1
|
Deng R, Shi Y, Zhang Y, Zhang X, Deng S, Xia X. Precise, Sensitive Detection of Viable Foodborne Pathogenic Bacteria with a 6-Order Dynamic Range via Digital Rolling Circle Amplification. ACS Sens 2024; 9:4127-4133. [PMID: 39028985 DOI: 10.1021/acssensors.4c01069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2024]
Abstract
The presence of viable pathogenic bacteria in food can lead to serious foodborne diseases, thus posing a risk to human health. Here, we develop a digital rolling circle amplification (dRCA) assay that enables the precise and sensitive quantification of viable foodborne pathogenic bacteria. Directly targeting pathogenic RNAs via a ligation-based padlock probe allows for precisely discriminating viable bacteria from dead one. The one-target-one-amplicon characteristic of dRCA enables high sensitivity and a broad quantitative detection range, conferring a detection limit of 10 CFU/mL and a dynamic range of 6 orders. dRCA can detect rare viable bacteria, even at a proportion as low as 0.1%, which is 50 times more sensitive than the live/dead staining method. The high sensitivity for detecting viable bacteria accommodates dRCA for assessing sterilization efficiency. Based on the assay, we found that, for pasteurization, slightly elevating the temperature to 68 °C can reduce the heating time to 10 min, which may minimize nutrient degradation caused by high-temperature exposure. The assay can serve as a precise tool for estimating the contamination by viable pathogenic bacteria and assessing sterilization, which facilitates food safety control.
Collapse
Affiliation(s)
- Ruijie Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yachen Shi
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xinlei Zhang
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Sha Deng
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Xuhan Xia
- College of Biomass Science and Engineering, Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| |
Collapse
|
2
|
Niebling L, Nitzsche R, Sieksmeyer T, Haskamp V, Kissenkötter J, Abd El Wahed A, Teufel T, Hermann H, Paust N, Homann AR. Fast and on-site animal species identification in processed meat via centrifugal microfluidics and isothermal amplification. LAB ON A CHIP 2024; 24:975-984. [PMID: 38284233 DOI: 10.1039/d3lc01103h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
We present a novel centrifugal microfluidic approach to rapidly identify animal species in meat products. The workflow requires a centrifugal cartridge for DNA extraction and for preparation of a recombinant polymerase amplification (RPA) reaction, a programmable centrifuge for processing the cartridge and an isothermal reader to perform the RPA. Liquid reagents are pre-stored on the cartridge and the meat sample can be added directly without any pre-treatment. With this system, we are able to identify six different animal species in a single run within one hour. In pork salami containing horse, turkey, sheep, chicken and beef meat, it was possible to identify species levels as low as 0.01%. In beef salami and cooked pork sausages 0.1% of foreign meat could be detected. This novel workflow enables rapid and sensitive species identification in processed meat at the point of need.
Collapse
Affiliation(s)
- Laura Niebling
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| | - Ramona Nitzsche
- DIL German Institute of Food Technologies, Quakenbrueck, Germany
| | | | - Vera Haskamp
- DIL German Institute of Food Technologies, Quakenbrueck, Germany
| | - Jonas Kissenkötter
- Department of Animal Science, Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | - Ahmed Abd El Wahed
- Department of Animal Science, Division of Microbiology and Animal Hygiene, University of Goettingen, Goettingen, Germany
| | | | | | - Nils Paust
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
- Laboratory for MEMS Applications, IMTEK - Department of Microsystems Engineering, University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Ana R Homann
- Hahn-Schickard, Georges-Koehler-Allee 103, 79110 Freiburg, Germany.
| |
Collapse
|
3
|
Cao Y, Song X. Meat Authenticity Made Easy: DNA Extraction-Free Rapid Onsite Detection of Duck and Pork Ingredients in Beef and Lamb Using Dual-Recombinase-Aided Amplification and Multiplex Lateral Flow Strips. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14782-14794. [PMID: 37784234 DOI: 10.1021/acs.jafc.3c03259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Meat adulteration is a major global concern that poses a threat to public health and consumer rights. However, current detection techniques, such as quantitative polymerase chain reaction (qPCR) and gas chromatography-mass spectrometry, are time-consuming and require sophisticated equipment. In this study, we developed a rapid onsite identification method for animal-derived ingredients by utilizing a fast nucleic acid lysis buffer to expedite the release of sample nucleic acids and combined it with dual-recombinase-aided amplification (dual-RAA) technology and visual multiplex lateral flow strips (MLFSs). Our method successfully detected duck- and bovine-derived, porcine- and bovine-derived, duck- and ovine-derived, and porcine- and ovine-derived meat in a rapid 20 min onsite detection assay, with a detection limit of 101 copies/50 μL reaction system for target genes. Moreover, our method accurately detected adulterated meat with proportions as low as 1:999. These findings have significant implications for food safety and the protection of consumer rights.
Collapse
Affiliation(s)
- Yuhao Cao
- Health Science Center, Ningbo University, Ningbo 315211, China
| | - Xuemei Song
- Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
4
|
Liu T, Tian Y, Cao Y, Wang Z, Zha G, Liu W, Wei L, Xiao H, Zhang Q, Cao C. Isoelectric point barcode and similarity analysis with the earth mover's distance for identification of species origin of raw meat. Food Res Int 2023; 166:112600. [PMID: 36914325 DOI: 10.1016/j.foodres.2023.112600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/07/2023] [Accepted: 02/14/2023] [Indexed: 02/20/2023]
Abstract
In this work, by combining the microcolumn isoelectric focusing (mIEF) and similarity analysis with the earth mover's distance (EMD) metric, we proposed the concept of isoelectric point (pI) barcode for the identification of species origin of raw meat. At first, we used the mIEF to analyze 14 meat species, including 8 species of livestock and 6 species of poultry, to generate 140 electropherograms of myoglobin/hemoglobin (Mb/Hb) markers. Secondly, we binarized the electropherograms and converted them into the pI barcodes that only showed the major Mb/Hb bands for the EMD analysis. Thirdly, we efficiently developed the barcode database of 14 meat species and successfully used the EMD method to identify 9 meat products thanks to the high throughput of mIEF and the simplified format of the barcode for similarity analysis. The developed method had the merits of facility, rapidity and low cost. The developed concept and method had evident potential to the facile identification of meat species.
Collapse
Affiliation(s)
- Tian Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zihao Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Genhan Zha
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Li Wei
- Shanghai 6(th) People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hua Xiao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Chengxi Cao
- School of Life Sciences and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai 6(th) People's Hospital, Shanghai Jiao Tong University, Shanghai 200233, China.
| |
Collapse
|
5
|
Mottola A, Piredda R, Lorusso L, Armani A, Di Pinto A. Preliminary study on species authentication in poultry meat products by next-generation sequencing. Food Control 2023. [DOI: 10.1016/j.foodcont.2022.109459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Panozzo S, Farinati S, Sattin M, Scarabel L. Can allele-specific loop-mediated isothermal amplification be used for rapid detection of target-site herbicide resistance in Lolium spp.? PLANT METHODS 2023; 19:14. [PMID: 36750938 PMCID: PMC9906911 DOI: 10.1186/s13007-023-00989-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Herbicide resistance is one of the threats to modern agriculture and its early detection is one of the most effective components for sustainable resistance management strategies. Many techniques have been used for target-site-resistance detection. Allele-Specific Loop-Mediated Isothermal Amplification (AS-LAMP) was evaluated as a possible rapid diagnostic method for acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibiting herbicides resistance in Lolium spp. RESULTS AS-LAMP protocols were set up for the most frequent mutations responsible for herbicide resistance to ALS (positions 197, 376 and 574) and ACCase (positions 1781, 2041 and 2078) inhibitors in previously characterized and genotyped Lolium spp. POPULATIONS A validation step on new putative resistant populations gave the overview of a possible use of this tool for herbicide resistance diagnosis in Lolium spp. Regarding the ACCase inhibitor pinoxaden, in more than 65% of the analysed plants, the LAMP assay and genotyping were in keeping, whereas the results were not consistent when ALS inhibitors resistance was considered. Limitations on the use of this technique for herbicide resistance detection in the allogamous Lolium spp. are discussed. CONCLUSIONS The LAMP method used for the detection of target-site resistance in weed species could be applicable with target genes that do not have high genetic variability, such as ACCase gene in Lolium spp.
