical, and biological areas. The present review aims to discuss different studies related to the impact and effects of the F/T process on the physical, mechanical, and chemical properties (porosity, swelling capacity) of diverse pharmaceutical applications with an emphasis on their formulation properties, the method and variables used, as well as challenges and opportunities in developing. Finally, we review the experimental approach for choosing the standard variables studied in the F/T method applying the systematic methodology of quality by design.
Collapse
Affiliation(s)
- Sergio A Bernal-Chávez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Héctor Hernández-Parra
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Sheila I Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - María L Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Campus Ciudad de México, Ciudad de México, Mexico
| | - Sergio Alcalá-Alcalá
- Laboratorio de Tecnología Farmacéutica, Facultad de Farmacia, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, 62209, México
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de Mexico, Mexico
| | - Lashyn Kiyekbayeva
- Department of Pharmaceutical Technology, Pharmaceutical School, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
- Faculties of Pharmacy, Kazakh-Russian Medical University, Public Health and Nursing, Almaty, Kazakhstan
| | | | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
19
|
Yiu CCY, Liang SW, Mukhtar K, Kim W, Wang Y, Selomulya C. Food Emulsion Gels from Plant-Based Ingredients: Formulation, Processing, and Potential Applications. Gels 2023; 9:gels9050366. [PMID: 37232958 DOI: 10.3390/gels9050366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
Recent advances in the understanding of formulations and processing techniques have allowed for greater freedom in plant-based emulsion gel design to better recreate conventional animal-based foods. The roles of plant-based proteins, polysaccharides, and lipids in the formulation of emulsion gels and relevant processing techniques such as high-pressure homogenization (HPH), ultrasound (UH), and microfluidization (MF), were discussed in correlation with the effects of varying HPH, UH, and MF processing parameters on emulsion gel properties. The characterization methods for plant-based emulsion gels to quantify their rheological, thermal, and textural properties, as well as gel microstructure, were presented with a focus on how they can be applied for food purposes. Finally, the potential applications of plant-based emulsion gels, such as dairy and meat alternatives, condiments, baked goods, and functional foods, were discussed with a focus on sensory properties and consumer acceptance. This study found that the implementation of plant-based emulsion gel in food is promising to date despite persisting challenges. This review will provide valuable insights for researchers and industry professionals looking to understand and utilize plant-based food emulsion gels.
Collapse
Affiliation(s)
- Canice Chun-Yin Yiu
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Sophie Wenfei Liang
- Agrotechnology and Food Sciences Group, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands
| | - Kinza Mukhtar
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Woojeong Kim
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Yong Wang
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| | - Cordelia Selomulya
- School of Chemical Engineering, UNSW Sydney, Kensington, NSW 2052, Australia
| |
Collapse
|
20
|
Xu T, Gu Z, Cheng L, Li C, Li Z, Hong Y. Stability, oxidizability, and topical delivery of resveratrol encapsulated in octenyl succinic anhydride starch/chitosan complex-stabilized high internal phase Pickering emulsions. Carbohydr Polym 2023; 305:120566. [PMID: 36737204 DOI: 10.1016/j.carbpol.2023.120566] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
High internal phase Pickering emulsions (HIPPEs) stabilized with octenyl succinic anhydride starch/chitosan complexes were examined as a topical delivery vehicle for resveratrol. All resveratrol-loaded HIPPEs showed stable gel-like network structures, with the droplet size and microrheological properties largely dependent on the complex concentrations. HIPPEs exhibited strong stability when subjected to light, high temperature, UV radiation and freeze-thaw treatment, and resveratrol retention was greatly improved with the increasing addition of complexes and resveratrol. High amounts of resveratrol facilitated the antioxidant activity of HIPPEs, whereas sustained release of resveratrol was mainly related to the existence of complex interfacial layers. Moreover, HIPPEs overcome the stratum corneum barrier, with an approximately 3-5-fold increase in resveratrol deposition in deep skin compared to bulk oil. In conclusion, the emulsion composition (especially at the particle level) was vital for the effectiveness of HIPPEs as a carrier, which may provide new opportunities to design topical delivery systems.
Collapse
Affiliation(s)
- Tian Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhengbiao Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Li Cheng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Caiming Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Zhaofeng Li
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China
| | - Yan Hong
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Collaborative Innovation Center for Food Safety and Quality Control, Jiangnan University, Wuxi 214122, China; Jiaxing Institute of Future Food, Jiaxing 314050, China.
| |
Collapse
|
21
|
Xu W, Ning Y, Sun Y, Sun H, Jia Y, Chai L, Luo D, Shah BR. Reversibility of freeze-thaw/re-emulsification on Pickering emulsion stabilized with gliadin/sodium caseinate nanoparticles and konjac glucomannan. Int J Biol Macromol 2023; 233:123653. [PMID: 36780967 DOI: 10.1016/j.ijbiomac.2023.123653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/06/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023]
Abstract
The reversibility of freeze-thaw/re-emulsification of Pickering emulsion stabilized by gliadin/sodium caseinate nanoparticles (Gli/CAS NPs) was improved by adding konjac glucomannan (KGM). With the increase in the KGM concentration, the delamination of emulsions after freeze-thaw treatment was significantly improved. The microstructure showed that the presence of KGM helped to maintain the network structure of continuous phases. In particular, the particle size of the emulsion did not increase significantly after three freeze-thaw cycles when the KGM concentration was 0.6 % and the oil phase fraction was 60 %. The results of flocculation degree and coalescence degree also indicated that KGM promoted the cross-linking between particles on the surface of the droplet and increased the thickness of the interfacial film of the droplet. Rheological analysis also proved the same result: the elastic modulus of the emulsion was still larger than the viscous modulus, which showed the ideal freeze thaw reversibility. After adding KGM, the emulsion formed a strong network structure with good stability for long-term storage and reversibility for freeze-thaw cycling/re-emulsification. Thus, the emulsion has broad application prospects in food, cosmetics, and pharmaceutical fields.
Collapse
Affiliation(s)
- Wei Xu
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Yuli Ning
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yuanyuan Sun
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Haomin Sun
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Yin Jia
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Liwen Chai
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Denglin Luo
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471023, China
| | - Bakht Ramin Shah
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| |
Collapse
|
22
|
Zhang Z, Wang H, Shu Y, Zhang X, Yang T, Qi W, Xu HN. Improving the freeze-thaw stability of pork sausage with oleogel-in-water Pickering emulsion used for pork backfat substitution. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
23
|
Oleogel-structured emulsions: A review of formation, physicochemical properties and applications. Food Chem 2023; 404:134553. [DOI: 10.1016/j.foodchem.2022.134553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
|
24
|
Lee J, Wi G, Choi MJ. The rheological properties and stability of gelled emulsions applying to κ-carrageenan and methyl cellulose as an animal fat replacement. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
25
|
Zhang R, Zhang Y, Yu J, Gao Y, Mao L. Enhanced freeze-thawing stability of water-in-oil pickering emulsions stabilized by ethylcellulose nanoparticles and oleogels. Carbohydr Polym 2023; 312:120814. [PMID: 37059542 DOI: 10.1016/j.carbpol.2023.120814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/09/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
This study developed water-in-oil (W/O) Pickering emulsions stabilized by ethylcellulose (EC) nanoparticles and EC oleogels, which presented significantly improved freeze-thawing (F/T) stability. Microstructural observation suggested EC nanoparticles were distributed at the interface and within the water droplets, and the EC oleogel trapped oil in the continuous phase. Freezing and melting temperatures of water in the emulsions with more EC nanoparticles were lowered and the corresponding enthalpy values were reduced. F/T led to lower water binding capacity but higher oil binding capacity of the emulsions, compared to the initial emulsions. Low field-nuclear magnetic resonance confirmed the increased mobility of water but decreased mobility of oil in the emulsions after F/T. Both linear and nonlinear rheological properties proved that emulsions exhibited higher strength and higher viscosity after F/T. The widened area of the elastic and viscous Lissajous plots with more nanoparticles suggested the viscosity and elasticity of emulsions were increased.