Collapse
Affiliation(s)
- Silvia Panozzo
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Maurizio Sattin
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Laura Scarabel
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
7
|
Zhang H, Cao W, Zhang Y, Chang Y, Huang H, Wei T, Wu J, Ye L, Shi L. Identification for meat adulteration (pork, beef, sheep and duck) in foodstuff by microfluidic chip-based real-time fluorescent LAMP. J Food Compost Anal 2023. [DOI: 10.1016/j.jfca.2023.105223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
8
|
Pang L, Pi X, Yang X, Song D, Qin X, Wang L, Man C, Zhang Y, Jiang Y. Nucleic acid amplification-based strategy to detect foodborne pathogens in milk: a review. Crit Rev Food Sci Nutr 2022; 64:5398-5413. [PMID: 36476145 DOI: 10.1080/10408398.2022.2154073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Milk contaminated with trace amounts of foodborne pathogens can considerably threaten food safety and public health. Therefore, rapid and accurate detection techniques for foodborne pathogens in milk are essential. Nucleic acid amplification (NAA)-based strategies are widely used to detect foodborne pathogens in milk. This review article covers the mechanisms of the NAA-based detection of foodborne pathogens in milk, including polymerase chain reaction (PCR), loop-mediated isothermal amplification (LAMP), recombinase polymerase amplification (RPA), rolling circle amplification (RCA), and enzyme-free amplification, among others. Key factors affecting detection efficiency and the advantages and disadvantages of the above techniques are analyzed. Potential on-site detection tools based on NAA are outlined. We found that NAA-based strategies were effective in detecting foodborne pathogens in milk. Among them, PCR was the most reliable. LAMP showed high specificity, whereas RPA and RCA were most suitable for on-site and in-situ detection, respectively, and enzyme-free amplification was more economical. However, factors such as sample separation, nucleic acid target conversion, and signal transduction affected efficiency of NAA-based strategies. The lack of simple and effective sample separation methods to reduce the effect of milk matrices on detection efficiency was noteworthy. Further research should focus on simplifying, integrating, and miniaturizing microfluidic on-site detection platforms.
Collapse
Affiliation(s)
- Lidong Pang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xiaowen Pi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xinyan Yang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Danliangmin Song
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xue Qin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Lihan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yu Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
9
|
Chen X, Zhao L, Wang J, Wang H, Qiu Y, Dong Z, Zhang C, Liu M, Wang X, Bai X. Rapid visual detection of anisakid nematodes using recombinase polymerase amplification and SYBR Green I. Front Microbiol 2022; 13:1026129. [PMID: 36532447 PMCID: PMC9756439 DOI: 10.3389/fmicb.2022.1026129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2023] Open
Abstract
Anisakidosis is a food-borne parasitic disease (FBPD) caused by the third-stage larvae of the family Anisakidae. Therefore, it is important to develop a simple, rapid and equipment-free detection method for anisakids in fish samples or seafood since current methods are time-consuming and require complex instruments. In this study, a recombinase polymerase amplification (RPA)-based method was established for the first time to detect anisakids by targeting the internal transcribed spacer (ITS) regions. The detection results were visualized by including SYBR Green I (SG) in the method. The sensitivity of RPA-SG assay was 102 copies per reaction of recombinant plasmid (within 20 min at 37°C), similar to quantitative real-time PCR (qPCR). The assay had high specificity for detecting anisakids against other related parasites and host fish. In addition, the assay was further used to detect fresh marine fish contaminated with anisakids and it showed high precision. These results indicate that the novel RPA-SG assay suitable for visual detection of anisakids in the field and food safety control.
Collapse
Affiliation(s)
- Xiuqin Chen
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Science, Fuzhou, China
| | - Lianjing Zhao
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiahui Wang
- China National Center for Food Safety Risk Assessment, Beijing, China
| | - Haolu Wang
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yangyuan Qiu
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zijian Dong
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chunling Zhang
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Mingyuan Liu
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| | - Xuelin Wang
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue Bai
- State Key Laboratory of Zoonotic Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
10
|
Jaroenram W, Chatnuntawech I, Kampeera J, Pengpanich S, Leaungwutiwong P, Tondee B, Sirithammajak S, Suvannakad R, Khumwan P, Dangtip S, Arunrut N, Bantuchai S, Nguitragool W, Wongwaroran S, Khanchaitit P, Sattabongkot J, Teerapittayanon S, Kiatpathomchai W. One-step colorimetric isothermal detection of COVID-19 with AI-assisted automated result analysis: A platform model for future emerging point-of-care RNA/DNA disease diagnosis. Talanta 2022; 249:123375. [PMID: 35738204 PMCID: PMC9404558 DOI: 10.1016/j.talanta.2022.123375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/22/2022] [Accepted: 03/08/2022] [Indexed: 12/25/2022]
Abstract
Colorimetric loop-mediated DNA isothermal amplification-based assays have gained momentum in the diagnosis of COVID-19 owing to their unmatched feasibility in low-resource settings. However, the vast majority of them are restricted to proprietary pH-sensitive dyes that limit downstream assay optimization or hinder efficient result interpretation. To address this problem, we developed a novel dual colorimetric RT-LAMP assay using in-house pH-dependent indicators to maximize the visual detection and assay simplicity, and further integrated it with the artificial intelligence (AI) operated tool (RT-LAMP-DETR) to enable a more precise and rapid result analysis in large scale testing. The dual assay leverages xylenol orange (XO) and a newly formulated lavender green (LG) dye for distinctive colorimetric readouts, which enhance the test accuracy when performed and analyzed simultaneously. Our RT-LAMP assay has a detection limit of 50 viral copies/reaction with the cycle threshold (Ct) value ≤ 39.7 ± 0.4 determined by the WHO-approved RT-qPCR assay. RT-LAMP-DETR exhibited a complete concordance with the results from naked-eye observation and RT-qPCR, achieving 100% sensitivity, specificity, and accuracy that altogether render it suitable for ultrasensitive point-of-care COVID-19 screening efforts. From the perspective of pandemic preparedness, our method offers a simpler, faster, and cheaper (∼$8/test) approach for COVID-19 testing and other emerging pathogens with respect to RT-qPCR.