Collapse
Affiliation(s)
- Ruoning Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhui Zhang
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingjing Yu
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanxiang Gao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Key Laboratory of Healthy Beverages, China National Light Industry, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
26
|
In situ crosslinking sodium alginate on oil-water interface to stabilize the O/W emulsions. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Liu J, Zhang R, Jiang H, Yan Z, Zhang Y, Zhang T, Liu X. Network structure of response to freeze-thaw cycles in egg white protein gels filled with emulsion: Digestive kinetics regulated by the state of water and embedded oil. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108135] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Song Z, Yang Y, Chen F, Fan J, Wang B, Bian X, Xu Y, Liu B, Fu Y, Shi Y, Zhang X, Zhang N. Effects of Concentration of Soybean Protein Isolate and Maltose and Oil Phase Volume Fraction on Freeze-Thaw Stability of Pickering Emulsion. Foods 2022; 11:foods11244018. [PMID: 36553760 PMCID: PMC9778241 DOI: 10.3390/foods11244018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
There is growing interest in enhancing the freeze-thaw stability of a Pickering emulsion to obtain a better taste in the frozen food field. A Pickering emulsion was prepared using a two-step homogenization method with soybean protein and maltose as raw materials. The outcomes showed that the freeze-thaw stability of the Pickering emulsion increased when prepared with an increase in soybean protein isolate (SPI) and maltose concentration. After three freeze-thaw treatments at 35 mg/mL, the Turbiscan Stability Index (TSI) value of the emulsion was the lowest. At this concentration, the surface hydrophobicity (H0) of the composite particles was 33.6 and the interfacial tension was 44.34 mN/m. Furthermore, the rheological nature of the emulsions proved that the apparent viscosity and viscoelasticity of Pickering emulsions grew with a growing oil phase volume fraction and concentration. The maximum value was reached in the case of the oil phase volume fraction of 50% at a concentration of 35 mg/mL, the apparent viscosity was 18 Pa·s, the storage modulus of the emulsion was 575 Pa, and the loss modulus was 152 Pa. This research is significant for the production of freeze-thaw resistant products, and improvement of protein-stabilized emulsion products with high freeze-thaw stability.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Na Zhang
- Correspondence: ; Tel.: +86-137-0451-7698
| |
Collapse
|
29
|
Hu X, McClements DJ. Development of Plant-Based Adipose Tissue Analogs: Freeze-Thaw and Cooking Stability of High Internal Phase Emulsions and Gelled Emulsions. Foods 2022; 11:3996. [PMID: 36553739 PMCID: PMC9777884 DOI: 10.3390/foods11243996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
There is great interest in the development of plant-based alternatives to meat products to meet the rising demand from vegans, vegetarians, and flexitarians. Ideally, these products should look, feel, taste, and behave like the meat products they are designed to replace. In this study, we investigated the impact of simulated freeze-thaw and cooking treatments on the properties of plant-based adipose tissues formulated using high internal phase emulsions (HIPEs) or gelled emulsions (GEs). The HIPEs consisted of 75% oil, 2% soybean protein, 23% water, while the GEs consisted of 60% oil, 2% soybean protein, 2% agar and 36% of water. Low melting point (soybean oil) and high melting point (coconut oil) oils were used to create emulsions with either liquid or partially crystalline lipid phases at ambient temperature, respectively. In general, GEs were harder than HIPEs, and emulsions containing coconut oil were harder than those containing soybean oil at ambient temperatures. The thermal behavior of the plant-based adipose tissue was compared to that of beef adipose tissue. Beef adipose tissue was an opaque whitish semi-solid at ambient temperature. These properties could be mimicked with all types of HIPEs and GEs. The structure of the beef adipose tissue was resistant to freezing/thawing (-20/+20 °C) but not cooking (90 °C, 30 min). Soybean HIPEs and GEs were relatively stable to simulated cooking but not freeze-thawing. Conversely, coconut HIPEs and GEs exhibited the opposite behavior. These results have important implications for the formulation of alternatives to animal adipose tissue in plant-based foods.
Collapse
|
30
|
Li M, Sun Y, McClements DJ, Yao X, Ma C, Liu X, Liu F. Interfacial engineering approaches to improve emulsion performance: Properties of oil droplets coated by mixed, multilayer, or conjugated lactoferrin-hyaluronic acid interfaces. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Zhao D, Ge Y, Xiang X, Dong H, Qin W, Zhang Q. Structure and stability characterization of pea protein isolate-xylan conjugate-stabilized nanoemulsions prepared using ultrasound homogenization. ULTRASONICS SONOCHEMISTRY 2022; 90:106195. [PMID: 36240589 PMCID: PMC9576981 DOI: 10.1016/j.ultsonch.2022.106195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/03/2022] [Accepted: 10/09/2022] [Indexed: 06/02/2023]
Abstract
Preparation of pea protein isolate-xylan (PPI-X) conjugate-stabilized nanoemulsions using ultrasonic homogenization and the corresponding structure and environmental stability were investigated in this study. Conditions used to prepare nanoemulsions were optimized using a response surface methodology as follows: protein concentration 8.86 mg/mL, ultrasound amplitudes 57 % (370.5 W), and ultrasound time 16 min. PPI-X conjugate-stabilized nanoemulsions formed under these conditions exhibited less mean droplet size (189.4 ± 0.45 nm), more uniform droplet distribution, greater absolute value of zeta-potential (44.8 ± 0.22 mV), and higher protein adsorption content compared with PPI-stabilized nanoemulsions. PPI-X conjugate-stabilized nanoemulsions also exhibited even particle distribution and dense network structure, which might be reasons for the observed high interfacial protein adsorption content of conjugate-stabilized nanoemulsions. Moreover, better stability against environmental stresses, such as thermal treatment, freeze-thaw treatment, ionic strength and type, and storage time was also observed for the conjugate-stabilized nanoemulsions, indicating that this type of nanoemulsions possess a potential to endure harsh food processing conditions. Therefore, results provide a novel approach for the preparation of protein-polysaccharide conjugate-stabilized nanoemulsions to be applied as novel ingredients to meet special requirements of processed foods.
Collapse
Affiliation(s)
- Dan Zhao
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Yuhong Ge
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Xianrong Xiang
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Hongmin Dong
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, NY, USA
| | - Wen Qin
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China
| | - Qing Zhang
- Key Laboratory of Agricultural Product Processing and Nutrition and Health (Co-construction by Ministry and province), Ministry of Agriculture and Rural Affairs, College of Food Science, Sichuan Agricultural University, No. 46, Xinkang Road, Ya'an 625014, Sichuan, China.