Collapse
Affiliation(s)
- Wansadaj Jaroenram
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Itthi Chatnuntawech
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Jantana Kampeera
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Sukanya Pengpanich
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Benyatip Tondee
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Sarawut Sirithammajak
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Rapheephat Suvannakad
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Pakapreud Khumwan
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Sirintip Dangtip
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Narong Arunrut
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Sirasate Bantuchai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Suchawit Wongwaroran
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand,Electrical Engineering Department, University of Victoria, British Columbia, Canada
| | - Paisan Khanchaitit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Surat Teerapittayanon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand,Corresponding author
| | - Wansika Kiatpathomchai
- Bioengineering and Sensing Technology Research Team (IBST), National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand,Corresponding author
| |
Collapse
|
11
|
Young SR, Domesle KJ, McDonald RC, Lozinak KA, Laksanalamai P, Harrell E, Thakur S, Kabera C, Strain EA, McDermott PF, Ge B. Toward the Adoption of Loop-Mediated Isothermal Amplification for Salmonella Screening at the National Antimicrobial Resistance Monitoring System's Retail Meat Sites. Foodborne Pathog Dis 2022; 19:758-766. [PMID: 36367550 PMCID: PMC9700350 DOI: 10.1089/fpd.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The National Antimicrobial Resistance Monitoring System (NARMS) is a One Health program in the United States that collects data on antimicrobial resistance in enteric bacteria from humans, animals, and the environment. Salmonella is a major pathogen tracked by the NARMS retail meat arm but currently lacks a uniform screening method. We evaluated a loop-mediated isothermal amplification (LAMP) assay for the rapid screening of Salmonella from 69 NARMS retail meat and poultry samples. All samples were processed side by side for culture isolation using two protocols, one from NARMS and the other one described in the U.S. Food and Drug Administration's Bacteriological Analytical Manual (BAM). Overall, 10 (14.5%) samples screened positive by the Salmonella LAMP assay. Of those, six were culture-confirmed by the NARMS protocol and six by the BAM method with overlap on four samples. No Salmonella isolates were recovered from samples that screened negative with LAMP. These results suggested 100% sensitivity for LAMP in reference to culture. Antimicrobial susceptibility testing and whole-genome sequencing analysis confirmed identities of these isolates. Using the BAM protocol, all Salmonella isolates were recovered from samples undergoing Rappaport-Vassiliadis medium selective enrichment and presumptive colonies (n = 130) were dominated by Hafnia alvei (44.6%), Proteus mirabilis (22.3%), and Morganella morganii (9.9%) based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. This method comparison study clearly demonstrated the benefit of a rapid, robust, and highly sensitive molecular screening method in streamlining the laboratory workflow. Fourteen NARMS retail meat sites further verified the performance of this assay using a portion of their routine samples, reporting an overall specificity of 98.8% and sensitivity of 90%. As of July 2022, the vast majority of NARMS retail meat sites have adopted the Salmonella LAMP assay for rapid screening of Salmonella in all samples.
Collapse
Affiliation(s)
- Shenia R. Young
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Kelly J. Domesle
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Ryan C. McDonald
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | | | | | - Erin Harrell
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Siddhartha Thakur
- College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Claudine Kabera
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Errol A. Strain
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Patrick F. McDermott
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Beilei Ge
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA.,Address correspondence to: Beilei Ge, PhD, Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD 20708, USA
| |
Collapse
|
12
|
Xiao B, Zhao R, Wang N, Zhang J, Sun X, Chen A. Recent advances in centrifugal microfluidic chip-based loop-mediated isothermal amplification. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Current Analytical Methods and Research Trends Are Used to Identify Domestic Pig and Wild Boar DNA in Meat and Meat Products. Genes (Basel) 2022; 13:genes13101825. [PMID: 36292710 PMCID: PMC9601671 DOI: 10.3390/genes13101825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 11/04/2022] Open
Abstract
The pig, one of the most important livestock species, is a meaningful source of global meat production. It is necessary, however, to prove whether a food product that a discerning customer selects in a store is actually made from pork or venison, or does not contain it at all. The problem of food authenticity is widespread worldwide, and cases of meat adulteration have accelerated the development of food and the identification methods of feed species. It is worth noting that several different molecular biology techniques can identify a porcine component. However, the precise differentiation between wild boar and a domestic pig in meat products is still challenging. This paper presents the current state of knowledge concerning the species identification of the domestic pig and wild boar DNA in meat and its products.
Collapse
|
14
|
Yu S, Chen S, Dang Y, Zhou Y, Zhu JJ. An Ultrasensitive Electrochemical Biosensor Integrated by Nicking Endonuclease-Assisted Primer Exchange Reaction Cascade Amplification and DNA Nanosphere-Mediated Electrochemical Signal-Enhanced System for MicroRNA Detection. Anal Chem 2022; 94:14349-14357. [PMID: 36191168 DOI: 10.1021/acs.analchem.2c03015] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Specific and sensitive microRNAs (miRNAs) detection is essential to early cancer diagnosis. The development of these technologies including functional nuclease-mediated target amplification and DNA nanotechnology possesses tremendous potential for the high-performance detection of miRNAs in the accurate diagnosis of disease. In this study, we have established an ultrasensitive electrochemical biosensor by combining nicking endonuclease-assisted primer exchange reaction (PER) cascade amplification with a DNA nanosphere (DNS)-mediated electrochemical signal-enhanced system for the detection of miRNA-21 (miR-21). The cascade amplification is initiated by a nicking endonuclease that can cleave specific DNA substrates and highly amplify translation of the target to single-stranded DNA fragments (sDNA). Then, the PER cascade is powered by strand-displacing polymerase and generates a large amount of nascent single-stranded connector DNA (cDNA) via sDNA triggering of the dumbbell probe (DP), thus achieving the cascade amplification of the target. Finally, the DNS loaded with plenty of electroactive substances can be captured on the electrode via cDNA for further enhancing the electrochemical signal and highly sensitive detection of miR-21. The proposed electrochemical biosensor exhibits a wide detection range of 1 aM to 0.1 nM and a low detection limit of 0.58 aM. The excellent selectivity allows the biosensor to discriminate miR-21 from other miRNAs, even the one base-mismatched sequence. Moreover, the practicability of the biosensor is investigated by analyzing miR-21 in human serum and cancer cell lysate. Therefore, our proposed nicking endonuclease-assisted PER cascade amplification strategy provides a powerful platform for the early detection of miRNA-related disease and molecular diagnosis.
Collapse
Affiliation(s)
- Sha Yu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Siyu Chen
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yuan Dang
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Yuanzhen Zhou
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China
| | - Jun-Jie Zhu
- School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, P. R. China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Owoicho O, Olwal CO, Tettevi EJ, Atu BO, Durugbo EU. Loop-mediated isothermal amplification for Candida species surveillance in under-resourced setting: a review of evidence. Expert Rev Mol Diagn 2022; 22:643-653. [PMID: 35920288 DOI: 10.1080/14737159.2022.2109963] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Non-albicans Candida species (NACS) have emerged as a major public health burden although they are still underappreciated. Some NACS have intrinsic antifungal resistance, requiring constant surveillance to improve patient care and thwart outbreaks of recalcitrant candida infections. However, effective Candida species surveillance has relied on PCR-based or other high-end techniques that are largely unaffordable in under-resourced countries. Loop-mediated isothermal amplification (LAMP) has emerged as a potentially effective and affordable technique for infectious disease surveillance, especially in under resourced settings. AREAS COVERED We critically reviewed current literature on application of LAMP for Candida species identification in pure fungal isolates, and in clinical and non-clinical samples. EXPERT OPINION LAMP has been studied for Candida species identification, including the NACS. Besides a short turnaround time, LAMP has analytical sensitivity and specificity that are not only higher than culture method but also comparable with conventional and quantitative PCR techniques. However, extensive evaluation of LAMP for Candida species detection using various types of clinical and environmental samples are required before deploying the technique for Candida species surveillance.