| |
Collapse
|
32
|
Effect of small molecular surfactants on physical, turbidimetric, and rheological properties of Pickering nanoemulsions stabilized with whey protein isolate. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Changes in structure and emulsifying properties of coconut globulin after the atmospheric pressure cold plasma treatment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Wang Z, Gao Y, Wei Z, Xue C. Ovalbumin fibril-stabilized oleogel-based Pickering emulsions improve astaxanthin bioaccessibility. Food Res Int 2022; 161:111790. [DOI: 10.1016/j.foodres.2022.111790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/16/2022] [Accepted: 08/18/2022] [Indexed: 11/04/2022]
|
35
|
Yu J, Li D, Wang LJ, Wang Y. Improving freeze-thaw stability and 3D printing performance of soy protein isolate emulsion gel inks by guar & xanthan gums. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Fibrous and Spherical Aggregates of Ovotransferrin as Stabilizers for Oleogel-Based Pickering Emulsions: Preparation, Characteristics and Curcumin Delivery. Gels 2022; 8:gels8080517. [PMID: 36005118 PMCID: PMC9407489 DOI: 10.3390/gels8080517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
This study aimed to explore the effects and mechanisms of differently shaped aggregates of ovotransferrin (OVT) particles on oleogel-based Pickering emulsions (OPEs). Medium-chain triglyceride oil-based oleogels were constructed using beeswax, and their gel-sol melting temperatures were investigated. Atomic force microscopy confirmed that both OVT fibrils and OVT spheres were successfully prepared, and the three-phase contact angle measurements indicated that fibrous and spherical aggregates of OVT particles possessed great potential to stabilize the OPEs. Afterward, the oil-in-water OPEs were fabricated using oleogel as the oil phase and OVT fibrils/spheres as the emulsifiers. The results revealed that OPEs stabilized with OVT fibrils (FIB-OPEs) presented a higher degree of emulsification, smaller droplet size, better physical stability and stronger apparent viscosity compared with OPEs stabilized with OVT spheres (SPH-OPEs). The freeze–thaw stability test showed that the FIB-OPEs remained stable after three freeze–thaw cycles, while the SPH-OPEs could barely withstand one freeze–thaw cycle. An in vitro digestion study suggested that OVT fibrils conferred distinctly higher lipolysis (46.0%) and bioaccessibility (62.8%) of curcumin to OPEs.
Collapse
|
37
|
Lin D, Sun LC, Chen YL, Liu GM, Miao S, Cao MJ. Peptide/protein hydrolysate and their derivatives: Their role as emulsifying agents for enhancement physical and oxidative stability of emulsions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Effect of Hofmeister series anions on freeze-thaw stability of emulsion stabilized with whey protein isolates. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
39
|
Yang J, Zheng H, Mo Y, Gao Y, Mao L. Structural characterization of hydrogel-oleogel biphasic systems as affected by oleogelators. Food Res Int 2022; 158:111536. [DOI: 10.1016/j.foodres.2022.111536] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 11/24/2022]
|
40
|
Li W, Chen Z, Wang W, Lan Y, Huang Q, Cao Y, Xiao J. Modulation of the spatial distribution of crystallizable emulsifiers in Pickering double emulsions. J Colloid Interface Sci 2022; 619:28-41. [DOI: 10.1016/j.jcis.2022.03.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/13/2022] [Accepted: 03/25/2022] [Indexed: 11/29/2022]
|
41
|
Taarji N, Bouhoute M, Kobayashi I, Tominaga K, Isoda H, Nakajima M. Physicochemical stability and in-vitro bioaccessibility of concentrated γ-Oryzanol nanodispersions fabricated by solvent displacement method. Food Chem 2022; 382:132300. [PMID: 35134726 DOI: 10.1016/j.foodchem.2022.132300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/20/2022]
Abstract
Concentrated γ-Oryzanol nanodispersions were fabricated using milli-Q water (no emulsifier) or 0.1% (w/w) polysorbate 80 (T80), modified lecithin (ML) or sodium caseinate (SC) as emulsifiers. The freshly prepared nanodispersions had comparable particle diameter (118 to 157 nm), γ-Oryzanol concentration (1.75 to 1.92 mg mL-1) and free-radical scavenging activity (59 to 62%) and had negative ζ-potentials (-22 to -59 mV), indicating that both γ-Oryzanol and emulsifier coexisted on the particles' interface. The nanoparticles had superior physicochemical stability up to 30 days of storage at 5 °C and were successfully autoclaved without excessive growth or aggregation. Nevertheless, they showed distinct physical stability upon storage at specific environmental conditions, which affected their In-vitro gastrointestinal digestion. Comprehensively, emulsifier-free nanodispersions were sensitive to acidic pH, NaCl and CaCl2 addition. ML and SC coated nanoparticles were sensitive to Ca2+ ions, while T80 stabilized nanodispersions resisted to all environmental stresses, resulting in optimal simulated intestinal absorption.