Collapse
Affiliation(s)
- Oloche Owoicho
- Department of Biological Sciences, Benue State University, P.M.B. 102119, Makurdi, Benue State, Nigeria
| | | | - Edward Jenner Tettevi
- Biomedical and Public Health Research Unit, Water Research Institute, Council for Scientific and Industrial Research, Accra, Ghana
| | - Bernard Ortwer Atu
- Department of Biological Sciences, Benue State University, P.M.B. 102119, Makurdi, Benue State, Nigeria
| | - Ernest Uzodimma Durugbo
- Department of Biological Sciences, Redeemer's University, P.M.B. 230, Ede, Osun State, Nigeria
| |
Collapse
|
16
|
Kim HR, Suh SM, Kang HB, Shin SW, Kim HY. Duplex loop-mediated isothermal amplification assay for peanut (Arachis hypogaea) and almond (Prunus dulcis) detection of allergen coding genes. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Zhang E, Ou H, Jia L, Zhang W, Wang Y, Wang X. Comparative analysis of loop-mediated isothermal amplification combined with microfluidic chip technology and q-PCR in the detection of clinical infectious pathogens. J Clin Lab Anal 2022; 36:e24565. [PMID: 35754145 PMCID: PMC9396168 DOI: 10.1002/jcla.24565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/15/2022] [Accepted: 06/07/2022] [Indexed: 11/07/2022] Open
Abstract
Background Rapid diagnosis of infectious pathogens at an early stage is crucial to stabilize the patient's condition, reduce medical costs, and shorten hospital stays. Currently, some point‐of‐care tests have their own shortcomings. Therefore, we built a microfluidic chip based on loop‐mediated isothermal amplification to can quickly and sensitively detect infectious pathogens. Methods We extracted the DNA of S. aureus, MRSA, Shigella and Klebsiella pneumoniae. Then, the DNA samples were diluted by 10‐fold and examined by two methods: LAMP‐microfluidic chip and q‐PCR, the sensitivity of whom was also compared. In addition, the specificity of the two was also examined by detecting the target bacteria and other microorganisms using the same methods. Finally, we extracted and tested the DNA of clinically infected humoral samples to determine the coincidence rate between the two methods and the bacterial culture method. Results For S. aureus, MRSA, Shigella, and Klebsiella pneumoniae, the detection limits of the chip were 2.25 × 103 copies/μl, 5.32 × 103 copies/μl, 2.89 × 103 copies/μl, 6.53 × 102 copies/μl, and the detection limits of q‐PCR were 2.25 × 102 copies/μl, 5.32 × 101 copies/μl, 2.89 × 102 copies/μl, 6.53 × 101 copies/μl, respectively. In terms of detection specificity, neither method cross‐reacted with other strains. For the detection of infectious humoral samples, the total coincidence rate between the q‐PCR and bacterial culture method was 85.7%, 95%, 95%, and 95.5%, and the total coincidence rate between the chip and bacterial culture method was 81%, 95%, 90%, and 86.4%, respectively. Conclusion LAMP‐microfluidic chip provides a simple, sensitive, specific, convenient, and rapid pathogen detection method for clinically infected humoral samples without relying on expensive equipment or technical personnels.
Collapse
Affiliation(s)
- Enqi Zhang
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China
| | - Hongling Ou
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Lianling Jia
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Wang Zhang
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| | - Yemei Wang
- The Postgraduate Training Base of Jinzhou Medical University (The PLA Rocket Force Characteristic Medical Center), Beijing, China
| | - Xinru Wang
- Department of Clinical Laboratory, The PLA Rocket Force Characteristic Medical Center, Beijing, China
| |
Collapse
|
18
|
Chaudhary P, Kumar Y. Recent Advances in Multiplex Molecular Techniques for Meat Species Identification. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Xia X, Yang H, Cao J, Zhang J, He Q, Deng R. Isothermal nucleic acid amplification for food safety analysis. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116641] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Khosravi AD, Khoshnood S, Abbasi Montazeri E, Jomehzadeh N, Moradi M, Shahi F. The application of the loop-mediated isothermal amplification method for rapid detection of methicillin-resistant Staphylococcus aureus. New Microbes New Infect 2022; 45:100960. [PMID: 35242338 PMCID: PMC8881654 DOI: 10.1016/j.nmni.2022.100960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is an important problem associated with significant mortality and morbidity and well known as a predominant bacterial pathogen. The aim of this study was to identify MRSA strains. In this study (June 2018 to June 2019) isolates of S. aureus were obtained from patients referred to teaching hospitals of Ahvaz, Iran. All isolates were confirmed by conventional microbiological methods. In following, antimicrobial susceptibility testing (AST), MRSA screening, PCR detection of MRSA and LAMP assay were performed. Out of a total of 156 staphylococcal isolates, 126 isolates were identified as MRSA. Seventy-two (57.1%) MRSA isolates were recovered from wound. All MRSA isolates were sensitive to vancomycin, linezolid, teicoplanin, quinupristin-dalfopristin, and tigecycline. The results of LAMP showed 100% agreement with PCR. Sensitivity and specificity of the LAMP assays for the mecA genes were 100% and 100%, respectively. The LAMP assay is a rapid and simple method for the identifications of MRSA. Because of its performance without the need for specific instrumentation, this method can be easily employed in medical centers for the detection of mecA.
Collapse
Affiliation(s)
- A D Khosravi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - S Khoshnood
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - E Abbasi Montazeri
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - N Jomehzadeh
- Department of Microbiology, Abadan Faculty of Medical Sciences, Abadan, Iran
| | - M Moradi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - F Shahi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
21
|
Wang C, Xu Z, Hou X, Wang M, Zhou C, Liang J, Wei P. Rapid, Sensitive, Specific, and Visual Detection of Salmonella in Retail Meat with Loop-Mediated Isothermal Amplification, Targeting the invA Gene. J Food Prot 2022; 85:6-12. [PMID: 34436593 DOI: 10.4315/jfp-21-186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT Salmonella is one of the major pathogenic bacteria causing foodborne diseases. The rapid detection of Salmonella in food is of great significance to food safety. In this study, the loop-mediated isothermal amplification (LAMP) method was developed, and primers were designed targeting the invA gene of Salmonella. Standard samples of recombinant invA-plasmid and 100 retail meat samples were tested by LAMP and compared with the results tested by conventional PCR and the routine Chinese National Food Safety Standard-Microbiological Examination of Food-Examination of Salmonella, respectively. The results showed that Salmonella strains of eight different serotypes were amplified successfully by the developed LAMP assay, and it was 1,000-fold more sensitive than conventional PCR, with the analytical sensitivity of 8 × 102 copies per μL of the standard sample of invA-plasmid. The results were visualized directly by adding calcein and MnCl2 in the LAMP reaction tube, and the positively amplified products turned green after an incubation of 2 min. In parallel detection, the positive rate of Salmonella by the LAMP assay was highly correlated with the routine Chinese national standard method. The results of the study demonstrated that the developed LAMP assay is a simple, rapid, strongly specific, highly sensitive, and visual detection method for Salmonella. HIGHLIGHTS
Collapse
Affiliation(s)
- Can Wang
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Ziheng Xu
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Xuejiao Hou
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Min Wang
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Chenyu Zhou
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Jingzhen Liang
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| | - Ping Wei
- Participating Laboratory of the World Health Organization Global Foodborne Infections Network, Institute for Poultry Science and Health, Guangxi University, Nanning 530004, Guangxi, People's Republic of China
| |
Collapse
|
22
|
Flauzino JMR, Nguyen EP, Yang Q, Rosati G, Panáček D, Brito-Madurro AG, Madurro JM, Bakandritsos A, Otyepka M, Merkoçi A. Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens Bioelectron 2022; 195:113628. [PMID: 34543917 DOI: 10.1016/j.bios.2021.113628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
With the increased demand for beef in emerging markets, the development of quality-control diagnostics that are fast, cheap and easy to handle is essential. Especially where beef must be free from pork residues, due to religious, cultural or allergic reasons, the availability of such diagnostic tools is crucial. In this work, we report a label-free impedimetric genosensor for the sensitive detection of pork residues in meat, by leveraging the biosensing capabilities of graphene acid - a densely and selectively functionalized graphene derivative. A single stranded DNA probe, specific for the pork mitochondrial genome, was immobilized onto carbon screen-printed electrodes modified with graphene acid. It was demonstrated that graphene acid improved the charge transport properties of the electrode, following a simple and rapid electrode modification and detection protocol. Using non-faradaic electrochemical impedance spectroscopy, which does not require any electrochemical indicators or redox pairs, the detection of pork residues in beef was achieved in less than 45 min (including sample preparation), with a limit of detection of 9% w/w pork content in beef samples. Importantly, the sample did not need to be purified or amplified, and the biosensor retained its performance properties unchanged for at least 4 weeks. This set of features places the present pork DNA sensor among the most attractive for further development and commercialization. Furthermore, it paves the way for the development of sensitive and selective point-of-need sensing devices for label-free, fast, simple and reliable monitoring of meat purity.
Collapse
Affiliation(s)
- José M R Flauzino
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Emily P Nguyen
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Qiuyue Yang
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Panáček
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Ana G Brito-Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil
| | - João M Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
23
|
Hu YQ, Huang XH, Guo LQ, Shen ZC, LV LX, Li FX, Zhou ZH, Zhang DF. Rapid and Visual Detection of Vibrio parahaemolyticus in Aquatic Foods Using blaCARB-17 Gene-Based Loop-Mediated Isothermal Amplification with Lateral Flow Dipstick (LAMP-LFD). J Microbiol Biotechnol 2021; 31:1672-1683. [PMID: 34489378 PMCID: PMC9705909 DOI: 10.4014/jmb.2107.07022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/22/2021] [Accepted: 09/02/2021] [Indexed: 12/15/2022]
Abstract
Vibrio parahaemolyticus is recognized as one of the most important foodborne pathogens responsible for gastroenteritis in humans. The blaCARB-17 gene is an intrinsic β-lactamase gene and a novel species-specific genetic marker of V. parahaemolyticus. In this study, a loop-mediated isothermal amplification (LAMP) assay combined with a lateral flow dipstick (LFD) was developed targeting this blaCARB-17 gene. The specificity of LAMP-LFD was ascertained by detecting V. parahaemolyticus ATCC 17802 and seven other non-V. parahaemolyticus strains. Finally, the practicability of LAMP-LFD was confirmed by detection with V. parahaemolyticus-contaminated samples and natural food samples. The results showed that the optimized reaction parameters of LAMP are as follows: 2.4 mmol/l Mg2+, 0.96 mmol/l dNTPs, 4.8 U Bst DNA polymerase, and an 8:1 ratio of inner primer to outer primer, at 63°C for 40 min. The optimized reaction time of the LFD assay is 60 min. Cross-reactivity analysis with the seven non-V. parahaemolyticus strains showed that LAMP-LFD was exclusively specific for V. parahaemolyticus. The detection limit of LAMP-LFD for V. parahaemolyticus genomic DNA was 2.1 × 10-4 ng/μl, corresponding to 630 fg/reaction and displaying a sensitivity that is 100-fold higher than that of conventional PCR. LAMP-LFD in a spiking study revealed a detection limit of approximately 6 CFU/ml, which was similar with conventional PCR. The developed LAMP-LFD specifically identified the 10 V. parahaemolyticus isolates from 30 seafood samples, suggesting that this LAMP-LFD may be a suitable diagnostic method for detecting V. parahaemolyticus in aquatic foods.
Collapse
Affiliation(s)
- Yuan-qing Hu
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China,Corresponding authors Y.Q. Hu Phone: +86 596 2528735 Fax: +86 596 2528735 E-mail:
| | - Xian-hui Huang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Li-qing Guo
- Zhangzhou Center for Disease Control and Prevention, Zhangzhou 363000, P.R. China
| | - Zi-chen Shen
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Lin-xue LV
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Feng-xia Li
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China
| | - Zan-hu Zhou
- Comprehensive Technical Service Center, Zhangzhou Customs, Zhangzhou 363000, P.R. China
| | - Dan-feng Zhang
- School of Biological Science and Biotechnology, Minnan Normal University, Zhangzhou 363000, P.R. China,
D.F. Zhang E-mail:
| |
Collapse
|
24
|
Girish PS, Kumari A, Gireesh‐Babu P, Karabasanavar NS, Raja B, Ramakrishna C, Barbuddhe SB. Alkaline lysis‐loop mediated isothermal amplification assay for rapid and on‐site authentication of buffalo (
Bubalus bubalis
) meat. J Food Saf 2021. [DOI: 10.1111/jfs.12955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Patil S. Girish
- ICAR – National Research Centre on Meat Hyderabad Telangana State India
| | - Aparana Kumari
- ICAR – National Research Centre on Meat Hyderabad Telangana State India
| | | | - Nagappa S. Karabasanavar
- Department of Veterinary Public Health & Epidemiology Veterinary College, Karnataka Veterinary Animal and Fisheries Sciences University Hassan Karnataka India
| | | | | | | |
Collapse
|
25
|
Ivanov AV, Popravko DS, Safenkova IV, Zvereva EA, Dzantiev BB, Zherdev AV. Rapid Full-Cycle Technique to Control Adulteration of Meat Products: Integration of Accelerated Sample Preparation, Recombinase Polymerase Amplification, and Test-Strip Detection. Molecules 2021; 26:6804. [PMID: 34833896 PMCID: PMC8622786 DOI: 10.3390/molecules26226804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Verifying the authenticity of food products is essential due to the recent increase in counterfeit meat-containing food products. The existing methods of detection have a number of disadvantages. Therefore, simple, cheap, and sensitive methods for detecting various types of meat are required. In this study, we propose a rapid full-cycle technique to control the chicken or pig adulteration of meat products, including 3 min of crude DNA extraction, 20 min of recombinase polymerase amplification (RPA) at 39 °C, and 10 min of lateral flow assay (LFA) detection. The cytochrome B gene was used in the developed RPA-based test for chicken and pig identification. The selected primers provided specific RPA without DNA nuclease and an additional oligonucleotide probe. As a result, RPA-LFA, based on designed fluorescein- and biotin-labeled primers, detected up to 0.2 pg total DNA per μL, which provided up to 0.001% w/w identification of the target meat component in the composite meat. The RPA-LFA of the chicken and pig meat identification was successfully applied to processed meat products and to meat after heating. The results were confirmed by real-time PCR. Ultimately, the developed analysis is specific and enables the detection of pork and chicken impurities with high accuracy in raw and processed meat mixtures. The proposed rapid full-cycle technique could be adopted for the authentication of other meat products.
Collapse
Affiliation(s)
| | | | | | | | | | - Anatoly V. Zherdev
- Research Centre of Biotechnology, A.N. Bach Institute of Biochemistry, Russian Academy of Sciences, Leninsky Prospect 33, 119071 Moscow, Russia; (A.V.I.); (D.S.P.); (I.V.S.); (E.A.Z.); (B.B.D.)
| |
Collapse
|
26
|
Li M, Yin F, Song L, Mao X, Li F, Fan C, Zuo X, Xia Q. Nucleic Acid Tests for Clinical Translation. Chem Rev 2021; 121:10469-10558. [PMID: 34254782 DOI: 10.1021/acs.chemrev.1c00241] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Nucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important. Inspired by intracellular DNA replication and RNA transcription, in vitro NATs have been extensively developed to improve the detection specificity, sensitivity, and simplicity. The principles of NATs can be in general classified into three categories: nucleic acid hybridization, thermal-cycle or isothermal amplification, and signal amplification. Driven by pressing needs in clinical diagnosis and prevention of infectious diseases, NATs have evolved to be a rapidly advancing field. During the past ten years, an explosive increase of research interest in both basic research and clinical translation has been witnessed. In this review, we aim to provide comprehensive coverage of the progress to analyze nucleic acids, use nucleic acids as recognition probes, construct detection devices based on nucleic acids, and utilize nucleic acids in clinical diagnosis and other important fields. We also discuss the new frontiers in the field and the challenges to be addressed.