Collapse
Affiliation(s)
- Noamane Taarji
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.
| | - Meryem Bouhoute
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan
| | - Isao Kobayashi
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | - Kenichi Tominaga
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan
| | - Hiroko Isoda
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8572, Japan
| | - Mitsutoshi Nakajima
- Alliance for Research on the Mediterranean and North Africa (ARENA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-0006, Japan; Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan; Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba Ibaraki 305-8572, Japan
| |
Collapse
|
42
|
Abouloifa H, Rokni Y, Hasnaoui I, Bellaouchi R, Gaamouche S, Ghabbour N, Karboune S, Ben Salah R, Brasca M, D'hallewin G, Saalaoui E, Asehraou A. Characterization of antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61 and their application as a biopreservative agent. Braz J Microbiol 2022; 53:1501-1513. [PMID: 35804284 PMCID: PMC9433471 DOI: 10.1007/s42770-022-00791-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/30/2022] [Indexed: 11/02/2022] Open
Abstract
This work aimed to characterize the antimicrobial compounds obtained from the potential probiotic Lactiplantibacillus plantarum S61, isolated from traditional fermented green olive, involved in their activity against fungi and bacteria responsible for food spoilage and poisonings. Their application as a biopreservative agent was also investigated. The culture of L. plantarum S61 showed substantial antifungal and antibacterial activity against yeasts (Rhodotorula glutinis and Candida pelliculosa), molds (Penicillium digitatum, Aspergillus niger, Fusarium oxysporum, and Rhizopus oryzae), and pathogenic bacteria (Listeria monocytogenes ATCC 19,117, Salmonella enterica subsp. enterica ATCC 14,028, Staphylococcus aureus subsp. aureus ATCC 6538, Pseudomonas aeruginosa ATCC 49,189), with inhibition zones > 10 mm. Likewise, the cell-free supernatant (CFS) of L. plantarum S61 showed an essential inhibitory effect against fungi and bacteria, with inhibition diameters of 12.25-22.05 mm and 16.95-17.25 mm, respectively. The CFS inhibited molds' biomass and mycelium growth, with inhibition ranges of 63.18-83.64% and 22.57-38.93%, respectively. The antifungal activity of the CFS was stable during 4 weeks of storage at 25 °C, while it gradually decreased during storage at 4 °C. Several antimicrobial compounds were evidenced in the CFS of L. plantarum S61, including organic acids, ethanol, hydrogen peroxide, diacetyl, proteins, and fatty acids. The protein fraction, purified by reversed-phase high-performance liquid chromatography (RP-HPLC), demonstrated important antifungal activity, in relation to the fraction with molecular weight between 2 and 6 kDa. L. plantarum S61 and its CFS, tested in apple and orange fruit biopreservation, demonstrated their protective effect against P. digitatum spoilage. The CFS exhibited effectiveness in reducing Salmonella enterica subsp. enterica ATCC 14,028 in apple juice. L. plantarum S61 and/or its bioactive compounds CFS represent a promising strategy for biocontrol against pathogens and spoilage microorganisms in the agro-industry.
Collapse
Affiliation(s)
- Houssam Abouloifa
- Research Unit of Microbiology, Biomolecules and Biotechnology, Laboratory of Chemistry-Physics and Biotechnology of Molecules and Materials, Faculty of Sciences and Techniques - Mohammedia, Hassan II University of Casablanca, Casablanca, Morocco. .,Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.