Collapse
Affiliation(s)
- Min Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fangfei Yin
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Song
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Fan Li
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Xia
- Institute of Molecular Medicine, Department of Liver Surgery, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| |
Collapse
|
27
|
Khafizov KF, Petrov VV, Krasovitov KV, Zolkina MV, Akimkin VG. [Rapid diagnostics of novel coronavirus infection by loop-mediated isothermal amplification]. Vopr Virusol 2021; 66:17-28. [PMID: 33683062 DOI: 10.36233/0507-4088-42] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022]
Abstract
This review presents the basic principles of application of the loop-mediated isothermal amplification (LAMP) reaction for the rapid diagnosis of coronavirus infection caused by SARS-CoV-2. The basic technical details of the method, and the most popular approaches of specific and non-specific detection of amplification products are briefly described. We also discuss the first published works on the use of the method for the detection of the nucleic acid of the SARS-CoV-2 virus, including those being developed in the Russian Federation. For commercially available and published LAMP-based assays, the main analytical characteristics of the tests are listed, which are often comparable to those based on the method of reverse transcription polymerase chain reaction (RT-PCR), and in some cases are even superior. The advantages and limitations of this promising methodology in comparison to other methods of molecular diagnostics, primarily RT-PCR, are discussed, as well as the prospects for the development of technology for the detection of other infectious agents.
Collapse
Affiliation(s)
- K F Khafizov
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - V V Petrov
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - K V Krasovitov
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - M V Zolkina
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| | - V G Akimkin
- FSBI Central Research Institute for Epidemiology of the Federal Service for Surveillance of Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor)
| |
Collapse
|
28
|
Kumar Y. Isothermal amplification-based methods for assessment of microbiological safety and authenticity of meat and meat products. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Kumar Y, Narsaiah K. Rapid point-of-care testing methods/devices for meat species identification: A review. Compr Rev Food Sci Food Saf 2020; 20:900-923. [PMID: 33443804 DOI: 10.1111/1541-4337.12674] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/30/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022]
Abstract
The authentication of animal species is an important issue due to an increasing trend of adulteration and mislabeling of animal species in processed meat products. Polymerase chain reaction is the most sensitive and specific technique for nucleic acid-based animal species detection. However, it is a time-consuming technique that requires costly thermocyclers and sophisticated labs. In recent times, there is a need of on-site detection by point-of-care (POC) testing methods and devices under low-resource settings. These POC devices must be affordable, sensitive, specific, user-friendly, rapid and robust, equipment free, and delivered to the end users. POC devices should also confirm the concept of micro total analysis system. This review discusses POC testing methods and devices that have been developed for meat species identification. Recent developments in lateral flow assay-based devices for the identification of animal species in meat products are also reviewed. Advancements in increasing the efficiency of lateral flow detection are also discussed.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| | - Kairam Narsaiah
- Department of Agricultural Structures and Environmental Control, ICAR-Central Institute of Post-Harvest Engineering and Technology (CIPHET), Ludhiana, India
| |
Collapse
|
30
|
Campbell VR, Carson MS, Lao A, Maran K, Yang EJ, Kamei DT. Point-of-Need Diagnostics for Foodborne Pathogen Screening. SLAS Technol 2020; 26:55-79. [PMID: 33012245 DOI: 10.1177/2472630320962003] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Foodborne illness is a major public health issue that results in millions of global infections annually. The burden of such illness sits mostly with developing countries, as access to advanced laboratory equipment and skilled lab technicians, as well as consistent power sources, is limited and expensive. Current gold standards in foodborne pathogen screening involve labor-intensive sample enrichment steps, pathogen isolation and purification, and costly readout machinery. Overall, time to detection can take multiple days, excluding the time it takes to ship samples to off-site laboratories. Efforts have been made to simplify the workflow of such tests by integrating multiple steps of foodborne pathogen screening procedures into a singular device, as well as implementing more point-of-need readout methods. In this review, we explore recent advancements in developing point-of-need devices for foodborne pathogen screening. We discuss the detection of surface markers, nucleic acids, and metabolic products using both paper-based and microfluidic devices, focusing primarily on developments that have been made between 2015 and mid-2020.
Collapse
Affiliation(s)
- Veronica R Campbell
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Mariam S Carson
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Amelia Lao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Kajal Maran
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Eric J Yang
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| | - Daniel T Kamei
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Sciences, University of California, Los Angeles, CA, USA
| |
Collapse
|
31
|
Flauzino JMR, Pimentel EL, Alves LM, Madurro JM, Brito‐Madurro AG. A Novel and Reusable Electrochemical Genosensor for Detection of Beef Adulteration. ELECTROANAL 2020. [DOI: 10.1002/elan.202060029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- José M. R. Flauzino
- Institute of Biotechnology Federal University of Uberlândia Uberlândia Brazil
| | | | - Lívia M. Alves
- Institute of Biotechnology Federal University of Uberlândia Uberlândia Brazil
| | - João M. Madurro
- Institute of Chemistry Federal University of Uberlândia Uberlândia Brazil
| | | |
Collapse
|
32
|
Pires NMM, Dong T, Yang Z, da Silva LFBA. Recent methods and biosensors for foodborne pathogen detection in fish: progress and future prospects to sustainable aquaculture systems. Crit Rev Food Sci Nutr 2020; 61:1852-1876. [PMID: 32539431 DOI: 10.1080/10408398.2020.1767032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The aquaculture industry has advanced toward sustainable recirculating systems, in where parameters of food quality are strictly monitored. Despite that, as in the case of conventional aquaculture practices, the recirculating systems also suffer threats from Aeromonas spp., Vibrio spp., Streptococcus spp., among other foodborne pathogens infecting farmed fish. The aquaculture pathogens are routinely detected by conventional PCR methods or antibody-based tests, with the detection protocols confined to laboratory use. Emerging assay technologies and biosensors recently reported in the literature open new opportunities to the development of sensitive, specific, and portable analytical devices to use in the field. Techniques of DNA/RNA analysis, immunoassays and other nanomolecular technologies have been facing important advances in response time, sensitivity, and enhanced power of discrimination among and within species. Moreover, the recent developments of electrochemical and optical signal transduction have facilitated the incorporation of the innovative assays to practical miniaturized devices. In this work, it is provided a critical review over foodborne pathogen detection by existing and promising methods and biosensors applied to fish samples and extended to other food matrices. While isothermal DNA/RNA amplification methods can be highlighted among the assay methods for their promising analytical performance and suitability for point-of-care testing, the electrochemical transduction provides a way to achieve cost-effective biosensors amenable to use in the aquaculture field. The adoption of new methods and biosensors would constitute a step forward in securing sustainable aquaculture systems.