| | - Yahya Rokni
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.,Research Unit Bioprocess and Biointerfaces, Laboratory of Industrial Engineering and Surface Engineering, National School of Applied Sciences, Sultan Moulay Slimane University, Mghila, 23000, Beni Mellal, Morocco
| | - Ismail Hasnaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Reda Bellaouchi
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Sara Gaamouche
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Nabil Ghabbour
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco.,Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, B. P 1223, Taza, Morocco
| | - Salwa Karboune
- Department of Food Science and Agricultural Chemistry, Macdonald Campus, McGill University, 21,111 Lakeshore, Ste Anne de Bellevue, Quebec, H9X 3V9, Canada
| | - Riadh Ben Salah
- Laboratory of Microorganisms and Biomolecules, Centre of Biotechnology of Sfax, BP: 1177, 3018, Sfax, Tunisia
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council of Italy, Via Celoria 2, 20133, Milan, Italy
| | - Guy D'hallewin
- Institute of Sciences of Food Production, National Research Council of Italy, UOS Sassari, Traversa La Crucca, 3 Loc. Baldinca, 07040, Sassari, Italy
| | - Ennouamane Saalaoui
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| | - Abdeslam Asehraou
- Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Sciences, Mohammed Premier University, 60 000, Oujda, Morocco
| |
Collapse
|
43
|
Lai H, Zhan F, Wei Y, Zongo AW, Jiang S, Sui H, Li B, Li J. Influence of particle size and ionic strength on the freeze-thaw stability of emulsions stabilized by whey protein isolate. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
44
|
Botella‐Martínez C, Sayas‐Barberá E, Pérez‐Álvarez JÁ, Viuda‐Martos M, Fernández‐López J. Chia and hemp oils‐based gelled emulsions as replacers of pork backfat in burgers: effect on lipid profile, technological attributes and oxidation stability during frozen storage. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carmen Botella‐Martínez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental Universidad Miguel Hernández, (CIAGRO‐UMH) Ctra. Beniel km 3.2, 03312‐Orihuela Alicante Spain
| | - Estrella Sayas‐Barberá
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental Universidad Miguel Hernández, (CIAGRO‐UMH) Ctra. Beniel km 3.2, 03312‐Orihuela Alicante Spain
| | - José Ángel Pérez‐Álvarez
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental Universidad Miguel Hernández, (CIAGRO‐UMH) Ctra. Beniel km 3.2, 03312‐Orihuela Alicante Spain
| | - Manuel Viuda‐Martos
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental Universidad Miguel Hernández, (CIAGRO‐UMH) Ctra. Beniel km 3.2, 03312‐Orihuela Alicante Spain
| | - Juana Fernández‐López
- IPOA Research Group, Centro de Investigación e Innovación Agroalimentaria y Agroambiental Universidad Miguel Hernández, (CIAGRO‐UMH) Ctra. Beniel km 3.2, 03312‐Orihuela Alicante Spain
| |
Collapse
|
45
|
Lokanathan M, Wimalarathne S, Bahadur V. Influence of surfactant on electrowetting-induced surface electrocoalescence of water droplets in hydrocarbon media. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Mao L, Dai H, Du J, Feng X, Ma L, Zhu H, Chen H, Wang H, Zhang Y. Gelatin microgel-stabilized high internal phase emulsion for easy industrialization: Preparation, interfacial behavior and physical stability. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
47
|
Farooq S, Abdullah, Zhang C, Xi Y, Zhang H. Physiochemical characteristics and rheological investigations of camellia oil body emulsions stabilized by gum tragacanth as a coating layer. Food Chem 2022; 377:131997. [PMID: 34999448 DOI: 10.1016/j.foodchem.2021.131997] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/25/2022]
Abstract
In this work, gum tragacanth (GT) was coated on the camellia oil body (OB) emulsions using an electrostatic deposition technique, and effects were investigated over a wide range of pH values, ionic strengths, temperatures, and freeze-thaw cycles. Special attention has been paid to the rheological features as a function of hydrocolloid concentration, thixotropy (hysteresis loop and in-shear structure recovery), temperature, and frequency. The electrostatic GT-OB surface protein interactions, confirmed by ζ-potential and confocal laser scanning microscopy measurements, led to the reduction of flocculation effects and enhancement of steric stabilization due to the adsorption of polysaccharides to OB surfaces. The activation energy values (Ea) appeared in the range of 21.92 to 8.02 kJ/mol at pH 4 as GT concentration increased from 0 to 1 wt%. The OBs are soft droplets with the degree of structure recovery (DSR) ranged from 0.451 to 0.533; however, GT coating showed synergistic effect on the DSR.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Cen Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yuhang Xi
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China.