Collapse
Affiliation(s)
- Nuno M M Pires
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China.,Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway.,Centre for Environmental Radioactivity (CERAD CoE), Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Ås, Norway
| | - Tao Dong
- Department of Microsystems- IMS, Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway-USN, Kongsberg, Norway
| | - Zhaochu Yang
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| | - Luís F B A da Silva
- Chongqing Key Laboratory of Micro-Nano Systems and Smart Transduction, Collaborative Innovation Center on Micro-Nano Transduction and Intelligent Eco-Internet of Things, Chongqing Key Laboratory of Colleges and Universities on Micro-Nano Systems Technology and Smart Transducing, National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, China
| |
Collapse
|
33
|
Loop Mediated Isothermal Amplification: A Promising Tool for Screening Genetic Mutations. Mol Diagn Ther 2020; 23:723-733. [PMID: 31396882 DOI: 10.1007/s40291-019-00422-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Mutation screening is elemental for clinical diagnosis and in determining therapeutic strategies. Nucleic acid-based techniques are considered to be the most accurate tools in genetic diagnosis. One such technique is loop-mediated isothermal amplification (LAMP) assay, which has seen tremendous applications in recent years. The advantages of the assay lie in its rapidity, efficiency, sensitivity, and cost. It works in isothermal conditions and amplifies the target gene using DNA polymerases that have strand displacement activity. To date, the assay has been widely used in different fields of research, including pathogen detection, crop development, and disease diagnosis. However, despite the potential, its application in mutation screening has been minimal. This review highlights the LAMP assay and its variants that have been developed for screening single-nucleotide polymorphisms and gene translocations in cancer.
Collapse
|
34
|
Li HW, Mao JY, Lien CW, Wang CK, Lai JY, Mandal RP, Chang HT, Chang L, Ma DHK, Huang CC. Platinum ions mediate the interactions between DNA and carbon quantum dots: diagnosis of MRSA infections. J Mater Chem B 2020; 8:3506-3512. [PMID: 31859331 DOI: 10.1039/c9tb02468a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we have developed a rapid and cost-effective method employing platinum ion (Pt4+)-capped fluorescent carbon quantum dots (CQDs) coupled with loop-mediated isothermal amplification (LAMP) to detect dual MRSA genes. We synthesized nitrogen- and chlorine-co-doped fluorescent CQDs (CQDSPDs) from spermidine trihydrochloride via a simple one-step pyrolysis. The CQDSPDs capped with Pt4+ ions through the cooperative coordination of the amine and chlorine groups on the surface of CQDs facilitated the double-stranded DNA (dsDNA)-induced fluorescence quenching of CQDs, and enabled the construction of the CQDSPDs/Pt4+ probe for the detection of as few as 10 copies of the MRSA gene (mecA and femA). The sensitivity and specificity of the CQDSPDs/Pt4+ probe for MRSA detection in clinical specimens (n = 24) were 94% and 86%, respectively. Our results reveal that the CQDSPDs/Pt4+ probe has great potential for the diagnosis of antibiotic-resistant superbugs with high sensitivity, specificity, and agreement.
Collapse
Affiliation(s)
- Han-Wei Li
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Sagcan H, Turgut Kara N. Detection of Potato ring rot Pathogen Clavibacter michiganensis subsp. sepedonicus by Loop-mediated isothermal amplification (LAMP) assay. Sci Rep 2019; 9:20393. [PMID: 31892706 PMCID: PMC6938510 DOI: 10.1038/s41598-019-56680-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 12/06/2019] [Indexed: 11/09/2022] Open
Abstract
Clavibacter michiganensis subsp. sepedonicus (CMS) is an important bacterial plant pathogen causing potato ring rot disease. Rapid diagnosis of CMS is crucial because of the economic losses caused by serious harvest losses. Although there are serological tests used in the rapid diagnosis of CMS, they are not widely used because of their low sensitivity. The DNA-based PCR methods, which are highly sensitive, do not have the possibility of on-site diagnosis, especially since they require serious laboratory infrastructure. In recent years, scientists have been working on alternative amplification methods to develop DNA-based point of care (POC) diagnostic methods. Accordingly, the loop-mediated isothermal amplification (LAMP) method, which was developed in the early 2000s, provides an important convenience for DNA-based tests to use in the field. Due to the unique design of primers, more amplification products could be create in a shorter time than conventional amplification methods without needing a temperature cycle, and it can be applied with the aid of a simple heater without requiring a laboratory environment. In this study, efficient LAMP method for the detection of CMS has optimized. For device-independent detection of LAMP products, colorimetric method and LFD has used.
Collapse
Affiliation(s)
- Hasan Sagcan
- Istanbul University, Institute of Science, Program of Molecular Biology and Genetics, Istanbul, Turkey
| | - Neslihan Turgut Kara
- Istanbul University, Faculty of Science, Department of Molecular Biology and Genetics, 34134, Istanbul, Turkey.
| |
Collapse
|
36
|
Singh M, Pal D, Sood P, Randhawa G. Loop-mediated isothermal amplification assays: Rapid and efficient diagnostics for genetically modified crops. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.106759] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
37
|
Sul S, Kim MJ, Kim HY. Development of a direct loop-mediated isothermal amplification (LAMP) assay for rapid and simple on-site detection of chicken in processed meat products. Food Control 2019. [DOI: 10.1016/j.foodcont.2018.11.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
38
|
Martzy R, Kolm C, Krska R, Mach RL, Farnleitner AH, Reischer GH. Challenges and perspectives in the application of isothermal DNA amplification methods for food and water analysis. Anal Bioanal Chem 2019; 411:1695-1702. [PMID: 30617408 PMCID: PMC6453865 DOI: 10.1007/s00216-018-1553-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 12/04/2022]
Abstract
Molecular diagnostic tools in the field of food and water quality analysis are becoming increasingly widespread. Usually, based on DNA amplification techniques such as polymerase chain reaction (PCR), these methods are highly sensitive and versatile but require well-equipped laboratories and trained personnel. To reduce analysis time and avoid expensive equipment, isothermal DNA amplification methods for detecting various target organisms have been developed. However, to make molecular diagnostics suitable for low-resource settings and in-field applications, it is crucial to continuously adapt the working steps associated with DNA amplification, namely sample preparation, DNA extraction, and visualization of the results. Many novel approaches have been evaluated in recent years to tackle these challenges, e.g., the use of ionic liquids for the rapid isolation of nucleic acids from organisms relevant for food and water analysis or the integration of entire analytical workflows on microfluidic chips. In any event, the future of applications in the field of isothermal amplification will probably lie in ready-to-use cartridges combined with affordable handheld devices for on-site analysis. This trend article aims to make prospective users more familiar with this technology and its potential for moving molecular diagnostics from the laboratory to the field. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Roland Martzy
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), 3430, Tulln, Austria
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Claudia Kolm
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), 3430, Tulln, Austria
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
| | - Rudolf Krska
- University of Natural Resources and Life Sciences, Vienna (BOKU), Department of Agrobiotechnology (IFA-Tulln), Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
- Queen's University Belfast, Institute for Global Food Security, School of Biological Sciences, Belfast, Northern Ireland, BT71NN, UK
| | - Robert L Mach
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Synthetic Biology and Molecular Biotechnology, 1060, Vienna, Austria
| | - Andreas H Farnleitner
- ICC Interuniversity Cooperation Centre Water & Health, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Research Unit Water Quality and Health, 3500, Krems, Austria
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Environmental Microbiology and Molecular Diagnostics, 1060, Vienna, Austria
| | - Georg H Reischer
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Molecular Diagnostics Group, Department of Agrobiotechnology (IFA-Tulln), 3430, Tulln, Austria.
- TU Wien, Institute of Chemical, Environmental & Bioscience Engineering, Research Area Biochemical Technology, Research Group of Environmental Microbiology and Molecular Diagnostics, 1060, Vienna, Austria.
| |
Collapse
|
39
|
Warkad SD, Nimse SB, Song KS, Kim T. HCV Detection, Discrimination, and Genotyping Technologies. SENSORS (BASEL, SWITZERLAND) 2018; 18:E3423. [PMID: 30322029 PMCID: PMC6210034 DOI: 10.3390/s18103423] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023]
Abstract
According to the World Health Organization (WHO), 71 million people were living with Hepatitis C virus (HCV) infection worldwide in 2015. Each year, about 399,000 HCV-infected people succumb to cirrhosis, hepatocellular carcinoma, and liver failure. Therefore, screening of HCV infection with simple, rapid, but highly sensitive and specific methods can help to curb the global burden on HCV healthcare. Apart from the determination of viral load/viral clearance, the identification of specific HCV genotype is also critical for successful treatment of hepatitis C. This critical review focuses on the technologies used for the detection, discrimination, and genotyping of HCV in clinical samples. This article also focuses on advantages and disadvantages of the reported methods used for HCV detection, quantification, and genotyping.
Collapse
Affiliation(s)
- Shrikant Dashrath Warkad
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Satish Balasaheb Nimse
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Keum-Soo Song
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| | - Taisun Kim
- Institute for Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200-702, Korea.
| |
Collapse
|
40
|
The application of loop-mediated isothermal amplification (LAMP) assays for the rapid diagnosis of food-borne mycotoxigenic fungi. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.02.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Soares-Santos V, Pardo I, Ferrer S. Direct and Rapid Detection and Quantification of Oenococcus oeni Cells in Wine by Cells-LAMP and Cells-qLAMP. Front Microbiol 2018; 9:1945. [PMID: 30174668 PMCID: PMC6107848 DOI: 10.3389/fmicb.2018.01945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 07/31/2018] [Indexed: 11/13/2022] Open
Abstract
Fast detection and enumeration of Oenococcus oeni in winemaking are necessary to determine whether malolactic fermentation (MLF) is likely to be performed or not and to decide if the use of a commercial starter is needed. In other wines, however, performing MLF can be detrimental for wine and should be avoided. The traditional identification and quantification of this bacteria using culture-dependent techniques in wine-related matrices require up to 14 days to yield results, which can be a very long time to perform possible enological operations. Loop-mediated isothermal amplification (LAMP) is a novel culture-independent technique that amplifies nucleic acid sequences under isothermal conditions with high specificity and efficiency in less than 1 h with inexpensive equipment. We designed LAMP primers for the specific detection and quantification of O. oeni cells. The developed LAMP method allows O. oeni to be detected directly from both grape musts and wines within 1 h from the time that the LAMP reaction begins, and without DNA extraction and purification requirements. The high sensitivity of LAMP methodology is achieved by previous mechanical cells lysis with no further purification by detecting one single cell per reaction in culture media, and in white/red grape musts and wines by avoiding reaction inhibition by ethanol, polyphenols, and other wine inhibitors. Cells can be concentrated prior to the LAMP reaction to further increase this sensitivity. Moreover, the LAMP method does not require expensive equipment and can be easily operated. The developed method is both economic and fast and offers high sensitivity and specificity.
Collapse
Affiliation(s)
- Verónica Soares-Santos
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, València, Spain
- ENOLAB, Universitat de València, València, Spain
| | - Isabel Pardo
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, València, Spain
- ENOLAB, Universitat de València, València, Spain
| | - Sergi Ferrer
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universitat de València, València, Spain
- ENOLAB, Universitat de València, València, Spain
| |
Collapse
|
42
|
Yang Q, Domesle KJ, Ge B. Loop-Mediated Isothermal Amplification for Salmonella Detection in Food and Feed: Current Applications and Future Directions. Foodborne Pathog Dis 2018; 15:309-331. [PMID: 29902082 PMCID: PMC6004089 DOI: 10.1089/fpd.2018.2445] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Loop-mediated isothermal amplification (LAMP) has become a powerful alternative to polymerase chain reaction (PCR) for pathogen detection in clinical specimens and food matrices. Nontyphoidal Salmonella is a zoonotic pathogen of significant food and feed safety concern worldwide. The first study employing LAMP for the rapid detection of Salmonella was reported in 2005, 5 years after the invention of the LAMP technology in Japan. This review provides an overview of international efforts in the past decade on the development and application of Salmonella LAMP assays in a wide array of food and feed matrices. Recent progress in assay design, platform development, commercial application, and method validation is reviewed. Future perspectives toward more practical and wider applications of Salmonella LAMP assays in food and feed testing are discussed.
Collapse
Affiliation(s)
- Qianru Yang
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine , U.S. Food and Drug Administration, Laurel, Maryland
| | - Kelly J Domesle
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine , U.S. Food and Drug Administration, Laurel, Maryland
| | - Beilei Ge
- Division of Animal and Food Microbiology, Office of Research, Center for Veterinary Medicine , U.S. Food and Drug Administration, Laurel, Maryland
| |
Collapse
|
43
|
Müller V, Sousa JM, Ceylan Koydemir H, Veli M, Tseng D, Cerqueira L, Ozcan A, Azevedo NF, Westerlund F. Identification of pathogenic bacteria in complex samples using a smartphone based fluorescence microscope. RSC Adv 2018; 8:36493-36502. [PMID: 35558922 PMCID: PMC9088845 DOI: 10.1039/c8ra06473c] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 10/21/2018] [Indexed: 11/21/2022] Open
Abstract
Diagnostics based on fluorescence imaging of biomolecules is typically performed in well-equipped laboratories and is in general not suitable for remote and resource limited settings. Here we demonstrate the development of a compact, lightweight and cost-effective smartphone-based fluorescence microscope, capable of detecting signals from fluorescently labeled bacteria. By optimizing a peptide nucleic acid (PNA) based fluorescence in situ hybridization (FISH) assay, we demonstrate the use of the smartphone-based microscope for rapid identification of pathogenic bacteria. We evaluated the use of both a general nucleic acid stain as well as species-specific PNA probes and demonstrated that the mobile platform can detect bacteria with a sensitivity comparable to that of a conventional fluorescence microscope. The PNA-based FISH assay, in combination with the smartphone-based fluorescence microscope, allowed us to qualitatively analyze pathogenic bacteria in contaminated powdered infant formula (PIF) at initial concentrations prior to cultivation as low as 10 CFU per 30 g of PIF. Importantly, the detection can be done directly on the smartphone screen, without the need for additional image analysis. The assay should be straightforward to adapt for bacterial identification also in clinical samples. The cost-effectiveness, field-portability and simplicity of this platform will create various opportunities for its use in resource limited settings and point-of-care offices, opening up a myriad of additional applications based on other fluorescence-based diagnostic assays. A smartphone-based fluorescence microscope for detection of bacteria in complex samples using a species-specific peptide nucleic acid probe.![]()
Collapse
Affiliation(s)
- Vilhelm Müller
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | | | - Hatice Ceylan Koydemir
- Electrical and Computer Engineering Department
- University of California
- Los Angeles
- USA
- Bioengineering Department
| | - Muhammed Veli
- Electrical and Computer Engineering Department
- University of California
- Los Angeles
- USA
- Bioengineering Department
| | - Derek Tseng
- Electrical and Computer Engineering Department
- University of California
- Los Angeles
- USA
- Bioengineering Department
| | | | - Aydogan Ozcan
- Electrical and Computer Engineering Department
- University of California
- Los Angeles
- USA
- Bioengineering Department
| | - Nuno F. Azevedo
- LEPABE
- Department of Chemical Engineering
- Faculty of Engineering of the University of Porto
- 4200-465 Porto
- Portugal
| | - Fredrik Westerlund
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| |
Collapse
|