| |
Collapse
|
48
|
Li W, Wang W, Yong C, Lan Y, Huang Q, Xiao J. Effects of the Distribution Site of Crystallizable Emulsifiers on the Gastrointestinal Digestion Behavior of Double Emulsions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:5115-5125. [PMID: 35438487 DOI: 10.1021/acs.jafc.1c07987] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Double emulsions (DEs) are promising delivery vehicles for the protective and programmed release of bioactive compounds. Herein, DEs with monoglycerides crystallized at the internal- or external interface or oil phase were fabricated. The results suggested that the crystallization site of monoglycerides exerts a significant role in retarding the structural degradation and lipid digestion of DEs by affecting the available contact area of lipase. At the initial stage of intestinal digestion, compared with noncrystalline DEs (82.1%, 3.7 min), the burst release of internal markers in the internal interface crystallized emulsions was decreased by 42.4% and the lag time of free fatty acid (FFA) release was delayed by 5.8 min in the external interface crystallized emulsions. The structural integrity and digestion kinetics of the external interface crystallized DEs were synchronized with the retention time of the interfacial crystals. Therefore, crystallizable emulsifiers exhibit unique and fine regulatory effects on the digestive properties of emulsions.
Collapse
Affiliation(s)
- Wantong Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Wenbo Wang
- College of Electronic Engineering, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Cao Yong
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yaqi Lan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Qingrong Huang
- Department of Food Science, Rutgers The State University of New Jersey, 65 Dudley Road, New Brunswick, New Jersey 08901, United States
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| |
Collapse
|
49
|
Zeng Y, Zeng D, Liu T, Cai Y, Li Y, Zhao M, Zhao Q. Effects of Glucose and Corn Syrup on the Physical Characteristics and Whipping Properties of Vegetable-Fat Based Whipped Creams. Foods 2022; 11:foods11091195. [PMID: 35563918 PMCID: PMC9102422 DOI: 10.3390/foods11091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/17/2022] [Accepted: 04/18/2022] [Indexed: 12/10/2022] Open
Abstract
The aim of this work is to evaluate the effects of glucose and corn syrup on the physical characteristics and whipping properties of whipped creams. The interfacial protein concentration and apparent viscosity of emulsions increased with an increasing sugar concentration. In whipped creams, a shorter optimum whipping time (top), higher fat coalescence degree, higher firmness and higher stability were detected as sugar concentration increased. The partial coalescence degree, overrun and firmness of whipped cream with 30 wt% glucose reached 76.49%, 306% and 3.82 N, respectively, significantly (p < 0.05) higher than those (67.15%, 235% and 3.19 N) with 30 wt% corn syrup. Compared with glucose at the same sugar concentration, higher interfacial protein concentration and less-shaped aggregates and coalescences were observed for the emulsions upon the addition of corn syrup, which caused a lower degree of fat coalescence and a lower firmness of whipped cream. The differences could be explained by the presence of maltodextrin (MDX) in corn syrup, which protects absorbed protein throughout freezing and retards the formation of a continuous network during whipping. As a result, the addition of sugars could well improve stability of emulsion, firmness and foam stability of whipped cream efficiently. With a 25−30 wt% sugar addition, even if there was a lower partial coalescence degree and firmness compared with glucose, whipped cream with corn syrup exhibited relatively good stability. These results suggest that MDX improves the stability of emulsion and, thus, has a potential use in low-sugar whipped cream.
Collapse
Affiliation(s)
- Yongchao Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Di Zeng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Tongxun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Yongjian Cai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Yonghao Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Qiangzhong Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (Y.Z.); (D.Z.); (T.L.); (Y.C.); (Y.L.); (M.Z.)
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-20-8711-2409
| |
Collapse
|
50
|
Wang Y, Lin R, Song Z, Zhang S, Zhao X, Jiang J, Liu Y. Freeze-thaw stability and oil crystallization behavior of phospholipids/whey protein-costabilized acidic emulsions with four oil types. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107385] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|